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Abstract 

The design loop of turbomachinery blade rows consists of differ-

ent phases, ranging from the aerodynamic, the dynamic, to the 

aeromechanic one. Current trends move towards an integrated 

design, which strive to combine all these disciplines together. 

The aim is to maximize the aerodynamic performance and, at 

the same time, to avoid the vibration issues due to forced re-

sponse and flutter phenomena. 

The focus of this thesis is the development of an integrated pro-

cedure for the aerodynamic and aeromechanic design of axial 

gas turbine blades, based on numerical CFD simulations.  

The procedure starts from the aerodynamic design phase de-

voted to evaluating the performance of the whole turbine do-

main. Steady and unsteady analyses allow the detailed analysis 

of the flow field and the derivation of the main physical quanti-

ties. These analyses have been carried out on a heavy-duty low 

pressure turbine module designed by Baker Hughes, selected as 

test case. A comparison between numerical results and measure-

ments data is provided and discussed. By means of multi-stage 

unsteady computations is not only possible to accurately evalu-

ate the aerodynamic performance, but also the harmonic con-

tent of the aerodynamic forcing functions on selected blade rows. 

Simplified computational approaches were investigated in order 

to assess their effectiveness and to reduce the computational 

resources. Design and off-design operating conditions have been 

investigated in order to evaluate the associated harmonic con-

tent of the forcing function. 



 

In addition to the CFD simulations, the presented procedure 

also includes the FEM modal analysis of the blade row in cyclic 

symmetry. Blade row mode shapes are firstly used to compute 

the aerodynamic damping by means of an uncoupled flutter 

method. Finally, a modal work approach that takes as inputs 

blade mode shapes, aerodynamic damping and blade forcing is 

applied to obtain the forced response results in terms of vibra-

tions displacements and stresses. A dedicated tool implements 

this modal work approach and the fist comparisons with aero-

mechanical field data shows a good agreement taking the first 

encouraging step to the overall procedure validation. 

 



 

ii 

Contents 

Abstract ................................................................................. i 

Contents ................................................................................ i 

List of Figures ....................................................................... v 

List of Tables ....................................................................... ix 

Nomenclature ........................................................................ x 

1 Introduction ....................................................................1 

1.1 Thesis objectives and outline ....................................2 

2 Fundamentals of Axial  Turbine Aerodynamics and 

Aeromechanics .......................................................................5 

2.1 Gas turbine ..............................................................5 

2.2 Turbine stage design .............................................. 10 

2.2.1 Velocity diagrams ............................................ 11 

2.2.2 Design parameters ........................................... 12 

2.2.3 Stage losses and performance ........................... 17 

2.2.4 Turbine maps .................................................. 20 

2.2.5 The torque maps ............................................. 31 

2.3 Gas turbine cooling ............................................. 33 

2.4 Aeromechanical design ........................................ 35 

2.4.1 Forced response design .................................... 41 

2.4.2 Spatial decomposition ...................................... 45 

2.4.3 Modal work approach ...................................... 49 

2.4.4 HCF life assessment......................................... 51 



Contents 

 

2.4.5 Design flutter-free ........................................... 53 

3 Numerical Methods ....................................................... 62 

3.1 TRAF code ............................................................ 62 

3.2 Aeroelastic methods overview ............................. 67 

3.2.1 Uncoupled method .......................................... 68 

3.2.2 Coupled method .............................................. 70 

3.2.3 Periodicity conditions in time .......................... 72 

3.2.3.1 Full annulus approach ................................. 72 

3.2.3.2 Phase-lagged approach ................................. 74 

4 Numerical Procedure for Axial Turbine Analysis ........... 76 

4.1 Workflow overview ................................................. 76 

4.2 Industrial test case ................................................. 78 

4.3 Fluid domain discretization ................................. 81 

4.3.1 Steady analysis ................................................ 82 

4.3.2 Unsteady multi-row analysis ............................ 83 

4.4 Mode shapes transfer .............................................. 85 

4.5 Flutter analysis ...................................................... 88 

4.6 Modal work calculation .......................................... 90 

5 Numerical results .......................................................... 92 

5.1 Steady state results: design point ........................... 92 

5.2 Unsteady results: design and off-design ................... 96 

5.2.1 Numerical approach comparison ........................ 102 

5.2.2 Operative point change effects: inviscid endwall 105 

5.3 Modal work results ............................................... 108 



Contents 

 

5.4 Flutter results ...................................................... 109 

6 Conclusions ................................................................. 112 

 



 

iii 

List of Figures 

Figure 2.1: Gas turbine engine [1] ........................................... 6 

Figure 2.2: Simple gas turbine system (left) [2] and T-s diagram 

of reference Joule-Bryton cycle (right) .................................... 7 

Figure 2.3: Gas turbine with separate power turbine [2].......... 8 

Figure 2.4: Twin-spool engine [2] ............................................ 9 

Figure 2.5: Axial flow turbine stage [2] ................................. 11 

Figure 2.6: Turbine blade loading ......................................... 14 

Figure 2.7: Smith diagram [7] ............................................... 15 

Figure 2.8: Velocity triangles at different spanwise positions . 16 

Figure 2.9: Mollier diagram for a turbine stage ..................... 18 

Figure 2.10: Turbine characteristics: total-to-total efficiency 

(top) and flow function (bottom).......................................... 24 

Figure 2.11: Flow function (top) and efficiency (bottom) maps 

transformed with the change of variables from hs and nc (left) 

to hs and ν (right) [16] ......................................................... 27 

Figure 2.12: Distributions of pressure coefficient Cp along the 

blade profile. Left: velocity ratio ν/ν* is varied while non-

dimensional isentropic enthalpy ratio hs/hs* is fixed. Right: 

hs/hs* is varied while ν/ν*  is fixed [16] ............................... 28 

Figure 2.13: Streamlines at midspan and contours of pressure 

coefficient Cp for different ν/ν* at hs/hs*=1.0. Incidence is 

changed from positive (ν/ν*<1) to negative (ν/ν*>1), while 

levels of Cp remain substantially unchanged [16]................... 29 

Figure 2.14: Streamlines at midspan and contours of relative 

Mach number Mrel for different values of hs/hs* at ν/ν*=1.0. 

Levels of Mrel change at fixed incidence [16] ........................ 29 

Figure 2.15: Incidence (ι) and exit isentropic relative Mach 

number (M2, rel, is). Dashed lines correspond to Mach number 



List of Figures 

 

 

ratio M2, rel, isM2, rel, is*, solid lines correspond to incidence 

angle ι [16] ........................................................................... 30 

Figure 2.16: Torque coefficient curve .................................... 31 

Figure 2.17: Gas turbine blade cooling techniques. External (a) 

and internal (b) cooling [17] ................................................. 34 

Figure 2.18: Collar triangle ................................................... 36 

Figure 2.19: Nodal diameters representation [20] ................... 37 

Figure 2.20: Cyclic symmetry ............................................... 38 

Figure 2.21: Blade-alone, disk-alone and bladed disk frequency 

curves .................................................................................. 39 

Figure 2.22: Aeroelastic design analyses [22] ......................... 40 

Figure 2.23: Campbell diagram [23] ...................................... 42 

Figure 2.24: ZZENF diagram ................................................ 44 

Figure 2.25: Sketch of lobe circumferential pattern and aliasing 

[26] ....................................................................................... 47 

Figure 2.26: High Cycle Fatigue assessment .......................... 53 

Figure 2.27: Flutter map for turbines [29] ............................. 54 

Figure 2.28: Graphical interpretation of reduced frequency [32]

 ............................................................................................ 56 

Figure 2.29: Mass ratio [32] .................................................. 57 

Figure 2.30: Possible scenarios of blade row vibration [30] .... 60 

Figure 2.31: Stability curve .................................................. 61 

Figure 3.1: Uncoupled method scheme .................................. 69 

Figure 3.2: Coupled method scheme ..................................... 71 

Figure 3.3: Instantaneous periodicity condition for a full annulus 

approach with IBPA=90° ..................................................... 73 

Figure 3.4: Periodicity conditions for a phase-lagged approach 

with a general IBPA value ................................................... 74 

Figure 4.1: Procedure scheme ............................................... 77 

Figure 4.2: Turbine layout for a typical 1.5 shaft heavy-duty 

engine .................................................................................. 79 

Figure 4.3: Machine test section with aerodynamic 

instrumentations .................................................................. 79 



List of Figures 

 

 

Figure 4.4: Positions of the four strain gage applied on four rotor 

blades (B3) .......................................................................... 80 

Figure 4.5: Viscous Full Navier-Stokes (left) and inviscid 

endwall (right) grids ............................................................. 81 

Figure 4.6: Blade to blade view of Stage 3 and Stage4 Full 

Navier-Stokes computational grid ......................................... 82 

Figure 4.7: Full annulus computational mesh ....................... 84 

Figure 4.8: Mode shapes frequencies for rotor B3 .................. 86 

Figure 4.9: Point clouds of the FEM (green) and CFD (blue) 

blade surface grids................................................................ 87 

Figure 4.10: Example of the mode transfer from solid to fluid 

domain ................................................................................. 88 

Figure 5.1: Total pressure and total temperature spanwise 

distributions: experimental, CFD steady with viscous and 

inviscid endwall formulation, and CFD time-averaged with 

inviscid formulation.............................................................. 94 

Figure 5.2: Isentropic Mach distributions at hub, midspan, and 

tip of blade: steady and time averaged results. ..................... 95 

Figure 5.3: Instantaneous entropy contours of the two operative 

conditions at midspan. Design (left) and off-design (right) [61]

 ............................................................................................ 97 

Figure 5.4: Example of frequency spectrum of unsteady blade 

loading ................................................................................. 98 

Figure 5.5: Rotor B3 frequency spectrum of unsteady blade 

loading ................................................................................. 99 

Figure 5.6: Unsteady lift amplitude of BPFN1 on B3 ............ 100 

Figure 5.7: Maximum unsteady pressure amplitude of BPFN1 of 

B3 blade surface vs. circumferential order and nodal diameter

 .......................................................................................... 101 

Figure 5.8: B3 interference diagram OP1 condition ............. 102 

Figure 5.9: B3 spectrum frequency: Full Navier-Stokes vs 

inviscid endwall formulation ............................................... 103 



List of Figures 

 

 

Figure 5.10: Comparison of isentropic Mach distribution at 5%, 

50% and 95% span ............................................................. 104 

Figure 5.11: Unsteady lift amplitude: Full Navier-Stokes vs 

inviscid endwall formulation ............................................... 105 

Figure 5.12: B3 spectrum frequency: design vs off-design 

condition ............................................................................ 106 

Figure 5.13: Unsteady lift amplitude: design vs off-design 

condition ............................................................................ 107 

Figure 5.14: Comparison of isentropic Mach distribution at 50% 

span ................................................................................... 107 

Figure 5.15: Pressure harmonic, modal displacements, and 

modal force blade contours ................................................. 108 

Figure 5.16: Critical damping ratio curve ........................... 110 

Figure 5.17: Energetic damping coefficient surface density for 

ND=24 ............................................................................... 111 

 



 

iv 

List of Tables 

Table 4.1: Aerodynamic operating points.............................. 81 

Table 5.1: Blade number of each row ................................... 99 

Table 5.2: S3B rotor response ............................................. 109 

 

 



 

 

v 

 

Nomenclature 

𝐶 Generalized damping matrix 

𝐹𝑒𝑥𝑡(𝑡) Generalized forcing vector 

𝐾 Generalized stiffness matrix 

𝑀  Generalized mass matrix 

𝑛 Normal vector 

𝑄 Source terms vector 

𝑈  Conservative quantities vector 

𝑥 Generalized displacements vector  

a Speed of sound/Modal amplitude 

A0,An,Bn  Fourier series coefficient  

b Semi-chord 

B Blade 

c Absolute velocity/spouting velocity 

Cp Pressure coefficient 

d Scaling factor 

E Blade average kinetic energy 

Fm Modal force 

FF Flow function 

h Enthalpy/Harmonic index 

i Incidence angle 

j Imaginary unit 

k Scattering index 

m Circumferential order/modal mass 

𝑚̇ Mass-flow rate 

M Mach number 



Nomenclature 

 

 

N Number of sectors 

NB Blade count 

p Pressure 

P Power 

  

r radius 

R Degree of reaction/Gas constant 

Re Reynolds number 

s Entropy 

T Temperature/Torque/Period 

t Time 

v Relative velocity/y velocity component 

w Relative velocity/z velocity component 

W Specific work 

Y Total pressure loss coefficient 

Greek Letters 

α Absolute flow angle/Phase 

β Relative flow angle 

γ Specific heats ratio 

δ Overall damping 

ζ Loss coefficient/Damping  

η Efficiency 

θ Circumferential direction 

λ Radii ratio 

μ Dynamic viscosity/Mass ratio 

ν Speed ratio/Excitation frequency 

ξ Kinetic energy loss coefficient/Critical damping 

ratio 

ρ Density 

Σ Blade surface 

τ Torque coefficient 



 Nomenclature 

 

Φ Flow coefficient  

Φ Flux functions vector 

Ψ Stage loading  

ω Frequency/Specific Turbulent Dissipation 

Ω Rotational speed 

Subscripts 

0 Stagnation quantity 

c Corrected 

is/ss Isentropic 

n Natural 

rel Relative quantity 

t Turbulent 

ts Total-to-static 

tt Total-to-total 

x Axial 

Acronyms 

BC Boundary Conditions 

BPF Blade Passing Frequency 

BTW Backward Travelling Wave 

CA Computational Aeroelasticity 

CFD Computational Fluid Dynamics 

CFL Courant-Friedrichs-Lewy number 

CSD Computational Solid Domain 

DF Diffusion Factor 

DFT Discrete Fourier Transform 

EO Engine Order 

FEA Finite Element Analysis 

FEM Finite Element Method  

FRF Frequency Response Function 

FTW Forward Travelling Wave 



Nomenclature 

 

 

GT Gas Turbine 

HCF High Cycle Fatigue 

HPT High Pressure Turbine 

IBPA Inter-Blade Phase Angle 

LCO Limit Cycle Oscillations 

LNG Liquefied Natural Gas 

LPT Low Pressure Turbine 

NGV Nozzle Guide Vane 

ND Nodal Diameter 

OMP Open Multi-Processing 

OP Operating Point 

PR Pressure ratio 

PS Pressure Side 

RANS Reynolds-averaged Navier-Stokes 

SS Suction Side 

TCF Turbine Center Frame 

TRF Turbine Rear Frame 

URANS Unsteady Reynolds-averaged Navier-Stokes 

ZZENF Zig Zag Shaped Excitation Line 

 



 

 

1 

1 Introduction 

Nowadays, the supply of the energetic market is increasingly 

wide, proposing solutions ranging from the exploitation of new 

renewable energy resources, to the use of sustainable alternative 

fuels (SAF) which allow to reduce the pollutant and the green-

house gas (GHG) emissions. In this context, gas turbines play a 

strategic role as, unlike these new technologies, they are able to 

meet the peak of the global energy demand. They are the main 

source of power generation on the market thanks to their high 

flexibility and reliability, to the low operating costs, to the low 

emissions, to the high power density, and quality exhaust gases 

that can be further used for example in combined power plants 

and cogenerations processes. 

Turbomachinery industries aim to design new machines with 

higher efficiencies but with lower risk of components failure to 

enhance their reliability. Since a trade-off design between these 

two aspects has to be found, turbomachinery blades are becom-

ing lighter and more loaded, thus resulting more prone to aero-

dynamic excited vibrations. An accurate and detailed aerome-

chanical investigation of the engine modules is thus necessary 

during the design phase to prevent and to avoid any vibrations 

occurrence related to flutter and forced response phenomena. In 

this phase, the designer faces the vibration issues which involve 

various disciplines such as aerodynamics, solid dynamics, and 

aeromechanics. For this reason, all these disciplines need to be 

integrated into a single design procedure. Form a computational 

point of view, this approach is now possible thanks to the in-

crease of computational power and to the performance of CFD 
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codes able to exploit the parallelism of modern HPC architec-

tures. RANS analyses are the standard adopted by the industry, 

as they represent the optimal trade-off between computational 

cost and simulation accuracy. For aeromechanical assessment 

URANS simulations become necessary since they are essential 

to evaluate rotor/stator interactions and aerodynamic damping. 

Nevertheless, their huge computational cost can still be a limi-

tation for the use of unsteady approaches in industrial routine 

design practice of turbomachines with a high stage count, as 

heavy-duty gas turbines.  

 

1.1 Thesis objectives and outline 
An integrated design considering both the aerodynamic and aer-

omechanic aspects of an axial gas turbine is becoming a great 

challenge for designers since it requires a tight bi-directional in-

teraction of the different disciplines to avoid the occurrence of 

vibratory phenomena that can lead to undesired component fail-

ure. In order to reduce the iterations between the various design 

phases, and thus, the time-to-market, the development of this 

integrated procedure is a topic of particular interest. 

The objective of this work is focused on the development of an 

integrated procedure for the aerodynamic and aeromechanic de-

sign of axial gas turbines blade rows. The methodology is based 

on steady and unsteady CFD simulations, which are used to 

evaluate the aerodynamic performance, aerodynamic damping 

and forcing functions which excite the turbine blade rows. On 

the other hand, FEM analyses are also needed to obtain natural 

frequencies and mode shapes, which are input data to calculate 

the aerodynamic damping (by means of flutter computations) 
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and the forced response analysis of the component under inves-

tigation.  

After a general introduction about the fundamentals of axial 

turbine aerodynamic design, an overview of the main aerome-

chanical phenomena is provided. Chapter 2 describes the theory 

of a dedicated spatial decomposition of the forcing function gen-

erated by the stator/rotor interaction and the modal work ap-

proach algebra used to assess the forced response of blade rows. 

The numerical methods adopted for CFD analyses are illus-

trated in Chapter 3. All the simulations have been performed 

with the CFD solver TRAF developed by the group of Prof. 

Arnone at the University of Florence. Concerning the flutter 

method, the two possible approaches, coupled and uncoupled, 

are explained.  

Chapter 4 describes the workflow of the overall procedure, step 

by step, and its applications to the selected industrial test case: 

a LP turbine module of the Baker Hughes family, industrial 

partner of this activity. Two different operating points are in-

vestigated, the design and one off-design condition. Starting 

from the discretization of the fluid domain, the numerical setup 

for the multirow steady and unsteady analyses is presented. 

Two different numerical approaches are adopted, the Full-Na-

vier Stokes and the inviscid endwall formulation analyses, in 

order to define an industrial strategy to reduce the computa-

tional cost of CFD analyses maintaining the required accuracy. 

Moreover, the instrumentation installed for the experimental 

test campaign, both for aerodynamic and aeromechanical meas-

urements, is illustrated. The last part of the chapter presents 

the main steps for the forced response calculation and the nu-

merical setup for all the unsteady flutter analysis.  
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All the numerical results obtained are discussed in Chapter 5. 

Firstly, steady state results for the two types of endwall treat-

ments (viscous and inviscid) are compared to the unsteady ones 

and the available experimental data. Then, full annulus multi-

stage unsteady results provide a detailed numerical solution of 

the flow field of the whole turbine domain, and two operating 

conditions are presented and compared. The harmonic content 

of the forcing function at single Blade Passing Frequency (BPF) 

is obtained with a dedicated post-processing which exploits the 

DFT in space and time of the pressure field. Finally, the pre-

dicted forced response value in terms of vibrating stresses is 

compared to measured field data. To obtain this value, the crit-

ical damping ratio curve is required and comes from an unsteady 

flutter analysis performed for all the even diameters. Looking at 

this curve, flutter stability for this blade row is also confirmed 

and further analyzed by showing the distribution of the ener-

getic damping coefficient surface density over the blade for the 

different nodal diameter. 

The concluding remarks and some future developments are fi-

nally reported in Chapter 6. 
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2 Fundamentals of Axial  

Turbine Aerodynamics and 

Aeromechanics 

In this chapter, the fundamentals of aerodynamics and aerome-

chanics of axial gas turbines are reported. In the first part, an 

introduction of the machine operation and an overview of the 

principal layouts are presented. The main key parameters, used 

during the aerodynamic design phase of turbine stages, are an-

alyzed to define the characteristics of an axial gas turbine. Then, 

a reinterpretation of the classical turbine maps by the definition 

of two new parameters is provided. Finally, blade cooling tech-

niques are briefly discussed because of their impact on the aer-

odynamic design. 

The second part deals with the aeromechanical design phase fo-

cusing on the two main phenomena: forced response and flutter. 

The phenomenology of these vibration occurrences is discussed, 

with a particular focus on its undesired effects in turbomachin-

ery due to possible high cycle fatigue failure. Their different type 

of manifestation and basic theory equations will be provided as 

well.  

 

2.1 Gas turbine 
Gas turbine is a type of internal combustion engine in which 

burning of an air-fuel mixture produces hot gases that expand 

generating power. There are various configurations of that en-

gine depending on the application, but the three main compo-

nents are the: 
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• Air compressor module 

• Combustion chamber 

• Turbine module  

A layout of a gas turbine engine is provided in Figure 2.1. The 

air flow is compressed by the axial compressor module and then 

introduced in the annular combustion chamber. Here, the air-

fuel mixing takes place, thus increasing the temperature of the 

gas flow. Finally, the flow of hot pressured gases is expanded in 

the turbine producing torque used to generate shaft power or a 

propulsive force depending on the field of application. 

 

Figure 2.1: Gas turbine engine [1] 

It is important to underline that in the gas turbine engine, the 

process of compression, combustion and expansion do not occur 

in a single component as they do in a reciprocating engine. 

These components are put in a row and therefore designed, 

tested, and developed individually and then linked together to 

form a gas turbine in a variety of configurations. In addition, 

other components, as heat exchanger, intercooling, etc. can be 

added to increase the power output and the efficiency of the 

plant. So, gas turbines are an extremely adaptable source of 

power and are used for a wide variety of applications, ranging 
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from electric power generation and jet propulsion to the supply 

of compressed air and process heat. 

The thermodynamic process at the base of the gas turbine is the 

Joule-Brayton cycle that in its ideal form consists of two isobaric 

processes and two isentropic processes, as shown in T-s diagram 

in Figure 2.2 (right). The two isentropic transformations are the 

compression, 1-2s in T-s diagram, and the expansion, 3-4s in T-

s diagram, carried out by the compressor and the turbine, re-

spectively. The two isobaric transformations are the combustion 

process, from point 2,2s to point 3, which occurs in the combus-

tion chamber and the heat rejection from point 4,4s to point 1. 

 

Figure 2.2: Simple gas turbine system (left) [2] and T-s diagram of 

reference Joule-Bryton cycle (right) 

In Figure 2.2 is also provided a scheme of the plant that repre-

sent a single-shaft arrangement. This configuration is the most 

suitable if the gas turbine is required to operate at fixed speed 

and fixed load condition as in base-load power generation 

schemes. In a single-spool output shaft the output shaft is an 

extension of the main shaft which connects the compressor and 

turbine components. The output shaft may be an extension of 

the turbine shaft, “hot end drive” configuration, or it may be 

an extension of the compressor shaft, “cold end drive” configu-

ration [3]. 



2. Fundamentals of Axial Turbine Aerodynamics and 

Aeromechanics 

 

8 

Flexibility of operation, e.g. the rapidity with which the ma-

chine can adapt itself to variation in load and rotational speed, 

is unimportant in this application. On the other hand, when 

flexibility in operation is required, the use of a mechanically free 

power turbine is desirable. In this case, the 1.5 shaft arrange-

ment, called twin-shaft, is used (Figure 2.3). The high-pressure 

turbine drives the compressor and the combination acts as a gas 

generator for the low-pressure power turbine. The compressor-

turbine shaft is not physically connected to the power output 

shaft, but it is coupled aerodynamically. This aerodynamic cou-

pling is advantageous in that facilitates the start of the turbine 

components. Twin-shaft configuration may be used for electric-

ity generation, with the power turbine designed to run at the 

alternator speed without the need for a reduction gearbox which 

represent a source of losses. Gas turbines originally designed for 

jet aircraft applications as turbojets, have been successfully 

adapted to ground based applications using the split output 

shaft configuration. 

 

Figure 2.3: Gas turbine with separate power turbine [2] 

For both single- and twin-shaft layout a relevant problem is an 

attempt to obtain high pressure ratio with only one compressor 

module. On way of overcoming this difficulty is to divide the 

compressor module into two or more components. This separa-

tion permits each section to run at a different rotational speed, 
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each with its own turbine. The low-pressure compressor is 

driven by the low-pressure turbine and the high-pressure com-

pressor by the high-pressure turbine. Power is normally taken 

from the low-pressure turbine shaft, or from an additional free 

power turbine, Figure 2.4. 

 

Figure 2.4: Twin-spool engine [2] 

The configurations shown in Figure 2.4 is usually referred to as 

a twin-spool engine, with or without the free power turbine. It 

should be noted that although the two spools are mechanically 

independent, their speeds are related aerodynamically and thus 

designed together. As in the single spool configuration, the twin-

spool arrangement was primarily developed for the aircraft en-

gines, but there are many examples of aero-derivate turbines 

applied in the power generation field [4]. 

In addition to the type of arrangement, other classifications can 

be made for gas turbines [5]. Considering the origin of the ma-

chine, a distinction can be made between aero-derivative and 

heavy-duty gas turbines. This broad distinction is made for 

some main reasons. Firstly, the size and weight of an aero-de-

rivative plant is much more compact than most other industrial 

applications of gas turbine. Secondly, aero-derivatives achieve 

higher compression ratios and efficiencies compared to the low-

est heavy-duty ones, but they have a shorter life with a faster 

performance degradation. Lastly, the exhaust temperatures of 

the aero-derivatives gas turbines are relatively low compared to 
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the heavy-duty units. For this reason, their use in cogeneration 

or combined cycles is less attractive. These differences in the 

requirements can have a considerable effect on design and the 

realization of these machines. The aero-derivative turbines have 

to be adapted to the electrical generation industry by replacing 

the bypass fan with some compressor stages and adding a power 

turbine at the exhaust flange. These devices range in power from 

2.5 MW to about 100 MW. The efficiencies of these units can 

range from 35-45%. On the other hand, heavy-duty gas turbines 

tend to be more like traditional steam turbines in their mechan-

ical appearance than the lightweight constructions employed in 

aeronautical sector. In fact, restrictions of weight and space are 

not important factors for these ground-based units, and so the 

design characteristics include heavy-wall casing, large-diameter 

combustors, and blades without shroud, with low aspect ratio. 

These machines are the large power generation units ranging 

from 3 MW to 480 MW in a simple cycle configuration, with 

efficiency ranging from 30-46%.  

The following section discuss about fundamentals of axial tur-

bines design. The compressor and the combustor module are not 

described as they lie outside this thesis activity. 

 

2.2 Turbine stage design 
The turbine design starts from a two-dimensional analysis, 

called “mean-line analysis”, which considers the variation of the 

flow along a mean radius through the machine. This is the sim-

plest approach to the study of axial flow turbines which assume 

that the flow conditions prevailing at the mean radius fully rep-

resent the flow at all other radii. This two-dimensional analysis 

at the pitch line can provide a reasonable approximation to the 

actual flow, if the ratio of blade height to mean radius is small. 
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When this ratio is large, however, as in the final stages of an 

axial turbine a three-dimensional analysis is required. 

2.2.1 Velocity diagrams 
The axial turbine stage is composed by a row of fixed guide 

vanes or nozzle, called stator row, and a row of moving blades 

or buckets mounted on the rotor drum, called rotor row (Figure 

2.5: Axial flow turbine stage ). For a multi-stage turbine, the 

blading is arranged sequentially in an annulus with the disks 

connected via conical drive features forming the drum. The pre-

liminary turbine design phase moves towards the decision of the 

stage velocity diagram, represented in Figure 2.5. 

 

Figure 2.5: Axial flow turbine stage [2] 

The flow enters the nozzle blades with absolute velocity c1 at 

blade-to-blade angle α1 and accelerates to an absolute velocity 

c2 at an angle α2, as shown in Figure 2.5. By vectorially sub-

tracting the rotational speed U, the rotor inlet relative velocity 

w2 with the direction β2 is obtained. After being deflected, and 

further expanded in the rotor blade passage, the flow leaves with 
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velocity w3 at an angle β3. The relation between absolute, rela-

tive, and rotational speeds is expressed as: 

 

 𝐶 = 𝑊⃗⃗⃗⃗ + 𝑈⃗⃗⃗ (2.1) 
 

Because the blade speed U increases with increasing radius, the 

shape of the velocity diagrams varies from root to tip of the 

blade. For short blades, 2D mean flow design is valid but for 

long blades, 3D approach (which incorporates variations from 

hub to tip) must be adopted in design phase. At first, we shall 

consider the mean diameter of the annulus. 

2.2.2 Design parameters 
The following design parameters are used in the preliminary 

study of a repeating axial stage: 

• Flow coefficient ϕ 

• Stage loading ψ 

• Degree of reaction R 

The flow coefficient is defined as the ratio between the axial and 

the rotational speed, or,  

 

 𝜙 =  
𝑐𝑥

𝑈
 (2.2) 

 

The stage flow coefficient 𝜙  is a characteristic for the mass flow 

behaviour through the stage. 

The second parameter is the stage loading ψ defined as the ratio 

between the total enthalpy rise per stage to the square of the 

rotational speed, or, 
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 𝜓 =
Δℎ0

𝑈2
=

Δ𝑐𝜃

𝑈
=

2𝑐𝑥

𝑈
(tan 𝛽2 + tan 𝛽3) (2.3) 

 

Since the turbine works with a “positive” pressure gradient, the 

boundary layer results more stable and tends to remain attached 

to the blade surface allowing the turbine designer to obtain 

higher stage loading values and larger flow turning than the 

compressor stages. However, locally on the blade suction side 

there could be a zone of an adverse pressure gradient depending 

on the turning and on the solidity of the blades. Thus, the 

boundary layer could grow rapidly or even separate in such a 

region affecting adversely the turbine efficiency. This region, 

called the diffusion region, is delimited by the minimum passage 

section or throat where the velocity is maximum. The diffusion 

factor parameter (DF) is introduced to support the stage load-

ing choice, defined as follows [6]: 

 

 𝐷𝐹 = [1 −
𝑐2

𝑐1

] +
∆𝑐𝜃

2𝜎𝑐1

 (2.4) 

 

where 𝜎  is the turbine chord-to-pitch ratio. Diffusion in a tur-

bine blade is usually around DF ≃ 0.5 and for high Reynolds 

number does not represent a design issue. Figure 2.6 illustrates 

the pressure distribution over the section surface depicting a 

zone of diffusion. 
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Figure 2.6: Turbine blade loading 

Combining the equations of the blade loading and the flow co-

efficient, we obtain: 

 

 𝜓 = 2𝜙 (tan 𝛽2 + tan 𝛽3) = 2𝜙 (tan 𝛼2 + tan 𝛼3) (2.5) 
 

The choice of these parameters must be made to ensure high 

efficiency for the stage. Maximum values of the efficiency are 

obtained for low values of the two coefficients. 
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Figure 2.7: Smith diagram [7] 

Furthermore, the degree of reaction R is defined as the ratio of 

the static enthalpy rise in the rotor to the static enthalpy rise 

in the stage, and it is usual to define it in term of static tem-

perature or pressure drops rather than enthalpy drops, namely 

 

 𝑅 =
ℎ2 − ℎ3

ℎ1 − ℎ3

 (2.6) 

 

The degree of reaction R indicates the portion of energy trans-

ferred in the rotor blading. Thus, after some mathematical pas-

sages, the Eq. (2.6) can be written as follows: 

 

 𝑅 =
𝜙

2
(tan 𝛽3 − tan 𝛽2) (2.7) 

 

or, 
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 𝑅 = 1 +
𝜙

2
(tan 𝛼3 − tan 𝛼2) (2.8) 

 

and a compact relationship between the three designs parameter 

ϕ, ψ, R can be obtained: 

 

 𝜓 = 2 (1 − 𝑅 + 𝜙 tan 𝛼1) (2.9) 
 

This key parameter is fundamental for the blade geometry de-

sign as it describes the shape of the velocity triangles along the 

span. As previously explained, the blade tangential speed U and 

the velocity triangles are different from hub to tip section due 

to the radius variation along the blade spanwise direction (Fig-

ure 2.8). Thus, the stage loading and consequently the degree of 

reaction varies with it. 

 

Figure 2.8: Velocity triangles at different spanwise positions 

Low reaction rate values are desired near the hub section where 

high thickness and curvature profiles are required to minimize 

the centrifugal stresses action. Typical values of degree of reac-

tion at the hub are around R = 0.2 – 0.25, necessary to provide 

a little pressure drop in order to overcome the endwall friction 

losses and make the flow expands within the hub rotor passage. 
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For midspan, a R = 0.5 is usually adopted. It corresponds to 

symmetrical triangles and a balance pressure drop between sta-

tor and rotor blades [8]. 

For tip section, high degree of reaction corresponds to thin blade 

profiles, beneficial to maintain low centrifugal stresses. Typical 

values for this case are about R = 0.65 – 0.7. Values over 0.7 

are penalizing for the performance as they produce an increase 

of the tip clearance losses due to the flow leakage from pressure 

side to suction side. For this reason, where it is possible, 

shrouded blades are used to lower tip clearance losses, thus con-

sequently increasing the aerodynamic performance by raising 

the stage reaction factor. 

2.2.3 Stage losses and performance 
The last step in the process of the preliminary design of a tur-

bine stage is to check the loss coefficient and the stage efficiency. 

The estimation of the aerodynamic losses is important for the 

design process not only in the choice of the stage configuration, 

but also on the methods to control these losses. The choices of 

blade shape, aspect ratio, spacing, Reynolds number, Mach 

number and flow incidence angle can all affect the losses and 

hence the efficiency of turbine stages. Improving efficiency is 

associated with higher reaction, which implies less work per 

stage and therefore a higher number of stages for a given overall 

pressure ratio.  

Two definitions of efficiency are commonly used, depending on 

the applications. The total-to-total efficiency (Eq.(2.10)), 

 

 𝜂𝑡𝑡 =
ℎ01 − ℎ03

ℎ01 − ℎ03𝑠𝑠

 (2.10) 
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defined as the ratio of the actual work output to the ideal work 

output when operating at the same back pressure. In the case 

the exit flow kinetic energy 
1

2
𝑐3

2 cannot be recovered, a total-to-

static efficiency better fits the stage performance: 

 

 𝜂𝑡𝑠 =
ℎ01 − ℎ03

ℎ01 − ℎ3𝑠𝑠

 (2.11) 

 

The expansion process in turbine stage is illustrated in Figure 

2.9. 

 

Figure 2.9: Mollier diagram for a turbine stage 



2. Fundamentals of Axial Turbine Aerodynamics and 

Aeromechanics 

 

19 

In order to estimate the efficiency of a turbine stage as part of 

the preliminary design process, some methods of determining 

the loss coefficients is required. A classification of the principal 

sources of loss are summarized as follow [9]: 

• Profile or primary losses 

• Trailing edge thickness losses 

• Secondary flow losses 

• Trailing edge mixing losses 

• Shock-waves losses 

• Exit losses 

From the Mollier diagram (Figure 2.9), losses are highlighted in 

terms of entropy rise and total pressure drop but different coef-

ficients may be employed to evaluate losses during the prelimi-

nary design. For general considerations, a loss coefficient based 

on the increase in entropy can be expressed as follows [10]: 

 

 𝜁 =
𝑇2Δs

ℎ02 − ℎ2

 (2.12) 

 

which refers to the expansion within the stator from state 1 to 

state 2 in the Mollier diagram. 

This formulation is not very convenient when designing turbine 

rows and stages. For this reason, the total pressure loss is as-

sumed as a measure of the entropy increase, and the total pres-

sure loss coefficient is used [10]: 
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𝑌𝑝 =

𝑝01 − 𝑝02

𝑝01 − 𝑝1

 
(2.13) 

 

The same relationship may be also stated for the rotor row by 

switching to the relative properties. Another coefficient used 

during the design phase is the kinetic energy loss coefficient [10], 

expressed as: 

 

 𝜉 =
ℎ2 − ℎ2𝑠

ℎ02 − ℎ2

 (2.14) 

 

The previous equation, valid for a stator row, may be extended 

to the rotor by substituting the absolute with relative quanti-

ties. Several correlations to estimates losses and the way they 

influence aerodynamic efficiency have been investigated over the 

years. Horlock [11], Craig and Cox [12], Kacker and Okapuu 

[13], and Ainley and Mathieson [14] are just some of those who 

have published correlations and scientific papers about this 

topic. For 2D losses, experimental cascades are usually adopted. 

The three-dimensional effects, such tip leakages, exit flow mix-

ing and secondary flows impact to the overall performance de-

crease. In a preliminary design, they may be accounted for using 

some coefficients previously mentioned. Nevertheless, fully 3D 

CFD analyses must be carried out to ensure accurate results for 

the blade design.  

2.2.4 Turbine maps  
Because the gas turbine performance varies significantly from 

one operating point to the other, the procedure to determine the 

performance of single-stage or multistage axial flow turbine for 

a specific operating point is to use the performance maps. To 
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define such engine performance maps, the similarity theory can 

be introduced. 

Turbomachines can be compared with each other by dimen-

sional analysis with the Buckingham theorem [15]. This analysis 

is a procedure where variables representing a physical situation 

are reduced into groups, which are dimensionless. These dimen-

sionless groups can then be used to compare performance of var-

ious types of machines with each other. In turbomachines, di-

mensional analysis is employed to compare data from various 

types of machines, to select various types of units based on max-

imum efficiency and pressure head required, and to predict a 

prototype performance from test conducted on a smaller scale 

model or at lower speed. Buckingham’s Pi theorem states that 

if there are n variables in a problem and these variables contain 

m primary dimensions (for example mass, length, time) the 

equation relating all the variables will have (n-m) dimensionless 

groups. 

The performance parameters, the total-to-total isentropic en-

thalpy drop/rise Δℎ𝑡𝑡,𝑖𝑠, the isentropic efficiency 𝜂𝑡𝑡,𝑖𝑠, and the 

power P can be expressed functionally as: 

 

 Δℎ𝑡𝑡,𝑖𝑠 = 𝑓 (𝜇, 𝑁, 𝐷, ṁ, 𝛾, 𝑎01) (2.15) 
 

 

 𝜂𝑡𝑡,𝑖𝑠 = 𝑔 (𝜇, 𝑁, 𝐷, ṁ, 𝛾, 𝑎01) (2.16) 
 

 

 𝑃 = 𝑗 (𝜇, 𝑁, 𝐷, ṁ, 𝛾, 𝑎01) (2.17) 
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Starting from these independent dimensional parameters, vari-

ous independent dimensionless groups can be obtained. Among 

these: 

1. The Reynolds number 

 

 𝑅𝑒𝐷 =
𝑝01𝑁𝐷2

𝑅𝑇01𝜇
 (2.18) 

 

2. The corrected speed 

 

 𝑁𝑐 =
𝑁𝐷

𝑎01

 (2.19) 

 

3. The non-dimensional enthalpy drop/rise 

 

 ℎ𝑠 =
∆ℎ𝑡𝑡,𝑖𝑠

𝑎01
2  (2.20) 

 

4. The flow function 

 

 𝐹𝐹 =
ṁ√𝑅𝑇01

𝜌01𝑎01𝐷2
 (2.21) 

 

In this way, selecting as common factors N, D, 𝑝01, and 𝑇01, the 

performance parameters Δℎ𝑡𝑡,𝑖𝑠, 𝜂𝑡𝑡,𝑖𝑠, and P may be reduced to 

five dimensionless groups: 

 

 Δℎ𝑡𝑡,𝑖𝑠

𝑁2𝐷2 , 𝜂𝑡𝑡,𝑖𝑠  ,
𝑃

𝜌01𝑁3𝐷5 
= 𝑓 (

ṁ

𝜌01𝑁𝐷3

𝜌01𝑁𝐷2

𝜇
 ,

𝑁𝐷

𝑎01
, 𝛾)  (2.22) 
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After some algebra, the isentropic enthalpy drop, and the power 

coefficient can be conveniently expressed as  

 

 Δℎ𝑡𝑡,𝑖𝑠

𝑎01
2 ∝ 𝑓 (

𝑝02

𝑝01

) (2.23) 

 

 

 
𝑃

𝜌01𝑁3𝐷5
≡

∆𝑇0

𝑇01

 (2.24) 

 

Collecting all these newly formed non-dimensional groups and 

inserting them in Eq. (2.22) gives 

 

 
𝑝02

𝑝01

, 𝜂𝑡𝑡,𝑖𝑠 ,
∆𝑇0

𝑇01

= 𝑓 (
ṁ√𝑅𝑇01

𝑝01𝐷2
,

𝑁𝐷

√𝑅𝑇01

, 𝑅𝑒𝐷 , 𝛾) (2.25) 

 

For a machine of a specific size and handling a single gas it has 

become customary to delete γ, R, and D from Eq. (2.25). If, in 

addition, the machine operates at high Reynolds numbers (or 

over a small speed range), Re can also be dropped. Under these 

conditions Eq. (2.25) becomes 

 

 
𝑝02

𝑝01

, 𝜂𝑡𝑡,𝑖𝑠 ,
∆𝑇0

𝑇01

= 𝑓 (
ṁ√𝑇01

𝑝01

,
𝑁

√𝑇01

) (2.26) 

 

Then, whether calculated, or measured on a test rig, the perfor-

mance is normally expressed by plotting 𝜂𝑡𝑡 and ṁ√𝑇01/𝑝01 

(Figure 2.10) against expansion ratio 𝑝02/𝑝01 for various values 

of 𝑁/√𝑇01. 
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Figure 2.10: Turbine characteristics: total-to-total efficiency (top) 

and flow function (bottom) 

The efficiency plot shows that 𝜂𝑡𝑡 is sensibly constant over a 

wide range of rotational speed and pressure ratio. This is be-

cause the accelerating nature of the flow permits turbine blading 
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to operate over a wide range of incidence without much increase 

in the loss coefficient. The maximum value of mass flow rate is 

reached at a pressure ratio which produces choking conditions 

at some point in the turbine. Choking may occur in the nozzle 

throat or in the annulus at outlet from the turbine depending 

on the design. The former is the more normal situation and then 

the constant speed lines merge into a single vertical line inde-

pendent of speed, as indicated on the mass flow plot. Unlike the 

compressor characteristics, in turbines the flow is generally from 

high pressure to low, and there are no regions of unstable flow 

in a turbine characteristic map. 

With this formulation, the characteristics curves are difficult to 

interpolate and to read due to lines crossing. In order to simplify 

reading and improve its use, it is possible to express the selected 

performance parameters, flow function and isentropic efficiency, 

in terms of another quantity [16]. Isentropic enthalpy drop 

Δℎ𝑡𝑡,𝑖𝑠 and corrected speed 𝑁𝑐 can be combined in a single vari-

able, the speed ratio 𝜈: 

 

 
𝜈 =

𝑈

√2 Δℎ𝑡𝑡,𝑖𝑠

=

𝑈
𝑎01

√2
Δℎ𝑡𝑡,𝑖𝑠

𝑎01
2

=
𝑁𝑐

√2 ℎ𝑠  
 

(2.27) 

 

where U is the blade velocity at midspan and the square root of 

twice the isentropic enthalpy drop is sometimes referred to as 

“spouting velocity”, 𝑐𝑖𝑠 = √2 Δℎ𝑡𝑡,𝑖𝑠, the velocity of a gas ex-

panding isentropically in a nozzle working under an isentropic 

total-to-static enthalpy drop equal to Δℎ𝑡𝑡,𝑖𝑠. 
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Moreover, turbine maps are traditionally plotted versus the ex-

pansion ratio (𝑝02/𝑝01). As previously shown, stage performance 

can be expressed as a function of 𝑝02 𝑝01⁄  and 𝛾 or, alternatively, 

of  ℎ𝑠 and 𝛾. However, in the second case, the fact that ℎ𝑠 itself 

depends on 𝛾 reduces considerably the residual explicit influence 

of 𝛾. For this reason, expressing performance in terms of ℎ𝑠 in-

stead of 𝑝02 𝑝01⁄  has a more general validity. So, the isentropic 

efficiency and flow function (FF) curves can be expressed in 

terms of ℎ𝑠 and 𝜈 instead of ℎ𝑠 and 𝑁𝑐: 

 

 𝐹𝐹 = 𝑓 (ℎ𝑠 , 𝑁𝑐) →  𝐹𝐹 = 𝑓′ (ℎ𝑠 , 𝜈) (2.28) 
 

 

 
𝜂𝑡𝑡,𝑖𝑠 = 𝑔 (ℎ𝑠 , 𝑁𝑐) →  𝜂𝑡𝑡,𝑖𝑠 = 𝑔′ (ℎ𝑠 , 𝜈) 

 
(2.29) 

 

These new relationships allow to show the maps a new trend. 

The efficiency curves tend to collapse on each other (Figure 

2.11). This factor indicates that performance does not depend 

on the pressure ratio and speed separately, but on a combination 

of them, as long as the operating conditions remain subsonic. 

On the other hand, flow function has still a strong dependency 

on pressure ratio. However, curves do not cross anymore. The 

ℎ𝑠 and 𝜈 values are shown in a non-dimensional form. The su-

perscript * indicates a reference value. 
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Figure 2.11: Flow function (top) and efficiency (bottom) maps 

transformed with the change of variables from 𝒉𝒔 and 𝒏𝒄 (left) to 𝒉𝒔 

and 𝝂 (right) [16] 

A physical interpretation of these parameters has been given 

considering a turbine stage. In addition, similar considerations 

can be applied to multistage turbines. The physical interpreta-

tion of these maps is linked to the effect of the speed ratio on 

incidence. In fact, if we look at the distributions of pressure 

coefficient  𝐶𝑝 along a blade profile at midspan for different op-

erating conditions, imposing the non-dimensional isentropic en-

thalpy drop while varying the velocity ratio corresponds to keep-

ing the same location and value of peak suction 𝐶𝑝 on the airfoil 

and changing only the approaching flow incidence (Figure 2.12). 

In particular, the incidence increases as the velocity ratio de-

creases, while it becomes negative for high values of 𝜈/𝜈∗. 
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Figure 2.12: Distributions of pressure coefficient 𝑪𝒑 along the blade 

profile. Left: velocity ratio 𝝂/𝝂∗ is varied while non-dimensional isen-

tropic enthalpy ratio 𝒉𝒔/𝒉𝒔
∗ is fixed. Right: 𝒉𝒔/𝒉𝒔

∗ is varied while 𝝂/𝝂∗  

is fixed [16] 

On the contrary, at fixed velocity ratio, illustrated in the right 

plot, the incidence angle remains unchanged whatever the pres-

sure ratio is. The changes in the latter affect the location and 

the value of peak suction 𝐶𝑝. Similar considerations still apply 

when the pressure ratio is changed at velocity ratios different 

from the design value. In summary, Figure 2.12 confirms the 

distinct role played by ℎ𝑠  and 𝜈 and it clarifies their orthogonal 

relationship and corresponding impact on the aerodynamic load 

of the blade. 

Moving into a deeper insight of the flow physics, plots in Figure 

2.13 and Figure 2.14 provide a visual confirmation of what just 

discussed and confirm that in a turbine stage incidence and com-

pressibility effects are governed by ℎ𝑠  and 𝜈 independently. 

They report respectively 𝐶𝑝 and Mach number contours of a 

blade at midspan for different values of 𝜈/𝜈∗ at ℎ𝑠/ℎ𝑠
∗=1.0, see 
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Figure 2.13, and for increasing levels of ℎ𝑠/ℎ𝑠
∗ at 𝜈/𝜈∗=1.0, see 

Figure 2.14. 

 

Figure 2.13: Streamlines at midspan and contours of pressure coeffi-

cient 𝑪𝒑 for different 𝝂/𝝂∗ at 𝒉𝒔/𝒉𝒔
∗=1.0. Incidence is changed from 

positive (𝝂/𝝂∗<1) to negative (𝝂/𝝂∗>1), while levels of 𝑪𝒑 remain 

substantially unchanged [16] 

 

Figure 2.14: Streamlines at midspan and contours of relative Mach 

number 𝑴𝒓𝒆𝒍 for different values of 𝒉𝒔/𝒉𝒔
∗ at 𝝂/𝝂∗=1.0. Levels of 𝑴𝒓𝒆𝒍 

change at fixed incidence [16] 
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The relationships between incidence 𝜄 and 𝜈/𝜈∗, as well as be-

tween isentropic relative Mach number at blade outlet, 𝑀2,𝑟𝑒𝑙,𝑖𝑠, 

and ℎ𝑠/ℎ𝑠
∗ are illustrated in Figure 2.15.  

 

Figure 2.15: Incidence (𝜾) and exit isentropic relative Mach number 

(𝑴𝟐,𝒓𝒆𝒍,𝒊𝒔). Dashed lines correspond to Mach number ratio 

𝑴𝟐,𝒓𝒆𝒍,𝒊𝒔 𝑴𝟐,𝒓𝒆𝒍,𝒊𝒔
∗⁄ , solid lines correspond to incidence angle 𝜾 [16] 

Any couple of values (𝜈/𝜈∗, ℎ𝑠/ℎ𝑠
∗) is in one-to-one relationship 

with a corresponding combination of values of 𝜄 and 

𝑀2,𝑟𝑒𝑙,𝑖𝑠 𝑀2,𝑟𝑒𝑙,𝑖𝑠
∗⁄ . More specifically, the velocity ratio is in one-

to-one relationship with the incidence on the blade, so that in 

practice 𝜈/𝜈∗ is constant along the lines at fixed incidence 𝜄. As 

far as the lines of constant isentropic relative Mach number are 

concerned, instead, they tend to drop in the plane, ℎ𝑠/ℎ𝑠
∗- 

𝜈/𝜈∗ as the velocity ratio decreases. In other words, at fixed 

ℎ𝑠/ℎ𝑠
∗ the 𝑀2,𝑟𝑒𝑙,𝑖𝑠 𝑀2,𝑟𝑒𝑙,𝑖𝑠

∗⁄  increases as 𝜈/𝜈∗ decreases. On the 

other hand, moving to the right, this trend is inverted and 

𝑀2,𝑟𝑒𝑙,𝑖𝑠 𝑀2,𝑟𝑒𝑙,𝑖𝑠
∗⁄  decreases at constant ℎ𝑠. 
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2.2.5 The torque maps 
Another performance parameter is the specific torque coeffi-

cient, defined as it follows Eq. (2.30): 

 

 
𝜏 =

𝑇

 𝑚 ̇ 𝑟 √2 Δℎ𝑡𝑡,𝑖𝑠

 

 

(2.30) 

 

in which 𝑟 is the blade radius at midspan and 𝑇 is the torque 

measured by the torque-meter. The torque coefficient can be 

defined at any operating point and it is linked to the isentropic 

efficiency through the following relationship: 

 

 
𝜏 =

𝜂𝑡𝑡,𝑖𝑠

 2 𝜈
 

 
(2.31) 

 

As a result, the torque coefficient could in principle replace the 

isentropic efficiency as the overall performance parameter. 

 

Figure 2.16: Torque coefficient curve 
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Thanks to the Euler’s equation, the expression of torque coeffi-

cient of Eq. (2.31) and Eq.(2.30) for a single stage turbine, can 

be further developed into Eq. (2.32) [16]: 

 

 

𝜏 =
𝑇

𝑚̇ 𝑟 𝑐𝑖𝑠

=
𝑐1𝑢𝑢1 − 𝑐2𝑢𝑢2

𝑢1𝑐𝑖𝑠

= 

= (
𝑐1

𝑐𝑖𝑠
) 𝑠𝑖𝑛𝛼1 + 𝜆 (

𝑤2

𝑐𝑖𝑠
) 𝑠𝑖𝑛𝛽2 − 𝜆2𝜈 = 

=  𝜇(ℎ𝑠 , 𝜈) − 𝜆2𝜈 

 

(2.32) 

 

where 𝜆 is the ratio between the midspan radii at different lo-

cations and where 𝑐1, 𝑤2 and 𝛼1, 𝛽2 are respectively the absolute 

and relative velocities at stator and rotor exit and the absolute 

and relative flow angles (measured from the axial direction) at 

the same locations. The structure of the equation suggests a 

strong, explicit dependency on the velocity ratio 𝜈: for a fixed 

pressure ratio (i.e. ℎ𝑠), the torque coefficient decreases as the 

velocity ratio increases. This physically happens because the re-

sidual absolute tangential velocity at rotor exit, 𝑐2𝑢, increases 

with 𝜈, thus reducing the torque developed by the rotor for a 

given incoming absolute swirl velocity 𝑐1𝑢. Of course, also ℎ𝑠 

influences 𝜏, through the term 𝜇(ℎ𝑠 , 𝜈). Nevertheless, the de-

pendency on the pressure ratio of  𝑐1 𝑐𝑖𝑠⁄ , 𝑤2 𝑐𝑖𝑠⁄  and of 𝛼1, 𝛽2 

is moderate, provided that incidence is not excessive. Conclud-

ing, stage efficiency from Eq. (2.29) and Eq. (2.31 can be written 

as: 
 

 𝜂𝑡𝑡,𝑖𝑠 =  2𝜈[𝜇(ℎ𝑠 , 𝜈) − 𝜆2𝜈] (2.33) 
 

which confirms the very strong relationship between efficiency 

 𝜂𝑡𝑡,𝑖𝑠 and velocity ratio 𝜈. 
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For mechanical drive applications an accurate prediction of the 

starting torque is very important. For instance, if the load is a 

compressor (like in LNG applications), the possibility to start 

from pressurized conditions depends on the torque developed by 

the turbine when the rotor is locked. 

 

2.3 Gas turbine cooling  
In the gas turbine industry, there has been a continuing trend 

towards higher turbine inlet temperature in order to maximize 

the efficiency of gas turbine engines. This trend has been made 

possible by advancement in materials and technology, and the 

use of advanced turbine blade cooling techniques. In fact, in-

creasing the turbine inlet temperature affects the thermal effi-

ciency and, at such high thermal loadings, the heat transfer to 

the turbine blades increases. The gas temperature can reach the 

thermal limits of the turbine blade materials resulting in blade 

oxidation and potential blade destruction by melting.  

To prevent these phenomena, various methods has been used to 

protect the turbine components exposed to the hot gases Figure 

2.17 shows the various cooling techniques used to safely operate 

a turbine blade at high temperatures.  
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Figure 2.17: Gas turbine blade cooling techniques. External (a) and 

internal (b) cooling [17] 

Typically, cooling is provided by extracting some compressed 

air and by-passing the combustion chamber directly into the 

turbine. Two main types of cooling techniques have been devel-

oped, internal and external cooling. The most common are in-

ternal convection cooling, like, impingement, turbulated multi-

pass serpentine passages, flow through pin-fin arrays or simply 

smooth or turbulated radial channels. On the other hand, the 

external cooling allows air cooling from inside the blade to eject 

out onto the hot-gas side surface through discrete holes, creating 

a small layer that protect the blade. Other means of protecting 

gas turbine blade include using thermal barrier coatings. This 

coating are materials applied to the surface of the blade to pro-

tect it from effects of the high temperature environment, like 

oxidation and corrosion. So, basically, a combination of the var-

ious cooling methods available is used to achieve the best cooling 

performance for the gas turbine blade. However, a balance has 

to be maintained when employing the cooling methods because 

the extraction of the cooling air from the compressor adversely 

affects the overall gas turbine efficiency, since work has been 

done on the fluid to compress it. Also, addition of coolant back 
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into the hot gas stream results in further thermodynamic pen-

alties. To optimize the overall thermal efficiency of a gas turbine 

engine, there is a need to properly evaluate the overall perfor-

mance of any cooling configuration.  

In addition, to understand the cooling requirements of a gas 

turbine blade, an understanding of the aerodynamic and heat 

transfer principles guiding the flow through the gas turbine 

blade passages is required. It is necessary to study these princi-

ples in the various regions of the gas turbine blade to maximize 

the cooling performance as temperature may vary along the 

blade surface from leading to trailing edge by 200 to 300 K. 

Furthermore, competence in material characteristics and selec-

tion is needed. Turbine blades and nozzles are commonly formed 

by investment casting. This process allows the alloy to acquire 

its crystalline structure, which is a major determinant of the 

properties of the finished part. Casting technology has advanced 

further, towards unidirectional solidification and even the cast-

ing of blades as a single crystal. Thanks to the latter, the mate-

rial resistance to creep, to high-frequency vibration fatigue 

stresses and, to low-frequency thermal fatigue stresses is in-

creased. 

 

2.4 Aeromechanical design  
As stated in the preliminary aerodynamic design, axial machines 

have relatively thin blades, but with high aerodynamic loads. 

This leads to a possible increase of vibratory phenomena onset. 

So, after an aerodynamic design phase, which is fundamental for 

the evaluation of the performance of gas turbine engines, an 

aeromechanical investigation has to be carried out to identify 

all the possible vibration issues that may compromise blade-

rows integrity.  
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In turbomachinery environment, aeromechanical problems are 

mainly due to the interaction between the components and the 

surrounding fluid flow. The discipline that studies these inter-

actions is called aeroelasticity. This science concerns the study 

of static and dynamic interactions between aerodynamic, elastic, 

and inertial forces acting on a flexible structure and the phe-

nomena that can result. The interdisciplinary nature of the field 

is clearly summarized by Collar’s diagram (Figure 2.18) which 

represents the connections between dynamics, fluid mechanics 

and structural mechanics [18] [19]. 

 

Figure 2.18: Collar triangle 

The three disciplines in Collar’s diagram are related to the dy-

namic equation shown below: 
 

 𝑀 𝑥̈ + 𝐶 𝑥̇ + 𝐾 𝑥 =  𝐹 𝑒𝑥𝑡(𝑡) (2.34) 
 

where M, C and K are the mass, damping and stiffness matrices 

respectively, 𝐹𝑒𝑥𝑡(𝑡) contains the aerodynamic forces acting on 

the structure and 𝑥 denotes the vector of displacements. Solving 

the Eq. (2.34) with 𝐹𝑒𝑥𝑡(𝑡) = 0, it is possible to obtain the blades 

eigenfrequencies and the mode shapes of the system. In fact, as 
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any other structure, each bladed disk has eigenfrequencies asso-

ciated with mode shapes which can be considered as a combina-

tion of disk-alone and blade-alone mode shape. Blade modes are   

usually classified depending on the number of inflection lines 

(1st, 2nd, etc.) and their orientation with respect to the blade 

(bending or flexion F, torsion T, etc.). In general, the low fre-

quency blade mode shapes are 1st bending (1F), 1st torsion (1T) 

and 2nd flexion (2F). Considering the cyclic structure as a disk, 

each mode shape family is composed by n vibration traveling 

waves defined by the Nodal Diameters (ND) value. An example 

of a representations of nodal diameter is illustrated in Figure 

2.19. 

 

Figure 2.19: Nodal diameters representation [20] 

Nodal diameters represent the diametrical lines which connect 

the zero displacements nodes, while the structure is vibrating. 

The ND maximum value that a bladed disk can have is limited 

by the maximum number of possible axisymmetric divisions and 

consequently related to the blade count and, in particular, is 

N/2 for an even number of sectors and (N − 1)/2 for an odd 

number of sectors. For each travelling wave, the blades vibrate 

at a single blade mode shape, frequency, and amplitude, but 
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with a phase shift between adjacent profiles defined by the pa-

rameter Inter-Blade Phase Angle (IBPA):  

 

 𝐼𝐵𝑃𝐴 =
2𝜋

𝑁
𝑛  𝑤𝑖𝑡ℎ 𝑛 ∈ 𝑍: −

𝑁

2
≤ 𝑛 <

𝑁

2
 (2.35) 

 

where n is the number of nodal diameter and N is the number 

of sectors. The sum of all phase angles along the blade row must 

be 2 or its multiple. The sign of the travelling wave is estab-

lished according to the IBPA: 

• If IBPA > 0, the lower blade is in phase advance and 

the travelling wave propagates in backward direction 

• If IBPA < 0, the lower blade is in phase delay and the 

travelling wave propagate in a forward direction. 

According to “tuned” row assumption, all blades are identical 

to each other in terms of geometrical and mechanical properties 

within a bladed disk [21]. A sector of one blade plus the corre-

sponding tangential segment of the disk in a tuned disk com-

posed of N identical angular sectors is shown in Figure 2.20. The 

single sector can be analyzed with the cyclic symmetry approach 

instead of studying the entire wheel. 

 

Figure 2.20: Cyclic symmetry 
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By applying the boundary conditions at the tangential cuts with 

adjacent angular sectors, a model of just one sector is sufficient 

to predict the vibration of the entire cyclic structure. This is not 

exactly what really happens in an actual turbomachine. Blades 

are not identical each other due to manufacturing differences 

which can lead to small property discrepancies between different 

blade angular sectors of the same blade row. Moreover, different 

blade-disk connections are possible such as fir-tree or dove tail 

attachments. Rotor blades are often welded to the disk or even 

produced as integral part of both disk and blade (blisk). For 

this reason, different trends of natural frequencies can be ob-

served considering the disk-alone mode shapes family rather 

than blade-alone family, rather than bladed disk family.  

 

Figure 2.21: Blade-alone, disk-alone and bladed disk frequency 

curves 

Figure 2.21 shows how blade-alone modes have a constant fre-

quency that does not depend on nodal diameter number as the 

adjacent blade coupling due for instance to the disk very low. 
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On the other hand, whin maximum coupling occurs, the disk-

alone frequencies increase with nodal diameter number. Finally, 

disk and blade modes are present in a bladed disk family: at low 

frequencies, the trend of the curve is similar to the disk modes, 

while increasing in frequency, blade-alone modes dominate due 

to the less participation of blade connectors (disk, shroud, etc.). 

The mode shapes obtained from the analysis can be defined as 

real mode shapes or complex mode shapes. The characteristic of 

a real mode shape is that all the point displacements in the 

structure are in phase or out of phase with respect to any other 

points in the structure. However, in complex mode shapes the 

point displacements in the structure are neither in phase nor 

out of phase with any other point in the structure. 

After this brief introduction on the aeroelasticity theory and the 

blade row vibration, the focus moves on the design method for 

two main aeroelastic phenomena in turbomachinery applica-

tions: forced response and flutter. The key elements of an ana-

lytical design system are shown in Figure 2.22. 

 

Figure 2.22: Aeroelastic design analyses [22] 
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The aim of this approach is to predict forced response or flutter 

onset on turbomachinery components to eliminate high cycle 

fatigue failure in the design phase. These design systems are 

largely centered on defining the sources and/or mechanism of 

forcing function generation and accurately predicting the aero-

elastic properties of the component. 

2.4.1 Forced response design 
Forced response vibration belong to the family of synchronous 

oscillations which occur when periodic flow disturbances pass 

through the blade passages, resulting in an unsteady pressure 

field acting on the blade surface. The aerodynamic excitation 

forces are primarily due to: 

• Circumferential flow distortions, normally caused by 

blades passing through the wakes of upstream rows 

• Upstream and downstream rows potential interaction 

• Non-uniform inlet flow in terms of pressure, tempera-

ture, and velocity due to injections/extractions  

• Back pressure fluctuations 

Potential resonant conditions occur when the aerodynamic forc-

ing frequency of the incoming flow disturbances coincides with 

the blade mode natural frequency. In this condition, the forced 

vibration response can reach particularly high levels, causing 

ultimately the failure of the blade due to the so-called High Cy-

cle Fatigue (HCF). Frequency resonances are commonly identi-

fied using the Campbell diagram, shown in Figure 2.23.  
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Figure 2.23: Campbell diagram [23] 

In this diagram for a rotor row, blades eigenfrequencies are rep-

resented as function of the rotor speed for different engine order 

excitations. The engine order excitation frequency or its multi-

ples are defined as: 
 

 𝜈𝐸𝑂 =
Ω ∙ 𝐸𝑂

2𝜋
 (2.36) 

 

where ν is the excitation frequency in 𝑠𝑒𝑐−1, Ω is the rotational 

speed in rpm and EO is the engine order. 

Generally, blade natural frequencies of a rotor row tend to in-

crease as rotational speed rises as a consequence of the centrif-

ugal stiffening, as reported in Figure 2.23. In turbine, there can 

be also a slight reduction in natural frequency as speed increases 

due to the increased temperature that causes creep phenome-

non. 
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The Campbell diagram can either be obtained analytically from 

a finite element analysis (FEA) or experimentally by a forced 

response tests in a rotating engine using strain gauges placed on 

the blades. In blade design, the Campbell diagram is used to 

place natural frequencies crossing either above the maximum 

engine speed or below the normal operating range with the aim 

of avoiding continuous resonant excitation during operation. 

However, crossing points at speeds below the operating range 

are always encountered during the start-up and shut down of 

each operational cycle, resulting in resonant vibration contrib-

uting to HCF. Since all the resonances in turbomachines cannot 

be avoided, the vibration levels at all encountered crossing 

points must be evaluated to determine the risk of fatigue failure 

during the service life of the machine. 

The Campbell diagram shows only the possible crossing fre-

quency information and it is valid only for a single nodal diam-

eter. When the blade eigenfrequencies vary with nodal diameter, 

the Zig-Zag shaped Excitation line in the Nodal diameter versus 

Frequency (ZZENF) diagram is adopted [24] [25]. In this dia-

gram, natural frequency variation as a function of the nodal 

diameter is taken into account simultaneously. The ZZENF di-

agram is an interference diagram particularly useful for evalu-

ating which engine order causes the resonance condition for a 

certain nodal diameter within a blade row mode family. Reso-

nant conditions for a rotationally periodic structure are when 

natural frequencies match the following relationship: 
 

 𝜔𝑛 = (𝑘𝑁 ± 𝑛)Ω (2.37) 
 

with 𝑘 = 0,1, … , 𝑁, where 𝜔𝑛 is the natural frequency, N is the 

number of blades sectors and n the nodal diameter. Only inter-

sections at integer values of n lead to a resonance condition and 
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the system response is a foreward or a backward travelling wave 

with respect to the rotor rotational speed according to whether 

the crossing happens when the line of the rotational speed is 

ascending (𝑘𝑁 + 𝑛)Ω or descending (𝑘𝑁 − 𝑛)Ω. Figure 2.24 

shows an example of a ZZENF diagram built for an axial turbine 

row of 60 blades in which it is possible to identify where reso-

nances could potentially occur on the natural frequency curves, 

connecting each engine order to a corresponding nodal diameter.  

 

Figure 2.24: ZZENF diagram 

The analysis is usually focused on a set of specific engine orders 

that describe blade counts, found through a DFT analysis of the 

aerodynamic loading. The travelling wave propagation direction 

is also predictable by checking the zig-zag versus, highlighted 

by the black line in the plot. In order to specify the frequencies 
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that will be excited by each engine order when the turbine is 

running, further zig-zag lines have been added above and below 

the line representing the design speed Ω. These specify an inter-

val according to the entire speed range plus a safety margin 

between Ωmin and Ωmax.  

2.4.2 Spatial decomposition  
To apply the theoretical concepts described in the Zig-Zag dia-

gram and to assess the forced response of a cyclic system it is 

necessary to implement a dedicated spatial decomposition of the 

unsteady forcing generated by rotor/stator interactions. The 

overall unsteady pressure on blade surfaces of a single row, com-

ing from unsteady analysis as a set of instantaneous solutions 

within a discretized period, must be decomposed before studying 

the blade mechanical response by means of the modal approach 

at the Zig-Zag crossings. The pressure signal decomposition is 

performed by using the Discrete Fourier Transform (DFT), ap-

plied both in time and in space, to extract the pressure fluctua-

tion components in the cyclic symmetry environment. This 

means that the time-varying pressure fluctuation seen by an 

airfoil row is firstly decomposed in time to extract the harmonic 

content at a single Engine Order (EO) by the following formu-

lation: 
 

 𝑃(ℎ) =
1

𝑁𝑑𝑖𝑣

∑ 𝑝𝑡  𝑒
−𝑖ℎ

2𝜋
𝑁𝑑𝑖𝑣

𝑛𝑡

𝑁𝑑𝑖𝑣−1

𝑛𝑡=0

 (2.38) 

 

in which ℎ is the time harmonic index (or Engine Order), 𝑝𝑡 is 

the discrete equally spaced pressure signal in time and 𝑁𝑑𝑖𝑣 is 

the total number of samples. The resulting complex Fourier co-

efficients 𝑃(ℎ) extracted on blade surfaces grid points are further 
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spatially decomposed along the circumferential direction to de-

termine the rotating perturbation that will excite the corre-

sponding traveling wave mode shape. The time-space Fourier 

coefficients are extracted along corresponding points on grid sur-

face as follows: 
 

 𝑃̂(𝑚)
(ℎ)

=
1

𝑁𝐵
∑ 𝑃𝑘

(ℎ)
 𝑒−𝑖𝑚

2𝜋
𝑁𝐵

𝑘

𝑁𝐵

𝑘=1

 (2.39) 

 

in which 𝑚 is the circumferential order, 𝑃𝑘
(ℎ)

the discrete time 

Fourier coefficient tangential distribution on blade correspond-

ing surface points and 𝑁𝐵 the blade count. The spatial decom-

position is usually employed in aeroacoustics where this circum-

ferential decomposition is performed along the computational 

grid, instead of along corresponding points on blade surface 

mesh as in the presented case, in the annular duct between rows 

to extract noise components in terms of their acoustic power. In 

the time-space decomposition, the circumferential DFT is thus 

performed on a coarse down-sampled set of only 𝑁𝐵 samples 

taken on each blade at corresponding positions (grid points) on 

the surface. Hence, the extracted rotating pressure components 

have a number of lobes ranging from −𝑁𝐵 2⁄  to +𝑁𝐵 2⁄  or from 

−(𝑁𝐵 − 1) 2⁄  to +(𝑁𝐵 − 1) 2⁄  in case of odd blade count as 

suggested by the Nyquist’s theorem. It is clear how this ap-

proach also takes into account the aliasing phenomenon experi-

enced by the blade-row when excited by a rotating perturbation 

with a lobe number higher then 𝑁𝐵 2⁄ .  
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Figure 2.25: Sketch of lobe circumferential pattern and aliasing [26] 

Figure 2.25 provides a visual representation of a possible exci-

tation scenario, where a rotating perturbation with 16 lobes, 

represented by the solid violet line, impinges on a row composed 

by 12 blades represented by the radial grey segments. The 12 

blades experience a 4-lobe perturbation represented by the green 

dashed-line due to the aliasing phenomenon. The orange dash-

dot radial lines highlight the resulting 4 nodal diameters associ-

ated to the 4-lobe excitation. The proposed spatial decomposi-

tion on “blade-sampled” corresponding 𝑁𝐵 points along the cir-

cumferential direction is thus able to convert the 16-lobe incom-

ing perturbation into the 4-lobe excitation experienced by the 

blade-row which will finally vibrate as a traveling wave with 4 

nodal diameters. Therefore, it is essential to evaluate all the 

possible rotating lobes that compose a single engine order per-

turbation: each spinning lobe can be seen as direct or aliased 

excitations for the blade-row. Tyler and Sofrin [27] theory states 

that rotor-stator interactions generate pressure spinning lobes, 

that are in fact acoustic waves, which travel along the machine 

causing additional “acoustic excitations” for a given blade row. 

The concept of Tyler and Sofrin modes is thus employed to de-

compose the overall perturbation, including also the propaga-

tions effects and further scattering by previous or successive 
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blade rows. The generalized stator-rotor interaction theory pre-

dicts the generation of rotating perturbations with the number 

of lobes 𝑚 (i.e. the circumferential order) and angular frequency 

𝜔 in the different frames of reference (fixed or rotating with 

rotational speed Ω). The pressure rotating lobes in the frame of 

reference of the rotor are characterized by: 

 

 𝑚2 = 𝑘1𝑁1 − 𝑘2𝑁2 (2.40) 

 𝜔2 = 𝑘1𝑁1(Ω1 − Ω2) (2.41) 
 

where 𝑁 is the blade count and 𝑘 is an integer value called har-

monic or scattering index and Ω the rotational speed. Such 

acoustic perturbations travel upstream and downstream with 

different propagating behaviors depending on the axial wave 

number 𝑘x. The 𝑘x quantity can be real, the corresponding 

acoustic mode of which is cut-on, or complex with cut-off mode. 

Cut-off modes decay as they propagate axially, whereas cut-on 

waves keep their amplitude unchanged resulting more danger-

ous for aeromechanical and acoustic implications. Moreover, a 

single pressure perturbation also experiences successive scatter-

ing when propagating across successive blade rows. The scatter-

ing effect due to a further blade rows generates new sets of ro-

tating perturbations with a circumferential order related to the 

fundamental propagating one. Scattered waves also change their 

angular frequency with respect to the fundamental one when 

analyzed in a different frame of reference where the scattering 

occurs. For instance, when studying spinning lobe frequencies in 

the absolute frame of reference (the statoric frame), stator scat-

tering does not alter the fundamental frequency, while rotor 

scattering generates scattered perturbations with new frequen-
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cies. Conversely, in the rotor frame of reference, the stator scat-

tering produces additional rotating lobes with different frequen-

cies [26]. Therefore, it is evident that the scattering phenome-

non, due to the interaction of Tyler and Sofrin modes with suc-

cessive blade row, generates several additional perturbations not 

immediately detectable and potentially dangerous for all the 

blade rows. 

To sum up, the proposed unsteady forcing decomposition, based 

on time and space circumferential DFT, allows the decomposi-

tion of an overall pressure fluctuation, coming from unsteady 

simulations, in rotating pressure components (also accounting 

for aliasing phenomena) that can be individually applied to the 

corresponding travelling wave mode shape, in order to evaluate 

the forced response problem by means of the modal work ap-

proach or FRA analysis. 

2.4.3 Modal work approach 
The response of a mechanical system subjected to harmonics 

excitations can be evaluated by introducing the concept of 

modal work and modal force. This method is based on energetic 

considerations and the fundamental assumption is that the work 

done by the harmonic excitations is completely dissipated by 

the damping sources in the system. Under this assumption it is 

possible to compute a scaling factor that can be applied to 

modal displacements and stresses to obtain the actual displace-

ment and oscillating stress. So, it is not necessary to make use 

of the damped full harmonic analysis. For the cyclic system like 

a blade-row, the modal work approach determines the maximum 

energy transfer of a rotating pressure perturbation, decomposed 

on blade corresponding points, and defined by the circumferen-

tial order, applied to the corresponding traveling wave mode 

shape defined by the nodal diameter. Given the fact that the 
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relative phase between the pressure distribution and the modal 

displacement is undetermined, the maximum value of the modal 

work is searched for by maximizing the expression for a generic 

phase. 

For presenting the approach, let us consider the work per cycle 

produced by a sinusoidal force during a steady forced vibration. 

This work must be equal to the energy dissipated during one 

cycle by the damping force as follows: 

 

 𝜋𝑑𝐹 sin 𝛼 = 𝜋𝜁𝑑2𝜔 (2.42) 
 

where 𝛼 is the phase between force and displacement, 𝑑 are the 

displacements, 𝐹 is the modal force, 𝜔 is the angular frequency, 

and 𝜁 is the actual damping. It may be assumed with sufficient 

accuracy that this amplitude occurs at resonance condition 

where 𝛼 = 𝜋 2⁄ , and so: 

 

 𝜋𝑑𝐹 = 𝜋𝜁𝑑2𝜔 = 2𝜋𝜉𝑑2𝜔2 (2.43) 
 

from which 

 

 𝑑 =
𝜋𝑑𝐹

2𝜋𝜉𝑑𝜔2
=

𝐹

2𝜉𝜔2
 (2.44) 

 

Same conclusion can be drawn for a distributed forcing acting 

on component modal displacements and leading to the modal 

force concept. In reference to the above formulae, it can be 

demonstrated that the scaling factor for the displacements 𝑑, 
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and for the stresses, depends on modal force 𝐹𝑚, the aerody-

namic damping 𝜉 and the square of angular frequency 𝜔 as sum-

marized in the following formula: 

 

 𝑑 =
𝐹𝑚

𝑗2𝜉𝜔2
 (2.45) 

 

where 𝑗 is the imaginary unit. Finally, the modal force can be 

computed by the complex dot product between the conjugate of 

the modal displacement 𝛿𝑚
∗  coming from modal analysis in cyclic 

symmetry and the aerodynamic forcing 𝐹𝑎 spatially decomposed 

to match the nodal diameter of the mode shape as follows: 
 

 

𝐹𝑚 = √[∬ ℑ𝔪[𝛿𝑚
∗ 𝐹𝑎] 𝑑Σ

𝛴

]

2

+ [∬ 𝔑𝔢[𝛿𝑚
∗ 𝐹𝑎]

𝛴

𝑑Σ]

2

 (2.46) 

 

2.4.4 HCF life assessment 
Once evaluated the forced response amplitudes and calculating 

the oscillating stress distributions, high cycle fatigue assessment 

can be carried out. In particular, stress distribution is identified 

using strain gauges placed in various positions on the blade to 

measure blade strains for each natural mode. The Goodman di-

agram is usually adopted to evaluate response amplitude and 

the allowable static and alternating stresses of the blade [28] 

[29]. This diagram can be built starting from the ultimate and 

fatigue strengths of material properties, experimentally evalu-

ated through tests at different temperatures. Once that the ul-

timate strength at zero vibratory stress and the fatigue strength 

at 107 (or more) cycles are measured, a straight line can be 

drawn between these two values to define the infinite life area. 
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Notch factor, standard deviation of measured data, and temper-

ature are the main parameters which can affect the distribution 

of mean fatigue strength and, thus allowable alternating stress 

[22]. The fatigue notch factor is related to a stress concentration 

factor which is a ratio of the maximum steady stress to the 

unnotched steady stress of a particular geometry such as 

notches, fillets, holes, etc. The standard deviation factor, which 

is obtained from test data, accounts for variations in the fatigue 

strength due to composition changes of the material and pro-

cessing differences between components. A minus three sigma 

(−3𝜎) value of fatigue strength accounts for 99.865% of all 

pieces having a fatigue strength greater than this value. The 

temperature affects both the ultimate and fatigue strengths and 

subsequently an increase of temperature reduces the resistance 

of the material. Goodman diagram is thus modified using the 

notch factor and finally considering a “safety” coefficient which 

takes into account the −3𝜎 value of fatigue strength. It can be 

concluded that infinite life of the blade is ensured if both steady 

and alternating stresses stay below the line, as shown in Figure 

2.26. 
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Figure 2.26: High Cycle Fatigue assessment 

2.4.5 Design flutter-free  
Flutter is defined as a self-excited and self-sustained aeroelastic 

instability that involves vibration of a structure when exposed 

to a fluid flow. The flutter phenomenon belongs to the family of 

asynchronous vibration problems, thereby meaning that flutter 

is not caused by the interaction between upstream and down-

stream blade rows. The difference between flutter and resonant 

vibrations in turbomachines is that the flow unsteadiness lead-

ing to structural oscillation is induced by the motion of the 

structure itself rather than external sources. In fact, from a 

physical point of view, flutter occurs when the blade is absorbing 

energy from the flow instead of from unsteady external forces. 

The vibration starts with small amplitudes and then exponen-

tially increases by the energy exchange with the fluid flow, thus 

reducing the fatigue life and leading to structural failure.  
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In turbomachinery, flutter usually appears in the fore part of 

compressors or in the aft part of turbines, where blades have 

high aspect ratio and high loads as: 

• Fan 

• Low pressure gas and steam turbines blades 

• Low pressure compressor stages 

Flutter in compressors has been more extensively studied than 

flutter in turbines, however the same map as for compressor can 

be drawn. Figure 2.27 shows the characteristic line of a turbine 

with the different type of flutter regions. 

 

Figure 2.27: Flutter map for turbines [30] 

As in compressors, four main categories of flutter can be en-

countered: classical flutter, shock induced flutter, supersonic 

flutter with subsonic inflow, and supersonic flutter with super-

sonic inflow.  

1. Classical flutter. This flutter can occur when the flow is 

attached to the blade with no separation and a phase 

lag between the aerodynamic forces and the amplitudes 
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of vibration exists. Three possible situations can be pre-

sented: (1) the flow introduces energy in a not damped 

structure producing uncontrolled oscillations (unstable 

condition); (2) the flow absorbs energy from the struc-

ture, and this produces an always stable operative con-

dition; (3) the energy introduced by the flow is balance 

by the dissipative energy of the structure producing 

Limit Cycle Oscillations (LCO). 

2. Shocked induced flutter. When in the throat region the 

sonic Mach number is reached, the turbine is chocked, 

i.e. mass flow across the turbine can no longer increases 

and all the curves collapse. The sonic blockage in the 

stator generates a shock which may induce flutter.  

3. Supersonic flutter with subsonic inflow. This type of 

flutter can be generated by an oblique shock wave which 

occurs downstream the throat section. 

4. Supersonic flutter with supersonic inflow. Similar to 

classical flutter, this type occurs with supersonic Mach 

numbers. 

This aeroelastic interactions occurring inside a turbomachinery 

are thus a complex phenomenon that should be analyzed and 

prevented. During a flutter design procedure is necessary to keep 

under control numerous flow and structural parameters. In fact, 

unlike the forced response design, where resonance conditions 

may be predicted with simple tools as Campbell or ZZENF di-

agram previously described, flutter design requires dedicated 

CFD analyses [31] and experimental campaigns. Generally, a 

good flutter design aims to develop blade geometries with safety 

flutter margins for all the operating range. As explained by 

Srinivasan [32], although numerous parameters influence the 
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aeroelastic behavior of a bladed disk, only some of them and 

some specific features are considered crucial. 

• Reduced frequency 

This parameter is defined as the ratio of the time taken 

by the fluid to pass through the blade chord to the blade 

oscillation period. In formula, this corresponds to: 
 

 𝑘 =
𝑏𝜔

𝑉
 (2.47) 

 

where b is the semi-chord, 𝜔 is the frequency of vibra-

tion in radians/sec, and V is the inlet or outlet relative 

velocity. Another equivalent interpretation of the re-

duced frequency is also given in the literature and relate 

the chord to the wavelength drawn downstream by a 

sinusoidal oscillation (see Figure 2.28). 

 

 𝑘 =
𝑏

𝜆
     𝑤ℎ𝑒𝑟𝑒   𝜆 =

𝑢

𝜔
 (2.48) 

 

 

Figure 2.28: Graphical interpretation of reduced frequency 

[33] 

So, low reduced frequency means that the shed vortices 

have travelled a distance longer than the chord, so these 
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vortices do not interact with the blade, and the flow is 

likely to be steady. For large values of reduced fre-

quency, unsteady effects become dominant causing in-

stabilities. For turbomachine blade, critical reduced fre-

quencies have been reported in the range between 0.1 

and 1.0. 

• Mass ratio 

The mass ratio (μ) is the ratio between the solid body 

mass and the mass of a representative fluid volume sur-

rounded in a defined circle. The parameter is calculated 

as: 
 

 𝜇 =
4𝑚

𝜋𝜌𝑏2
 (2.49) 

 

In the expression, m is the solid mass per unit blade 

span, 𝜌 the flow density per unit blade span and b is 

the airfoil semi-chord length that is equal to the circle 

radius used to define the fluid mass. Figure 2.29 

illustrates the concept of mass ratio μ. 

 

Figure 2.29: Mass ratio [33] 

Decreasing values of mass ratio indicate increasing flut-

ter onset risk. 
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• Mach number 

This parameter describes the nature of the unsteady 

flow field whether it be subsonic, transonic or super-

sonic. Likewise, the reduced velocity, high values of 

Mach are related to flutter instability conditions. 

• Blade loading parameter 

Incidence, pressure ratio, diffusion factor and, margin 

to choke are parameters which have been used to de-

scribe the blade loading. They can have an impact on 

flutter stability. 

• Pressure and density 

The primary effect of changing density or static pres-

sure is a proportional variation in unsteady aerody-

namic work per cycle and therefore in aerodynamic 

damping. Increasing the gas density is stabilizing if aer-

odynamic damping is positive. Likewise, increasing the 

gas density is destabilizing if aerodynamic damping is 

negative. 

• Mode shapes 

The unsteady aerodynamic work is a function of the 

vibratory mode shape because the modal characteristics 

affect vibration frequency, amplitude, and shape. The 

phase between unsteady pressure due to blade displace-

ment and the blade displacement itself determines 

whether the flow is feeding energy to the blade or vice 

versa. 

Flutter stability is influenced both by the aerodynamic param-

eters and the blade dynamic behavior. Flutter design strategy 

is based on three steps. The first step aims to perform the aer-

odynamic design of the blade with a steady state CFD analyses 
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and to obtain the aerodynamic parameters which will impact on 

aerodynamic damping evaluation. By conducting a modal anal-

ysis, the modal displacement and mode shapes of the system are 

determined. Finally, a flutter analysis is performed combining 

the steady state aerodynamics and dynamics results.  

In the uncoupled methods, the aeroelastic stability is assessed 

by evaluating the sign of the aerodynamic work, which is ob-

tained as the unsteady pressure integration overall the blade 

surface within a single oscillation period: 

 

 𝑊𝑎𝑒𝑟𝑜 = ∫ ∫ (−𝑝)𝑛⃗⃗
𝑆

𝑡+𝑇

𝑡

∙ 𝑐𝑏𝑙𝑎𝑑𝑒  𝑑Σ 𝑑𝑡 (2.50) 

 

where p is the pressure field over the blade, 𝑛⃗⃗ is the surface 

outgoing normal vector, 𝑐𝑏𝑙𝑎𝑑𝑒 is the velocity field over the 

blade, Σ is the blade surface and T is the vibration period. The 

direction of net exchange is the criterion for aerodynamic sta-

bility: globally, the aerodynamic work per cycle (𝑊𝑎𝑒𝑟𝑜) de-

scribes the work exerted by the fluid on a given blade during 

one period of its motion. In this context a positive work entry 

(𝑊𝑎𝑒𝑟𝑜 > 0) indicates that energy is transferred from the air flow 

to the structure, leading to destabilizing unsteadiness. On the 

contrary, for a negative work entry (𝑊𝑎𝑒𝑟𝑜 < 0), the blade re-

leases energy so that the blade itself is damped. Therefore, for 

a stable motion, the integer of the aerodynamic work must be 

negative. 

In order to check flutter stability, also the overall damping of 

the system can be checked. The total damping 𝛿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is defined 

as the sum of the aerodynamic and structural damping: 

 

 𝛿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝛿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 + 𝛿𝑎𝑒𝑟𝑜 (2.51) 
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and when 𝛿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is negative, the system is unstable. Neverthe-

less, the mechanical damping is always positive, therefore the 

only contribution to instability comes from a negative value of 

aerodynamic damping 𝛿𝑎𝑒𝑟𝑜. The aerodynamic damping, also 

called critical damping ratio (or energetic damping)  𝜉, is de-

rived from the aerodynamic work normalization, as shown in 

the following formula: 

 

 𝜉𝑎𝑒𝑟𝑜 =
−𝑊𝑎𝑒𝑟𝑜

8𝜋𝐸𝑘𝑖𝑛

=
−Waero

2𝜋𝑚𝜔2𝑎2
 (2.52) 

 

where 𝐸𝑘𝑖𝑛 is the blade average kinetic energy, m is the blade 

modal mass, a is the modal amplitude and, 𝜔 is the angular 

frequency. So, once any random excitation causes a small vibra-

tion of the blade, three different scenarios might occur (see Fig-

ure 2.30).  

 

Figure 2.30: Possible scenarios of blade row vibration [31] 

If the critical damping ratio is positive, the blade vibrations are 

always damped. When the overall damping is equal to zero, the 
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mode is considered marginally stable, which means that the os-

cillation amplitude remains constant. In the worst condition, 

when critical damping ratio is negative, the blade absorbs en-

ergy from the flow. If the energy absorbed is greater than that 

dissipated by the structural damping, the blade vibratory am-

plitude is amplified over time. Since structural damping is low 

and often negligible as already mentioned, the principal flutter 

stability criterion is to have a positive critical damping ratio 

values for all the nodal diameters. An example of the aerody-

namic damping curve is reported in Figure 2.31. 

 

Figure 2.31: Stability curve 
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3 Numerical Methods 

In this chapter, an overview of the CFD solver employed for the 

numerical simulations, the TRAF code, developed by the re-

search group led by Prof. Andrea Arnone, is presented. Once 

introduced the key aspects of the solver, which is used for both 

steady and unsteady analysis, the focus will be on the numerical 

aeroelastic methods, both coupled and uncoupled, for flutter as-

sessment. Then, a brief description of dedicated periodicity con-

ditions for flutter computations is provided: full annulus and 

phase-lagged approaches used to impose the circumferential 

boundary conditions are explained. 

 

3.1 TRAF code 
All the numerical computations carried out within this work has 

been performed with the CFD code called TRAF (TRAnsonic 

Flow), developed by the research group of the Department of 

Industrial Engineering of the University of Florence led by Prof. 

Arnone. The code is a 3D URANS viscous and inviscid flow 

solver, designed for cascade internal flow predictions and in-

cludes several techniques to achieve computational efficiency 

and accuracy based on the solution of Reynolds averaged Na-

vier-Stokes (RANS/URANS) equations written in conservative 

form and mapped in a curvilinear coordinate system. The link 

between the Cartesian coordinate system and the curvilinear 

one is handled by means of transformation matrices and Jaco-

bian. [34] [35]. 

Several turbulence closures have been implemented in the 

TRAF code, ranging from algebraic to more complex one- and 
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two-equation models. A complete list of the turbulence models 

available is the following: 

• Baldwin-Lomax algebraic model [36] 

• Degani-Schiff algebraic model [37] 

• Mixing length algebraic model [38] 

• One-equation Spalart-Allmaras model [39] 

• One-equation Spalart-Allmaras model with Spalart-

Shur correction [40] 

• Two-equation k-ω Wilcox Low-Reynolds model [41] 

• Two-equation k-ω Wilcox High-Reynolds [42] 

• Two-equation k-ω Menter SST model [43] 

As far as the spatial discretization is concerned, the code is 

based on a finite-volume approach, with the governing equations 

discretized in space starting from an integral formulation and 

without any intermediate mapping [44]. The viscous terms are 

discretized using 2nd order accurate central differences, while for 

the inviscid fluxes a 2nd order cell-centered scheme or a 

Roe’s+TVD (upwind scheme) may be employed. If the cell-cen-

tered scheme is adopted, the fluxes are computed by a simple 

averaging of adjacent cell-center values. To assure stability and 

prevent oscillations near shocks or stagnation points, artificial 

dissipation terms are also included away from the shear layer 

regions, where the physical diffusion associated with diffusive 

terms is generally not sufficient to prevent the possible odd-even 

point decoupling typical of centered schemes. Both scalar [45] 

and matrix [46] dissipation models are available in the code. For 
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artificial diffusion minimization inside the shear layers, an ei-

genvalue scaling technique is adopted [47]. As far as the upwind 

scheme is concerned [48], a higher order of spatial accuracy is 

achieved through a MUSCL (Monotone Upstream-centered 

Schemes for Conservation Laws) extrapolation scheme (3rd order 

spatial discretization). To avoid numerical instabilities, a TVD 

(Total Variation Diminishing) scheme is applied [49]. 

To compute the time varying solution, the code utilizes a time-

marching method with dual time stepping approach. Some dif-

ferent techniques to speed up the convergence and reduce the 

computational cost are used [50]: 

• Local time-stepping 

• Residual smoothing 

• Multigrid  

• Grid refinement 

The first method is often applied when dealing with time-march-

ing approach since a faster expulsion of disturbances can be at-

tained by locally using the maximum available time step. The 

local time step limit is computed accounting for both the con-

vective (∆𝑡𝑐) and diffusive (∆𝑡𝑑) contributions: 

 

 ∆𝑡 = 𝐶𝐹𝐿 (
∆𝑡𝑐∆𝑡𝑑

∆𝑡𝑐 + ∆𝑡𝑑

) (3.1) 

 

where CFL is the Courant-Friedrichs-Lewy number.  

The idea of multigrid is based on obtaining coarse meshes by 

simply eliminating mesh lines in each coordinate direction from 

the finer reference mesh, thus leading to a convergence speed 
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up. The procedure is repeated on a succession of coarser grids 

and the corrections computed on each coarse grid are transferred 

back to the finer one by bilinear interpolations. Even if more 

grid levels may be adopted, usually the multigrid method is per-

formed with a V-cycle on three grid levels: coarse (4h), medium 

(2h) and fine (h) [51]. The Full Multigrid approach is obtained 

with a grid refinement strategy at the beginning of the simula-

tion, used to provide a cost-effective initialization of the fine 

grid solution: the solution provides a cost-effective initialization 

of the fine grid solution; then, the solution is moved by bilinear 

interpolations to the finer grid and this procedure is repeated as 

long as the finest grid level is not reached [52]. The convergence 

evaluation is based on the residual check, defined as: 
 

 𝑄 =
1

𝑁
 ∑(∑ 𝑄𝑖

2)1/2

5

𝑖=1

𝑁

𝑛=1

 (3.2) 

 

where 𝑁 = 𝑛𝑥 ∙ 𝑛𝑦 ∙ 𝑛𝑧 are mesh cells and the target for conver-

gence is half-order above the machine accuracy (single preci-

sion). 

In turbomachinery configurations there are five main types of 

boundary conditions: inlet, outlet, solid walls, periodicity, and 

interface between adjacent rows. The radial distributions of to-

tal temperature, total pressure and flow angles are prescribed at 

the computational domain inlet, while a spanwise distribution 

of static pressure, or a value at the casing used to impose a 

radial equilibrium, is required at the domain outlet. On the solid 

walls within the computational domain, no-slip and temperature 

conditions are used to compute the values for density and total 

energy. The periodicity in circumferential direction is imposed 

by setting periodic phantom cell values as a phantom-cell layer 
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is present for each grid boundary. Linear interpolations are per-

formed in order to set a reasonable value for the dependent var-

iables in phantom cells in case of grid lines do not match at the 

periodicity interface. Despite the fact that this approach cannot 

guarantee a complete conservation of mass, momentum and en-

ergy, in most of the applications no accuracy losses have been 

experienced, if no strong gradients occur along non-periodic grid 

boundaries with high differences in cell sizes. As far as boundary 

conditions for the interfaces between adjacent rows are con-

cerned, a different treatment is adopted for the time-accurate 

and the steady state case. When running an unsteady analysis, 

the coupling between consecutive rows is handled by means of 

sliding interface planes, with the exchange of information be-

tween adjacent blocks obtained performing linear interpolations 

in both the tangential and the radial direction [53]. Differently, 

for steady simulations, mixing planes with non-reflecting capa-

bility are used to handle the coupling between adjacent rows. 

Data exchange through the common interface plane of consecu-

tive rows is obtained by an appropriate calculation of phantom 

cell values, keeping the spanwise distribution while averaging in 

the pitch-wise direction. 

In order to properly exploit the computational power available 

nowadays, the TRAF code provides a multi-level hybrid strat-

egy for parallelization on CPUs [54]. This hybrid scheme is ob-

tained from the coupling of OpenMP and MPI parallelism.  

For aeroelastic analysis, the TRAF solver employs an uncoupled 

method, computing the aerodynamic work and hence the critical 

damping ratio, as explained in paragraph 2.4.5. The CFD code 

is also capable to solve both tuned and mistuned blade-row. 
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3.2 Aeroelastic methods overview 
A very wide range of CFD methods have been developed since 

the first appearance of digital computers. The increase in com-

puting power during recent years and advances in computa-

tional fluid dynamic methods have allowed to obtain detailed 

assessment of unsteady aerodynamic flow field for multi-row do-

mains. Nowadays, aeroelastic analyses are mainly carried out 

with numerical techniques in the context of the Computational 

Aeroelasticity (CA). This branch investigates the aeroelastic in-

teraction issues of structures. 

For forced response analysis, unsteady simulations based on 

URANS non-linear method with difference level of accuracy are 

now usually employed, while for flutter assessment different un-

steady formulation have been developed. The interaction be-

tween flow and moving bodies is usually simulated by numerical 

solvers thus providing a design tool that may be applied, for 

example, to assess if a blade in a certain operating condition is 

stable or not. Marshall and Imregun [31] give a review of a wide 

range of possible approaches, highlighting advantages and limi-

tations. Among these, three modeling methods may be employed 

for the numerical Navier-Stokes equations solution of the flow 

around moving bodies: 

• Time-linearized method 

• Non-linear harmonic method 

• Non-linear method 

Although various models have been developed to computation-

ally assess flutter occurrence, there are mainly two macro-cate-

gories, distinguished in relation to the way in which interactions 

between flow and solid body are resolved:  
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• Uncoupled method 

• Coupled method 

3.2.1 Uncoupled method 
Uncoupled methods are based on the separate integration of dy-

namic motion equations to compute solid body structural be-

havior and, Navier-Stokes equations for flow field evaluation. 

This approach allows the aerodynamic calculations to be per-

formed independently to the blade dynamics, offering consider-

able savings in computing requirements. In an uncoupled aero-

elastic approach (see Figure 3.1), blade mode shapes and natural 

frequencies are provided by a modal analysis on the Computa-

tional Solid Domain (CSD). At the same time, the average pres-

sure field on the blade surface has calculated with steady state 

analysis solving iteratively the Navier-Stokes equations. Then, 

the mode shapes are transferred from solid to fluid domain and 

a harmonic deformation is applied to the CFD mesh to evaluate 

the unsteady response around the oscillating blade-row. The 

solver is able to evaluate the unsteady pressure response over 

the blade surface, while the blade row vibrates in a travelling 

wave manner with a constant phase shift between adjacent 

blade passages and with the same amplitude and frequency. 
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Figure 3.1: Uncoupled method scheme 

Traditionally, the uncoupled method has been used for flutter 

prediction and has been extended to forced response calculations 

to obtain the aerodynamic damping in more recent years. Flut-

ter calculations are concerned with determining the aeroelastic 

stability of the system, indicated by the direction of energy flow 

resulting from the blade vibrating in the fluid.  

In this work, the aeroelastic computations has been performed 

with TRAF code, which is an URANS CFD solver as previously 

explained in 3.1. The unsteady equations are solved in time on 

the deforming mesh using a dual time-stepping technique until 

the flow solution becomes periodic. Since TRAF employs an un-

coupled method, blade vibrations are assigned with a constant 

amplitude: consequently, flutter stability cannot be assessed by 

looking at the evolution of the oscillation amplitudes, because 

blade oscillation is kept constant. To assess flutter stability, the 

critical damping ratio is calculated from the aerodynamic work, 

as indicated by the Energy Method. This method proposed by 

Carta [55] calculates the net energy transfer between a vibrating 

body and the flow induced pressures of the surrounding fluid 
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during a period of blade oscillation. The energy method is based 

on the assumption that the effects of the aerodynamic forces on 

the structural dynamics properties are negligible, so the un-

steady aerodynamic blade loading does not affect natural fre-

quencies and mode shapes. This assumption is verified if a sig-

nificant frequency gap between different eigenmode families is 

present and the mass ratio parameter of the vibrating system is 

high.  

The aerodynamic work, shown in Eq. (2.50) is computed by the 

numerically integration of the unsteady pressure over the blade 

surface and over time. Therefore, if the work is positive, the 

energy transfer is from the flow to the blade. Otherwise, a neg-

ative work indicates that the blade dissipates its energy, and the 

oscillations are damped. 

3.2.2 Coupled method 
Coupled methods solve simultaneously fluid and solid domain 

computations taking into account the bi-directional interaction 

between blade vibration and flow field. Fluid unsteadiness 

changes blade dynamics in terms of vibration frequencies and 

amplitudes, with the consequence that blade movement has no 

more constant magnitude, pulsation and inter blade phase an-

gle. The frequency of the oscillation will also be shifted from the 

structural eigenfrequency of the system, especially when the 

mass ratio is small. For this method, the system of equations 

that have to be solved, are represented by: 

 

 𝑀 𝑥̈ + 𝐶 𝑥̇ + 𝐾 𝑥 =  𝐹 𝑒𝑥𝑡(𝑡) (3.3) 
 

 
𝜕𝑈(𝑡)

𝜕𝑡
+ ∇ ∙ Φ =  𝑄 (3.4) 
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where Eq. (3.3) represents the dynamic equations governing 

structural vibration of the blade already mentioned in para-

graph 2.4; Eq. (3.4) represents the Navier-Stokes equations in 

the divergence form, where 𝑈 includes the conservative variables 

for mass, momentum, energy and for turbulence quantities, ∇ 

incorporates the three flux functions and 𝑄 is the source term 

column. The equations are simultaneously integrated in time so 

that the fluid and structural domain are coupled exchanging 

boundary conditions, as shown in Figure 3.2. 

 

Figure 3.2: Coupled method scheme 

A CFD solver integrates the unsteady Navier-Stokes equations 

in time domain on the deforming mesh. The unsteady static 

pressure field on the blade is transferred from the CFD grid to 

the CSD grid and the corresponding modal forces are then com-

puted. The computational effort is decreased by reducing the 

structural equations to a small number of orthogonal modal 

equations which can be integrated in time. Node displacements 

are transferred from the CSD mesh to the CFD mesh determin-

ing the CFD mesh deformation. All these operations are iterated 

for each discrete physical time-step. 
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In fully coupled approaches, the level of interaction between the 

fluid and structural domains can vary from partially integrated 

schemes to fully integrated schemes. In the partially integrated 

schemes, the equations governing the problem are resolved sep-

arately by exchanging information on the interface between the 

fluid and the solid at each time step. Fully integrated methods 

combine the fluid and structural equations into a single numer-

ical integrations scheme, solving the entire system without the 

need to transfer information between meshes at each time steps. 

Flutter stability is assessed by looking at the evolution in time 

of the amplitude of the various traveling waves and not compu-

ting the aerodynamic work.  

 

3.2.3 Periodicity conditions in time 
For flutter analysis periodicity conditions are a key aspect to 

reduce the computational requirements. Several approaches are 

available in TRAF to impose circumferential periodicity condi-

tions. Two different approaches are briefly described in the fol-

lowing focusing on uncoupled non-linear flutter simulation to 

correctly reproduce travelling waves: 

• Full annulus approach 

• Phase-lagged approach 

3.2.3.1 Full annulus approach 

The full anulus approach consists in simulating the entire annu-

lar row to reproduce all the possible travelling waves defor-

mations with different IBPAs in order to evaluate the unsteady 

pressure response over vibrating row blade surfaces. This ap-

proach requires a wide availability of computational resources 

since the entire annulus must be simulated. The computational 

domain can be reduced simulating the sufficient number of 
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blades to reach the circumferential periodicity. The minimum 

number of vanes required to ensure instantaneous circumferen-

tial periodicity depends on IBPA of the studied sector, as ex-

plained in Eq. (3.5): 

 

 𝑛𝑝𝑎𝑠𝑠𝑎𝑔𝑒𝑠 =
2𝜋

|𝐼𝐵𝑃𝐴|
𝑧       𝑤𝑖𝑡ℎ 𝑧 ∈ ℤ: 𝑧 > 0 (3.5) 

 

where 𝑧 is an integer number which provides the periodicity of 

the investigated passage inside the row. Except for the 

IBPA=0°, the other values of IBPA need more than one vane 

to impose instantaneous periodicity condition; for example, 

IBPA=90° needs 4 passages as shown in Figure 3.3, while 

IBPA=72° requires 5 blocks, and so on. When 𝑛𝑝𝑎𝑠𝑠𝑎𝑔𝑒𝑠 is equal 

to 𝑧, the computations must be performed on the whole cascade, 

determining high computational cost. This happens, for exam-

ple, when a prime number of blades is present in a row. In this 

work, the full annulus approach has been adopted to evaluate 

the rotor-stator unsteady interaction due to the downstream 

wakes on a LP turbine rotor, discussed in the following. 

 

Figure 3.3: Instantaneous periodicity condition for a full annulus ap-

proach with IBPA=90° 
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3.2.3.2 Phase-lagged approach 

The phase-lagged formulation imposes chorochronic periodicity 

conditions of Gerolymos [56] on circumferential boundaries for 

allowing to perform simulations at any IBPA, utilizing a re-

duced computational fluid domain. The computation of a single 

passage per row is sufficient to rebuild the unsteady flow solu-

tion of a row for each possible travelling wave, providing iden-

tical results to the full annulus approach. With the aim to en-

hance the convergence to a periodic solution, two passages per 

row are computed (Figure 3.4), making the approach more ro-

bust and quicker [57]. 

 

Figure 3.4: Periodicity conditions for a phase-lagged approach with 

a general IBPA value 

Since the simulations are unsteady, each quantity directly de-

pends on time, so that a generic solution variable at a periodic 

boundary 𝑓(𝑡) is expressed by Fourier series in time with a finite 

number of time-harmonic coefficients as below: 

 

 𝐴0 =
1

𝑇
∑ 𝑓(𝑡)∆𝑡

𝑁𝑃

𝑗=1

       (3.6) 
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 𝐴𝑛 =
𝜔

2𝜋
∑ 𝑓(𝑡) sin(𝑛𝜔𝑡)∆𝑡

𝑁𝑃

𝑗=1

     (3.7) 

 𝐵𝑛 =
𝜔

2𝜋
∑ 𝑓(𝑡) cos(𝑛𝜔𝑡) ∆𝑡

𝑁𝑃

𝑗=1

   (3.8) 

 

where 𝐴0, 𝐴𝑛, 𝐵𝑛 are the Fourier series constants, 𝑛 the harmonic 

number, 𝜔 the natural pulsation, 𝑇 the blade oscillation period, 

𝑁𝑃 time-step number on the oscillation period and ∆𝑡 is the 

Fourier series constant amplitude in time. 𝐴0, 𝐴𝑛 , 𝐵𝑛 constants 

are stored in memory for a prearranged harmonic number and 

are used to recontract fluid properties through a suitable phase 

lag, linked to the IBPA in case of aeroelastic analysis. To accel-

erate the convergence, the formulation implemented in the 

TRAF code updated the coefficients even during the period of 

oscillation through a moving average scheme. 
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4 Numerical Procedure for Axial Tur-

bine Analysis 

This chapter describes the numerical setup used within this 

work. Firstly, the main steps of the workflow are illustrated. The 

CFD calculations outputs, representing the aerodynamic design 

phase, are combined with the modal and structural analysis out-

puts to calculate the system forced response. Starting from the 

fluid domain discretization, particular attention is given to 

steady and unsteady computations, from mesh creation with an 

in-house tool, to the analysis setup. Indeed, the harmonic con-

tent of the aerodynamic force is obtained by evaluating the blade 

unsteady pressure distribution obtained by URANS simulations. 

The two operative points investigated are also presented and 

discussed. Finally, the mode shapes transfer process from solid 

to fluid domain grid is described to impose the frequencies and 

mode shapes calculated on the solid domain surface to the blade 

grid boundaries of the flow domain, for the non-linear uncoupled 

flutter computations with moving grid.  

 

4.1 Workflow overview 
The design procedure gives an idea of the interrelationship be-

tween thermodynamic, aerodynamic, mechanical and control 

system design. Considering the aeromechanical field, several 

procedures have been recently developed to achieve a safe blade 

row design [58] [59] [60] . All these methods are based on struc-

tural dynamic solvers and aerodynamic codes to evaluate com-

ponents dynamic and to compute the fluid flow unsteady re-

sponse caused by blade vibrations, respectively. In this context 

a numerical procedure to integrate the aerodynamic design 
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phase with the aeromechanical one has been drawn up. The 

workflow scheme, which shows the steps and the connections of 

the aeromechanical procedure, is reported in Figure 4.1. 

 

Figure 4.1: Procedure scheme 

The first step concerns the discretization of the fluid domain. 

Starting from the CAD model, a structured grid has been gen-

erated using an in-house tool to perform a multi-row steady 

state analysis by means of the TRAF code. This solution is used 

to initialize the following unsteady calculations from which the 

unsteady pressure distribution on blade surface is extracted. On 

the other hand, once the solid domain is discretized, a modal 

analysis is performed in parallel using the commercial code AN-

SYS. The structure mode shapes, and natural frequencies ob-

tained are employed as boundary conditions for the unsteady 

flutter analysis with vibrating blades and for the final modal 

work calculation. So, modal displacements are transferred from 

grid surface nodes from the solid domain to the fluid domain. 

Considering that the FEM and CFD blade surfaces are not in 
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the same position, an automatic method to find out the roto-

translation matrix to overlap the two different domains is inte-

grated in the tool-chain. Once the mode shapes are transferred, 

it is possible to carry out flutter analysis which allows the as-

sessment of blade row stability and also to provide the overall 

damping as a function of the nodal diameter. For forced re-

sponse analysis the same transfer strategy from FEM to CFD 

domain is used to interpolate the mode shape on the CFD grid 

surface where the harmonics of unsteady pressure distribution 

is extracted from multi-row unsteady analysis. These forcing 

functions are directly computed by a run-time DFT algorithm 

activated once the unsteady multi-row solution is periodic. The 

procedure is finally closed with the blade row HCF life evalua-

tion of the final geometry by means of the Goodman diagram, 

where steady and alternate stresses, evaluated on each solid do-

main node, are compared with the material fatigue limit.   

The all analysis in the fluid domain, including the final flutter 

evaluation and the modal work calculation, are the main objec-

tive of this activity. For this reason, the modal and structural 

analysis, reported in the scheme above, will not be further dis-

cussed in this work. 

 

4.2 Industrial test case 
The test case selected to apply the aeromechanical procedure 

for the forced response is a typical configuration of a light in-

dustrial gas turbine of Baker Hughes family for mechanical drive 

and power generation applications (Figure 4.2). This configura-

tion, generally called 1.5 shaft engine, is composed by the High 

Pressure Turbine (HPT) module, aerodynamically coupled with 

the Low Pressure Turbine (LPT). A stationary component 

called Turbine Center Frame (TCF) connects the HPT to the 
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LPT module. The HPT drives the axial compressor in the gas 

generator, while the LPT runs connected to an independent 

shaft and drives a process compressor or a generator.  

 

Figure 4.2: Turbine layout for a typical 1.5 shaft heavy-duty engine 

The HPT and LPT modules have two stages each, labelled Stage 

1 and Stage 2, and Stage 3 and Stage 4, respectively. The first 

stage of LPT is provided with moveable Nozzle Guide Vanes 

(NGVs), and discharges to the exhaust diffuser through the 

downstream Turbine Rear Frame (TRF) module. In this activ-

ity, the focus is on the LPT module and, in particular on the 

Stage 3 rotor row. A forced response analysis together with flut-

ter stability assessment has been performed since a crossing 

within the operative range has been detected during the test 

campaign. During the first prototype run of the machine, in fact, 

aerodynamic and aeromechanic instrumentations have been in-

stalled. In Figure 4.3, the turbine machine sections where phys-

ical quantities are acquired, are presented.  

  

Figure 4.3: Machine test section with aerodynamic instrumentations 
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Measurements include static pressures (p) on hub and tip end-

walls, total pressure (𝑝𝑡) and total temperature (𝑇𝑡) probes 

mounted at different span locations on the TCF leading edge, 

and on the TRF leading edge. The exhaust plenum flange is 

equipped with a measurement grid composed by twenty-one 

equally spaced probes for 𝑝𝑡, 𝑝𝑠 and 𝑇𝑡  across the discharge rec-

tangular flange. Experimental data at the TCF module inlet, 

and downstream of the TRF module, are used as boundary con-

ditions for the CFD analyses. The final part of the diffuser is 

not completely included into the computational domain, as it is 

deemed not strictly necessary for the purpose of the present 

work. Moreover, in this way it was possible to reduce the com-

putational effort. Concerning the aeromechanical measure-

ments, four strain gages have been installed on four blades of 

the LPT rotor row (B3) that is under investigation in the pre-

sent work, Figure 4.4. 

  

Figure 4.4: Positions of the four strain gage applied on four rotor 

blades (B3) 

Further, different rotor shaft speeds have been investigated dur-

ing the test. From a numerical point of view, two operating 

conditions have been considered: the full speed-full load (100%) 
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condition, corresponding at design point and the full speed-par-

tial load (50%) condition, corresponding to an off-design condi-

tion (Table 4.1).  

OP Shaft Speed 

[rpm] 
Load 

[-] 

OP1 7800.28 100% 

OP2 7800.28 50% 

Table 4.1: Aerodynamic operating points 

4.3 Fluid domain discretization 
The first important step of any CFD analysis is the discretiza-

tion of computational fluid domain. The in-house mesh genera-

tor is able to realize two different mesh topologies. The designer 

may choose in advance between H- or O-type grid topologies, 

depending on the case study under investigation. For standard 

viscous Navier-Stokes simulations, the grid spacing near the wall 

is chosen to obtain a 𝑦+ ≤ 1 for the first grid from the wall. This 

condition allows a proper resolution of the boundary layer over 

solid walls. 

 

Figure 4.5: Viscous Full Navier-Stokes (left) and inviscid endwall 

(right) grids 
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It is worth highlighting that inviscid endwalls approach can be 

adopted where applicable (e.g. negligible diffusive fluxes in 

spanwise direction) in order to considerably reduce the compu-

tational cost of CFD analyses by removing the grid re-clustering 

which means very high points density near the endwalls. 

4.3.1 Steady analysis 
Steady-state analyses have been performed on the domain pre-

viously described at paragraph 4.2, from the inlet to outlet 

boundaries shown in Figure 4.3 respectively. A fully 3D H-type 

structured grid has been used with a y+ value lower than 1 to 

discretize the blades passages for steady computations. Both the 

viscous and inviscid endwall formulations have been tested. 

Each block has typical dimensions of 157x81x25 grid points in 

streamwise, pitchwise, and spanwise directions, for inviscid end-

wall, respectively, while dimensions of 157x81x81 for the viscous 

approach. Therefore, the number of nodes for each vane is 

around 0.33 million for inviscid endwall formulation and around 

of 1.03 million for viscous one, respectively. A blade-to-blade 

section at midspan of the Full Navier-Stokes computational 

mesh of the two stages, Stage 3 and Stage 4, is reported in Fig-

ure 4.6. 

 

Figure 4.6: Blade to blade view of Stage 3 and Stage4 Full Navier-

Stokes computational grid 
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Steady computations have been performed in order to evaluate 

the flow field characteristics and to select the numerical frame-

work to be adopted for unsteady calculations. RANS analyses 

have been performed by using TRAF code described in Chapter 

3 by imposing boundary conditions provided by Baker Hughes 

and come from aerodynamic models data-matched on experi-

mental test. Radial profiles of flow angles (blade-to-blade and 

meridional angles), total pressure and temperature are imposed 

at inlet section, relative to the TCF inlet, while the static pres-

sure radial distribution is imposed at the outlet boundary, the 

TRF exit. Circumferential periodicity boundary conditions are 

applied to simulate the blade row channel alone with mixing 

plane approach. The CFD computations have been performed 

using the two-equation 𝜅 − 𝜔 turbulence model in the high 

Reynolds fully turbulent formulation. A maximum number of 

iterations or the residual value check is chosen to ensure a good 

numerical convergence. Then, the results are automatically 

post-processed in order to exchange the appropriate information 

with solid domain for static stress analysis. 

4.3.2 Unsteady multi-row analysis 
The aim of the unsteady multi-row analysis is to evaluate the 

harmonic content of the unsteady pressure distribution on the 

rotor blade (B3), due to the interactions with the upstream and 

downstream blade rows, necessary to perform the forced re-

sponse analysis by means of the modal work calculation. The 

axial fluid domain is the same for the steady computations 

which includes the TCF and the TRF blade rows. So, the same 

H-type grid used for steady state calculations has been adopted. 

A full annulus approach with a total of 224 grid blocks with 

about 75 million of cells for inviscid endwall formulation, shown 

in Figure 4.7, and 235 million of cells for viscous approach, re-
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spectively, has been used since the blades count from two adja-

cent rows  has no a common divisor so it was not possible to 

reduce the computational domain to an angular sector.  

 

Figure 4.7: Full annulus computational mesh 

This means that the entire wheel must be simulated leading to 

a higher computational cost. The computing resources, in terms 

of CPUs and computational time, has been provided by the 

Baker Hughes company on their cluster. The full annulus model 

adopts standard periodic boundary conditions with sliding in-

terfaces between adjacent rows and buffer zones at the domain 

extremities to avoid spurious reflections [61]. To reach the flow 

periodicity, 5 rotor revolution periods have been necessary. The 

time discretization of the unsteady computations has been im-

posed adopting 50 time divisions for each blade passage of the 

row with the highest blade count in order to accurately solve 

the first 3 harmonics of the highest blade passing frequency re-

lated to the stator potential field disturbance. Each physical 

time step is converged with up to 15 sub-iterations. Both the 

operating conditions investigated through the unsteady anal-

yses, design and off-design, have required 5 periods to reach pe-

riodicity starting from a steady state solution initialization. The 
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periodicity is considered to have been reached once the differ-

ence between the harmonics of the unsteady lift between two 

consecutive periods is less than a fixed tolerance. So, the un-

steady calculations required about 2 or 6 days for the inviscid 

endwall and for the Full Navier-Stokes formulation, respectively 

using a parallel process involving 448 Intel® Xeon® Silver 4114 

CPUs@2.20 GHz. 

Once the solution periodicity is obtained, a run-time DFT can 

be activated during the last period of the URANS computations 

to extract the time Fourier coefficients of the solution on the 

selected blocks within the domain. Such coefficients are then 

extracted on the blade surface and split up into rotating pertur-

bation with a dedicated post-processing tool. 

 

4.4 Mode shapes transfer 
As explained above, modal and structural analyses are not 

included in the present work and all the results come from a 

previous analysis carried out by Baker Hughes. The steps to 

obtain mode shapes and natural frequencies, already illus-

trated in Figure 4.1, are explained, focusing on the following 

phase in which the fluid and solid domain interact each 

other. 

Starting from the FEM model, the solid domain is discretized 

to obtain a structured or unstructured grid as for the CFD 

model. Then, a modal analysis of a bladed disk sector in cy-

clic symmetry have been carried out by means of the FEM 

ANSYS solver. Natural frequencies and mode shape families 

are used to perform aerodynamic damping analysis and 

forced response assessments. In Figure 4.8 the normalized 

frequencies of the first three mode shapes families for rotor 

B3 are presented.  
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Figure 4.8: Mode shapes frequencies for rotor B3  

Since the numerical method for aerodynamic damping com-

putation is uncoupled, it is necessary to transfer mode shapes 

vibrations from the FEM surface elements to CFD blade sur-

face, with the purpose of deforming fluid mesh during un-

steady flutter computation with a defined amplitude. A ded-

icated tool performing an automatic roto-translation of the 

FEM blade shell to the CFD profile surface has been used. 

In Figure 4.9 the point clouds extracted from the two grids 

domains are shown (the FEM in green and the CFD in blue), 

respectively.  
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Figure 4.9: Point clouds of the FEM (green) and CFD (blue) blade 

surface grids 

The interpolation of real or complex mode shapes displace-

ments is also necessary as the CFD and FEM models have 

different discretization on the aerodynamic surfaces. Once 

the blade surface vibration has been transferred to the fluid 

mesh, an overall grid deformation strategy of the channel 

between blades based on an algebraic method is employed to 

make the row oscillate at the different traveling waves. This 

technique distributes the largest deformations where the big-

gest mesh elements are, while maintaining low deformations 

of the smallest elements to avoid cells intertwining during 

the entire blade vibration period. For complex mode shapes 

two homologous control nodes, which belong on the surfaces 

where the cyclic symmetry condition is applied, have to be 

considered in order to determine the travelling wave direc-

tion of the modal solution. Considering one of these nodes, a 

phase-shift related to the IBPA of a FTW and BTW is ap-

plied once each and compared with the second point dis-

placements. The actual travelling wave direction is the one 

which provides minimum error obtained from the difference 
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between the IBPA phase shifting and the FTW or BTW. 

The overall blade row deformation, for all the possible trav-

elling waves, may be then reproduced to each blade by ro-

tating the mode shapes around the machine axis and, at the 

same time, by shifting the mode of the inter-blade phase an-

gle. Opposite direction of travelling waves can be obtained 

by changing the IBPA sign and taking the complex conju-

gate of the mode shape displacements. The mode shape 

transfer results for a complex mode shape are reported in 

Figure 4.10. 

  

Figure 4.10: Example of the mode transfer from solid to fluid do-

main 

 

4.5 Flutter analysis 
Flutter evaluation is only performed on the rotor row where the 

risk of flutter occurrence is significantly higher. For this reason, 



4.  Numerical Procedure for Axial Turbine Analysis 

 

89 

classical flutter computations consider an isolated row to which 

the vibration of the blade is applied as the only source of un-

steadiness. Steady state and modal analysis results are used as 

input data for the unsteady flutter analysis and once mode 

shapes are transferred from solid to fluid domain the analysis 

can be performed with TRAF code. The aeroelastic solver em-

ployed an uncoupled method with a dual time stepping tech-

niques, as already stated in paragraph 3.2.1. The number of 

subdivisions and the number of physical instants considered 

within an oscillation period need to be properly selected by the 

designer in order to choose the minimum values to ensure accu-

rate solutions in terms of aerodynamic work and critical damp-

ing ratio. In this case, 15 periods of blade oscillations with a 

standard value of 80 equally spaced time steps for a single vi-

bration have been computed. The solver is able to integrate the 

Navier-Stokes equations within a cell-centered finite volume 

fluid domain, whose boundaries move in accordance with the 

frequencies and mode shapes displacements obtained from 

modal analysis and to evaluate the unsteady pressure response 

over the blade surface while the blade row vibrates in a travel-

ling wave manner when the computation reaches periodicity. 

The unsteady pressure is finally integrated during an oscillation 

period over the blade to obtain the aerodynamic damping pa-

rameters. Flutter stability is assessed by checking the sign of 

the aerodynamic work (Eq. (2.50)) done by the fluid onto the 

blade during one vibration period. A negative sign indicates a 

stable condition in which blade dissipates energy to the fluid, 

vice versa a positive sign denotes an unstable condition with the 

extraction of energy from the fluid to the blade. The critical 

damping ratio parameter may be also used for flutter stability 

evaluation, as explained in paragraph 4.5. From this parameter, 

it is possible to introduce a quantity, called energetic damping 
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coefficient surface density, which is a density of the energetic 

damping, defined as  

 

 𝜌𝜉 =
−𝑑𝑊𝑎𝑒𝑟𝑜

8𝜋𝐸𝑘𝑖𝑛
𝑑Σ
Σ

 (4.1) 

 

By integrating this local quantity over the whole blade surface 

the critical damping ratio can be obtained again. This parame-

ter can be plotted over the blade surface, highlighting the areas 

of the blade that have more influence on global flutter stability. 

 

4.6 Modal work calculation 
The final outcome of a forced response analysis is the vibration 

response in terms of vibratory stress with respect to the allow-

able vibratory stress at the critical location of the blade. A scal-

ing factor for the modal stress, coming from the modal analysis, 

is calculated by the tool to obtain the physical alternating 

stresses. Then, by means of a Goodman diagram, it is possible 

to assess the fatigue margin of the blade in a particular reso-

nance condition.  

The vibratory response of the blade can be determined when 

both the unsteady pressure distribution and the modal displace-

ments are known for a given operating condition and a given 

frequency and nodal diameter. At this point, the forced response 

is computed by means of the modal work tool which takes as 

inputs the blade mode shape, the decomposed forcing functions, 

and the total damping. As for flutter analysis, blade mode shape 

is transferred on the CFD blade surface discretization: the 

choice of CFD discretization ensures a more accurate computa-

tion of the modal force. While the forcing functions have been 
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decomposed using the DFT, applied both in time and in space, 

the total damping value may come from numerical calculations, 

but it is preferable to leverage legacy data available from exper-

imental tests of similar blades in comparable operating condi-

tions. Total damping is inversely proportional to the amplifica-

tion factor according to the usual definition used in literature: 

 

 𝑄 =
1

2𝛿𝑡𝑜𝑡

 (4.2) 

 

For this study, a value of 𝑄 = 100 is given from experimental 

campaign as input data to obtain the total damping value. 

The calculation of the modal force (or the modal work) reported 

in Eq. (2.46), allows to obtain the scaling factor value 𝑑, through 

which it is possible to scale down the modal stress to the actual 

vibratory stress during a resonance crossing. 
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5 Numerical results 

In the first part of this chapter the steady state flow field results 

are presented. Steady results are compared with experimental 

data for the different formulations used in the CFD setup in 

order to highlight the best strategy for the following unsteady 

analyses. Then, unsteady analysis results are discussed both 

from an aerodynamic and an aeromechanic point of view. The 

aerodynamic flow field of the two operating conditions, design 

and off-design, is shown and compared. On the other hand, the 

frequency spectrum of the rotor blade load under investigation 

is analyzed, focusing on the blade-to-blade variability phenome-

non. The effects of different numerical approaches and the var-

iation between the two operating conditions are assessed. The 

forced response results obtained by the modal work computation 

are presented and compared with the measured data showing a 

good agreement. Finally, the unsteady flutter stability is assessed 

as well. 

 

5.1 Steady state results: design point  
The working condition where the aeromechanical assessment of 

the blade is required, is the design point, where the turbine com-

monly operates. Multi-row steady solution is useful both to ini-

tialize the unsteady computation, and to extract the boundary 

conditions on rotor row for a single row for flutter classical cal-

culation. From steady state computation, the main aerodynamic 

data are extracted, in particular spanwise distributions of flow 

quantities (𝑝𝑡 , 𝑇𝑡) and isentropic Mach distributions at different 

blade span.  
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Steady CFD results are compared with the experimental data 

and the unsteady results in terms of spanwise distributions of 

total pressure and total temperature at STA 2.96, STA 5.00, 

and STA 3.00, as reported in Figure 5.1.  

STA 2.96 

    

STA 3.00 
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STA 5.00 

    

Figure 5.1: Total pressure and total temperature spanwise distribu-

tions: experimental, CFD steady with viscous and inviscid endwall 

formulation, and CFD time-averaged with inviscid formulation 

An overall good agreement with experiments is observed in all 

the measurements stations. Some differences are pointed out at 

the leading edge of the TRF (STA5.00) near the outer diameter. 

In particular, the total temperature predicted by CFD is lower 

than the one measured, resulting in the over prediction of the 

LPT isentropic efficiency. In all the cross sections where meas-

urements are available, both the results of the inviscid endwall 

formulation and the viscous Full Navier-Stokes approach are 

compared. As can be expected, even if the inviscid endwall ap-

proach cannot account for the development and transport of 

secondary flows, the two simulations show similar trends in the 

core flow region, while the differences are restricted to the re-

gions close to the hub and shroud endwalls.  
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Furthermore, Figure 5.2 shows the time-averaged isentropic 

Mach number distributions for the rotor blade of Stage 3 (B3) 

at hub, midspan, and tip.  

   

    

Figure 5.2: Isentropic Mach distributions at hub, midspan, and tip 

of blade: steady and time averaged results. 

In the same figure a comparison is provided between the Full 

Navier-Stokes and the inviscid endwall approaches both in 

steady state simulation. Generally, the distributions are quite 

similar. Inviscid endwall and Full Navier-Stokes results show a 

good agreement except for the tip region (95% span), where 

some small discrepancies are observed in the peak Mach value. 

Similar considerations hold comparing steady and time-aver-

aged results. In particular, at midspan, the comparison suggests 

that the inviscid endwalls calculations show good agreement 

with the Full Navier-Stokes. In light of such considerations, even 
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if the inviscid endwall approach does not account for the end-

walls boundary layers and the related secondary flows, this 

strategy can be selected to carry out the unsteady calculation 

dedicated to the aeromechanical analysis in order to considera-

bly reduce the whole computational effort. 

In this work, unsteady analysis has been performed with both 

Full Navier-Stokes and inviscid endwall formulations, in order 

to compare the harmonics amplitudes extracted from the un-

steady pressure distribution. 

 

5.2 Unsteady results: design and off-design 
Nowadays, the ability to simulate the entire domain of an axial 

gas turbine is an open challenge for many companies, both in 

terms of calculation resources and time. In this context, un-

steady analyses can give useful feedbacks on the reliability of 

steady state simulations, which are used as a standard for rou-

tine design procedures. Unsteady results have been obtained for 

both formulations, Full Navier-Stokes and inviscid endwall. As 

shown in the former paragraph, the comparison with steady cal-

culations and experimental data shows a good agreement. Fur-

thermore, the two operating conditions, design (OP1) and off-

design (OP2), have been investigated. Figure 5.3 illustrates a 

comparison of the instantaneous entropy field at midspan for 

the two operating conditions analyzed for inviscid endwalls for-

mulation. With respect to the design condition, at partial load 

wider wakes, that are mixed downstream, are generated by the 

incidence variation on the TCF. These wakes persist through 

the four power turbine rows and leave a strong distortion pat-

tern in the TRF region.  
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Figure 5.3: Instantaneous entropy contours of the two operative 

conditions at midspan. Design (left) and off-design (right) [62] 

Concerning an aeromechanical point of view, the unsteady anal-

ysis focus on the extraction of the aerodynamic forcing functions 

and the study of the pressure harmonics content on the blade 

row. The analysis of the whole axial turbine domain allows the 

evaluation of the complete unsteady aerodynamic field and all 

the possible excitations generated by the multi-stage blade rows. 

Once the unsteady pressure time-history distribution over the 

blade surface is obtained by performing the post-processing of 

the solution with a run-time DFT in time, the frequency spec-

trum on the blade row surface is obtained. The unsteady lift 

amplitude is plotted as a function of the engine orders. For some 

peaks, this plot can show multiple points for each profile at a 

single engine order which indicates a blade-to-blade variability 

in terms of unsteady lift amplitude. An example of this phenom-

enon is reported in Figure 5.4 which shows the frequency spec-

trum of the unsteady blade loading of a low pressure turbine. 
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Figure 5.4: Example of frequency spectrum of unsteady blade load-

ing 

Each point corresponds to the unsteady lift amplitude value of 

a single airfoil constituting the blade row. All the engine orders 

that characterize the frequency spectrum show a relevant blade-

to-blade variability in terms of unsteady lift amplitude due to 

the superpositions of two or more rotating unsteady pressure 

waves that share the same frequency, but different circumferen-

tial patterns. The superposition of these unsteady pressure 

waves occurs between blade rows in the same reference system, 

fixed or rotating. 

In this work, the forcing functions effect on the Stage 3 rotor 

blade (B3) is evaluated. In Figure 5.5 the same plot representing 

the frequency spectrum for the blade row for the Full-Navier 

Stokes approach is shown. 
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Figure 5.5: Rotor B3 frequency spectrum of unsteady blade loading 

In this case, the variability is smaller since the considered row 

is the first rotor and there are no further rotors upstream that 

can generate additional rotating unsteady pressure waves. The 

frequencies shown in Figure 5.5 correspond to the blade passing 

frequencies (BPF) due to the upstream and downstream stator 

rows. Considering that the analyzed domain is composed of the 

rows listed in Table 5.1, where V3 and V4 indicate the stator 

rows which have N1 and N2 blades number, respectively. On 

the other hand, B3 and B4 are the rotor rows which have N3 

and (N2+2) blade numbers. The rotor B3 is excited by the blade 

passing frequency of the incoming wakes (BPFN1) and the pas-

sage of downstream potential field (BPFN3).  

 V3 B3 V4 B4 

Blade 

number 
N1 N2 N3 N2+2 

Table 5.1: Blade number of each row 
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It must be also pointed out that multiple frequency (related to 

harmonic index greater than 1) are clearly visible in the spec-

trum which are 2BPFN1, 2BPFN3, and BPFN3-BPFN2 with a 

lower intensity. Since the crossing occurs for the BPFN1, an in-

depth analysis is requested to evaluate if the vibration limits 

imposed by the specifications are respected.  

The unsteady forcing of the rotor B3 due to the engine order 

excitation of stator V3 has been investigated. Figure 5.6 shows 

the blade-to-blade variation of unsteady lift amplitude of the 

BPFN1 on B3.  

 

Figure 5.6: Unsteady lift amplitude of BPFN1 on B3 

The plot shows the circumferential variation of the unsteady lift 

amplitude due to the interaction of rotor rows with stator rows. 

To confirm the lower variability, note the narrow scale on the 

y-axis. The sinusoidal pattern has two peaks linked to the dif-

ference between the blade count of B3 and B4: 

 

 𝐵3 − 𝐵4 = 𝑁2 − (𝑁2 + 2) = 2 (5.1) 
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The variation of the unsteady lift amplitude on B3 row confirms 

that the tangential distortions are due to blade row in the same 

frame of reference with a different count.  

Applying the circumferential DFT to the unsteady pressure time 

Fourier complex coefficients on the blade surface, the contribu-

tion of the different nodal diameters can be finally separated.   

Figure 5.7 shows the maximum value of the amplitude of the 

time-space Fourier coefficients of the BPFN1 on B3 blade surface 

decomposed into all the possible circumferential order m that 

will excite the corresponding NDs.  

   

Figure 5.7: Maximum unsteady pressure amplitude of BPFN1 of B3 

blade surface vs. circumferential order and nodal diameter 

The unsteady forces of the BPFN1 are generated by the circum-

ferential order m obtained by the main interaction with V3 and 

B3 (in the different frame of reference of the rotor), 

 

 𝑚 = 𝑁1 − 𝑁2 = −24 → 𝑁𝐷 = 24 (5.2) 
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that correspond to a positive nodal diameter. The sign on the 

ND is referred to the rotational direction of the spinning pertur-

bation compared with the rotational speed direction, and it is 

negative if the spinning perturbation runs forward respect to 

B3, whereas it is positive if the forcing runs backward respect 

to B3. Then, checking in the interference diagram of rotor B3, 

the Zig-Zag line corresponding to the OP1 corrected speed (Ta-

ble 4.1) intersects the frequency of the mode shape family inves-

tigated in the nodal diameter ND=24 as shown in Figure 5.8.  

 

Figure 5.8: B3 interference diagram OP1 condition 

5.2.1 Numerical approach comparison 
Unsteady simulations have been performed with both viscous 

Full Navier-Stokes and inviscid endwall setups. This has allowed 

to evaluate the effects that these two different approaches have 

on the extraction of the aerodynamic forcing functions and on 
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blade lift amplitude. Firstly, the comparison of the frequency 

spectrum seen by rotor B3 for both cases is shown in Figure 5.9.  

 

Figure 5.9: B3 spectrum frequency: Full Navier-Stokes vs inviscid 

endwall formulation 

Looking at the plot, some differences between two analyses are 

visible given that the inviscid endwall formulation has no grid 

refinement in the endwall regions leading to a minor blockage. 

To support this, the isentropic Mach distributions for three dif-

ferent blade spans have been reported in Figure 5.10. The only 

differences are at the hub and tip sections, 5% and 95% of the 

span respectively, where the two curves slightly diverge consid-

ering that inviscid endwall formulation cannot account for the 

development and transport of secondary flows. 
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Figure 5.10: Comparison of isentropic Mach distribution at 5%, 50% 

and 95% span 

Then, considering the result of the circumferential decomposi-

tion, the difference is also visible in the blade-to-blade variation 

of the unsteady lift amplitude (Figure 5.11). The Full Navier-

Stokes formulation shows higher values due to the secondary 

flow effects, but the sinusoidal trend is always observed.  
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Figure 5.11: Unsteady lift amplitude: Full Navier-Stokes vs inviscid 

endwall formulation 

5.2.2 Operative point change effects: inviscid 

endwall 
Once the two numerical approaches have been compared, the 

results for the two operating conditions investigated, design and 

off-design, have been analyzed with the inviscid endwall ap-

proach. Some difference can be observed as well. In off-design 

condition, the harmonic content of some frequencies decreases 

or even disappear, while other frequencies are more present, re-

vealing a greater contribution than the design condition, as 

shown by Figure 5.12. 
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Figure 5.12: B3 spectrum frequency: design vs off-design condition 

When analysing the unsteady lift amplitude on the rotor B3, 

the tangential distortion, due to the different blade count be-

tween blade rows in the same frame of reference, occurs but with 

widely different values (Figure 5.13). This difference is due to 

the re-stagger of the NGV profile that reduces the vane throat 

area at off-design condition. Consequently, the LPT rotor (B3) 

works with high incidence angle with respect to the design con-

dition. This leads to the onset of a small flow separation near 

the leading edge that is transported downstream during the ro-

tor motion and which impacts on the harmonic content (Figure 

5.12). 
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Figure 5.13: Unsteady lift amplitude: design vs off-design condition 

This higher difference in the unsteady lift amplitude value for 

the two operating conditions is justified by the different load to 

which the blade itself is subject, as seen from the isentropic 

Mach distribution shown in the Figure 5.14. 

 

Figure 5.14: Comparison of isentropic Mach distribution at 50% 

span  
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5.3 Modal work results 
The unsteady CFD analysis of the complete turbine domain has 

been performed to obtain the unsteady pressure fluctuation of 

rotor blade B3. Then, the spatial decomposition process has 

been applied to extract the unsteady pressure component that 

excites the ND=24, rotating in the forward direction. On the 

other hand, from the modal analysis, the modal displacements 

have been calculated for this nodal diameter. Finally, the last 

input for the forced response analysis is the total damping, that 

has been calculated starting from the amplification factor Q. In 

this work, the damping value is obtained applying a Q factor of 

100 coming from the experimental campaign. Entering all these 

inputs into the modal work tool, the scaling factor is calculated 

and applied to modal displacement and stresses.  

 

Figure 5.15: Pressure harmonic, modal displacements, and modal 

force blade contours 
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Table 5.2 summarized the main inputs and the final output for 

the forced response calculation by modal work approach. The 

comparison between the measured and calculated results ob-

tained shows a good agreement. The predicted response value 

falls between the experimental data range. The response of rotor 

blade B3 is safely below the response limit imposed. 

ND 

Normalized 

Frequency 

[-] 

Measured 

Q factor 

[-] 

Measured 

Response 

[𝝁𝜺] 

Predicted 

Response 

[𝝁𝜺] 

24 1.00 100  55-60 57.5 

Table 5.2: S3B rotor response 

5.4 Flutter results 
Lastly, the flutter stability assessment has been performed for 

all the fourth mode shape family (which include the ND=24 

mode shape previously analyzed) of rotor blade B3, as shown in 

Figure 5.8. The unsteady CFD flutter analysis has been carried 

out for all the even nodal diameters in order to reduce the com-

putational cost but, at the same time, to ensure a good discreti-

zation of the aerodynamic damping curve. Flutter results are 

shown in Figure 5.16 where the critical damping ratio 𝜉 curve 

is reported for the selected nodal diameters. Flutter stability can 

be detected for all nodal diameters range since all nodal diame-

ters show positive critical damping ratio values. The curve also 

highlights a quasi-symmetrical trend with respect to the ND=0.  
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Figure 5.16: Critical damping ratio curve 

Flutter analysis allows the computation of the aerodynamic 

damping values for each nodal diameter considered. As ex-

pected, a considerably lower value compared to the total damp-

ing one is obtained since for these blades the structural damping 

value is recognized to be higher than the aerodynamic one be-

cause of the presence of damping devices. 

For the investigated nodal diameter, the ND=24, the energetic 

damping coefficient surface density, defined in Eq. (4.1, is plot-

ted on the blade surface on pressure and suction side (Figure 

5.17). This quantity highlights where stable and unstable areas 

locally arise on the blade surfaces. Blue zones identify regions 

where the blade oscillation is locally damped by unsteady flow, 

while red zones individuate the regions where fluid flow is feed-

ing energy to the blade. The wide blue area confirms the stabil-

ity condition for the rotor blade B3 at the ND=24. 
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Figure 5.17: Energetic damping coefficient surface density for 

ND=24 
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6 Conclusions 

The development and the application of an integrated procedure 

for the aerodynamic and the aeromechanic design of axial gas 

turbine engines has been presented in this thesis. The purpose 

of this work is to analyze by means of numerical simulations the 

aerodynamic and aeromechanic design of a multi-stage axial tur-

bine in order to prevent and avoid any vibration issues due to 

forced response and flutter phenomena. Considering the current 

state-of-the-art, such an achievement could lead to a significant 

saving of time in the design chain iterations and to better and 

safer performing machines. 

This strategy begins considering the aerodynamic design phase 

necessary to evaluate the overall performance of axial gas tur-

bines. The study of the main design parameters of a turbine 

stage allow the definition of the flow function and the efficiency 

curves for both a single and the all turbine stages. In this con-

text, axial turbine maps are the final outcome of the preliminary 

design, used to select the best solution. A re-interpretation of 

these characteristics curves has been presented in order to pro-

vide a clearer and more intuitive use. Steady and unsteady CFD 

analyses are then performed to study the flow field structures 

and the main rotor/stator interactions. On the other hand, the 

aeromechanical design is carried out to predict forced response 

or flutter onset on turbomachinery components to eliminate 

HCF failures in the design phase. From FEM modal analyses, 

natural frequencies and mode shapes families of the blade row 

under investigation are obtained. The designer can use usual 

tools, like Campbell or ZZENF diagrams, to predict if reso-

nances are present. The last step is the forced response analysis, 
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with the blade row HCF life evaluation by means of the Good-

man’s diagram. These two sides of the overall design, aerody-

namic and aeromechanical, are combined with the use of numer-

ical simulations. In fact, unsteady CFD analyses allow a detailed 

study of the aerodynamic phenomena of a multi-row turbine 

and, at the same time, allows the extraction of the aerodynamic 

forcing functions necessary as input in a forced response analy-

sis. Furthermore, the modal force and flutter calculations are 

performed once the mode shapes displacements are transferred 

from solid to fluid domain.  

The activity has been carried out in the framework of the col-

laboration between the university research group led by Profes-

sor Arnone and the industrial partner Baker Hughes. This pro-

cedure has been applied on a heavy-duty LP turbine of the 

Baker Hughes family. Forced response calculation and flutter 

stability assessment have been performed on the rotor of the 

first stage (Stage 3) and the results, coming from the CFD sim-

ulations, have been compared with experimental measurements. 

CFD analyses are the focus of this work, while the modal and 

structural analyses come from a previous activity by Baker 

Hughes. All the numerical simulations have been performed 

with the in-house developed CFD code TRAF. Two different 

operating points have been investigated, the design and an off-

design condition. Starting from the discretization of the compu-

tational fluid domain, steady-state analyses have been carried 

out to closely match the experimental data and to initialize the 

unsteady analysis. Two different numerical approaches have 

been adopted, the inviscid endwall and the full-Navier Stokes 

formulation. The first one allows, where applicable, to consider-

ably reduce the computational cost of CFD analyses without 

losing the solution accuracy. Then, the full annulus unsteady 

analyses have been performed and post-processed applying a 
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DFT in time. Analyzing the frequency spectrum, which shows 

all the BPFs that excite the blade row, a blade-to-blade varia-

bility of the unsteady lift amplitude has been observed for dif-

ferent engine orders. This phenomenon is caused by the super-

positions of two or more rotating unsteady pressure waves that 

share the same frequency, but with different circumferential pat-

terns. Furthermore, looking at the unsteady lift amplitude dis-

tribution for the investigated BPF on rotor blade, a further var-

iation with a sinusoidal trend has been observed. This can be 

justified by the combination of spinning harmonics belonging to 

blade rows with different count in the same frame of reference. 

Finally, applying the DFT in space, the contribution of the dif-

ferent nodal diameters has been decomposed and the effect of 

the single nodal diameter can be evaluated. The analyses have 

demonstrated that the spatial content associated to the different 

time harmonics may be originated by Tyler-Sofrin acoustic in-

teractions, usually considered in aeroacoustics analysis only. 

The proposed approach allows to identify all the possible addi-

tional excitation sources present in a multi-row environment 

with respect to the traditional stator-rotor unsteady analysis 

that considers only the contribution of the main interactions. 

Similar conclusions have been obtained by comparing the results 

of the analysis with the two different numerical approaches and 

for the two different operative conditions.  

Finally, the forced response has been computed by means of the 

modal work approach which combines the blade mode shape 

displacements with the decomposed forcing functions, and the 

total damping. This latter input has been calculated from the 

amplification factor value provided by measured data. The pre-

dicted response value in terms of vibration stresses is in good 

agreement with the experimental data and the response of rotor 

is safely below the response limit imposed. A further result of 
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this work is the flutter stability assessment. The unsteady CFD 

flutter results, obtained using an uncoupled non-linear method, 

show positive critical damping ratio values for all nodal diame-

ters range, underlining a stable behavior for the investigated 

family. Moreover, this analysis confirms that the aerodynamic 

damping values are lower compared with the total damping ac-

quired during the experimental campaign. This seems to be con-

sistent, since structural damping value is much higher for this 

type of blade rows which include many types of dampers.  

Possible future works may involve the optimization of the inte-

grated procedure process, making it faster in order to further 

reduce computational time. This could open the possibility to 

be widely adopted in the industrial field to perform unsteady 

analyses of entire turbine domains faster and to obtain an aer-

omechanical design and a forced response assessment in a more 

reliable way. A further aspect to be included is the study of the 

impact of the cooling flows on the harmonic content, considering 

the high pressure turbine module. Source terms coming from 

cooling may modify the internal flow field, and this could lead 

to a variation of the amplitude of the forcing functions. 
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