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Abstract
We present a new method for the stable reconstruction of a class of binary images
from a small number of measurements. The images we consider are characteristic
functions of algebraic domains, that is, domains defined as zero loci of bivariate poly-
nomials, and we assume to know only a finite set of uniform samples for each image.
The solution to such a problem can be set up in terms of linear equations associated
to a set of image moments. However, the sensitivity of the moments to noise makes
the numerical solution highly unstable. To derive a robust image recovery algorithm,
we represent algebraic polynomials and the corresponding image moments in terms
of bivariate Bernstein polynomials and apply polynomial-generating, refinable sam-
pling kernels. This approach is robust to noise, computationally fast and simple to
implement. We illustrate the performance of our reconstruction algorithm from noisy
samples through extensive numerical experiments. Our code is released open source
and freely available.

Keywords Image sampling · Algebraic curves · Bernstein polynomials ·
Moment reconstruction · Refinable kernels

Mathematics Subject Classification (2010) 65D18 · 68U10 · 44A60 · 41A63 ·
65D17

1 Introduction

In this work, we present an improved method for the sampling and recovery of a
class of binary images of the form I = χD , where D ⊂ R

2 is a bounded open
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region whose boundary ∂D is an algebraic curve of degree n, i.e., the zero locus of a
bivariate polynomial p of degree n:

∂D =
⎧
⎨

⎩
(x1, x2) ∈ R

2 : p(x1, x2) =
∑

0≤i,j,i+j≤n

ai,j xi
1 x

j

2 = 0

⎫
⎬

⎭
. (1)

We refer to such region D as an algebraic domain or algebraic shape and, without
loss of generality, we assume that it is contained inside the rectangular region Ω =
[0, L1] × [0, L2] ⊂ R

2.
By classical results [12], an algebraic curve of degree n as above can be uniquely

determined from its set of two-dimensional moments

Mi,j =
∫

Ω

xi
1x

j

2 I (x1, x2) dx1 dx2 (2)

of order less than or equal to n. An algorithmic approach for the reconstruction of
bounded algebraic domains from their moments was first presented in [10, 19] but
this approach is very sensitive to noise. Even though it was shown that one can
improve the stability of the reconstruction by increasing the number of moments [15],
the problem of recovering an algebraic domain remains unstable in the sense that
small errors in the computation of the image moments may have a significant impact
on the recovery algorithm.

In this work, we adopt the setting recently proposed in [9] where it is assumed that
we have access only to a discrete set of uniform samples of the binary image I = χD ,
that is, input data are of the form

dk = 1
T

∫

Ω

I (x) φ( x
T

− k) dx, k ∈ Z
2, (3)

where φ : R2 → R is an appropriate sampling kernel and T ≥ 1 is a parameter. The
problem we consider is whether we can recover the exact image I and, hence, the
corresponding algebraic curve ∂D from an adequate set of noiseless or noisy samples
{dk}, given the sampling kernel φ and the sampling rate T , where T may be large,
that is, the image I may be heavily down-sampled. As in [9], we assume that φ is
polynomial generating up to a certain degree m, that is, there exist coefficients c

(α)
k

such that ∑

k∈Z2

c
(α)
k φ(x − k) = xα, for |α| = 0, . . . , m. (4)

Fatemi et al. [9] show that, under the assumption stated above, one can express
the image moments (2) as appropriate linear combinations of the image samples (3),
where the coefficients of the linear combinations depend on the sampling kernel φ.
Hence, they derive a system of linear equations for the recovery of the algebraic shape
of the form

Ma = 0, (5)

where a is the vector of the unknown polynomial coefficients {ai,j } in (1) and the
matrixM consists of the computed moments (2). It turns out that the direct numerical
solution of (5) recovers the polynomial coefficients if the image moments are com-
puted from noiseless image samples. However, if the image samples are corrupted
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by even a small additive noise, then the numerical reconstruction fails in general.
To remedy the instability of the recovery, Fatemi et al. [9] introduced a modified
formulation based on “generalized moments” leading to a constrained optimization
problem that is solved using an iterative regularized reconstruction algorithm.

The instability of the solution of the system (5) can be explained by observing that
the process of converting image samples into image moments can be very sensitive
to noise. We contend that this sensitivity is highly dependent on the basis selected
for the representation of the algebraic curve and so the impact of the noise can be
reduced by choosing alternative polynomial representations. Hence, to derive a more
robust method for the recovery of an algebraic curve from the corresponding image
samples, we introduce a novel approach that represents an algebraic curve in terms
of non-separable bivariate Bernstein polynomials. It is already known that represen-
tations in terms of Bernstein polynomials can provide enhanced stability in problems
from numerical analysis (cf. [8, 22]) and our results are consistent with this general
observations. Using our representation of algebraic domains in terms of Bernstein
polynomials, we derive a new formulation of the image moment equation (5) that
we can solve directly to recover an algebraic domain from noisy image samples.
We show that the numerical reconstruction based on our algorithm is robust to noise
and, while its reconstruction performance is comparable with the best regularized
algorithm in [9], it is computationally much faster and simpler to implement. This
is particularly true in the situation where we use refinable sampling kernels which
are polynomial reproducing due to the costless computation of the expansion coeffi-
cients in (4). In addition, our method is more flexible as it applies to algebraic shapes
of any degree and to image samples with different noise levels without the need for
noise-specific parameter tuning that is required by a regularization approach.

To provide a broader context to this work, we recall that the problem of accu-
rately recovering image boundaries or edges from image samples has gained renewed
interest in recent years with the study of signals with finite rate of innovation (FRI).
This area of investigation is concerned with signals that are not band-limited, hence
do not satisfy the assumptions of Shannon sampling theory; however, they can be
described with a finite number of parameters so that they can still be recovered from
their samples using appropriate alternative strategies [2, 17, 27]. In an effort to apply
the FRI framework to images, a number sampling schemes with different sampling
kernels were proposed to recover special classes of images with edges [3, 20, 23,
29]. While prior results were mostly focused on images with polygonal shapes or
edges associated with finite sums of complex exponentials, the more recent work
in [9] was the first to consider a rather general class of binary images associated
with algebraic domains. We also recall that the application of image moments to sig-
nal processing and pattern recognition has a long history with a number successful
applications to problems including shape analysis for aircraft identification, scene
matching, character recognition, landmark detection and image retrieval [11, 21, 24,
26, 30].

The rest of the paper is organized as follows. In Section 2, we recall some basic
properties of Bernstein polynomials and formulate the problem of the recovery of
an algebraic curve in Bernstein form from the solution a set of moment equations.
In Section 3 we formulate the computation of the Bernstein moments in terms of



   18 Page 4 of 22 Adv Comput Math           (2021) 47:18 

image samples (3). Finally, in Section 4 we present numerical experiments to illus-
trate the performance of our algorithm in reconstructing binary images of algebraic
domains from noisy, including low to moderate noise levels, different down-sampling
rates and a range of sampling kernels. Numerical results show that the reconstruc-
tion performance of our approach is very competitive with respect to the regularized
reconstruction in [9] at a much lower computational cost.

2 Reconstruction from Bernstein moments

In this section, we derive a Bernstein representation of a bounded open algebraic
domain D = {x = (x1, x2) ∈ R

2 : p(x) ≤ 0}, where p is a bivariate polynomial of
degree n ≥ 1. For such a domain, the boundary ∂D is the algebraic curve

∂D =
{
x ∈ R

2 : p(x) = 0
}
.

It is known that there are many polynomials producing the same boundary. In the
following, we will show that it is possible to establish conditions so that the moments
of D can be used to derive a unique polynomial p associated with its boundary

We assume that D is contained inside a rectangular region Ω = [0, L1] × [0, L2].
Since non-separable Bernstein polynomials (see [8, 14]) are defined on triangular
domains, rather than considering Ω as the union of two triangles sharing a com-
mon edge (and thus considering a piecewise Bernstein representation of p), we adopt
here the simpler and less expensive solution of embedding Ω into a triangle TL with
vertices (0, 0), (L, 0), (0, L), where L = L1 + L2, as illustrated in Fig. 1.

We then can write

p(x1, x2) =
n∑

i=0

n−i∑

j=0

bi,j Bn
i,j (x1, x2), x1, x2 ∈ TL, (6)

Fig. 1 The domain D of our
algebraic curves is contained
inside the rectangle
Ω = [0, L1] × [0, L2], which
we embed inside a triangle with
vertices (0, 0), (L, 0), (0, L)
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where

Bn
i,j (x1, x2) = 1

Ln

(
n

i

)(
n − i

j

)

xi
1 x

j

2 (L − x1 − x2)
n−i−j , x1, x2 ∈ TL. (7)

The
(
n+2
2

)
free parameters for the Bernstein representation of p in Ω ⊂ TL can be

obtained by considering the binary image I = χD . To this purpose, we follow the
arguments from [15] in order to derive conditions for the boundary ∂D represented in
terms of Bernstein polynomials. We start by recalling the Stokes’ theorem according
to the generalization due to Whitney [28].

Theorem 1 Let D ⊂ R
2 be bounded and open, with boundary ∂D that is smooth

up to a set of measure zero in R. Let n(x) be the outward pointing normal to D at
x ∈ ∂D. Then, given a vector field X on R2 and a differentiable function f , we have

∫

D

∇ · X f (x) dx +
∫

D

X · ∇f (x) dx =
∫

∂D

X · n(x)f (x) ds.

We next take f (x) = xαp(x), where α ∈ N
2 and p is a polynomial of degree

n ≥ 1 vanishing on ∂D. Letting X = x = (x1, x2) (vector field in R
2), Stokes’

theorem gives the following:

(2 + |α|)
∫

D

xαp(x) dx +
∫

D

xα (x · ∇p(x)) dx = 0. (8)

We now consider that p is given as in (6) and make use of some straightfor-
ward properties of the Bernstein polynomials (for details, see [14]) recalled in the
following propositions. The first property is related to the multiplication of a Bern-
stein polynomials with a monomial factor. The second result concerns the partial
derivatives of Bernstein polynomials.

Proposition 1 For a fixed α ∈ N
2, |α| = α1 + α2, the following equality holds:

xα Bn
i,j (x) = q

n,α
i,j B

n+|α|
i+α1,j+α2

(x), x ∈ TL (9)

where

q
n,α
i,j = L|α| n! (i + α1)! (j + α2)!

i! j ! (n + |α|)! . (10)

Proposition 2 The partial derivatives of the polynomial Bn
i,j with respect to the

variables x1, x2 are respectively given by

∂

∂x1
Bn

i,j (x) = n

L

(
Bn−1

i−1,j (x) − Bn−1
i,j (x)

)
, i = 1, . . . , n, j = 0, . . . , n − i,

∂

∂x2
Bn

i,j (x) = n

L

(
Bn−1

i,j−1(x) − Bn−1
i,j (x)

)
, i = 0, . . . , n, j = 0, . . . , n − i,

with the convention that Bn
i,j (x) = 0 whenever i < 0, i > n, j < 0, j > n.
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From the expressions above in particular we derive

x1
∂

∂x1
Bn

i,j (x) = i Bn
i,j (x) − (i + 1) Bn

i+1,j (x)

x2
∂

∂x2
Bn

i,j (x) = j Bn
i,j (x) − (j + 1) Bn

i,j+1(x),

Hence

x · ∇Bn
i,j (x) = (i + j) Bn

i,j (x) − (i + 1) Bn
i+1,j (x) − (j + 1) Bn

i,j+1(x).

We can then express (8) as

n∑

i=0

n−i∑

j=0

bi,j

∫

D

xα
[
(2 + |α| + i + j)Bn

i,j (x)

−(i + 1)Bn
i+1,j (x) − (j + 1)Bn

i,j+1(x)
]
dx = 0,

which, in virtue of (9), takes the form

n∑

i=0

n−i∑

j=0

bi,j

[
(2 + |α| + i + j)q

n,α
i,j m

n+|α|
i+α1,j+α2

−(i + 1)qn,α
i+1,jm

n+|α|
i+1+α1,j+α2

− (j + 1)qn,α
i,j+1m

n+|α|
i+α1,j+1+α2

]
= 0, (11)

where we have introduced the Bernstein moments (B-moments) to be computed:

m�
i,j =

∫

D

B�
i,j (x)dx, � ∈ N0. (12)

Defining the matrix elements

g(α, (i, j)) = (2 + |α| + i + j)q
n,α
i,j m

n+|α|
i+α1,j+α2

− (i + 1)qn,α
i+1,jm

n+|α|
i+1+α1,j+α2

−(j + 1)qn,α
i,j+1m

n+|α|
i+α1,j+1+α2

, (13)

fixing l ∈ N0, from (11) and (13) we derive the homogeneous system of linear
equations

n∑

i=0

n−i∑

j=0

g(α, (i, j)) bi,j = 0, α ∈ N
2
l = {α ∈ N

2, α1 + α2 ≤ l}. (14)

Setting b = (1, b1,0, b0,1, . . . bn,0)
T and s2(l) = (

l+2
2

)
, the system (14) can then be

written as

Gn
l b = 0, where Gn

l ∈ R
s2(l)×s2(n), b ∈ R

s2(n).

By taking a particular value of l, that is, by specializing the variation of α ∈ N
2
l , the

non trivial solution to (11) yields the searched polynomial coefficients.
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Existence and uniqueness of such polynomial as a solution of (14) is a direct con-
sequence of Theorem 2.2 in [15] combined with a change of basis argument. We state
below a version of the same theorem specialized to our setting.

Theorem 2 Let D ⊂ R
2 be a bounded open set with real algebraic boundary.

Assume that D = intD, the boundary ∂D has total degree n and the point x = 0
does not belong to the zero set of the ideal I (∂D). LetGn

l ∈ R
s2(l)×s2(n) be the matrix

of coefficients given by (14) and associated with the moments of D. Then the system
of linear equations

Gn
l b = 0

admits a unique solution b = (1, b1,0, b0,1, . . . bn,0)
T ∈ R

s2(n).

Remark 1 Under the assumptions of Theorem 2, there is a unique set of polynomial
coefficients solving the moment equation Gn

l b = 0, where uniqueness is up to nor-
malization of the leading coefficient of the polynomial. The hypotheses of Theorem
2 exclude images whose boundaries possess singular points such as boundaries repre-
sented by the zeros of the polynomial p(x1, x2) = x1x2 q(x1, x2). In such situations,
neither existence nor uniqueness of a polynomial as a solution of (11) can be assured
(see the proof of Theorem 2.2 in [15]).

We conclude the section by noticing that, re-arraging the terms in (11) and using
the equalities

(i + 1)qn,α
i+1,j = (i + 1 + α1)q

n,α
i,j , (j + 1)qn,α

i,j+1 = (j + 1 + α2)q
n,α
i,j ,

we can equivalently write (11) as

n∑

i=0

n−i∑

j=0

bi,j (i + 1 + α1)q
n,α
i,j

(
m

n+|α|
i+α1,j+α2

− m
n+|α|
i+1+α1,j+α2

)

+
n∑

i=0

n−i∑

j=0

bi,j (j + 1 + α2)q
n,α
i,j

(
m

n+|α|
i+α1,j+α2

− m
n+|α|
i+α1,j+1+α2

)
= 0.

Therefore, a solution of (11) can be found by searching for a common solution of
two systems

n∑

i=0

n−i∑

j=0

bi,j (i + 1 + α1)q
n,α
i,j

(
m

n+|α|
i+α1,j+α2

− m
n+|α|
i+1+α1,j+α2

)
= 0

n∑

i=0

n−i∑

j=0

bi,j (j + 1 + α2)q
n,α
i,j

(
m

n+|α|
i+α1,j+α2

− m
n+|α|
i+α1,j+1+α2

)
= 0. (15)

We remark that [9] uses a less formal approach without invoking Stokes’ Theorem to
derive a system of linear equations similar to (15) in the simpler setting of a standard
power basis.
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3 Computation of the Bernstein moments

In order to set up the equation (11), we need a tool for the computation of the B-
moments (12) from the image samples (3). First of all we observe that, from our
assumption on I , we have

m�
i,j =

∫

D

B�
i,j (x)dx =

∫

Ω

B�
i,j (x)I (x)dx, � ∈ N0.

We assume that the kernel φ possesses the polynomial generation property up to
degree n + |α|, so that there exists a set of coefficients {Ci,j,�

k , k ∈ Z
2} such that

B�
i,j (x) =

∑

k∈Z2

C
i,j,�
k φ(x − k), � = 0, . . . , n + |α|.

Then the B-moments simplify as

m�
i,j =

∫

Ω

B�
i,j (x)I (x) dx =

∑

k∈Z2

C
i,j,�
k

∫

Ω

φ(x − k)I (x) dx,

and, in virtue of (3), for T = 1, they reduce to

m�
i,j =

∑

k∈Z2

C
i,j,�
k dk . (16)

Their computation then just requires the Bernstein polynomial expansion coefficients
C

i,j,�
k . A strategy for determining them is reported in the following subsection.

3.1 Computation of the expansion coefficients

It is clear that the computation of the Bernstein moments strongly depends on the
selected kernel φ. An appropriate choice for φ is a refinable function, satisfying the
refinement equation

φ =
∑

k∈Z2

akφ(2 · −k) (17)

for some mask a = {ak}k∈Z2 . Typically φ can be chosen as generating function
of a multiresolution analysis (if it has stable or orthonormal integer translates) and
can be seen as the limit function of a convergent subdivision scheme. Typical exam-
ples include B-splines and Daubechies scaling functions (see for example [4] for
comprehensive references).

We recall that a bivariate (binary) subdivision scheme consists of the repeated
application of a linear subdivision operator Sa : �(Z2) → �(Z2), associated with a
bivariate sequence mask a = {ak}k∈Z2 transforming, at each step k, a sequence p(k)

of points in R2 into a refined sequence of points in R2 as

p(k+1)
α := (Sap

(k))α =
∑

β∈Z2

aα−2βp
(k)
β , α ∈ Z

2, k = 0, 1, . . . ,

and starting from an initial sequence p(0) := {p(0)
α }α∈Z2 .
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The scheme is called convergent if for any initial sequence p(0) there exists a
continuous function fp(0) (fp[0] �≡ 0 for at least one initial sequence p[0] �≡ 0) such
that

lim
k→∞ sup

i∈Z2
| fp(0) (i/2k) − p

(k)
i | = 0.

The limit is often denoted by S∞(p(0)).
The connection with refinable functions in (17) is that the limit obtained start-

ing with the delta-sequence δ = {δ0,α}i∈Z2 , φa := S∞(δ), usually called the basic
limit function of the scheme, is indeed refinable with mask given by the subdivision
coefficients (see [7] for details about subdivision schemes or the recent paper [6]).

If we choose the kernel φ to be the basic limit function of a subdivision scheme
generating polynomials up to degree m, for example tensor product B-splines or
Box-splines, the determination of the coefficients of the expansion of any polynomial
p ∈ Πm in terms of translates of φ can be efficiently based on subdivision. Note that,
in the lucky case the coefficients (of the expansion of any polynomial p ∈ Πm in
terms of translates of φ) are simply the values of the polynomial at integers (possibly
shifted), the kernel φ is said to be reproducing polynomials up to degree m. In what
follows, we illustrate the determination of the coefficients in the fist situation, starting
from the idea proposed in [16].

We make use of the symbol p referring both to the polynomial and the sequence
of integer samples of the polynomial p = {p(α), α ∈ Z

2}. The difference will be
understood from the context.

For p ∈ Πm we consider its Taylor expansion

p(· + β) =
∑

|α|≤m

βα

α! Dα p, p ∈ Πm, (18)

and recall that since a polynomial is uniquely defined by its values on the integer grid
and in consideration of the generation properties of φ, we have

∑

α∈Z2

p(α)φ(· − α) =
∑

β∈Z2

p(β + ·)φ(β), p ∈ Πm. (19)

Therefore, using (18) and setting Mα = ∑
�∈Z2 φ(−�)�α for α ∈ Z

2, we obtain

∑

β∈Z2

⎛

⎝
∑

|α|≤m

βα

α! Dα p

⎞

⎠ φ(β) =
∑

|α|≤m

Mα

α! Dα p, p ∈ Πm.

Now, if we search for the coefficients C
p
α , α ∈ Z

2, of the expansion of any
polynomial p ∈ Πm in terms of translates of φ, i.e.,

p(x) =
∑

α∈Z2

Cp
α φ(x − α), p ∈ Πm,
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by identifying the right hand side of (19) as the action of the linear operator S∞
(which, as denoted above, is associated to the repeated application of the subdivision
operator), on Πm,

S∞ p =
∑

α∈Z2

p(α)φ(x − α) =
∑

|α|≤m

Mα

α! Dα p, p ∈ Πm, (20)

we can search for the “inverse” of S∞ on Πm, i.e., the operator Q satisfying

S∞ Qp = p for p ∈ Πm. (21)

Indeed, if p ∈ Πm we have

p = S∞ Qp =
∑

α∈Z2

(Qp)(α)φ(x − α),

so that the expansion coefficients are found as C
p
α = (Qp)(α), α ∈ Z

2.
To identify Q, we require that it can be written as:

Qp =
∑

|α|≤m

Aα

α! Dα p, p ∈ Πm,

where the coefficients Aα, |α| ≤ m, are solution of the system of linear equations
obtained by imposing conditions (21), as shown below. That is, for p ∈ Πm we have

p =
∑

|α|≤m

Aα

α! S∞(Dα p) =
∑

|α|≤m

Aα

α!
∑

|β|≤m

Mβ

β! Dβ(Dα p)

=
∑

|α|≤m

∑

|β|≤m

MβAα

α!β! Dα+βp,

or, equivalently, after setting α + β = γ and denoting Im = {� ∈ Z
2 : |� | ≤ m} and

I
γ
m = {� ∈ Im : � ≤ γ }),

p =
∑

α∈Im

∑

γ∈Im+α

Mγ−αAα

(γ − α)!α!D
γ p =

∑

γ∈I2m

∑

α∈Iγ
m

Mγ−αAα

(γ − α)!α!D
γ p.

Next, observing that if |γ | ≥ m then Dγ p = 0 (since p ∈ Πm) and writing I2m as
the union of Im and its complement, we have

p =
∑

γ∈Im

⎛

⎝
∑

α∈I
γ
m

Mγ−αAα

(γ − α)!α!

⎞

⎠ Dγ p.

This is equivalent to the conditions

M(0,0)A(0,0) = 1,
∑

α∈I
γ
m

Mγ−αAα

(γ − α)!α! = 0, for γ ∈ Im \ (0, 0).

The resulting system of linear equations Na = e1 where

a = (A(0,0), A(1,0)...., A(n,0), A(0,1), · · · , A(n−1,1), · · · , A(0,n))
T
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is upper triangular with diagonal entries given byN�,� = M(0,0)

(�!)2 for � = 0, · · · , m̃−1,

where m̃ = (m+1)(m+2)
2 . Therefore, multiplication by the diagonal matrix

P = 1

M(0,0)
diag(0!, 1!, 2!, · · · , m̃!)

yields to the equivalent system of linear equations (PN )a = e1 with diagonal entries
equal to 1. As a consequence, there exists a norm ‖ · ‖ such that ‖a‖ ≤ 1.

In the case p = B�
i,j , the coefficients of the generation of Bernstein polynomials

will then be given by

C
i,j�
k = (QB�

i,j )(k), k ∈ Z
2,

where the operator Q involves the derivatives DαB�
i,j . It is important to notice that,

since these coefficients can be expressed in terms of Bernstein polynomials of lower
degrees (see Proposition 2), then the amplitude of such coefficients does not depend
on the size of the domain. This is a very significant difference with the respect to the
situation where a power basis is used (see Section B in [9]).

3.2 Explicit computation of the coefficients through the univariate case

An important advantage of embedding the image domain Ω in the larger triangle
TL, is the possibility of writing the bivariate Bernstein basis in a separable way
as the product of two univariate Bernstein polynomials, as stated in the following
proposition.

Proposition 3 The following relation holds:

Bn
i,j (x1, x2) =

(
L1

L

)n n−i∑

�=j

(
L2

L1

)� (
n

�

)

B
1;n−�
i (x1)B

2;�
j (x2), (x1, x2) ∈ TL,

(22)
where B

1;n
i , B

2;n
i are, respectively, the nth-degree univariate Bernstein polynomials

B
ε;n
i (t) = 1

Ln
ε

(
n

i

)

t i (Lε − t)n−i , i = 0, . . . , n, t ∈ [0, L], ε ∈ {1, 2}.

Proof The straightforward proof is based on the binomial expansion of (L1 + L2 −
x1 − x2)n−i−j in the expression of Bn

i,j and on simple manipulations of binomial
coefficients.

This result, together with the assumption of separability on the kernel φ, gives
us the possibility of finding the coefficients of the generation of the Bernstein
polynomials required for computing (16) using just univariate techniques.

So, let us impose the following assumptions on the kernel φ:

1. it is separable, i.e.,

φ(x) = ϕ(x1)ϕ(x2); (23)
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2. ϕ is a refinable function, satisfying the refinement equation

ϕ =
∑

k∈Z
akϕ(2 · −k), for some mask {ak}k∈Z; (24)

3. ϕ either generates or reproduces polynomials up to the degree m, that is there
exist sequences c� := {c�

k}k∈Z such that

p�(t) =
∑

k∈Z
c�
kϕ(t − k), (25)

for every univariate polynomial p� of degree � ranging from 0 to m.

The number of coefficients involved in (25) depends on the support of the function
ϕ and on the interval where t varies. Let suppϕ = [0, N] and t ∈ [a, b], with
a, b ∈ Z. Then c�

k is different from zero only for a + 1 − N ≤ k ≤ b − 1 so that the
total number of coefficients is b − a + N − 1. Clearly, such ϕ can also reproduce or
generate the Bernstein polynomials, up to the degree m. Using (22), we then obtain
the following useful simplification of (16) on the triangle TL. Observing that

Bm
i,j (x1, x2) =

(
L1

L

)m m−i∑

�=j

(
L2

L1

)� (
m

�

)

B
1;m−�
i (x1)B

2;�
j (x2)

=
(

L1

L

)m m−i∑

�=j

(
L2

L1

)� (
m

�

) L∑

k1,k2=1−N

c
m−�,i
1;k1 ϕ(x1 − k2), c

�,j

2;k2ϕ(x2 − k2),

it follows that we can express the coefficients in (16) as

C
i,j,�
k1,k2

=
(

L1

L

)m m−i∑

�=j

(
L2

L1

)�

c
m−�,i
1;k1 c

�,j

2;k2 , k1, k2 = 1 − N, . . . , L − 1. (26)

In conclusion, everything reduces to the computation of the coefficients in the uni-
variate case. Therefore, we continue by specializing the algorithm described in the
previous section to this situation. We have

p =
m∑

i=0

m∑

j=0

MjAi

i!j ! Di+jp, p ∈ Πm

where Mj are the discrete moments of ϕ:

Mj =
0∑

�=−N

ϕ(−�)�j .

It is important to mention that such moments can be computed even if we do not have
the analytic expression of the kernel ϕ. In fact, since ϕ is refinable, the values at the
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integers can be found by solving an eigenvector problem obtained by evaluating (24)
at the integers. Setting i + j = k, we write

p =
m∑

i=0

m+i∑

k=i

Mk−iAi

(k − i)!i!D
kp

=
m∑

k=0

(
k∑

i=0

Mk−iAi

(k − i)!i!

)

Dkp +
2m∑

k=m+1

(
m∑

i=k−m

Mk−iAi

(k − i)!i!

)

Dkp, p ∈ Πm

︸ ︷︷ ︸
=0 for p∈Πm

which is equivalent to imposing the condition

M0A0 = 1,
k∑

i=0

Mk−iAi

(k − i)!i! = 0, k = 1, · · · , m.

The resulting system of linear equations Na = e1 is upper triangular with diagonal
entries given by N�,� = M0

�! for � = 0, · · · , m and can be easily solved by backward
substitution.

From the coefficients Ai, i = 0, · · · , m (that are dependent on the refinable func-
tion ϕ) we obtain the coefficients of the expansion of any univariate polynomial p of
degree m in the generic interval [a, b] in terms of the refinable function ϕ; that is

cm
k = (Qp)(k) =

m∑

i=0

Ai

i! Dip(k), k = −N + a + 1, . . . , b − 1, (27)

showing that the coefficients cm
k depend on the derivatives of the polynomial p eval-

uated at the integers. In the case of a Bernstein polynomial Bm
j on the interval [a, b],

the ith derivative is given by:

DiBm
j (t) = 1

(b − a)i

m!
(m − i)!

min{j,i}∑

l=max{0,j+i−m}
(−1)l+i

(
i

l

)

Bm−i
j−l (t), j = 0, · · · , m.

A comparison with the derivatives of the monomials

Dit� = �!
(� − i)! t

�−i , � = 0, · · · , m, i = 0, . . . , �

allows us to conclude that a representation in terms of Bernstein polynomials rather
than a power basis is much more stable due to the limited growth of the coefficients
involved in (16).

Numerical evidence of such aspect is given in Fig. 2 where the Bernstein vs. the
monomial coefficients are plotted, with respect to the following kernels: Daubechies
7, B-spline of order 8 (both with polynomial generation order 8) and the “dual” pseu-
dospline (see [5]) possessing the polynomial reproduction property of the same order.
The interval here is fixed to [−10, 10], even though the displayed coefficients lay on
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Fig. 2 Behavior of the coefficients generating the monomials xi (left) and the Bernstein polynomials B7
i

(right), for i = 0, . . . , 7, when the kernel ϕ is the B-spline of order 8 (top), the Daubechies scaling function
associated to 7 vanishing moments (middle) and the dual pseudospline of order 8

a different range, which takes into account also the support of the kernels as explained
above.

Finally, we can summarize the steps of our image recovery approach as follows.
As above, we assume that we are given image samples (dk) computed according to
(3) using a bivariate kernel φ associated with a refinable function ϕ as in (23)–(24)
on a triangular domain TL with vertices (0, 0), (L, 0), (0, L).
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Algorithm 1 Bernstein-moments reconstruction.

Input: polynomial degree n, image samples (dk), L
Output: Bernstein polynomial coefficients (bi,j )

1. Compute the numerical coefficients (q
�,α
i,l ) from (10).

2. Compute the Bernstein polynomial expansion coefficients
(
C

i,l,�
k

)
using (26)

and (27).
3. Compute the Bernstein image moments (m�

i,j ) using (16)
4. Solve the system of linear equations of image moments (15) for (bi,j ).

4 Numerical validation

To validate our improved method for the recovery of a digital image I of an
algebraic shape from samples {dk} of the form (3), we ran extensive numerical
experiments where we considered different noise levels, sampling rates and sam-
pling kernels. To benchmark our results, we compared the performance of our
Bernstein-moments reconstruction (BMR) method against the conventional moment
reconstruction (CMR) approach that uses a power basis in the formulation of the
moment equations and the regularized moment reconstruction (RMR) algorithm that
is proposed in [9].

In accord with our theoretical framework presented in Section 2, we selected
bounded algebraic shapes for our numerical experiments. In particular, similar to [9],
we restricted our examples to stably bounded polynomials, a subclass of bivariate
polynomials with bounded level sets that are characterized in [13] and [25]. Even
though our recovery algorithm applies to shapes associated with algebraic curves of
any degree, for simplicity we considered algebraic curves of degree 4 for most of our
examples.

To set up our numerical experiments, we partitioned the planar region [0, 20] ×
[0, 20] uniformly. Next, we randomly generated stably bounded polynomials p :
R
2 �→ R such that their pre-image Sp ⊂ R

2 of (−∞, 0] is a subset of [0, 20]×[0, 20]
and, correspondingly, obtained images Ip = χSp of size 512× 512. Here, there is no
loss of generality about the parameters 20 and 512, and they can be changed without
affecting the algorithm. To generate the samples {dk} we used B-spline sampling
kernels as a default setting; we discuss the impact of changing the sampling kernel
below.

Our numerical code was implemented using MATLAB Release 2019a [18] and
is designed to recover the Bernstein polynomial coefficients of an algebraic curve
from a set of image samples following the steps summarized in our Algorithm 1.
Our code uses the MATLAB function pinv to solve the system of linear equa-
tions in Algorithm 1 as a Moore-Penrose pseudo-inverse and is available in GitHub.1

Our numerical experiments were run on a 64-bit Fedora 30 workstation with a
4×Intel®Core™ i3-4130 CPU @ 3.40 GHz and 15.5 GB of RAM.

1https://github.com/wjmolina/ShapeReconstruction

https://github.com/wjmolina/ShapeReconstruction
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4.1 Image recovery experiments

In the absence of noise, our BMR algorithm recovers images of algebraic shapes from
their samples very accurately and there is no significant difference in using a power
basis or Bernstein polynomials for the formulation of the moment equations (15).
However, as observed above, the CMR algorithm that uses a power basis to formulate
the moment equations is very sensitive to noise and its performance degrades very
sharply even for very low level of noise as we show below. As remarked in [9] and
in our discussion above, this instability is due to the behavior of the polynomial
reproducing coefficients ci

k that exhibit the same growth rate as the corresponding
polynomial basis, i.e., they grow like |k|i when the polynomial is represented as a
power basis. To illustrate this behavior, we show in Fig. 2 the polynomial reproducing
coefficients ci

k of a univariate 8th-degree B-spline kernel for i = 0, . . . , 8. It follows
that the weight of samples that are away from the origin are considerably larger than
the weight of the samples near the origin so that samples near the image borders are
dominated noise. In addition, the amplified noise corrupts the numerical moments in
a way that increases with the order of the moments.

Figure 3 illustrates the numerical reconstruction performance of a typical fourth-
degree algebraic shape using our BMR algorithm. We compare our approach against
the CMR and RMR methods. In this experiment, white Gaussian noise was added
to the image samples with different noise levels using the MATLAB function awgn.
As shown in the figure, CMR is very unstable to noise. The comparison shows that
our method is significantly more stable than CMR and it performs comparably with
RMR.

We remark that, in Fig. 3 and similarly in Figs. 5, 6 and 7, our presentation of
the numerical results follows the convention typically adopted by other authors in
displaying the reconstruction error. If the panel appears (almost) entirely black, this
indicates that the reconstruction error is practically zero; this contrasts with panels
where there is a visible error.

To provide a more extensive quantitative comparison of our BMR algorithm with
respect to CMR and RMR, we randomly generated 100 bounded algebraic shapes of
degree four. Figure 4 compares the reconstruction performance from 47 × 47 noisy
samples with SNR = 50 dB. As a performance metric, we used the Dice Similar-
ity Coefficient (DSC) that is commonly used to assess the performance in binary
segmentation (images considered here are also binary). This is defined as

DSC = 2 T P

2 T P + FP + FN
,

where T P = true positive pixel, FP = false positive pixel and FN = false negative
pixel. DSC ranges between 0 and 1, with DSC = 1 describing perfect reconstruction.
The figure shows that CMR is significantly more unstable than our BMR method,
while BMR and RMR performs comparably with BMR giving more consistent results
overall.

In Fig. 5, we illustrate the sensitivity of our reconstruction approach on the down-
sampling rate of the original image. As expected, the reconstruction performance
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Fig. 3 Image reconstruction from noisy samples. Top: algebraic shape of degree 4 (512×512 pixels). Sec-
ond row: 39×39 noisy uniform samples with SNR = 100, 50, and 30 dB. Third–fifth rows: corresponding
absolute values of reconstruction error using conventional moment reconstruction (CNR), reconstruction
using Bernstein moments (BMR) and regularized reconstruction from [9] (RMR)

tends to decrease for higher downsampling rate and this behavior is especially pro-
nounced for the reconstruction algorithm based on the power basis. By contrast, our
BMR approach remains stable even for very high rates of downsampling, similarly
to RMR.

We remark that, since the RMR algorithm applies an iterative regularized recon-
struction strategy, its computational cost is significantly higher than our BMR
algorithm. More precisely, it takes our algorithm 22.63 s to process 100 images of
size 512×512 as compared to RMR that takes 359.60 s (about 16 times more). Unlike
our approach, the computing time of the RMR algorithm may vary from image to
image. We also observe that the available numerical code of the RMR is specifically
developed to deal with algebraic polynomial of order 4 and is optimized for a SNR
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Fig. 4 Image reconstruction from noisy samples. Boxplots compare the reconstruction performance of
different reconstruction methods on 100 algebraic shapes of degree 4 from 47 × 47 noisy samples (SNR
= 50 dB) using the Dice Similarity Coefficient as performance metric

= 50 dB. By contrast, our algorithm can be applied to algebraic curves of any degree
and with any noise level without any changes.

We also tested our algorithm on the reconstruction of simple shapes that were
hand-drawn hence they are not algebraic domains (even though some of them are
close to algebraic ones). Results in Fig. 6 show that our BMR algorithm performs
well also on these examples. We recall that our algorithm requires to set the degree of
algebraic shape to be recovered. Since this parameter is unknown in this case, we set
up a simple method to search for the degree of the algebraic shape that best fits the
samples as follows. To generate the reconstructions, we ran our algorithm by sequen-
tially choosing degrees = 2, 4, 6, 8 and 10; we next selected the reconstruction with

Fig. 5 Sensitivity of reconstruction to sampling rate. Absolute error of the reconstruction from noisy sam-
ples with SNR = 50 db at different sampling rates (first column) using reconstruction from conventional
moments (CMR), Bernstein moments (BMR) and regularized reconstruction from [9] (RMR)
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Fig. 6 Reconstruction of non-algebraic shapes. Top: non-algebraic shapes. Bottom: Absolute error of the
reconstruction from a 47×47 downsampled version of the image. We assumed polynomial approximations
of degree 4, 6 and 6 respectively

the highest DSC score. Results on the simple shapes considered in Fig. 6 show that
we obtain very satisfactory results using algebraic shapes of relatively low degree.
We could not compare our result with RMR in this case since the available code is
limited to algebraic curves of degree 4.

We finally examined the sensitivity of our algorithm to the choice of the sampling
kernel. Results in Fig. 7 show that, unlike the B-spline kernel, other choices including

Fig. 7 Sensitivity of reconstruction to sampling kernel. Algebraic shapes of size of degree four (column
1) were reconstructed using our BMR algorithm from 32 × 32 noisy samples with SNR = 100 dB using
different sampling kernels. Absolute error of reconstruction using B-spline, Daubechies and pseudospline
kernels is shown in columns 2, 3 an 4 respectively
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the Daubechies and pseudo-spline kernels are significantly less stable. We attribute
this phenomenon to the larger support size of the latter kernels.

5 Conclusion

We have presented a new strategy for the reconstruction of binary images associated
with algebraic shapes using a small number of samples. The main novelty of our
approach lies in the use of Bernstein polynomials to represent the image moments. By
combining this new representation with the sampling of images using a polynomial-
generating refinable kernel we derive a new reconstruction algorithm that is robust
to noise, simple to implement and very fast to compute. Future research includes the
investigation of alternative image representations such as the Chebyshev basis which
is also known to offer good stability properties.
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