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ABSTRACT: 

Monoclonal antibodies (mAbs), either mono- or bispecific (bsAb), represent one of the most 

successful approaches to treat many types of malignancies. However, there are certain limitations to 

the use of full length mAbs for clinical applications, which can be overcome by engineered 

antibody fragments. The aim of the present study was to develop a small bsAb, in the format of a 

single-chain diabody (scDb), to efficiently target two proteins, the hERG1 potassium channel and 

the 1 subunit of integrin receptors, which specifically form a macromolecular complex in cancer 

cells. 

We provide evidence that the scDb we produced binds to the hERG1/1 complex in cancer cells 

and tissues, whereas does not bind to the hERG1 channel in non-pathological tissues, in particular 

the heart. The scDb-hERG1-1 (1) downregulates the formation of the hERG1/1 complex, (2) 

inhibits Akt phosphorylation and HIF-1 expression and (3) decreases cell survival, proliferation 

and migration in vitro. These effects only occur in cancer cells (either colon, pancreatic or breast), 

but not in normal cells. In vivo, the scDb-hERG1-1 shows a good pharmacokinetic profile, with a 

half-life of 13.5 hours and no general, cardiac or renal toxicity when injected intravenously up to 

the dose of 8 mg/Kg. The scDb-hERG1-1 accumulates into subcutaneous xenografted tumors, 

arising from either colon or pancreatic human cancer cells, and induces a reduction of tumor growth 

and vascularization.  

Overall, the scDb-hERG1-1 represents an innovative single-chain bispecific antibody for 

therapeutic applications in solid cancers which over express the hERG1/1 integrin signaling 

complex.  
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INTRODUCTION 

Over the past twenty years, therapeutic antibodies have rapidly become the leading product within 

the biopharmaceutical market (1,2). Particularly relevant has been the development of bispecific 

antibodies (bsAbs), which nowadays represent a breakthrough in cancer immunotherapy (3,4). First, 

by combining a tumor-targeting binding site with one that binds to specific immune cells, bsAbs 

present enhanced tumor killing capability (5). Second, by interacting with two different cell-surface 

antigens, bsAbs can simultaneously modulate two different signaling pathways (6), or increase the 

binding specificity to cancer cells, thus improving the efficacy and specificity of antibody drug 

conjugates (ADC) (7). Indeed, more than 30 bsAbs are actually in clinical development (8). 

However, treating solid tumors with full length antibodies is hampered by their inefficient delivery 

to tumors, mainly because of the properties of the immunoglobulin molecule itself. This results in 

both heterogeneous distribution inside tumors and body, and possible occurrence of systemic toxic 

effects (9).  Such issues have been addressed by developing much smaller antibody fragments, 

which overall have an increased vascular permeability, and diffuse more rapidly into tumors (10).  

Current effort is directed at developing novel bsAbs formats, which better penetrate into cancer 

tissues, and more efficiently recognize their target(s) and modulate appropriate signaling pathways. 

In this scenario, either established or novel tumor specific antigens are employed (11). 

We have recently discovered a novel oncological target: the complex between the potassium 

channel encoded by the ether-à-go-go–related gene 1 (hERG1) and the 1 subunit of integrin 

adhesion receptors (1 integrin) (12-14). hERG1 is physiologically expressed in human 

cardiomyocytes, where it represents the molecular correlate of the repolarizing current IKr (15), and 

in other excitable cells, such as neurons and insulin-secreting pancreatic beta cells (16). 

Furthermore, hERG1 is mis- and over-expressed in several types of human cancers (reviewed in 

17).  In tumors, hERG1 resides in a peculiar conformational state, strictly bound to the 1 integrin, 

within a macromolecular complex where the two proteins are at a distance less than 1 nm (14). This 
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does not occur in the heart, where hERG1 is bound to classical accessory subunits, such as the 

potassium voltage-gated channel subfamily E regulatory subunit 1 KCNE1 (14). In cancer cells, the 

hERG1/1 integrin complex is triggered by integrin-mediated adhesion to proteins of the 

extracellular matrix (12,13,18) which leads to the activation of intracellular signaling pathways, 

mainly centered on PI3K and Akt (19). These signaling pathways in turn control cancer cell 

survival, proliferation and migration, and promote tumor progression and metastatic spread (20). 

Hence, the hERG1/1 complex represents a tumor-specific antigen (14,20), whose therapeutic 

targeting would produce favorable antineoplastic effects while avoiding the occurrence of the 

typical cardiac side effects produced by hERG1 current’s blockers (21, 22).  

To investigate this possibility, we designed a bispecific antibody in the format of a single-chain 

Diabody (scDb). Diabodies are a peculiar class of bsAbs, being small antibody fragments with two 

antigen-binding sites which reside in a bivalent scFv dimer (23, 24). Because of their small size, 

scDbs can penetrate into cancer tissues, and simultaneously bind to the hERG1/1 integrin complex 

on the plasma membrane of cancer cells, hopefully harnessing the complex and its downstream 

signaling effects. 

We provide here evidence that the scDb-hERG1-1 efficiently binds to the hERG1/1 integrin 

complex in cancer cells, whereas does not bind to the hERG1 channel in the heart. In this way, the 

scDb-hERG1-1 exerts significant anti-neoplastic activity, both in vitro and in vivo. Our results 

indicate a potential anti-cancer approach for those cancers which over-express the hERG1/1 

integrin complex.  
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MATERIALS AND METHODS 

Cell Culture 

HEK293, PANC-1, MIA PaCa2 and HCT116 cells were obtained from the American Type Culture 

Collection (ATCC); MDA-MB-231 were a kind gift of Prof. M.B.Djamgoz (Department of Life 

Sciences, Imperial College, London); SH-SY5Y and GD25 cells were a kind gift of Prof. P. 

Defilippi (Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy). 

Cells were routinely cultured at 37 °C with 5% CO2 in a humidified atmosphere, in RPMI 

(Euroclone) (HCT116, SH-SY5Y cells) or in Dulbecco’s modified Eagle’s Medium (DMEM; 

Euroclone) (HEK293 PANC1, MIA PaCa-2 and MDA-MB-231), supplemented with 2% L-Glut 

and 10% (5% for MDA-MB-231 cells) fetal bovine serum (FBS, Fetal Bovine Serum EU 

Approved, Euroclone, Pero, Italy). We certify that all the cell lines used in the present study were 

routinely screened for Mycoplasma contamination, and only Mycoplasma negative cells were used. 

HEK293 cells and MDA-MB-231 cells expressing the hERG1 construct were prepared as 

previously described (14), and maintained in complete culture medium supplemented with either 

0.8 mg/ml (for HEK293 cells) or 2.0 mg/ml (for MDA-MB-231 cells) of Geneticin (G418, Thermo 

Fisher Scientific, Waltham, MA). Transient transfection of GD25 cells with hERG1 was performed 

as in [14].  

For treatment with the scDb, cells were harvested from a semiconfluent culture, detached with 5 

mM EDTA in PBS (PBS-EDTA), and seeded in complete medium at the following concentrations: 

1x10
3

 
cells/well in 96 wells plates for spheroids’ formation; 7.5 x 10

3
 cells/well in 96 wells plates 

for cell ELISA and cell proliferation assay; 1 x 10
4

 cells/well in 96 wells plates for viability assay; 

5x10
5

 per dish in 35 mm Petri dishes for migration assay, immunofluorescence and protein 

extraction. In any case, cells were incubated for different times in control conditions (medium plus 
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the vehicle) or in medium containing the scDb at different concentrations. In particular, for cell 

viability assay, cells were treated with 0, 5, 10, 20, 50, 100 µg/ml scDb for 24 hours, then detached 

with PBS-EDTA and counted with Trypan Blue (Thermo Fisher Scientific). IC50 values were 

determined as in (19) using the Origin Software (OriginLab Corporation, Northampton, MA).  Cell 

proliferation was determined as in (19), by determining the number of vital cells, and adding the 

scDb at the IC50 determined for each cell line. For spheroid formation assay, PANC-1, MIA PaCa-

2 and HCT-116 cells were seeded on an agarose base layer (1.5 g/l) in 96 wells plates and grown for 

72 hours. Then the scDb was added at the IC50 concentration determined for each cell line, as 

above. Spheroid growth was monitored taking photos every 24 hours using a Nikon Eclipse TE300 

microscope, and analyzing their volume using Spheroid Sizer software (MathLab Inc). Lateral 

motility was assessed by a monolayer wound assay as described in (18), adding the scDb either at 

the IC50 concentration determined for each cell line, or at 50 or 100 g/ml. 

Enzyme-Linked Immunosorbent Assay (ELISA)  

Peptide ELISA. The following peptides were used: S5-P hERG1 peptide (sequence: 

EQPHMDSRIGWLHN) (25) and β1-TS2/16 peptide (sequence: NKGEVFNELVGK) (26) 

(Eurofins, Luxembourg). Peptides were diluted in 1mM Na2CO3 at pH 9.6 at 10 µg/ml final 

concentration and used, either separately or mixed at a 1:1 ratio (5 µg+ 5 µg/ml), to coat a 96 wells 

plate. The procedure was as described in (27), employing the anti-6xHis antibody followed by anti-

mouse IgG-HRP conjugate (see Supplementary Materials). EC50 was determined either using 

Prism or accoding to what reported in https://recombinant-antibodies.org i.e. by inspection to 

determine the OD at which saturation occurs, dividing by 2 and interpolating the concentration of 

rAB that results in this absorbance. The ELISA assay was also used to determine scDb binding to 

cells (Cell-ELISA) as in (28), serum stability and in vivo half-life (see Supplementary Methods). 

Immunofluorescence (IF) 

IF on cells was performed following the protocol previously described in (27). For IF on cardiac 

tissue, fresh human tissue from healthy atrium was obtained by the Department of Cardiac Surgery 
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of the Azienda Ospedaliero-Universitaria Senese, snap frozen in liquid nitrogen and cut with a 

cryostat in 5m sections. After 2 hours of blocking in PBS with 10% BSA, sections were incubated 

for further 2 hours with either scDb-hERG1-β1 or scFv hERG1 antibodies (20 µg/ml and 200 µg/ml 

final concentrations), followed by 1 hour with anti-6xHis (Abcam, Cambridge, UK) and then 1 hour 

with anti-mouse Alexa Fluor 488 (Thermo Fisher Scientific, Waltham, MA). Incubation with mAb 

hERG1 was performed O/N at a final concentration of 1 µg/ml. All incubations were performed at 

room temperature. Nuclei were stained with Hoechst (1:1000 in PBS, 45 minutes; Merck Sigma, 

Burlington, MA). Images were captured using confocal microscope, Nikon TE2000. 

Animal studies 

All the in vivo experiments were performed at the Animal Facility of the University of Florence 

(CESAL). Mice were housed in filter-top cages with a 12-hour dark-light cycle and had unlimited 

access to food and water. All the procedures were approved by the Italian Ministry of Health 

(369/2018-PR and 182/2019-PR). 

Pharmacokinetics 

Athymic Nude-Foxn1nu (nu/nu) (Envigo) mice were injected with 160 μg (8 mg/Kg) of scFv-

hERG1-Cys antibody and blood samples were collected from the tail vein at 0, 5, 15, 30, 120, 360, 

1440, 2880 minutes after antibody injection. Each sample was spun at 12000 rpm for 5 minutes and 

the resulting plasma was stored at −80° C until analyzed. The plasma concentration of scFv-

hERG1-Cys antibody was determined by sandwich ELISA (see Materials and Methods in the main 

text), using anti -6xHis antibody (Abcam, Cambridge, UK) 1:250 in PBS + 3% BSA to reveal the 

scDb-hERG1-β1, followed by anti-mouse IgG-HRP conjugate (Merck Sigma, Burlington, MA) 

1:500 in PBS + 3% BSA, as described in (24).The half-lives for elimination phase were determined 

using Origin 7.0 Software by fitting the last four data points into the first-order equation, T1/2 = 

(Δt/t1-t0)/ΔC where (Δt/t1- t0) represents the slope of the curve and ΔC represents the value 

corresponding to the half of the antibody concentration at t1, which corresponds to T=0. The serum 

stability against proteolytic activities of the scDb-hERG1-β1 was assessed using 20 μg of antibody. 
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The scDb was incubated at 37°C in mouse serum up to 96 hours (0, 6, 24, 48, 72, 96 hrs) and its 

concentration was determined through a sandwich ELISA assay. 

Xenografts  

Female Nude-Foxn1nu (nu/nu) mice (Envigo) aged 6 weeks were injected subcutaneously (s.c) in 

either flanks with 1x10
6

 cells previously resuspended in 100μl of PBS. Two xenograft mouse 

model were performed: one PDAC, by the injection of PANC-1 and one CRC by the injection of 

HCT-116. Each xenograft mouse model was divided in two group of treatment: one group of mice 

was treated with saline solution and one group was treated with 8 mg/kg of scDb-hERG1-β1. Mice 

inoculated with HCT 116 were i.v. administered with scDb-hERG1-β1 antibody with six single 

doses after 5 days from the injection. Mice inoculated with PANC-1 were i.v. administered with 

scDb-hERG1-β1 antibody with eleven doses after 11 days from the injection. 

Ultrasound (US) imaging 

3D micro-ultrasound echography was performed on live animals before the first treatment and once 

a week until the experimental end point, by using VevoLAZR-X system (Visualsoncs Fujifilm). 

The volumes were measured delineating the ROI (Region Of Interest) for each axial slide using the 

Vevo LAB software. B-Mode imaging were performed with the Vevo LAZR-X 55-MHz 

transducer. Mice were anesthetized by 1,5/2% isoflurane and placed on a pad heated at 37°C and 

ECG, body temperature and respiration were monitored for the duration of acquisition and the 

respiratory gating was derived from ECG. 

Kidneys perfusion status were assessed by using 2D Non Linear Contrast mode (NLC) imaging by 

the i.v. injection of a 50μl bolus Vevo MicroMarkers (Bracco Research s.p.a.) as contrast agents 

(corresponding to 2 X 10
7

 
bubbles/50μl bolus), by using 27G butterfly syringe. Fresh dilution of 

the stock contrast agent should be completed just prior to each injection. The mouse was positioned 

on prone position on the table for imaging. The first acquisition was performed in B-mode to 



10 

 

visualize both kidneys in the same frame. 21-MHz transducer was used for the NLC imaging. Data 

obtained were processed with the VevoCQ (Fujifilm Visualsonics). 

 

Human samples collection  

Archival paraffin embedded samples of colorectal, breast and pancreatic cancer were retrieved and 

collected by different institutions in Italy after informed written consent. In particular, colorectal 

cancers were obtained by the Section of Pathological Anatomy of the following insitutions:  

Department of Experimental and Clinical Medicine of the University of Florence, Campus Bio-

Medico University of Rome and Spedali Civili Hospital, Brescia. All breast cancer samples were 

obtained by the Section of Pathological Anatomy, Department of Surgery and Translational 

Medicine, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence. 

Pancreatic cancer samples were obtained from Department of Experimental and Clinical Medicine 

of the University of Florence, Campus Bio-Medico University of Rome. Normal heart atrium 

paraffin embedded slides were purchased from D.B.A. Italia. 

In order to perform IF experiments, fresh human heart tissue from healthy atrium were obtained by 

the Department of Cardiac Surgery of the Azienda Ospedaliero-Universitaria Senese, snap frozen in 

liquid nitrogen and then cut with a cryostat in 5m sections. Details of the IF protocol are in the 

Materials and Methods section of the main text. 

Antibodies, Reagents, Production of the Diabody targeting hERG1 and the β1 integrin (scDb-

hERG1-β1), Induction of large scale scDb-hERG1-β1 protein expression, 

Immunohistochemistry and Statistical Analysis.  

Please see Supplementary data for this article.  



11 

 

RESULTS 

Generation of a single-chain diabody (scDb) targeting the hERG1/1 complex (scDb-hERG1-1) 

The scDb-hERG1-1 was developed starting from two single chain Fragment variable (scFv) 

antibodies, one directed against hERG1 (scFv-hERG1from mAb-hERG1) (27) and one against the 

1 integrin (scFv-1 from mAb-1 TS2/16). The VH and VL sequences of the two scFv(s) were 

joined by three peptide linkers (A, M and B), in the following order: VHhERG1- linker A-VL1- 

linker M-VH1-linker B-VLhERG1 (Figure 1A). Linker M was 20 amino acid long, to allow the 

proper assembly of the protein in a Diabody format (23). The VHhERG1 sequence was mutagenized 

substituting a Phe with a Cys amino acid in residue 92 (highlighted in red in Figure 1B), to improve 

scDb-hERG1-1 stability and specificity (27). Details of scDb-hERG1-1 development are in 

Supplementary Methods and Tables S1 and S2. The deduced amino acid sequence of the scDb-

hERG1-1 is in Figure 1B.  

The scDb-hERG1-β1 in pPIC9K vector was used to transform yeast cells from the GS115 Pichia 

pastoris strain. Colonies capable of growing in the presence of the selection antibiotic Geneticin 

were chosen, grown in a small volume liquid culture and screened for protein secretion by dot blot. 

Sixty-seven colonies were screened, and those with the highest signal were used for large scale 

production, affinity chromatography purification and further characterization by Coomassie blue 

staining and Western Blot (WB).  Representative data of the scDb-hERG1-1 secreted by two of 

the best colonies (either 3G5 or 3G9) are shown in Figure 1C-E. The chromatogram obtained by 

affinity chromatography shows a peak consistent with the elution of a single protein (Figure 1C).  

Coomassie Blue staining (Figure 1D) and WB (Figure 1E) show a single band of 68 kDa. Data from 

other screened colonies are in Figure S1A and S1B. Both 3G5 and 3G9 colonies produced the 

scDb-hERG1-1 at a mean yield of 2.3 mg per liter of yeast culture, which was stable at +4°C for at 

least 10 weeks (Figure S1B). 

The scDb-hERG1-1 efficiently binds to the hERG1/1 integrin in complex. 
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The binding of the scDb-hERG1-1 to its antigen(s) was first assessed by ELISA, using the two 

peptides recognized by the original monoclonal antibodies. Peptides were used either separately or 

mixed at a 1:1 ratio. The scDb-hERG1/1 bound with high affinity and a clear dose-dependence to 

the mix of the two peptides (Figure 1F), with an EC50 of 21.3 g/ml, while only slightly bound to 

the single peptides (Figure 1G). The two mAbs used as templates for scDb development bound to 

their corresponding peptides, and not to the unrelated peptide or the two mixed peptides (Figure 

S2A and S2B). Only the anti-hERG1 mAb bound to the mixed peptides, although at much lower 

affinity compared to the scDb (Figure S2A).  

These data suggest that the scDb-hERG1-1 recognizes the two proteins, hERG1 and 1 integrin, 

once complexed in live cells. To confirm this, we performed a cell–ELISA on cells with variable 

expression of the complex (14): GD25 cells (normal cells knock out for the 1 integrin (14)); GD 

25-hERG1-T (GD25 cells transiently transfected with hERG1, hence expressing only the hERG1 

channel); HEK 293 cells (normal cells with 1 integrin expression but no hERG1); HEK 293-

hERG1-T (hERG1-transfected HEK cells with a significant expression of the hERG1/1 complex); 

MDA-MB-231 cells (Breast Cancer (BCa) cells with low expression of the complex); MDA-MB-

231-hERG1-T (hERG1 transfected BCa cells with high expression of the  complex); SH-SY5Y 

neuroblastoma cells (12), HCT116 Colon Cancer (CC) cells (13), PANC-1 and MIAPaCa2 

Pancreatic Ductal Adeno Carcinoma (PDAC) cells (29,30), all with high expression of the 

hERG1/1 complex. When used at concentrations ranging from 5 to 40 g/ml, the scDb-hERG1-β1 

bound to living cells with an intensity that depended on both the dose of the scDb and the amount of 

the expressed hERG1-1 complex (Figure 1H). A crude supernatant from a negative yeast colony 

showed no binding (Figure S3).  

Indirect IF was then performed on some of the cell lines listed above. MDA-MB-231-hERG1-T, 

HCT116 and PANC-1 showed a clear signal, mainly at the plasma membrane level. On the 

contrary, MDA-MB-231 cells had a low signal and HEK 293 cells were completely negative 

(Figure 2A). 
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The scDb-hERG1-β1 was then tested on both normal human heart, where hERG1 is highly 

expressed but not complexed to the 1 integrin (14), and cancer tissues where hERG1 is over-

expressed (31) and forms a complex with the 1 integrin (14). The scDb did not show any staining, 

either IF or IHC, in human cardiac myocytes, even when its concentration was increased from 20 to 

200 µg/ml (Figure 2B and 2C, panels on the left). On the contrary, both the scFv-hERG1 and the 

hERG1-mAb gave a strong staining (Figure 2B and 2C, middle and right panels). The scDb-

hERG1-1 gave a good IHC signal on different human cancers: CC, PDAC and BCa (Figure 2D). 

Notably, the scDb did not show any immunoreactivity on a normal pancreatic insula, sometimes 

visible in PDAC samples, which contains insulin secreting beta cells which are known to express 

hERG1 currents (32) (panel “Normal pancreas” in Figure 2D). For comparison, a pancreatic insula 

labelled with the mAb-hERG1 is reported in the inset: a positive signal ascribable to a hERG1-

positive insulin secretin cell (see the arrow) is evident, confirming what shown in [29].  

Overall, the scDb-hERG1-1 only binds to the hERG1/1 complex in cancer cells and tissues, 

while spares the hERG1 channel not complexed to the integrin.  

The scDb-hERG1-1 impairs the signaling pathways downstream to the hERG1/1 integrin 

complex and reduces cell proliferation and migration of cancer cells. 

We then analyzed whether the scDb affected either the formation of the hERG1/1 integrin 

complex, or its downstream Akt-centered signaling pathways (14,19,20). To this purpose, HCT116 

CC cells or PANC-1 PDAC cells were treated over night with 100 g/ml of scDb, and the 

formation of the hERG1/1 complex (witnessed by the co-immunoprecipitation of the two 

proteins), Akt phosphorylation and HIF-1 expression were determined. The scDb-hERG1-1 

significantly decreased the formation of the hERG1/1 integrin complex, as well as Akt 
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phosphorylation and HIF-1 expression, both in HCT116 (Figure 3A) and in PANC-1 cells (Figure 

3B). 

These results prompted us to test the effects of the scDb-hERG1-1 on cell vitality, proliferation 

and motility. The scDb-hERG1-1 decreased the vitality of those cancer cells with a significant 

hERG1/1 complex expression, while had no effect (IC50 > 200 g/ml) on normal HEK 293 cells. 

IC50 values determined after 24 hours of treatment are in Figure 3C and the dose-dependence curves 

are in Figure S4. The effect on cell vitality was stronger when the dose of the scDb-hERG1-1 was 

increased up to 100 g/ml (Figure 3D). When used at the same dose, the mAb hERG1 caused a 

small decrease in cell vitality, while the mAb 1 TS2/16 had no effects (Figure 3D). The scDb-

hERG1-1, used at the IC50 dose, significantly decreased the proliferation rate of both HCT116 and 

PANC-1 cells (Figure 3E,G). At 96 hours of treatment, a significant percentage of dead cells was 

detected in HCT116 cells treated with the scDb-hERG1- (Figure 3E, panel on the right). This 

effect was mirrored by a high number of cells in apoptosis, with no effects on the cell cycle phases 

(Figure 3F). In PANC-1 cells, the scDb-hERG1-1 slowed down cell proliferation, with only a 

slight increase of the percentage of dead cells at 96h of treatment, compared to untreated cells 

(CTR) (Figure 3G, panel on the right). This effect was accompanied by an increase of cells in G1 

and a decrease of cells in G2-M (Figure 3H), with almost no effects on apoptosis (Figure 3H). A 

similar effect was observed in MIA PaCa2 PDAC cells (Figure S5A).  

The scDb-hERG1-1 was then tested on cells cultured in 3D as spheroids, adding it after 72 hours 

of seeding (indicated as T=0 in Figure 4 A-C), when spheroids start to grow. When used at the IC50 

dose determined for each cell line in 2D cultures, the scDb-hERG1-1 significantly reduced the 

growth rate of HCT116 and PANC-1 cancer cells, while had almost no effect on normal HEK 293 

cells (Figure 4A). Data relative to MIA PaCa2 and MDA-MB-231 are in Figure S6A. No effects 

were observed on HCT116 cells with either the mAb hERG1 or the mAb 1 TS2/16 (Figure 4B, 

data relative to PANC-1 and MIA PaCa2 cells are in Figure S6B). The scDb-hERG1-1 induced a 
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stronger reduction of HCT116 spheroids’ growth, when it was added either at a higher concentration 

(100 g/ml) or daily at the IC50 dose (Figure 4C). The pictures of all the spheroids are in Figure S7 

A-C. 

Finally, the scDb-hERG1-1 significantly reduced the motility index (MI) of those cancer cells 

with a significant expression of the hERG1/1 complex, while did not affect the MI of normal HEK 

293 cells (Figure 4D). This effect was stronger with a higher dose (50 g/ml) of the scDb (Figure 

4E), while null with either the mAb hERG1 or the mAb 1 TS2/16 (Figure 4F).  

Overall, the scDb-hERG1-1 shows a good antiproliferative and antimigratory activity in vitro.  

 

The scDb-hERG1-1 shows a good pharmacokinetic profile and no (cardiac and renal) toxicity 

in vivo. 

Before analyzing whether the scDb-hERG1-1 had any activity in mice in vivo, we determined 

whether it was stable against proteolytic activities contained in serum. Roughly 80% of the original 

scDb-hERG1-1 was still present after 96 hours of incubation at 37°C in mouse serum (Figure 5A), 

indicating that it is relatively stable in serum. 

The scDb-hERG1-1 was then injected intravenously (i.v.) at 160 g/ mouse, i.e. 8 mg/Kg,a dose 

compatible with that used in (33), into immunodeficient athymic Nude-Foxn1nu (nu/nu) mice and 

its plasma concentrations were determined by ELISA at different time points. A characteristic two-

phase PK behavior emerged, with a rapid distribution phase and a longer elimination phase (Figure 

5B). The half-life of the elimination phase turned out to be 13.5 hours. Before moving further to in 

vivo studies, we assessed the high (> 92%) homology of the two antigens (hERG1 and the 1 

integrin, respectively) recognized by the scDb-hERG1-1 in humans and mice ( Figure S8). The 

accumulation of the scDb-hERG1-1 in internal organs (heart, liver and kidney) was determined by 

IHC, 3h after its injection at 8 mg/Kg. The diabody did not accumulate in the heart (Figure 5C), 
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confirming what occurs in fixed human hearts . Consistently, no alterations in the ECG were 

observed, in particular no lengthening of the QT interval (Figure 5D). The scDb-hERG1-1 slightly 

accumulated in the liver and in the kidneys, in the glomerular area (Figure 5C). This finding was 

expected, as the molecular weight of diabodies does not allow them to freely pass the renal 

threshold. To assess whether such renal accumulation somehow affected renal functions, we 

determined the perfusion index (PI) of the kidneys in mice treated with the scDb-hERG1-1.  

Ultrasound imaging in non-linear contrast mode, after microbubble injection (34), was applied 

(Video S1 A-D). The PI slightly decreased 3 hours after scDb-hERG1-1 injection, recovered at 24 

hours, and fully restored after 48 hours (Figure 5E). Consistently, no histological signs of renal 

damage were observed (Figure 5F). Finally, no signs of general toxicity (i.e. abnormal posture, 

back-arching, reduced mobility) or death were observed in mice after eleven, either daily or every 

two days (see below) injections of 8 mg/kg of scDb-hERG1-1.  

The scDb-hERG1-1 accumulates into tumor xenografts, reduces tumor growth and perfusion, 

and decreases pAkt and HIF-1. 

The effects of the scDb-hERG1-1 were then tested on subcutaneous (s.c.) xenografts cancer 

models, obtained by injecting either HCT116 human CC or PANC-1 human PDAC cells into nu/nu 

mice. The scDb-hERG1-1 was administered i.v. at 8 mg/Kg, following the two different schedules 

shown in Figure 6A and 6F (i.e. administration of the scDb daily for 7 days for HCT 116 

xenografted mice and every other day for 21 days for PANC-1 xenografted mice). The volume of 

the tumor masses, their oxygenation and perfusion were monitored by high resolution ultrasound 

(US) 3D imaging. The treatment was discontinued at day 11 for the CC model, or at day 33 for the 

PDAC model, mice were sacrificed and the excised tumor masses were processed for IHC analysis. 

The scDb-hERG1-1 accumulated into tumor masses, either CC (Figure 6B) or PDAC (Figure 6G), 

and significantly slowed down tumor growth, as witnessed by the decreased tumor volume at day 

11 for CC (Figure 6C and D) and at day 33 for PDAC (Figure 6H and I). In the CRC model the 

oxygenation status of the tumor masses was monitored in live animals by Photoacoustic (PA) 
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imaging. A different pattern of oxygenation, with an inner hypoxic area, was observed in the tumor 

masses at the end of treatment with the scDb-hERG1-1 compared to controls (Figure 6D; contrast-

enhanced ultrasound imaging videos are in Video S2 A, B).  All these effects were accompanied by 

a significant decrease of both pAkt and HIF-1 staining (Figure 6E and J).  

Overall, the scDb-hERG1-1 shows good antineoplastic efficacy in vivo. 
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DISCUSSION 

In the present paper we describe the development of a novel bsAb, in the format of a single-chain 

Diabody (scDb), which dually targets two proteins, the hERG1 potassium channel and the 1 

subunit of integrin receptors, which specifically form a macromolecular signaling complex on the 

plasma membrane of cancer cells (14). The diabody bound with high affinity to the two proteins 

only when they are linked together, as occurs in cancer cells, while spared normal cells, which do 

not express hERG1, or the heart where hERG1 is expressed but not complexed with the integrin. 

The scDb-hERG1-1 exerted antiproliferative (either inducing apoptosis or modulating the cell 

cycle phases) and anti-migratory effects only on cancer cells. These effects can be traced back to an 

inhibition of the signaling activities (impacting on AKT and HIF-1 of the hERG1/1 integrin 

complex. Furthermore, once injected in vivo in mice, the scDb-hERG1-1 showed a good 

pharmacokinetic and toxicologic profile, accumulated into xenografted tumor masses, reducing 

their volume and vascularization. 

The scDb-hERG1-1 was developed through a novel procedure, starting from two different scFv 

antibodies, the scFv-hERG1 in the VH-VL and the scFv1 in the VL-VH order, and cloning the 

scFv 1 in the middle of the linker sequence, between VHhERG1 and VLhERG1. This led to balance the 

length of the linkers, which allowed the proper final assembly in the diabody. The construct was 

mutagenized in the VHhERG1, substituting a Phe with a Cys amino-acid, to improve its performances 

and stability (27,35), and was expressed in yeasts, which allow proper protein glycosylation and 

easy production of secreted proteins (36). Indeed, the scDb-hERG1-1 was produced in large 

amounts, was stable at 4°C, and showed a good binding to its dual target, whilst almost did not bind 

to the single peptides. The scDb-hERG1-1 showed also a good binding to live cells, which did not 

saturate at 40 g/ml, a feature which allowed us to increase its concentration in functional assays.  

We chose the format of a single-chain diabody because of its small size, which ensures a good 

penetration into cancer tissues (24), that often present several hindrances for the efficient delivery 
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and homogeneous distribution of full length antibodies (37). Indeed, the scDb-hERG1-1 well 

accumulated into tumor masses once injected i.v.. This was also attributable to its favorable half-

life, i.e. 13.5 hours. Indeed, antibody fragments usually suffer a short serum half-life (from 10-30 

min of scFvs to 3-4 hours of Fab fragments (10,37)), which may ultimately impair them to reach 

and to be retained in the tumor (9,38). On the contrary, the scDb-hERG1-1 showed a half-life 

similar to antibodies in the DART format (39), which is a favorable pharmacodynamic feature for 

cancer therapeutics (40).  

The target recognized by the scDb-hERG1-1, the hERG1/1 complex, is a completely innovative 

and specific tumor antigen, expressed exclusively in cancer tissues (14). hERG1 is physiologically 

expressed on the plasma membrane of cardiac myocytes, where it functions as a conductive ion 

channel. However, when overexpressed in cancer tissues hERG1 forms a complex with 1 which 

operates as a signaling device, triggering Akt-centered intracellular pathways (14,19,20). The 

diabody format is conceived to bind to two proteins, hERG1 and 1 in our case, only when they are 

very close and tightly linked, as occurs in the hERG1/1 complex (14). Indeed, ELISA assays 

showed a very low affinity to the single antigenic peptides, which dramatically increased when the 

two peptides were mixed. Cell-ELISA and IF experiments supported the specificity of the scDb-

hERG1-1 towards the hERG1/1 complex. Consistently, the scDb-hERG1-1 did not bind to 

hERG1 channels expressed in human cardiac myocytes or pancreatic beta cells (Figure 2). This lack 

of binding would avoid the cardiac side effects that many hERG1 blockers exert (15). Furthermore, 

the targeting of the complex instead of the single proteins is expected to give better performances 

for a cancer specific therapeutic strategy. In fact, even the targeting of β1 integrins in cancer, 

although repeatedly attempted, has failed to give the results obtained targeting αIIbβ3 integrins for 

the treatment of thrombosis or β2 integrins for treating inflammation (41), due to the high and wide 

expression of these integrins in normal tissues (41). Finally, the functional effects of the scDb-

hERG1-1 can be traced back to the modulation of its target, i.e. the hERG1/complex, and its 

downstream signaling pathway centered on Akt. We previously demonstrated that the 
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hERG1/complex interferes with p53 in CC cells (13, 19). Hence, it is not surprising that the 

targeting of the complex with the scDb-hERG1-1 induces apoptosis in CC cells. In PDAC cells, 

where hERG1 activates EGFR signaling and hence the phosphorylation of ERK1/2 (29), it was 

expected that the harnessing of the hERG1/1 complex would hesitate in a modulation of cell cycle, 

as indeed we showed in the present paper.     

Overall, we have here provided the proof of concept of the therapeutic valence of a novel scDb-

hERG1-1, which harnesses the hERG1/1 integrin complex in solid cancers which over express 

the complex. Such therapeutic antibody can be proposed either as the backbone for the development 

of  ADCs, or in combination therapy with classical chemotherapeutic drugs.  
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FIGURE LEGENDS 

Figure 1. Biochemical characterization of scDb-hERG1-1. (A) Schematic representation of the 

structure of the scDb hERG11. (B) Amino-acid sequence of the scDb hERG1-1. Letters are 

highlighted using the same color-code as in panel A (C) Affinity Chromatography of the 

supernatant obtained from 3G9 yeast colony. (D) SDS-PAGE and Coomassie Brilliant blue staining 

of the supernatants obtained from 3G5 and 3G9 yeast colonies. Different concentrations of BSA are 

shown in the indicated lanes. (E) WB of the supernatants obtained from 3G5 and 3G9 yeast 

colonies. The lanes “ST” in D and E indicate the molecular weight standard. The arrows in D and E 

indicate the molecular weight ( 68 kDa, i.e. the molecular weight (67.74 kDa) expected by in 

silico analysis through the ExPASy ProtParam tool) of the scDb. (F) Peptide ELISA using a 1:1 

mix of hERG1 S5-P peptide (hERG1) and TS2/16 peptide (1 integrin) as coating antigen, and 

different concentrations of scDb-hERG1-β1. (G)  Peptide ELISA assay performed using the S5-

Pore peptide (hERG1) and the β1 peptide (1 integrin) as coating antigens and testing different 

concentrations of scDb-hERG1-β1. (H) Cell ELISA on cell lines with different expression of the 

hERG1/1 complex (see text), using different concentrations (5-40 g/ml) of scDb-hERG1-β1. 

Values in F, G and H are expressed as OD450 and are means ± SEM of three independent 

experiments. *, P < 0.05; **, P < 0.01 and ***, P < 0.001. 
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Figure 2. Immunofluorescence (IF) and immunohistochemistry (IHC) of scDb-hERG1-1 on 

cells and tissues. (A) Indirect IF on cells with different amounts of the hERG1/1 complex (see 

text). (B) Indirect IF and (C) IHC on normal human atrial tissues using the scDb-hERG1-β1, the 

scFv-hERG1 and the mAb hERG1 at the indicated concentrations. Scale bar: 100 µm. (D) IHC on 

different cancer and normal tissues using the scDb-hERG1-β1 at 20 µg/ml. Scale bar: 200 µm. In 

the panel indicated as “NORMAL PANCREAS” a pancreatic insula labelled with the scDb is 

shown; in the inset a magnified (Scale bar :400 m) insula, labeled with the mAb hERG1 is 

reported. The arrow indicates hERG1-positive putative insulin secreting cells.  

Figure 3. Effects of the scDb-hERG1-1 on hERG1/1 complex, intracellular signaling, cell 

viability and proliferation. (A) co-IP of hERG1 and 1 integrin, and WB of pAKT and HIF-1 in 

HCT116 cells cultured over night in complete medium in the absence (CTR= Control untreated 

cells) or in the presence of scDb-hERG1-1 (scDb) at 100g/ml. Densitometric analyses, 

calculated as in (14), relative to three independent experiments are shown in the histograms on the 

right.   ***, P < 0.001. (B) co-IP of hERG1 and 1 integrin, and WB of pAKT and HIF-1 in 

PANC-1 treated as in (A). Densitometric analyses, calculated as in (14), relative to three 

independent experiments are shown in the histograms on the right.   ***, P < 0.001. (C) IC50 values 

of the scDb-hERG1-1 on cell vitality in different cell lines. (D) Cell vitality of HCT116 and 

PANC-1 cells treated with the scDb-hERG1-1, the mAb hERG1 or the mAb 1TS2/16 at the 

concentrations indicated in the figure. (E) HCT116 growth rate using the scDb-hERG1-1 at the 

IC50 dose. Values in panels (D) and (E) are means ± SEM of three independent experiments. *, P < 

0.05; **, P < 0.01 and ***, P < 0.001.  (G) PANC-1 growth rate using the scDb-hERG1-1 at the 

IC50 dose. Values in panels (D) and (E) are means ± SEM of three independent experiments. *, P < 

0.05; **, P < 0.01 and ***, P < 0.001. (F) Representative Dot Plots of Annexin/PI test and cell 

cycle on HCT116 cells, untreated (CTR= Control) or treated with scDb-hERG1-1 (scDb) at the 

IC50 dose.  Representative of three different experiments. (H) Representative Dot Plots of 
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Annexin/PI test and cell cycle of PANC-1 cells, untreated (CTR= Control) or treated with scDb-

hERG1-1 (scDb) at the IC50 dose. Representative of three different experiments. 

Figure 4. Effects of the scDb-hERG1-1 on 3D growth and cell motility. (A)  Growth curves of 

spheroids obtained from HCT116, PANC-1 and HEK 293 cells treated with the scDb-hERG1-1 at 

their respective IC50 values. (B) Growth curves of spheroids obtained from HCT 116, treated with 

mAb hERG1 or mAb 1TS2/16 at 100 g/ml. (C) Growth curves of spheroids obtained from HCT 

116 and PANC-1 cells, treated with scDb-hERG1-1 as indicated.  Motility Index (MI) of different 

cell lines treated for 24 hours with (D) the scDb-hERG1- at their respective IC50 dose; (E) the 

scDb-hERG1- at 50 g/ml ; (F) mAb hERG1 or mAb 1TS2/16 at 100 g/ml. All the values are 

expressed as means ± SEM of three independent experiments. *, P < 0.05; **, P < 0.01 and ***, P 

< 0.001. 

Figure 5. Pharmacokinetic and toxicity in vivo of the scDb-hERG1-1. (A) Serum stability of 

the scDb-hERG1-1 (20 g/ml) in mouse serum at 37°C. (B) In vivo half-life of scDb-hERG1-1 

injected i.v. at 8 mg/Kg in nu/nu mice. In A and B values are expressed as OD450 and are means ± 

SEM of three independent experiments. The half-life (T ½) is calculated as detailed in 

Supplementary methods. (C) IHC staining with anti-6xHis antibodies of heart, kidney and liver of 

mice treated with either vehicle (CTR, upper panels) or 8 mg/Kg scDb (scDb, lower panels). Scale 

bar: 200 µm. (D) ECG of mice treated as in (C) (E) Perfusion index (PI) measured on kidneys of 

mice treated as in (C), after different times of treatment. (F) H&E staining on kidneys of mice 

treated as in (C) for 24 hours. Scale bar: 100 µm. Insets show a higher magnification of the renal 

areas where no signs of toxicity are evident.  

Figure 6. In vivo effects of the scDb-hERG1-1 on CC or PDAC xenografted tumor masses. 

(A), (B)  Schedule of treatment. IHC staining with anti-6x_His antibodies of tumor masses obtained 

by s.c. injection of CC HCT116 cells treated with the scDb-hERG1-1 (scDb) or with the vehicle 
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(CTR= Control). Scale bar: 200 µm. The bar graphs on the right show the densitometric analyses 

and significance. * p<0.05; ** p< 0.01; ***p< 0.001. (C) Time course of the volume of s.c. 

xenografts of  CC HCT116 cells, treated as in (A) (D) Representative high-resolution ultrasound 

images of tumor masses derived from injection of HCT116 cells with the corresponding OxyHemo 

photoacoustic images; red areas indicate well oxygenated parts whereas blue and dark areas indicate 

the presence of hypoxia; (E) IHC staining with anti-pAkt and anti-HIF-1 antibodies of tumor 

masses obtained by s.c. injection of HCT116. (F), (G) Schedule of treatment. IHC staining with 

anti-6x_His antibodies of tumor masses obtained by s.c. injection of PDAC PANC-1 cells treated 

with the scDb-hERG1-1 (scDb) or with the vehicle (CTR= Control). Scale bar: 200 µm. The bar 

graphs on the right show the densitometric analyses and significance. * p<0.05; ** p< 0.01; ***p< 

0.001. (H) Time course of the volume of s.c. xenografts of PDAC PANC-1 cells, treated as in (F). 

(I) Representative ultrasound images of tumor masses from PANC-1 cells at day 33. In D and I the 

3D tumor reconstruction obtained through by Vevo Lab software are reported in the adjacent 

panels. (J) IHC staining with anti-pAkt and anti-HIF-1 antibodies of tumor masses obtained by 

s.c. injection of PANC-1 cells. Scale bar: 200 µm. The bar graphs on the right show the 

densitometric analyses and significance. * p<0.05; ** p< 0.01; ***p< 0.001. 
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