
drones

Article

A Multilevel Architecture for Autonomous UAVs

Luca Bigazzi , Michele Basso , Enrico Boni , Giacomo Innocenti and Massimiliano Pieraccini *

����������
�������

Citation: Bigazzi, L.; Basso, M.;

Boni, E.; Innocenti, G.; Pieraccini, M.

A Multilevel Architecture for

Autonomous UAVs. Drones 2021, 5,

55. https://doi.org/10.3390/drones

5030055

Academic Editors: George

Nikolakopoulos, Diego

González-Aguilera and Pablo

Rodríguez-Gonzálvez

Received: 14 May 2021

Accepted: 28 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Engineering, University of Florence, Via Santa Marta 3, 50139 Firenze, Italy;
luca.bigazzi@unifi.it (L.B.); michele.basso@unifi.it (M.B.); enrico.boni@unifi.it (E.B.);
giacomo.innocenti@unifi.it (G.I.)
* Correspondence: massimiliano.pieraccini@unifi.it

Abstract: In this paper, a multilevel architecture able to interface an on-board computer with a
generic UAV flight controller and its radio receiver is proposed. The computer board exploits the same
standard communication protocol of UAV flight controllers and can easily access additional data,
such as: (i) inertial sensor measurements coming from a multi-sensor board; (ii) global navigation
satellite system (GNSS) coordinates; (iii) streaming video from one or more cameras; and (iv) operator
commands from the remote control. In specific operating scenarios, the proposed platform is able
to act as a “cyber pilot” which replaces the role of a human UAV operator, thus simplifying the
development of complex tasks such as those based on computer vision and artificial intelligence (AI)
algorithms which are typically employed in autonomous flight operations.

Keywords: UAV; autonomous flight; indoor positioning; cyber pilot; sensor fusion

1. Introduction

In the scientific community, one of the topics of major interest in the UAV field concerns
autonomous navigation based on computer vision [1,2]. Many authors have proposed
motion capture systems (mocap) [3–8], as they guarantee the highest performance. Given
the high precision that these systems are able to achieve, they are often used to compare
different control techniques. This approach allows for appreciating even small differences
in the performance of different control algorithms.

However, the progress made in terms of research development regarding mocap
systems is not reflected in the industrial sector, since most of the navigation algorithms and
control techniques that exploit mocap technology (which is ground assisted) can hardly be
extensively implemented on the typical environments of this field. Recently, thanks to the
technological evolution and the proliferation of open source boards such as Raspberry Pi
and Nvidia Jetson (running operating systems such as Linux), the research community has
become increasingly interested in on-board vision-based navigation (VBN) techniques [9–12].
Given the possibilities currently offered by technology and the large amount of novel
applications which can be envisioned in this new setting, the interest has shifted to how to
solve the problem of the autonomous navigation of UAVs without ground assistance.

In order to investigate this new formulation of the problem, the classic UAV architec-
ture shown in Figure 1 and composed of a micro-controller, sensors and a receiver capable
of establishing a radio link for the drone commands is no longer sufficient. Instead, it
is necessary to use a multilevel architecture, composed of both classic micro-controllers
and other boards capable of processing images and complex algorithms, where each level
must be able to communicate with the adjacent ones (see, e.g., [4]). As a consequence, the
complexity of the drone inevitably increases.

In the multilevel paradigm, the choice of hardware is crucial, because this affects
the internal communications, and this is particularly true for what concerns the flight
controller device. A quite popular choice for the flight controller board in UAV robotic
applications is PixHawk. In fact, most of the scientific papers dealing with the development

Drones 2021, 5, 55. https://doi.org/10.3390/drones5030055 https://www.mdpi.com/journal/drones

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/478966980?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-6733-7167
https://orcid.org/0000-0002-1526-7715
https://orcid.org/0000-0002-9899-8782
https://orcid.org/0000-0002-2110-826X
https://orcid.org/0000-0002-3661-726X
https://doi.org/10.3390/drones5030055
https://doi.org/10.3390/drones5030055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones5030055
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones5030055?type=check_update&version=1

Drones 2021, 5, 55 2 of 15

of technology and algorithms for autonomous UAVs use this platform [13]. Among the
most important reasons for this choice, two are prominent: (i) the PixHawk board was
one of the first and most complete open source platforms for drones; and (ii) some custom
versions of the firmware give native support for a robot operating system (ROS), a popular
framework for robot development and programming [4]. Indeed, usually on UAVs based
on a multilevel hardware, an additional card running ROS is used. This latter can be
regarded as a “high-level” device, specifically designed for solving the original robotic
problem, and that must communicate with the “lower” flight controller in order to perform
the correct action. PixHawk platforms are able to receive ROS commands through a UART
port, which uses the MAVLINK protocol [14–16]. Despite its popularity, this approach has
some limitations, since the choice of flight controller is limited to PixHawk, which can only
be driven via the MAVLINK protocol.

SBUS, PPM,
PWM

UARTi2c

GNSS &
Compass

Manual
receiver

Flight
controllerESCs

DShot, MultiShot,
OneShot, PPM, PWM

Figure 1. Standard UAV architecture: the flight controller is directly connected to the receiver, GNSS
and ESCs (electronic speed controllers).

The approach presented in this paper, on the other hand, is conceived to increase
flexibility in the choice of the hardware configuration, and thus, to avoid these limitations.
Such a feature is obtained by implementing proper inter-level interfaces according to the
decode–elaborate–encode paradigm, which allows, for instance, the regeneration of the
signals sent to the flight controller, using any protocol used by commercially available
receivers. Thanks to this feature, any flight controller can be used without the need to adapt
to the hardware configuration of the software implementing the solution of the robotic
problem.

This paper is organized as follows: Section 2 describes the general UAV multilevel
architecture and the interfaces among the different layers, introducing the concept of a
cyber pilot for autonomous navigation. Moreover, considerations of the mechanical design
of the UAV with respect to the additional sensors and boards required are also presented,
along with actual hardware/software implementation. Section 3 shows the experimental
results of a specific autonomous mission performed by the UAV in an indoor environment
using vision-based navigation. Finally, Section 4 reports concluding remarks and future
developments.

2. Materials and Methods
2.1. Architecture

The proposed architecture aims to provide a flexible hardware and software platform
for UAV robotic applications. The basic idea is in the subdivision of the general problem
into sub-problems, which can be directly related to hardware or software implementa-
tions. Each solution is placed into a “level” comprising affine elements, and the levels are
then interconnected to each other by standardized interfaces. Therefore, regarding UAV
robotic applications based on VBN techniques, an architecture comprising three different
abstract levels has been envisioned. The functions each single level is devoted to are listed
below, and because of the hierarchical division of the problem, they are assumed to only
communicate with adjacent levels.

Drones 2021, 5, 55 3 of 15

• Functional high-level.
This comprises the hardware and software necessary to implement the VBN system
and to run the autonomous navigation algorithms.

• Functional mid-level.
This is represented by the software necessary to manage the commands sent to the
flight controller, which can be those from the ground station (human pilot remote
control) or the ones generated by the autonomous navigation algorithm. This is the
communication interface between the other two levels of the architecture.

• Functional low-level.
It comprises the flight controller together with the hardware and software necessary
for the attitude stabilization of the drone.

In Figure 2, a more detailed description of the used implementation of this architecture
is reported. The low-level is mainly implemented as a hardware layer. Indeed, it accounts
for a generic flight controller for drones and its equipped software, as well as the devices
(i.e., sensors) necessary for attitude stabilization. Conversely, the mid-level is implemented
as a software layer, which, in the presented solution, is hosted in the same Jetson Nano
board used for the high-level. Indeed, this latter comprises both the hardware and software
needed to implement the autonomous navigation system, that is, the previous Jetson Nano
board and the related devices illustrated in Figure 2. In detail, the Jetson Nano is equipped
with the following sensors:

1. A multi-sensor board, also comprising a GNSS receiver, connected through a UART3 port;
2. An Intel Realsense t-265, connected via USB-3.0 and used for the 3D localization and

orientation of the drone;
3. A digital camera, connected via Camera Serial Interface (CSI) and used by computer

vision algorithms.

SBUS Input
on UART0

SBUS
Output
on UART1

UART3

High-level Low-level

Flight
controller

IMU
array GNSS

GStreamer
library

CSI camera

Librealsense

Intel Realsense
t-265

Manual receiver

UARTi2c

GNSS &
Compass

ESCs

DShot, MultiShot,
OneShot, PPM,
PWM

Mid-Level
(Software layer)

Figure 2. Proposed multilevel architecture, where the Jetson Nano computer is connected between
the flight controller and the drone receiver.

The multi-sensor unit was designed to collect position and inertial data from a multi-
tude of different sensors. The board hosts two U-Blox NEO-M9N precision GNSS receivers,
which provide an absolute position at the 18 Hz rate in a dual-redundant configuration.

Drones 2021, 5, 55 4 of 15

Roll, pitch and yaw angles and altitude values are estimated by means of micro electro
mechanical systems-based (MEMS) 3D inertial sensors (accelerometer and gyroscope), a 3D
magnetometer and an MEMS barometric pressure sensor. All the sensors are proposed
in a triple-redundant configuration. Finally, a micro-controller unit (STM32L476) collects
the digital samples from all the sensors and performs a sensor fusion algorithm [17,18] to
provide a stable and reliable estimation of the roll, pitch and yaw angles at a rate of 200 Hz.

It is worth noting that, in this architecture implementation, the low-level is just an
attitude controller equivalent to the ones used in traditional UAV configurations. As such,
it accounts for a fully equipped flight controller, and indeed, it has its own sensors (e.g., a
compass and a GNSS receiver) as shown in Figure 2, and it can execute the functions this
kind of system is usually able to run (e.g., the return to home (RTH).

As it will be detailed in Section 2.2, the software layer representing the mid-level
has the important role of deciding which command has to be sent to the flight controller
between the one received from the receiver and the signal generated by the high-level.
The actual signal passed to the flight controller depends in general on the policies of the
mid-level, and possibly on the commands from the human pilot

2.2. Mid-Level Software Layer: Cyber Pilot and Interface with the Low-Level Implementation

As introduced in Section 2.1, the proposed architecture was conceived so that the high-
and mid-level software implementations are such that any signal from the drone receiver
passes through the Jetson Nano before arriving to the flight controller (see also [9,19]). This
intermediate stage of processing allows for substituting the commands from the receiver
with others generated by the high-level software running on the same Jetson Nano, thus
replacing the human pilot with a “cyber pilot” (see also [19]). According to such a concept,
the problem of driving the drone motion is “lifted” to the same sphere of the human
operator, whereas the common approach, instead, “pulls down” the control strategy to the
motor sphere. On the one hand, the disadvantages are that the controller is bound to act
as a human, but on the other hand, the problems of elaborating the control strategy and
of driving the motors are held separated, and so they can be solved and implemented as
different modules.

The cyber pilot paradigm makes the system independent on the low-level implemen-
tation, as long as this latter uses standard interfaces. Indeed, as already noted, from the
functional point of view, the low-level can be implemented by a traditional, fully equipped
flight controller. Therefore, it is not necessary to design a custom implementation of this
level, and already existing solutions can be used. The mid-level software layer manages
this interface, and therefore, any flight controller can be used, provided that it can be
physically interconnected to the high-level hardware layer (where the mid-level software
runs), and its communication protocol is known.

In the implementation of the proposed architecture, the low-level is represented
by a system based on a CC3D Revo flight controller running the LibrePilot firmware.
This controller provides good performance (it has been specifically developed for racing
applications) and it respects the form factor of the chosen drone frame. Moreover, it
communicates using standard connectors and protocols. It is worth pointing out that
the flight controller has been configured to operate in the “stabilize” mode, which only
provides attitude control, leaving the altitude to be controlled manually. Therefore, the
cyber pilot must be implemented to control the altitude as well.

Depending on the mid-level software layer policies, a variety of behaviors can be
implemented. For instance, the autonomous flight mode can be switched back to the
manual flight mode at any time with a simple strategy based on auxiliary channels in
the communication with the human pilot. Indeed, the software layer implementing the
mid-level can read all the channels transmitted by the ground station, and therefore, one
of them can be used to carry auxiliary information specifically directed to the define the
switching policy. Hence, depending on this input, the software can decide whether to
replace the human commands read on the Jetson UART0 port (input) with others generated

Drones 2021, 5, 55 5 of 15

by the cyber pilot, or to transfer them to the UART1 port (output) directed to the flight
controller.

The advantages of the cyber pilot approach are evident when the possible protocols for
the communication between the receiver and the flight controller are taken into account. In
the typical solutions, receiver and flight controller must share the communicating protocol,
whereas the cyber pilot approach, introducing a signal processing stage in between the two
devices, is not affected by this limitation.

On the mass market, drone receivers use three main communication protocols to send
the operator commands to the flight controller:

1. Pulse width modulation (PWM);
2. Pulse position modulation (PPM);
3. Serial bus (SBUS),

The PWM protocol is the oldest among them and as illustrated in Figure 3, it is based
on the variation of a duty cycle. The signal from a radio channel is passed through a single
wire, i.e., if one needs to transmit 8 channels to the flight controller (for example, 4 channels
to control the drone and 4 to transmit additional information), it is necessary to connect
8 wires between the receiver and the flight controller.

Figure 3. A pictorial representation of the two analog protocols used as a communication standard
for commercial UAV receivers. On the left, it is possible to observe the signal generated through the
PWM standard, while on the right, a frame generated through the PPM standard is shown [20].

The PPM protocol was introduced just to reduce the wiring needed to send the
channels to the flight controller. As shown in Figure 3, this protocol modulates all the
channels on a single wire. It is an analog protocol, just like PWM, and it is able to transmit
multiple channels on a single wire under a bandwidth limitation, which is about 44 Hz for
the transmission of eight channels.

The implementation presented in this paper exploits the SBUS protocol, since it has the
following advantages over the previously mentioned ones: (i) it is the most recent protocol
and represents today’s state of the art for drone receivers; (ii) it is a digital protocol, so it is
not affected by noise; and (iii) this standard allows for transmitting up to 16 channels with a
band equal to 100 Hz. Furthermore, it is worth noting that it is also the only protocol which
can be easily read and regenerated by the Jetson Nano board. Indeed, doing the same with
analog protocols (PWM and PPM) would require to manage interrupts in real time, that
cannot be accurately achieved on cards not running real-time operating systems—such as
the Jetson Nano.

As illustrated in Figure 4, an SBUS frame is made up of 25 bytes, where Byte 0
represents the header, bytes from 1 to 22 contain the information relating to the 16 channels
to be transmitted, Byte 23 contains some additional information (not always used) and the

Drones 2021, 5, 55 6 of 15

fail-safe management in case the receiver is unable to receive commands from the ground
station. Finally, Byte 24 is the closing byte of the frame.

Byte[23]
bit 7 bit 6 bit 5 bit 4 … Byte[22-1] Byte[0]

Header16 channels, 11 bits
each

Failsafe activated
(0x10)

Frame lost
(0x20)

bit 7 bit 6 bit 5 bit 4

Channel 18
(0x40)

Channel 19
(0x80)

Digital on/off channels (these bits are
not universally available on all SBUS

receivers)

Byte[24]

Footer

Figure 4. This figure shows the frame architecture according to the SBUS standard, which unlike
the two previous standards, is a digital protocol. Being the latest protocol developed in the UAV
field, it is currently the best choice for sending commands to the flight controller, as in addition to
guaranteeing a greater useful band, it is not affected by noise.

Since a single channel was coded with 11 bits, the SBUS standard can associate a
maximum of 2048 different values to each channel. This defines the maximum resolution
obtainable with this protocol. In the mid-level of the proposed architecture, a software for
decoding the SBUS frames coming from the drone receiver was implemented along with
another software for (re-)coding the information to be sent to the flight controller. In the
current implementation of the mid-level, the human operator commands were overwritten
by those generated by the cyber pilot, when a high signal is read in channel 8 of the SBUS
frame. This command was sent by the ground station, and when it was received and read
by the mid-level, this latter replaces the first 44 bits contained in the byte range relating
to the status of the channels. Indeed, these first 44 bits of the SBUS sub-frame contain
the commands associated with the reference values for pitch, roll, yaw and thrust. This
way, the cyber pilot takes the command of the drone bypassing the human pilot, who can
still resume manual control at any time by sending a low signal in the same channel 8. If
required, it would also be possible to program the mid-level to replace all 16 channels.
This could be useful for sending additional commands to the flight controller during the
autonomous flight modes managed by the cyber pilot. Figure 5 shows a principle diagram
of the mid-level where its operation can be considered as a software switch, capable of
assigning the drone commands to the cyber pilot or to the human one at will.

High-level software

Mid-level software

Jetson Nano

Cyber pilot
commands

Human pilot
commands

Commands
sent to the
flight controller

Byte[22-............6-5-4-3-2-1]

if (channel 8 is high)
 the first 44 bits are replaced

Figure 5. Diagram showing one of the mid-level operating policies. In the specific case, during the
transition to the flight modes managed by the cyber pilot, the mid-level operates by replacing only
the channels necessary for piloting the UAV.

2.3. High-Level Software Layer

In this section, we illustrate the overall structure and operating logic of the software
layer pertaining to the high-level.

Drones 2021, 5, 55 7 of 15

From the functional point of view, this layer implements all the software necessary
for the cyber pilot, i.e., for the autonomous navigation system. The video stream from the
cameras and the data acquired by the sensors are elaborated by sensor fusion algorithms to
formulate estimates of drone position and drone speed. This information is used by the
control strategy to track the reference trajectory, which can be a desired motion along a
path fixed by the user or computed within a simultaneous localization and mapping (SLAM)
problem.

The software is divided into threads, which are scheduled by the operative system of
the high-level hardware, i.e., in the proposed implementation, the Jetson Nano board. For
management purposes, a number of command line keywords, reported in the following
list, were implemented:

• −−displaySampleTime : Shows active threads, expected and real sample rates;
• −−windows: Shows the images processed by the vision algorithm inside a window;
• −−plot: Makes the real-time plot of the variables of interest inside a window (it also

needs the −−windows command);
• −−log: Save all shared variables in a .txt file, usable for data post processing;
• −−rec: Records the video stream processed by the vision algorithm and superimposes

the telemetry obtained in real time;
• −−ssh: If enabled, it eliminates the OpenGL optimization of the windows which are

rendered on the remote PC.

The implemented features, which can be de/activated with appropriate commands,
are meant to provide different operating modes without recompiling the software at each
experimental test. For instance, if the −−windows and −−rec commands are not executed,
the display thread is not initialized as it is not necessary. This way, the computational
burden can be adapted to the actual situation avoiding unnecessary functions.

Figure 6 shows the overall software architecture, where it is possible to observe the
division of the various jobs into different threads. Each thread can operate on shared
variable blocks through the reader/writer sync method.

1. SLAM thread.
Thread 1 implements SLAM algorithms. It receives the 3D position data generated
with a frequency of 200 Hz by the t-265 stereoscopic camera. These data are related to
the position of the UAV in the environment and are defined in fixed frames. Thread 1
also receives the video streams of the two fish-eye lenses of the stereoscopic camera at
a frequency of 30 Hz;

2. Vision thread.
Thread 2 receives the information computed by Thread 1 together with the additional
video stream from the CSI camera. The vision thread also receives some additional
data, such as the attitude, relative and absolute position given by the t-265 stereoscopic
camera and by the GNSS (if available). Inside this thread, various computer vision
algorithms can be implemented, such as environmental marker detection [21,22] or
object recognition [23,24];

3. Inertial and GNSS thread.
Thread 3 provides additional information on accelerations and position to the vision
thread. This information is elaborated by sensor fusion algorithms to improve the
precision in the estimation of the drone position and speed.

4. Planner thread.
Thread 4 exploits the outputs of the previous threads to build the reference trajectory.
It contains several routines for path generation, which are specific for different kinds
of missions. For example, this thread is responsible for the generation of a specific
path built from environmental markers, but it can also account for fixed trajectories in
the space. The desired path is a sequence of vectors of four elements:

shl ≡ [xd, yd, zd, ψd]
T (1)

Drones 2021, 5, 55 8 of 15

which represent set points to be tracked. In particular, xd, yd, zd and ψd are the desired
values for, respectively, the lateral position, the altitude, the longitudinal position and
the yaw angle. The comparison between shl and the estimated position and attitude
provide the displacements from the desired trajectory.

Mid-level
software

Realsense
libraries

Shared Variables:
● Body position (fixed frame) - 200 Hz
● Frames - 30 Hz

1

Vision thread
20 Hz

Receiver
part

Planner
thread
20 Hz

Shared Variables:
● Specific data relating to the

algorithm in execution

Shared Variables:
● Remote controller

switch state

Shared Variables:
● Position

setpoints

Control thread
100 Hz

 Sender
part

Shared Variables:
● Attitude

setpoints

All shared Variables

Log thread
20Hz

Remote
control signals

High-level software hosted by Jetson Nano

Display thread
15 Hz

Plot thread
200 Hz

Threads for data post processing
and software debugging

2

5

4

6

7 8 9

Communication
thread 100 Hz

Slam Thread 200 Hz /
30 Hz

CSI camera
flow
(optional)

Optional threads

External
Hardware

Inertial & GNSS Thread
 200 Hz / 18 Hz

Shared Variables:
● Body attitude - 200 Hz
● GPS position - 18 Hz

Multi sensor
unit

3

Realsense
t-265

To low level

Figure 6. The figure shows the high-level software architecture, where all the threads that can be
executed according to the type of mission to be performed are defined. Note that the inter-thread
synchronization method implemented is based on the reader/writer model.

5. Control thread.
Thread 5 implements the control strategy [25–27] of the cyber pilot with respect to
the planned trajectory generated by Thread 4. The result is a sequence of vectors
containing the reference values, which are sent to the flight controller implementing
the low-level:

sll ≡ [θd, td, ϕd, ψ̇d]
T . (2)

In each vector sll , θd and ϕd are the set points for roll and pitch angles, td is the refer-
ence value of the thrust and ψ̇d is the set point for the yaw rate.
Many different control algorithms can be used here, depending on the mission specifi-
cations, whether for instance the UAV has to maintain a specific position (hovering) or
track a complex trajectory. A quite simple but efficient control scheme implemented
in this thread and tested in experiments consists of an array of double-nested loops
of proportional–integral–derivative (PID) controllers that process the 3D position and

Drones 2021, 5, 55 9 of 15

velocity errors to compute the first three components of the sll vector, i.e., roll, pitch
and thrust set points, whereas the yaw rate is left as an additional degree of free-
dom. In the cyber pilot paradigm, the sll vector contains the commands used by the
mid-level software layer to overwrite the manual commands during the autonomous
flight modes. It is important to stress that the signals in the vector sll depend on the
commands accepted by the flight controller implementing the low-level. Anyway, the
commands generated by the cyber pilot share their nature with those received from
the human pilot during manual flight. In other words, from the flight controller point
of view, these two kinds of commands look exactly the same. In this sense, the cyber
pilot makes the autonomous flight system independent from the flight controller,
provided that its input interface can be properly replicated.

6. Communication thread.
Thread 6 is devoted to sending the output of the control thread to the mid-level
software layer, which, based on its policies, decides whether to use them or those
coming from the human pilot. This thread also handles the inputs from the auxiliary
channels of the remote controller, which regard useful information for the management
of the drone and in particular for interacting with the mid-level functions.

7. Log thread.
8. Display thread.
9. Plot Thread.

Threads 7, 8 and 9 are optional and can be activated if needed. They are used to
log, store and plot the shared variables, and so they are useful during the experi-
mental phase, as they allow for acquiring data for the post processing and for the
debugging phases.

2.4. Frame Sizing

A relevant aspect for the development of the UAV used in this paper and shown in
Figure 7 concerns its mechanical frame design and sizing.

Figure 7. The autonomous UAV prototype implementing the multilevel architecture is presented in
this paper. The frame is fully carbon fiber and was designed to host the Nvidia Jetson Nano board
and all the additional electronics. Given the increase in weight due to the new elements, the frame
was designed to allow the installation of 7-inch propellers.

In fact, there are no small drones on the mass market capable of supporting the
development of high-level algorithms. Given the high performance and robustness of
racing drones, it was decided to develop the UAV frame according to the same philosophy
used for the construction of racing drones [28]. Normally, this type of drone has a full

Drones 2021, 5, 55 10 of 15

carbon frame, a wheelbase of 250 mm and 5-inch propellers. These drones are combined
with small motors that are able to reach high rpm. Usually, 22 mm stator motors are used
which can easily exceed 40,000 rpm. The high number of revolutions is necessary to achieve
the desired thrust considering the small propeller diameter. Furthermore, the use of small
propellers greatly decreases the inertia of the same, making these drones very reactive.

However, the additional hardware mentioned in Section 2.1 and necessary for the
realization of the cyber pilot results in a weight increase of about 300 g. In theory, it would
not be a problem, given that racing drones have thrust-to-weight ratios between 6:1 and 8:1.
On the other hand, their typical motor/propeller set has a relatively low energy efficiency,
defined as the ratio between the maximum thrust generated and the electrical power used.
A lower energy efficiency has the negative effect of decreasing the battery life, which in
racing drones, is already a few minutes, therefore, this phenomenon must be avoided,
trying to increase the value of efficiency as much as possible. In addition, the racing drone
frames available on the market do not have enough space to be used for mounting the new
parts. To solve the above issues, a carbon frame was designed that can accommodate all the
additional parts, whereas the wheelbase was increased to 330 mm, providing enough space
for mounting 7-inch propellers. Notice that the use of larger diameter propellers is not
enough to increase the energy efficiency of a drone, but it is necessary that these are suitably
matched to the motors. For this purpose, motors with a stator diameter of 25 mm (instead
of the usual 22 mm) capable of reaching approximately 22,000 rpm have been chosen. Even
if these motors are able to reach a lower number of revolutions than those normally used
for racing applications, the larger stator diameter allows for an increase in the lever arm,
which guarantees higher torque values suitable for the use of 7-inch propellers. These
considerations have been made on the basis of data-sheets provided by the various motor
manufacturers, which among other data, also provide the power consumed and the thrust
obtained depending on the type of propeller and the type of battery used.

3. Results

The implementation illustrated thus far of the proposed architecture was tested in a
challenging mission consisting of a circular trajectory of specified shape to be followed
in an indoor environment. The difficulty of such a mission is due to the availability and
accuracy of data from the traditional sensors (i.e., GNSS, inertial measurement unit (IMU),
compass and barometer) in small indoor environments. Indeed, GNSS is just not available,
the compass is negatively affected by the building structure, the barometer has insufficient
precision in small places, and the IMU alone is, in general, not well suited for navigation
because of the well-known problem of drifting. Such a situation is perfect to check whether
the VBN techniques exploited in the proposed solution are able to recover from that loss
of accuracy. Indeed, it is worth stressing that the cyber pilot has a three-dimensional
perception of the environment, which makes it capable of following generic 3D trajectories,
thanks to the t-265 stereoscopic camera.

In Figure 8, the blue line shows the trend of the UAV position on the single degrees of
freedom, while the dashed black line defines the desired trajectory.

The actual configuration of the mission can be programmed within the planner thread,
whose role, as mentioned in Section 2.3, is to generate the desired trajectory. In particular,
the circular trajectory is defined as a relative path starting from the initial position of the
drone and position on the vertical plane orthogonal to the heading. Its radius and the
traveling (constant) speed are the two tuning parameters, and for these field tests, they
have been set to 0.5 m and 0.1 m/s, respectively. Such a mission was performed in repeated
experiments to record statistics on the drone performance. Figure 8 shows the 3D position x,
y, z of the drone against the corresponding set-points. The position is directly measured by
the t-265 Realsense camera in a fixed frame where the y axis represents the drone altitude
while x–z lie on the horizontal normal plane.

The actual trajectory lies in the x–y plane and it follows the reference path with high
accuracy. In Figure 9, the position errors are shown, confirming the small overshoots nearly

Drones 2021, 5, 55 11 of 15

visible in Figure 8. The following table reports the statistics of the errors computed on the
entire set of experiments.

30 40 50 60 70 80 90

time (s)

0

0.5

1

x
(m

)

30 40 50 60 70 80 90

time (s)

1

1.5

2

y
(m

)

30 40 50 60 70 80 90

time (s)

0.22

0.24

0.26

0.28

0.3

0.32

z
(m

)

30 40 50 60 70 80 90

time (s)

-1

0

1

he
ad

in
g

(d
eg

)

Figure 8. The black dashed lines show the desired trajectories along the 4 degrees of freedom of the
UAV, while the blue lines show the trend of the position of the UAV along the three axes and its
orientation.

Axis std

horizontal (along x) 1.36 cm
altitude (along y) 2.20 cm

longitudinal (along z) 0.42 cm
yaw 0.22 deg

It should be noted that the lowest standard deviations are relative to the degrees of
freedom that remained constant in the experiment (z axis and orientation angle). However,
even the standard deviations obtained along the axes of the x–y plane are very small and
highlight the good performance achievable by the architecture presented in this paper.

Figure 10 reports the SBUS commands sent to the flight controller and synthetically
generated by the cyber pilot. These commands are the vector defined in Equation (2) which
replace the manual flight commands of the human pilot. It is interesting to note the high
information content they possess, thanks to the fact that the cyber pilot is able to exploit
the entire bandwidth of the SBUS protocol. These commands are very different from a
human operator, as the latter is unable to generate commands with a frequency higher than
2–3 Hz.

Drones 2021, 5, 55 12 of 15

30 40 50 60 70 80 90

time (s)

-0.05

0

0.05

x
(m

)

30 40 50 60 70 80 90

time (s)

-0.05

0

0.05
y

(m
)

30 40 50 60 70 80 90

time (s)

-0.05

0

0.05

z
(m

)

30 40 50 60 70 80 90

time (s)

-1

0

1

he
ad

in
g

(d
eg

)

Figure 9. This figure shows the error trends as a function of time. The sinusoidal trend of the errors
relating to the x–y plane—which is the plane where the drone carries out the mission with a circular
trajectory—is also observed.

30 40 50 60 70 80 90

time (s)

900

1000

1100

in
t v

al
ue

s

roll command
neutral stick position

30 40 50 60 70 80 90

time (s)

650

700

750

800

in
t v

al
ue

s

thrust command

30 40 50 60 70 80 90

time (s)

900

1000

1100

in
t v

al
ue

s

pitch command
neutral stick position

30 40 50 60 70 80 90

time (s)

900

1000

1100

in
t v

al
ue

s

yaw command
neutral stick position

Figure 10. This figure shows the commands that the cyber pilot sends to the flight controller through
the SBUS protocol managed by the mid-level. The commands are encoded in 16-bit integer variables.

Drones 2021, 5, 55 13 of 15

The black dotted line shows the neutral position of the remote control sticks, and as
can be seen in Figure 10, both the pitch, roll and yaw commands are close to the central
values, while the thrust commands generated by the cyber pilot are lower than the neutral
value. This is because the UAV used has a thrust-to-weight ratio higher than the usual 2:1
ratio, which is normally used in non-racing drones.

Another interesting aspect that can be observed in Figure 10 relates to the trend of the
thrust commands over time, whose average tends to increase. This happens because the
cyber pilot is able to compensate for the battery discharge curve, and to do so, it increases
the average value of the thrust commands. This is clearly a byproduct of the feedback
control strategy based on the position error.

Figure 11 shows the UAV during the execution of the preset mission. The image has
been generated by superimposing several shots, taken at almost uniformly distributed
shooting times. The image shows the high precision reached by the drone, and it also gives
a good idea of the correct tracking of the desired velocity, since the drone is in the correct
position in every shot.

Figure 11. Circular mission task: the right image shows the UAV that correctly tracks a circle with a
diameter of 1 m and a constant speed of 0.1 m/s. In the left image, the positions taken by the UAV
during the execution of a second lap of the trajectory have been superimposed “in transparency”. As
it is possible to observe, the trajectories followed by the drone are perfectly reproducible.

4. Discussion

The experimental tests show that the system presented in this paper is able to follow
the desired trajectories with centimeter precision. In particular, all the experiments high-
lighted that the tracking accuracy is not imposed by the measurements of the onboard
sensors (IMU and camera), whose error is in the order of under a millimeter, but is mainly
limited by the propellers’ turbulence, which act as disturbances that the controller is unable
to completely reject. Figure 11 shows the repeatability of the test mission, since the UAV
is able to track the same trajectory several times. Given the nature of the optical sensors
used, the drone can follow 3D trajectories with controlled velocity and acceleration. In the
literature, most works employ motion capture systems (mocap) [6,7] for the development
of indoor autonomous navigation algorithms [8]. The achievable accuracy of these systems
is very high, although they can only work in environments suitably set up by external
computers and fixed cameras that frame the drone. This limits autonomous navigation to
the environment monitored by the mocap system only.

In this paper, an alternative approach was conceived that allows to achieve similar
performance, with the difference that all sensors and computing units are mounted on-
board. This feature ensures high flexibility and the ability to operate in a wide variety
of environments, without the need to use off-board sensors and computing units. The

Drones 2021, 5, 55 14 of 15

experiment shown in Section 3 was carried out with the sole purpose of demonstrating
the capabilities of the developed architecture, in fact, thanks to the modular nature of
the high-level software, the mission objectives can be easily modified by calling different
routines within the planner thread. On the other hand, if the purpose of the research
concerns the development of computer vision algorithms, it will be sufficient to write
additional routines that can be called up by the vision thread.

Another aspect of fundamental importance, which will be very useful for future
research, is the possibility of replicating the same communication protocol used by the
radio link during manual flights. This peculiar feature, as discussed in previous sections,
allows the development of cyber pilot missions in specific scenarios. In the future, this
aspect can be used for the development of algorithms based on neural networks and AI,
able to learn from the human pilot and to replicate similar command signals. A second
development path will be that of the autonomous exploration of buildings based on the
use of depth sensors, such as the Intel D4xx camera series [12]. Thanks to the addition
of these devices, it will be possible to develop on-board 3D mapping algorithms of the
environment, thus making the UAV capable of detecting obstacles and targets of interest in
complete autonomy and without ground assistance.

Author Contributions: Conceptualization L.B., M.B., E.B., G.I. and M.P.; data curation L.B.; formal
analysis L.B. and M.B.; funding acquisition M.B., E.B., G.I. and M.P.; investigation L.B., M.B. and
E.B.; methodology L.B., M.B. and G.I.; project administration M.B., G.I. and M.P.; software L.B.;
supervision M.B., E.B., G.I. and M.P.; writing—original draft L.B., M.B. and G.I.; writing—review and
editing L.B., M.B., E.B., G.I. and M.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was co-funded by Horizon 2020, European Community (EU), AURORA (Safe
Urban Air Mobility for European Citizens) project, ID number 101007134.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the supplementary
material of the article.

Acknowledgments: Thanks to Lapo Miccinesi for the help given in the acquisition of the photos
during the laboratory tests.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grabe, V.; Bülthoff, H.H.; Scaramuzza, D.; Giordano, P.R. Nonlinear ego-motion estimation from optical flow for online control of

a quadrotor UAV. Int. J. Robot. Res. 2015, 34, 1114–1135. [CrossRef]
2. Penin, B.; Spica, R.; Giordano, P.R.; Chaumette, F. Vision-based minimum-time trajectory generation for a quadrotor UAV. In

Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017.

3. Al Habsi, S.; Shehada, M.; Abdoon, M.; Mashood, A.; Noura, H. Integration of a Vicon camera system for indoor flight of a Parrot
AR Drone. In Proceedings of the 2015 10th International Symposium on Mechatronics and Its Applications (ISMA), Sharjah,
United Arab Emirates, 8–10 December 2015.

4. Gargioni, G.; Peterson, M.; Persons, J.B.; Schroeder, K.; Black, J. A Full Distributed Multipurpose Autonomous Flight System
Using 3D Position Tracking and ROS. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems
(ICUAS), Atlanta, GA, USA, 11–14 June 2019.

5. Antonio-Toledo, M.E.; Sanchez, E.N.; Alanis, A.Y.; Flórez, J.A.; Perez-Cisneros, M.A. Real-Time Integral Backstepping with
Sliding Mode Control for a Quadrotor UAV. In Proceedings of the (IFAC-PapersOnLine) 2nd IFAC Conference on Modelling,
Identification and Control of Nonlinear Systems MICNON 2018, Guadalajara, Jalisco, Mexico, 20–22 June 2018.

6. Masiero, A.; Fissore, F.; Antonello, R.; Cenedese, A.; Vettore, A. A comparison of UWB and motion capture UAV indoor
positioning. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, SPRS Geospatial Week 2019, Enschede, The Netherlands, 10–14 June 2019.

7. Xiao, X.; Dufek, J.; Suhail, M.; Murphy, R. Motion Planning for a UAV with a Straight or Kinked Tether. In Proceedings of the
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.

http://doi.org/10.1177/0278364915578646

Drones 2021, 5, 55 15 of 15

8. Aguilar, W.G.; Manosalvas, J.F.; Guillén, J.A.; Collaguazo, B. Robust Motion Estimation Based on Multiple Monocular Camera for
Indoor Autonomous Navigation of Micro Aerial Vehicle. In Proceedings of the International Conference on Augmented Reality,
Virtual Reality, and Computer Graphics (AVR 2018), Otranto, Italy, 14 July 2018.

9. Basso, M.; Bigazzi, L.; Innocenti, G. DART Project: A High Precision UAV Prototype Exploiting On-board Visual Sensing. In
Proceedings of the 15th International Conference on Autonomic and Autonomous Systems (ICAS), Athens, Greece, 2–6 June 2019.

10. Bigazzi, L.; Basso, M.; Gherardini, S.; Innocenti, G. Mitigating latency problems in vision-based autonomous UAVs. In Proceedings
of the 29th Mediterranean Conference on Control and Automation (MED2021), Bari, Puglia, Italy, 22–25 June 2021.

11. Ceron, A.; Mondragon, I.; Prieto, F. Onboard visual-based navigation system for power line following with UAV. Int. J. Adv. Robot.
Syst. 2018, 15, 2–12. [CrossRef]

12. Lu, L.; Redondo, C.; Campoy, P. Optimal Frontier-Based Autonomous Exploration in Unconstructed Environment Using RGB-D
Sensor. Sensors 2020, 20, 6507. [CrossRef] [PubMed]

13. Ma, C.; Zhou, Y.; Li, Z. A New Simulation Environment Based on Airsim, ROS, and PX4 for Quadcopter Aircrafts. In Proceedings
of the 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020.

14. Hinas, A.; Roberts, J.M.; Gonzalez, F. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV
System. Sensors 2017, 17, 12.

15. Atoev, S.; Kwon, K.R.; Lee, S.H.; Moon, K.S. Data analysis of the MAVLink communication protocol. In Proceedings of the
2017 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2–4
November 2017.

16. Kwon, Y.M.; Yu, J.; Cho, B.M.; Eun, Y.; Park, K.J. Empirical Analysis of MAVLink Protocol Vulnerability for Attacking Unmanned
Aerial Vehicles. IEEE Access 2018, 6, 43203–43212. [CrossRef]

17. Madgwick, S.O.H. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. April 2010.
18. Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom.

Control 2008, 53, 1203–1218. [CrossRef]
19. Bigazzi, L.; Gherardini, S.; Innocenti, G.; Basso, M. Development of Non Expensive Technologies for Precise Maneuvering of

Completely Autonomous Unmanned Aerial Vehicles. Sensors 2021, 21, 391. [CrossRef] [PubMed]
20. Gardner, W.; Brown, W.; Chen, C.-K. Spectral Correlation of Modulated Signals: Part II—Digital Modulation. IEEE Trans. Commun.

1987, 35, 595–601. [CrossRef]
21. Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the 2011 IEEE International Conference on

Robotics and Automation, Shanghai, China, 9–13 May 2011.
22. Wang, J.; Olson, E. AprilTag2: Efficient and robust fiducial detection. In Proceedings of the 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016.
23. Kechagias-Stamatis, O.; Aouf, N.; Nam, D. 3D Automatic Target Recognition for UAV Platforms. In Proceedings of the 2017

Sensor Signal Processing for Defence Conference (SSPD), London, UK, 6–7 December 2017.
24. Vujasinovic, S.; Becker, S.; Breuer, T.; Bullinger, S.; Scherer-Negenborn, N.; Arens, M. Integration of the 3D Environment for UAV

Onboard Visual Object Tracking. Appl. Sci. 2020, 10, 7622. [CrossRef]
25. Antonelli, G.; Cataldi, E.; Giordano, P.R.; Chiaverini, S.; Franchi, A. Experimental validation of a new adaptive control scheme

for quadrotors MAVs. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013.

26. Koubaa, A.; Taher Azar, A. Unmanned Aerial Systems: Theoretical Foundation and Applications. Advances in Nonlinear Dynamics and
Chaos (ANDC); Academic Press: Cambridge, MA, USA, 2021.

27. Sutton, A.; Fidan, B.; van der Walle, D. Hierarchical UAV Formation Control for Cooperative Surveillance. IFAC Proc. 2008, 41,
12087–12092. [CrossRef]

28. Castiblanco, J.M.; Garcia-Nieto, S.; Simarro, R.; Salcedo, J.V. Experimental study on the dynamic behaviour of drones designed
for racing competitions. Int. J. Micro Air Veh. 2021. [CrossRef]

http://dx.doi.org/10.1177/1729881418763452
http://dx.doi.org/10.3390/s20226507
http://www.ncbi.nlm.nih.gov/pubmed/33202569
http://dx.doi.org/10.1109/ACCESS.2018.2863237
http://dx.doi.org/10.1109/TAC.2008.923738
http://dx.doi.org/10.3390/s21020391
http://www.ncbi.nlm.nih.gov/pubmed/33429920
http://dx.doi.org/10.1109/TCOM.1987.1096816
http://dx.doi.org/10.3390/app10217622
http://dx.doi.org/10.3182/20080706-5-KR-1001.02047
http://dx.doi.org/10.1177/17568293211005757

	Introduction
	Materials and Methods
	Architecture
	Mid-Level Software Layer: Cyber Pilot and Interface with the Low-Level Implementation
	High-Level Software Layer
	Frame Sizing

	Results
	Discussion
	References

