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Abstract: Tree planting on abandoned agricultural land could both restore the soil quality and 

increase the productivity of economically valuable woody species. Here, we assess the impact of 

mixed-species tree plantations on soil quality at a site in Central Italy where tree intercropping 

systems were established 20 years ago on a former agricultural land. These intercropping systems 

include two species of economic interest, Populus alba and Juglans regia, and one of three different 

nurse trees, i.e., Alnus cordata, Elaeagnus umbellata, both of which are N-fixing species, and Corylus 

avellana. We measured tree growth and compared how soil organic matter, soil extracellular 

enzymes, and nematodes of different feeding groups varied among the intercropping systems and 

relative to a conventional agricultural field. Our results indicate that tree plantation led to an 

increase in soil carbon and nitrogen, and enhanced enzyme activities, compared with the 

agricultural land. The proportion of nematode feeding groups was heterogeneous, but predators 

were absent from the agricultural soil. Multivariate analysis of soil properties, enzymatic activity, 

nematodes, and tree growth point to the importance of the presence N-fixing species, as the 

presence of A. cordata was linked to higher soil quality, and E. umbellata to growth of the associated 

valuable woody species. Our findings indicate that intercropping tree species provide a tool for both 

restoring fertility and improving soil quality. 
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1. Introduction 

Cropland abandonment is an important process in many regions of the world and 

one of the dominant processes of land use change in Europe, where abandoned 

agricultural lands are estimated to cover between 20,277 and 211,814 km2 by 2040 [1]. 

Policies and management of these areas have spurred debate regarding the loss of 
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(traditional) agricultural landscapes and potential impacts on biodiversity and ecosystem 

services [2]. 

Multiple benefits are recognized to the revegetation of abandoned agricultural land, 

including hydrological regulation, mitigation of soil erosion, increased soil fertility, higher 

fungal biomass and decomposition activity, improved water quality, and carbon 

sequestration [3]. Tree plantation leads to recovery of microbial biomass [4] and to a 

higher availability of nutrients, such as N and P [5], from soil organic matter (SOM) 

mineralization. However, different woodland management types may have different 

ecological effects. Recent literature has shown the advantages of mixed-species plantation 

in comparison to pure stands in terms of nutrient cycling [6], soil fertility [7], biomass 

production [8], and carbon sequestration [9]. Mixed plantations are thus considered 

preferable to monocultures to maintain wood production while also promoting soil 

quality. The goal of such management is to combine different species to produce specific 

interactions that will increase stand-level productivity or individual-tree growth rates 

relative to monocultures. This enables the harvesting of products from different tree 

species on different rotations while reducing the risk of market shifts, or pest impacts, or 

some combination of both [10]. 

Mixed-species plantations containing nitrogen (N)-fixing species have the potential 

to increase the productivity and the ecophysiological performance of target tree species in 

comparison to monoculture [11] and to assist in the ecological restoration of degraded 

land [12]. Yet, there is comparatively scarce literature about the effects of mixed-species 

plantations on soil quality [13] in terms of chemical and biological characteristics. 

Symbiotic relationships with fungi and plant-associated microbes play key roles in tree–

soil feedbacks [14], and interactions between plants and the complex webs of soil biota, 

from saprophytic bacteria to invertebrate predators, are also important [15]. The 

abundance of soil organisms, the composition of their assemblages, and their interaction 

with environmental factors determine their contribution to ecosystem functioning [16]. 

Soil enzyme activities are sensitive indicators of functional changes in soil [17] as they 

have important functions in the C and nutrient (N, P, and S) cycling, as well as in the 

biochemical degradation of organic pollutants [18]. 

Soil microbial activity, in turn, is widely affected by soil fauna, including nematodes. 

Abundant and functionally diverse [19], nematodes are useful indicators of soil food web 

dynamics [20]. Herbivorous nematodes interact directly with plants by feeding on roots, 

while bacterivores and fungivores affect the soil microbial community and thereby 

regulate organic matter decomposition and release of nutrients [21]. These nematodes are 

fed upon by omnivorous and predatory nematodes, which thereby indirectly affect both 

plants and microbes. Soil nematodes and other soil invertebrates (e.g., collembola, mites, 

and enchytraeids) not only react sensitively to soil disturbance and changes in climate 

[22], but also exert feedback effects on plant growth and plant community structure [23], 

for instance by releasing nutrients locked up in dead organic matter or in microbes, thus 

increasing nutrient availability and productivity of plants [24]. As the responses of 

nematodes to changes and their subsequent effects on microbes and plants vary among 

nematode taxa and functional groups, the analysis of nematode community composition 

(e.g., based on diversity and abundance within and across trophic groups [25]) provides 

a tool for assessing the effects of soil disturbance on soil functions and can be used as a 

biomonitoring system. 

Given the complexity of soil–plant interactions [26], an integrated approach is 

essential to evaluate soil functioning along with tree productivity under different mixed-

species tree plantation types. This could support the identification of best practices to 

manage former agricultural soils. 

We hypothesize that mixed-species afforestation of a former agricultural soil will 

promote its biological activity compared with an adjacent active agricultural field (AL). 

We assess this hypothesis using univariate techniques and a multivariate approach based 

on the covariance between variables related to soil quality (i.e., organic carbon and 
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nitrogen, microbial activity by enzyme analysis, and nematode functional groups) and 

tree growth of target species (i.e., basal area increment). 

Furthermore, we hypothesize that plots with N-fixing nurse trees differ in terms of 

soil quality and in target species growth compared with plots without. Additionally, we 

expect different effects of native and non-native N-fixing nurse trees, as found by Vilà et 

al. (2011) [27]. 

2. Methods 

2.1. Study Site 

The experimental area is located near Brusciana, Tuscany, Central Italy (43°40′29″ N, 

10°55′21″ E), at 35 m a.s.l. The location has a mean annual precipitation of 850 mm and a 

mean annual temperature of 15 °C. The soils of the site developed on recent (Holocene) 

fluvial deposits and are Fluventic Haplustepts coarse-loamy, mixed, thermic of the U.S. 

Soil Taxonomy, according to the 1:250,000 soil map by Regione Toscana 

(http://sit.lamma.rete.toscana.it/websuoli/, accessed on 5 March 2021). In 1996, an 

experimental tree plantation was established for the production of wood on agricultural 

land. This plantation was polycyclic, i.e., different crop trees combining fast growing and 

rotation periods were planted together: (i) broadleaved crop trees with medium-long 

rotation (generally 20–30 years); (ii) crop trees with medium-short rotation (generally 10–

15 years), namely poplar clones; (iii) crop trees with short rotation (generally 3–7 years). 

Trees were planted at a fixed distance to reach commercially valuable size [28]. In this 

trial, two target broadleaved tree species widely used in Italy for timber production, 

poplar (Populus alba L., Salicaceae) and walnut (Juglans regia L., Juglandaceae), were 

planted together, using a triangular layout with a distance of 8 m (179 trees ha−1), and 

intercropped with N-fixing species, such as Elaeagnus umbellata and Alnus cordata and with 

another nurse shrub such as Corylus avellana, using a rectangular layout of 3.5 × 4 m2 (715 

trees ha−1) (Figure 1). No thinning was performed in the plantation. Planting plots (≈0.4 ha 

each) were compared using a randomized blocks design with three replicates: 

 

Figure 1. Planting layout of the different afforested plots (PJ, PJC, PJE, and PJA). 

1. Poplar and walnut (plots PJ), planted in a high-density mixture. 

2. Poplar and walnut intercropped with hazel (Corylus avellana L., Betulaceae) 

(plots PJC), a native shrub frequent in the surrounding forests. 
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3. Poplar and walnut intercropped with autumn olive (Elaeagnus umbellata 

Thunb., Elaeagnaceae) (plots PJE), an alien N-fixing shrub used in tree 

farming plantations for its high ability to fix nitrogen in the soil. 

4. Poplar and walnut intercropped with Italian alder (Alnus cordata (Loisel.) 

Duby, Betulaceae) (plots PJA), an N-fixing tree species common in Southern 

Italian forests and widely used in tree farming plantations. 

 

Soil samples were also collected from an adjacent active agricultural field (AL). 

2.2. Sampling 

The following sampling procedure was carried out in each field replicate (in both 

afforested and agricultural soil). In November 2018, in the centroid of each of the 0.4 ha 

planting plots, we designed a regular 12 × 12 m2 grid. At the central point of each grid and 

at four microsites 6 m away (in the direction of the cardinal points), we collected mineral 

soil with a core sampler (diameter 5 cm; length 10 cm) to a depth of 10 cm, resulting in an 

overall sample size for soil analyses of 75 (i.e., 5 soil cores × 3 field replicates × 5 treatment 

plots). Within each tree planting plot, four dominant trees of P. alba and four trees of J. 

regia were sampled using a 5.1 mm diameter Haglof increment borer, collecting two cores 

per tree at an angle of 120° from each other. 

It should be taken into account that sampling error may have been comparatively 

large due to small sample size [29]. 

All the P. alba and J. regia presented in the plots were alive and of comparable 

diameter and height (tree height and mean diameter at breast height, respectively, 43 ± 6 

cm and 22 ± 3 m P. alba; 17 ± 3 cm and 12 ± 2 m, J. regia). 

2.3. Physical and Chemical Soil Analysis 

Once in the laboratory, the soil samples were air-dried and then sieved to remove 

rock fragments (>2 mm). Soil pH was measured potentiometrically using a 2.5:1 (v/w) 0.01 

M CaCl2 solution to soil ratio. Particle size distribution was determined by the hydrometer 

method on one combined sample per plot (i.e., three replicates per stand type), obtained 

by bulking equal aliquots from each plot. Soil bulk density was measured by dividing the 

weight of the undisturbed core samples, after drying at 105 °C in an oven to constant 

weight, by the volume of the steel cylinder of the sampler. 

Soil organic matter (SOM) was determined gravimetrically by incineration in a 

muffle furnace at 375 °C for 16 h [30]. Total carbon and nitrogen (TC and TN) were 

determined by dry combustion on an elemental analyser (Elementar Analysensysteme 

GmbH, Vario EL III from Elementar, Langenselbold, Germany) [31], while total inorganic 

carbon (TIC) was measured volumetrically using a Scheibler calcimeter [31]. Total organic 

carbon (TOC) was calculated as the difference between TC and TIC. All chemical variables 

were determined in each plot on 5 field cores and 3 laboratory replicates. 

2.4. Biological Analysis 

Enzyme activities were measured in fresh soil stored at −80 °C [32] by 

spectrophotometric methods, using 4-nitrophenyl-β-D-glucopyranoside as a substrate for 

β-glucosidase activity (EC 3.2.1.21) [33], 4-nitrophenyl phosphate 

bis(cyclohexylammonium) salt as a substrate for acid phosphomonoesterase activity (EC 

3.1.3.2) [34], and urea as a substrate for urease activity (EC 3.5.1.5) [35]. Fluorescein 

diacetate hydrolase (FDAH) activity was determined according to Green et al. (2006) [36]. 

Each enzyme activity was tested in each plot on 5 field cores and 3 laboratory replicates. 

Enzyme activities are reported as μmol (for urease in μg) of product developed in one 

hour per gram of dry matter. 

The AI3 index, as validated by Puglisi et al. (2006) [37], is calculated by a linear 

combination of three different enzymes as follows: 



Forests 2021, 12, 842 5 of 17 
 

 

AI3 = 7.87 β-glucosidase (μmol pNP g−1 d.w. h−1) − 8.22 acid 

phosphomonoesterase (μmol pNP g−1 d.w. h−1) − 0.49 urease (μg N-NH4+ g−1 

d.w. h−1) 

(1)

This index is used to assess the quality of soils affected by various forms of 

degradation such as irrigation with saline water, contamination by heavy metals, organic 

fertilizer, erosion, and contamination by industrial and/or urban waste, as well as forest 

soils [32]. High values indicate a low soil biological quality [37], while the index usually 

assumes negative values in high-quality soils. 

2.5. Nematodes 

Soil nematodes were extracted from 50 g fresh soil aliquots using Baermann funnels 

over 3 days. The aliquots were obtained by mixing together 10 g of soil from each field 

replicate, in order to obtain a pool. Each aliquot was then divided in two replicates of 25 

g each. Nematodes collected in water were removed daily and stored at 4 °C prior to 

identification. Within 5 days of extraction, the nematodes were counted and identified 

using an optical microscope (Leica DMLS, Wetzlar, Germany; 100× magnification). Based 

on morphology, they were allocated to the following feeding groups: bacterivores, 

fungivores, herbivores, omnivores, and predators [38]. A few individuals that could not 

be assigned with confidence to any of the above were classified as unknown. 

2.6. Tree-Ring Measurement and Basal Area Increment of Individual Trees at the Species Level 

The core wood samples were air-dried and then polished with a series of successively 

finer sand-paper grits until rings were clearly visible. Tree rings were measured to the 

nearest 0.01 mm using a binocular stereoscope and a LINTAB measuring device 

(Rinntech, Heidelberg, Germany). Cross-dating of the tree-ring series was checked using 

the program COFECHA [39]. 

Basal area increment (BAI) of both target species, J. regia and P. alba, was calculated 

as the average accumulated increment of the tree rings following the equation: 

BAIt = πr2t − πr2t−1 (2)

where BAI at year t is equivalent to the annual ring area, rt is the stem radius at the end of 

the annual increment, and rt−1 is the stem radius at the beginning of the annual increment. 

BAI series were used as they minimize the effect of tree size and age on annual growth 

trends while retaining the high- and low-frequency signals contained in the tree ring series 

(see Battipaglia et al. (2017) [11] for details), unlike ring width series and with the 

exception of the first years (3–5 years) of increasing juvenile growth rates. 

2.7. Statistical Analyses 

One-way analysis of variance (ANOVA) was used to test the effects of the different 

stands on the response variables, followed by Tukey’s post-hoc test (α = 0.05). The model 

residuals were checked for normality and homogeneity of variance. In order to investigate 

patterns of covariance between soil biological data (i.e., enzyme activities and proportion 

of nematode functional groups) and tree basal area, we employed a multivariate statistic 

known as Two-Block Partial Least Squares (2B-PLS). This statistical approach can provide 

reliable inference when dealing with matrices that have a comparatively low sample size 

as well as highly correlated variables [40,41]. This technique has recently been applied in 

several ecological contexts [32,42,43]. Patterns of covariance between the two matrixes can 

be represented by a scatterplot for the first axis of the 2B-PLS, where the x-axis and the y-

axis represent the two multivariate matrixes, respectively. Patterns of positive or inverse 

correlation can be asserted both within and between matrixes. All analyses were done in 

R 3.6.1 [44], using packages ‘plsdepot’ and ‘ggplot2′. Results are reported as mean ± 

standard error. 
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3. Results 

3.1. Soil Properties 

Soil texture was mostly sandy loam. The contribution of the clay fraction was rather 

homogeneous in the different stands, ranging between 15% and 20% of the total mineral 

mass (Table 1). However, there were some differences in terms of sand and silt fractions. 

In particular, PJA stands had the lowest sand content and AL had the highest silt content. 

In spite of these differences in particle size distributions, soil bulk density was virtually 

the same throughout the investigated area. Soil pH was neutral and did not differ 

significantly between the stands, while it was slightly higher in AL. 

Table 1. Soil particle-size distribution, bulk density, and pH of the investigated tree stands and the 

arable land. Site labels: PJ = white poplar and common walnut; PJC = PJ intercropped with 

common hazel; PJA = PJ intercropped with Italian alder; PJE = PJ intercropped with autumn olive; 

AL = agricultural land. Values are mean and standard deviation (n = 5 for soil particle-size 

distribution and 15 for bulk density and pH). Superscript letters indicate significant differences 

within means in the column according to one-way ANOVA at p ≤ 0.05 and Tukey’s test. 

Stand Sand Silt Clay Bulk Density pHCaCl2 
 % % % kg dm−3  

PJC 59.5 ± 5.5 a 25.6 ± 7.9 a 14.9 ± 2.6 a 1.4 ± 0.1 a 7.0 ± 0.2 a 

PJE 53.7 ± 3.8 abc 29.4 ± 1.4 ab 16.9 ± 3.2 a 1.5 ± 0.2 a 7.1 ± 0.2 a 

PJA 37.5 ± 8.2 b 42.4 ± 6.7 b 20.0 ± 2.0 a 1.4 ± 0.2 a 7.0 ± 0.2 a 

PJ 43.7 ± 5.3 c 38.0 ± 4.3 b 18.3 ± 3.2 a 1.4 ± 0.1 a 7.0 ± 0.1 a 

AL 68.7 ± 6.4 a 15.1 ± 8.2 a 16.2 ± 1.9 a 1.5 ± 0.1 a 7.3 ± 0.2 b 

Overall, soil TC, TN, and SOM contents were higher in the tree stands than in AL 

(Table 2). Among the stands, PJE had the smallest TC and TOC values, and PJA the highest 

TC, TN, and TOC. Soils supporting the N-fixing species (PJA and PJE) were the poorest 

in TIC, while the arable soil (AL) was the richest. 

Table 2. Soil chemical properties of the investigated tree stands and the arable land (see Table 1 

for site labels). Values are mean and standard error (n = 15). Superscript letters indicate significant 

differences within means in the column according to one-way ANOVA at p ≤ 0.05 and Tukey’s 

test. 

Stand 
SOM TC TN TOC Corg/N TIC 

mg g−1 mg g−1 mg g−1 mg g−1  mg g−1 

PJC 34.6 ± 2.46 a 32.6 ± 1.19 ab 1.3 ± 0.08 b 17.4 ± 1.17 ab 13.4 ± 0.55 a 15.1 ± 0.40 abc 

PJE 34.0 ± 1.59 a 28.7 ± 0.73 bc 1.4 ± 0.05 ab 14.5 ± 0.82 b 10.2 ± 0.27 b 14.2 ± 0.34 bc 

PJA 35.0 ± 1.21 a 33.3 ± 1.86 ab 1.8 ± 0.12 a 19.1 ± 1.83 a 10.6 ± 0.28 b 14.2 ± 0.85 c 

PJ 35.8 ± 1.20 a 32.9 ± 0.87 a 1.5 ± 0.07 ab 16.4 ± 0.78 ab 11.0 ± 0.41 b 16.5 ± 1.07 ab 

AL 20.4 ± 1.06 b 25.7 ± 0.59 c 0.8 ± 0.03 c 8.3 ± 0.22 c 10.5 ± 0.29 b 17.4 ± 0.73 a 

3.2. Soil Enzymatic Activities 

Fluorescein diacetate hydrolase (FDAH) rates were highest in the presence of 

nitrogen-fixing species (PJA and PJE stands, with mean values and standard error 0.26 ± 

0.028 and 0.22 ± 0.008 μmol fluorescein/g d.w./h, respectively) (Figure 2). The lowest 

FDAH activity was found in AL (0.14 ± 0.007 μmol fluorescein/g d.w./h), and PJ and PJC 

were in between (0.19 ± 0.008 and 0.18 ± 0.01 μmol fluorescein/g d.w./h). 

The activity of the enzymes β-glucosidase, urease, and acid phosphomonoesterase 

was about twice as high in the tree stands as in AL (Figure 3). 

There was no difference between the tree plantation plots for β-glucosidase (AL: 

0.024 ± 0.001; PJ: 0.05 ± 0.003; PJC: 0.04 ± 0.004; PJA: 0.05 ± 0.004; PJE: 0.04 ± 0.003 μmol 

pNP/g d.w./h) and urease (AL: 8.517 ± 1.114; PJ: 24.303 ± 3.576; PJC: 22.495 ± 2.243; PJA: 

34.277 ± 3.561; PJE: 18.568 ± 1.229 μg N-NH4+/g d.w./h). In terms of acid 

phosphomonoesterase, PJ (0.048 ± 0.003 μmol pNP/g d.w./h) and PJC (0.037 ± 0.002 μmol 
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pNP/g d.w./h) were different, while the PJA and PJE plots were similar to each other but 

different from the other plots (Figure 3). 

Overall, enzymatic activities were twice as high in the tree plantation plots as in the 

agricultural field. As a result, the AI3 index calculated from the three enzyme activities 

was highest in AL, indicating lower soil biological quality (Figure 3). This suggests that 

tree plantations improved soil quality. 

 

Figure 2. Violin plot of the fluorescein diacetate hydrolase (FDAH) activity in the tree stands and 

agricultural land plots (see Table 1 for site labels). Different letters indicate significant differences 

(p ≤ 0.05, Tukey’s post-hoc test following one-way ANOVA). 

 

Figure 3. Violin plot of the enzymatic activities in the tree stands and agricultural land plots (see Table 1 for site labels). β-

glucosidase; acid phosphomonoesterase; urease; AI3 index. Different letters indicate significant differences (p ≤ 0.05, 

Tukey’s post-hoc test following one-way ANOVA). 
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3.3. Nematodes 

Herbivores were the nematode functional group with the highest abundance overall, 

with the maximum relative proportion in PJ (0.59) and PJE (0.66), followed by 

bacterivores, with the greatest relative abundance in AL (0.49) and PJC (0.45) (Figure 4). 

The highest proportion of fungivores was found in AL (0.10) and PJ (0.8), while omnivores 

were more abundant in PJC and PJE (0.05). Generally, predators were the least 

represented group, ranging from none in AL to 0.04 in PJC. The proportion of unknown 

was low across land uses (min. 0.01 in AL, PJ, PJE and max 0.03 in PJC). Overall, the 

agricultural field tended to have higher relative abundance of bacterivores and fungivores 

compared with the tree plantations, but the differences were not statistically significant. 

 
Figure 4. Nematode functional group composition (relative proportion) in the tree stands and agricultural land plots (see 

Table 1 for site labels). 

3.4. Basal Area Increment (BAI) 

For both target tree species J. regia and P. alba (Figure 5a,b), BAI was highest in the 

intercropping with E. umbellata (PJE). PJC and PJA stands had similar BAI (possibly with 

an outlier in PJA determining this similarity) and distinct from PJE and PJ. Finally, the PJ 

stand was also distinct from PJE (despite an outlier). 
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Figure 5. Violin plot of the basal area increment (BAI) of (a) Juglans regia and (b) Populus alba trees expressed in mm2. 

Different letters indicate significant differences (p ≤ 0.05, Tukey’s post-hoc test following one-way ANOVA). See Table 1 

for site labels. 

3.5. Two-Block Partial Least Squares Analysis 

The 2B-PLS (Figure 6) separated the PJE plot from the other plots. Considering the 

large degree of variability within plots (as shown by the error bars), on the y-axis (i.e., 

basal area increment) PJA, PJC, and PJ were largely overlapping. On the x-axis (i.e., 

biological data), instead, PJA was marginally distinct from PJC and PJ. The correlation 

coefficients within and between blocks indicated that PJA (and to a lesser extent PJC and 

PJ) had lower cumulative basal area compared with the other stands; this was inversely 

correlated with the enzyme activities of β-glucosidase, acid phosphomonoesterase, and 

urease as well as the proportion of unknown and bacterivore nematodes. On the other 

hand, PJE was different, showing the highest cumulative basal area, which was linked to 

the highest AI3 values and positively correlated with the proportion of predatory and 

herbivore nematodes. Overall, considering that higher AI3 values are linked to lower soil 
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quality, a difference between PJA and PJE was found: PJA showed a higher soil quality 

but lower tree growth, while the opposite was true for PJE. Enzyme activities and 

functional abundance of nematodes were consistent with this pattern. FDAH and the 

proportion of omnivore and fungivores nematodes had a low correlation coefficient 

within Block 1, indicating that these variables contribute poorly to the observed pattern 

of covariance. 

 

Figure 6. Scatterplot for the first axis of the 2B-PLS. Points are mean ± standard error across Block 1 (biological data) and 

Block 2 (basal area increment). The insets show the correlation within and between blocks of the variables. 

4. Discussion 

4.1. Soil Properties 

Soil pH may respond rapidly to afforestation because of the change in the base cation 

cycle and the addition of plant residues [45], which also lead to higher accumulation of 

organic matter in soil [46]. Therefore, the slight but significantly lower pH we measured 

in the tree plantation plots compared with the agricultural land was plausibly due to 

higher plant uptake of base cations [45] and higher organic residue deposition and 

decomposition, which imply a net input of protons to the soil [47]. N-fixing trees promote 

soil acidification in mixed stands because of both greater nitrate leaching and release of 

strongly acidic soil organic matter (SOM) [48]. In our study, however, soil pH clustered 

around neutrality. 

The tree plantation soils showed significant differences from AL in terms of all the 

other investigated soil abiotic properties, i.e., TC, TOC, TN, and SOM. Previous research 

highlighted that changes in land use influence soil fertility and quality indicators because 

of subsequent alterations in abiotic and biotic factors along with SOM stabilization [49]. 

Land use change alters C and N inputs and dynamics [50], which subsequently regulate 



Forests 2021, 12, 842 11 of 17 
 

 

microbial processes and soil physical and chemical features [51]. Afforestation of arable 

lands has been shown to enhance soil C stocks, albeit only in the long term [52]. In fact, 

whereas tillage destroys the soil structure, enhancing organic matter mineralization and 

CO2 emissions [53], afforestation implies a continuous input of above-ground and root 

litter [46]. In this study, we found differences between the tree stands and the arable field 

in terms of TOC and TN, as well as SOM content, despite the relatively short time since 

the tree plantations’ establishment. The differences between the different tree mixtures 

were smaller. The PJA stands, with alders, showed the highest soil TC, TOC, and TN 

contents, consistently with Chiti et al. (2007) [54] and Chodak and Niklinska (2010) [55]. 

Alder is symbiotic with N-fixing actinomycetes and promotes soil N enrichment, leading 

to nutrient-rich litter and higher soil fertility [56]. Symbiotic N fixation may increase not 

only soil TN but also TOC [57], as a result of both the slower decomposition rate of 

humified organic matter and greater C inputs [58]. Innangi et al. (2017) [43] showed that 

Italian alder leaf litter has low lignin and high ethanol extractable contents, which 

promote a fast litter decomposition rate and, consequently, a high quantity of soil TOC 

that can build up as microbial C [59]. The stands without N-fixing species, i.e., PJ and PJC, 

gave contrasting results in terms of soil Corg/TN ratio; we expected this ratio to be higher 

here than in the other stands, but this was true only for PJC. 

4.2. Enzymatic Activities and Soil Quality 

All enzymatic activities had lower values in AL compared with tree stands, except 

the acid phosphomooesterase in PJC (Figures 2 and 3). The enhanced enzymatic activities 

could be attributed to the increase in soil TOC and TN stocks due to plant residue inputs 

with afforestation [60], as this provides more substrate for microbial assimilation [61]. 

Overall, soil microbial activity was not significantly different under N-fixing and 

non-N-fixing trees, except for FDAH (Figure 2) and acid phosphomonoesterase (Figure 

3). Similarly, previous studies found no difference in microbial community activity 

between the non-N-fixing Pseudotsuga menziesii (Mirb.) Franco and N-fixing Alnus rubra 

Bong. trees in the forest of northwestern North America [62], or in microbial biomass C 

and N under Acacia mangium Willd. compared with Eucalyptus grandis W. Hill in a 20-

month-old mixed-species planting in Brazil [63]. Nonetheless, in the latter case, there was 

significantly more dehydrogenase enzyme activity under A. mangium than E. grandis, 

suggesting some differences in the microbial community activity underneath these N-

fixing and non-N-fixing tree species. Our results on soil enzymatic activity are in 

agreement with Bini at al. (2013) [63] since FDAH, as well as dehydrogenase, has usually 

been considered a good indicator of microbial biomass in soils [42]. 

While FDAH was higher in the presence of nitrogen-fixing species, acid 

phosphomonoesterase increased with C. avellana. Acid phosphomonoesterase is involved 

in P cycling as it catalyzes the hydrolysis of organic P esters to inorganic P [64]. Since the 

synthesis of phosphomonoesterase may be suppressed by the presence of inorganic P, 

high phosphomonoesterase activity in PJC could indicate insufficient P supply [55]. 

The activity of several soil enzymes is considered a reliable indicator of soil quality 

under different tillage practices and soil management [65]. This is supported by our 

findings. The AI3 index, based on enzymatic activities, showed that establishment of 

mixed-tree intercropping systems increases the quality of the soil compared with the 

agricultural field (Figure 3). Although the mixtures in our study have a low number of 

species, this result is consistent with the finding by Lange et al. (2015) [66] that tree species 

diversity can increase SOM and biochemical properties, presumably via higher root 

inputs and other yet unidentified mechanisms. 
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4.3. Nematodes 

Microfauna grazing on microorganisms, such as nematodes, affects the growth and 

metabolic activities of microorganisms and alters the microbial community, thus 

regulating rates of decomposition [67] and nutrient mineralization [68]. Our study 

showed a heterogeneous pattern among the different forest associations, particularly 

regarding whether herbivores and bacterivores dominated the community. Yeates and 

Bongers (1999) [69] showed a dominance of bacterivores for both Populus and Alder soils 

(0.43 and 0.80, respectively), while herbivores had lower proportions (0.27 Populus; 0.07 

Alder). In our study, the only intercropping system in line with these results is PJC, where 

the proportion of bacterivores was slightly higher than that of herbivores. By contrast, in 

PJE herbivores were more than three times as abundant as bacterivores. Armendàriz and 

Arpin (1996) [70] found a greater relative abundance of bacterial feeder nematodes during 

the first stages of colonization of the soil community succession, while an increase in 

plant-feeders was observed later. However, the stands in our study were established in 

the same year and had generally similar soil properties. The greater abundance of 

herbivores in PJE could be due to the higher tree biomass, the presence of the alien N-fixer 

E. umbellata, and/or due to unmeasured soil or biological properties. Regardless of the 

causes, the pattern suggests a greater energy flow from living roots to the soil food web 

in PJE than in PJC. Laboratory experiments and field studies have demonstrated that 

nematodes that feed on bacteria and fungi play important roles in influencing the 

turnover of soil microbial biomass and, thus, the availability of plant nutrients [15]. 

Differences in relative abundance of bacterial-feeding and fungal-feeding nematodes 

reflects differences in decomposition pathways or channels [71]. 

Plant-feeding nematodes have been reported to be more sensitive to changes in plant 

community composition than other groups of nematodes, presumably due to their 

selective feeding on certain host plants [67,69]. In fact, a global analysis of nematode 

communities found that edaphic factors (such as sand content and pH) were stronger 

predictors of communities dominated by bacterivores, whereas vegetation cover was 

predictive of herbivore-dominated communities [19]. The dominance of bacterivore 

nematodes in the agricultural soil in our study is in line with results of Yeates and Bongers 

(1999) [69], who found that bacterivores dominated with a relative proportion of 0.43 in a 

ploughed corn/soybean rotation cultivated field. Bacterivore abundance generally 

increases with the incorporation of cover crop residues, often attributed to the increase in 

bacterial biomass after cover crop additions [72]. However, in the study of Yeates and 

Bongers (1999) [69], the relative proportion of fungivore nematodes was much higher 

(0.27) than in the agricultural soil of our study (0.10). The greater relative quantity of other 

groups could be explained by the fact that fungi and fungivore nematodes are more likely 

to regulate decomposition of surface residues in no-till soils, whereas bacteria and 

bacterivorous nematodes regulate decay rates in incorporated residues in conventional-

till soils [67], as in our case. Lastly, we found few predatory nematodes overall, but they 

were notably absent only from the agricultural plots, suggesting a more mature food web 

in the tree plantations. 

4.4. Basal Area Increment 

Tree growth is influenced by a wide variety of factors. Although we sampled trees in 

the centre of each plot, our results could be influenced by the limited extension of the plots 

and by edge effects, in which conditions near the boundary of two habitats differ from the 

interior. This can affect tree community composition, structure, and possible tree 

mortality [73,74]. However, mixed plantations, which are often more productive than 

monocultures [75], are characterized by pluri-stratified canopies that may increase light 

availability for the species in the dominant layer [76]. Elaeagnus umbellata is a shrub; hence, 

it does not compete for light with larger, economically valuable tree species, while at the 

same time enriching soil in nitrogen as it is an N-fixing species. As reported by Forrester 
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et al. (2006) [76], regarding the availability of N-fixing species at stand level, once N has 

been transferred to the non-N-fixing species, this can result in higher CO2 assimilation 

rates [77]. However, our study showed that PJA had lower basal area values for both 

target species (Figure 5a,b) compared with PJE. 

Battipaglia et al. (2017) [11] reported a significant increase in basal area in Quercus 

robur L. growing together with the native N-fixing species A. cordata. Mixing valuable tree 

crops such as J. nigra L. or J. regia with N-fixing E. umbellata can improve tree growth 

performance of the former species as a result of increased soil N mineralization rates [78]. 

Panshke et al. (1989) [79] estimated N mineralization rates in a 19-year-old intercropping 

of black walnut (J. nigra) with N-fixing autumn olive (E. umbellata.) or black alder (A. 

glutinosa) and in pure walnut plantings at two locations in Illinois, USA. Walnut size was 

highly correlated with soil N mineralization, particularly soil NO3-N production in a plot. 

Total N and TOC contents were smallest in Elaeagnus interplantings at both sites, in 

concordance with our results, but NO3-N concentration was higher in the Elaeagnus plot 

than in the Alnus plot. Khamzina et al. (2009) [78] also showed that the increase in plant-

available soil N was significantly higher in Elaeagnus angustifolia L. plots than in Populus 

euphratica Oliv. and Ulmus pumila L. plots. All this suggests that Elaeagnus favours the 

formation of N-NO3, which, in turn, could positively affect the growth of target species. 

4.5. Overall Trends 

The plots with N-fixing species were markedly different, as highlighted by the 2B-

PLS (Figure 6). While PJA was distinguished by its higher enzymatic activity values and 

higher soil quality as indicated by AI3 index, PJE was distinct because of its lower soil 

quality but higher BAI values. A key difference between the two N-fixing species lies in 

the fact that E. umbellata is an exotic species. Large differences in microbial community 

have been reported in ecosystems invaded by exotic N-fixers [80]. Several alien plant 

species have been shown to decrease local plant species diversity, increase ecosystem 

productivity, and alter the rate of nutrient cycling [81]. As a strong impact on nutrient 

cycling affects plant performance (e.g., plant resource allocation, plant competitive ability, 

plant resistance to herbivores, etc.) and, hence, community structure, Vilà et al. (2011) [27] 

assumed alien N-fixing plants to have greater community impacts than alien non-N-fixing 

species. Ge et al. (2018) [82] found that adding root extracts of the alien species 

Alternanthera philoxeroides (Mart.) Griseb. to the soil significantly decreased the soil 

microbial community activity and the relative abundance of microorganisms. Liang et al. 

(2016) [83] showed that allelochemicals released by invasive species might not only affect 

seed germination, root growth, and biomass of native plant species, but also impact soil 

enzymatic activities, soil microbial community, and soil functions, thus both directly and 

indirectly affecting the growth and development of native plants. However, further 

analyses are needed to clarify the reasons for the different results we obtained in the 

presence of a native and non-native N-fixing species. 

5. Conclusions 

Our results suggest that the afforestation of arable soils is a valid strategy for 

improving soil quality. Soil C, N, and enzymatic activities were all greater in the tree 

plantations than in the agricultural soil. As expected, the presence of N-fixing species had 

an impact on both the above-ground and below-ground compartments. As shown by the 

multivariate analysis, the non-native N-fixing Elaeagnus umbellata improved the growth of 

both Populus alba and Juglans regia, the target species, and supported a relatively high 

abundance of herbivorous nematodes. The native N-fixing species Alnus cordata, on the 

other hand, was associated with higher soil quality than E. umbellata. These findings 

suggest potential trade-offs to consider when selecting which tree species to use in 

mixture plantations, as some promote the growth of the target tree species while others 

promote soil chemical and biological quality. Nevertheless, our results support the use of 

mixed-tree plantations in the afforestation of former agricultural land both to restore soil 
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quality and ensure an economic yield. We suggest that increasing tree growth and 

reducing the rotation length of the target species in the mixed plantation may be sufficient 

to offset the increased costs associated with planting and managing a mixed-species 

plantation. 
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