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Summary 

The present dissertation investigated visual perception of numerosity. In the first part I reviewed the 

prominent literature about the topic. In the second chapter I described the first experiment, in which 

I measured confidence and reaction times to study the origins of the well-established visual and motor 

adaptation effects on numerosity perception. The results reinforce the evidence for a shared 

mechanism that encodes the quantity of both internally and externally generated events, and shows 

that the adaptation effects result from changes in sensory encoding, rather than perceptual decisions. 

More generally, in the study was introduced a novel and useful technique for investigating the 

mechanisms of numerosity adaptation and sensory adaptation in general. The third chapter 

investigated the effects of grouping cues on sensory precision of numerosity estimation. The results 

provide strong evidence that “grouping”, which can improve performance by up to 20%, can be 

induced by color and/or spatial proximity and occurs in temporal sequences as well as spatial arrays. 

In the fourth chapter I further examined the groupitizing phenomenon, by testing the hypothesis that 

the advantage provided by clustering stimuli relies on subitizing. This was achieved by manipulating 

attention, which is known to strongly affect the subitizing system. In the same chapter I discussed an 

additional explorative analysis on the relationship between calculation skills and estimation precision 

of grouped and ungrouped arrays. Taken together, the results showed that groupitizing is truly an 

attention-based process that leverages on the subitizing system. Furthermore, the outcome of the 

study suggested that measuring numerosity estimation thresholds with grouped stimuli may be a 

sensitive correlate of math abilities. In the fifth chapter I went on investigating the neural correlates 

of the groupitizing phenomenon with both a behavioral and a fMRI study. Similarly to the previous 

study I measured acuity in estimation of grouped and ungrouped stimuli and additionally I also 

examined whether the two tasks shared or not the same neural substrate. The results showed that the 

estimation of grouped and ungrouped stimuli activates similar regions in the right lateralized fronto-

parietal network, however, only the presentation of grouped stimuli in the numerosity task elicited 

the additional activation of regions linked with calculations strategies, for instance the angular gyrus. 

Moreover, a multivariate pattern analysis showed that parietal activation patterns for individual 

numerosities could be accurately decoded in the parietal regions independently of the spatial 

arrangement of the stimuli. Finally, I correlated fMRI decoding accuracy of primary visual areas and 

angular gyrus with Wfs calculated in the grouped estimation task. Results suggested that the 

numerical representation in angular gyrus, but not in primary visual areas, is strongly linked with 

numerical performance and behavior. Overall, the results confirmed psychophysical studies 
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highlighting that groupitizing shares the same regions and neural pattern mechanism of the estimation 

of ungrouped stimuli, but, furthermore, it also activates brain regions typically activated during 

calculation tasks. The last part of the dissertation is dedicated to investigating the link between 

numerosity precision, math abilities and a non-cognitive factor affecting mathematical learning: 

mathematical anxiety. To this aim, university students with low (< 25th percentile) and high (> 75th 

percentile) score in the Abbreviate Math Anxiety Scale were tested in multiple domains: a) math 

proficiency assessed using a standardized test (Mathematics Prerequisite for Psychometrics), b) 

visuo-spatial attention capacity, measured via a Multiple Object Tracking task, and c) the sensory 

precision for non-numerical quantities. The results confirmed previous studies showing that math 

abilities and numerosity precision correlate in subjects with high math anxiety. Furthermore, neither 

precision in size-discrimination nor visuo-spatial attentional capacity were found to correlate with 

math capacities. However, within the group with high MA the data also revealed a relationship 

between numerosity precision and math anxiety, with math anxiety playing a key role in mediating 

the correlation between participants’ numerosity precision and their math achievement. Taken 

together, this last study suggests an interplay between extreme levels of MA and sensory precision in 

the processing of non-symbolic numerosity, giving further insight into the processes (and the 

variables affecting these processes) behind the acquisition of formal mathematical abilities. 

 In conclusion, the present work assessed the ability to perceive non-symbolic quantities in 

adults while providing new experimental evidence suggesting its perceptual nature and its link with 

cognitive and affective factors.  
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1.1 Numerosity perception  

Numbers are an integral part of our everyday life: we use them to count the days in 

a month, pay for food in a supermarket, and also in complex tasks such as sending 

an astronaut on the moon. The way numbers are represented and processed has been 

studied extensively in humans at different developmental stages, as well as in a 

variety of animal species. One of the most prominent theories in the field of 

numerical cognition, has been shaped with the contributions of several researches 

during the last decades (Dehaene, 2011; Gallistel & Gelman, 1992). According to 

this theory, the ability to process numerical quantities (i.e., the total number of items 

in a set or its numerosity) is a primary, automatic, and innate ability that can be 

found across species (Gallistel & Gelman, 2000; Huntley-Fenner, 2001; Jordan & 

Brannon, 2006; Nieder, 2005). Indeed, in the animal kingdom the ability to rapidly 

estimate the approximate number of fruits on a tree or the amount of predators/preys 

in a field is provides a fundamental evolutionary advantage. Experimental studies 

on a variety of animals (primates, rodents, lions, birds and fishes) have shown that 

they can discriminate between different non-symbolic quantities ( Agrillo et al., 

2008, 2009; Bogale et al., 2011; Cantlon & Brannon, 2006; McComb et al., 1994; 

Meck & Church, 1983; Nieder et al., 2002; Watanabe, 1998). Also, humans are 

born with the capacity to process non-symbolic numerosities (e.g., dot arrays, 

groups of objects, number of sounds, etc.). Newborn and infants show the ability to 

discriminate quantities, as well as being able to engage in rudimentary arithmetic 

(Brannon et al., 2008; Coubart et al., 2014; Hyde & Spelke, 2011; Izard et al., 2008; 

Lipton & Spelke, 2003; P. Starkey et al., 1990; Whalen et al., 1999a; Wynn, 1992; 

F. Xu & Spelke, 2000). Furthermore, according to this theory, symbolic 

representations of numbers, such as Arabic numerals and number words, which 

children learn throughout development, are thought to acquire their meaning by 

being mapped onto the preexisting, non-symbolic representations of number 

(Piazza, 2010).  

 Such ability to represent roughly a given quantity seems to be made possible 

by a core “Approximate Number System” (ANS, Dehaene, 2011). Human adults 

can reliably compare the cardinality of sets (arrays of dots, sequences of flashes or 

sound pulses, or motor actions) under conditions that prevent or discourage verbal 
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counting (for example, in dual task situations or when severe time limits are in 

place) (Barth et al., 2003; Cordes et al., 2001; Whalen et al., 1999a). However, in 

contrast to precise verbal counting, non-verbal discrimination performance is 

inaccurate, or noisy. Some indigenous human cultures that lack number words or 

have a restricted concept of verbal counting rely completely on non-verbal 

cardinality assessment (Blake, 1991; Gordon, 2004; Pica et al., 2004). For example, 

the people of the Pirahã tribe in South America have not developed a true number 

word system, and only use words to designate very small set sizes (‘about one’), 

somewhat larger set sizes (‘about two’) and sets of many items (a one-two-many 

system of ‘counting’). If asked to match the number of items placed before them 

with an equal number of objects, the Pirahã show only an imprecise capability to 

enumerate, with decreasing precision as the numbers become higher. Speakers of 

Mundurukú, another Amazonian language, lack words for numbers beyond five, 

but are still able to compare and imprecisely add large sets of items that are far 

beyond their naming range (Pica et al., 2004). Therefore, humans without a 

linguistic number concept can only estimate a certain number of items by means of 

a non-verbal quantification system. To sum it up, then, human adults who lack a 

verbal counting system, pre-verbal infants and non-verbal animals show an 

evolutionarily ancient quantification system that operates independently of 

language (Nieder, 2005). 

 Discrimination between different numerosities shows a similar response 

pattern to that of discriminating between different magnitudes, such as brightness, 

pitch of sound, physical size and weight (Cantlon et al., 2009; but see also 

Leibovich et al., 2017). In these cases, the ability to detect a change (or to 

understand that two presented stimuli are different from each other) depends on the 

ratio between the two to-be-compared magnitudes. For example, it is faster and 

easier do decide that 10 dots are more numerous than 3 dots (ratio 0.3), than 

deciding that 10 dots are more numerous than 8 (ratio of 0.8). The ratio effect is 

thought to result from noisy representation of numerosities (Figure 1.1A). It is 

thought that numerosities are represented in a logarithmic analog format (Dehaene, 

2003) where numerosities that have a larger ratio share more representational 

overlap, and thus cause confusion more easily than numerosities that have a smaller 
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numerical ratio and thus share less representational overlap (Figure 1.1B). The 

ratio  between the difference in intensity needed to discriminate two stimuli and 

their objective intensities is also known as “Weber’s law” (Cantlon et al., 2009). 

The ratio measurement of individual minimal differences of the intensity between 

stimuli that can still be discriminated, and their intensity is called Weber fraction. 

This measure represents an individual’s acuity of numerosity representation: 

individuals with low Weber fraction scores are able to discriminate much closer 

numerosities than individuals with high Weber fraction scores. Another index used 

in the literature to measure the subjective precision is the coefficient of variation 

(CV), which is the normalization of the standard deviation by the physical stimulus, 

instead by the perceived (Burr et al., 2013; Lappin et al., 2006; Pomè, Anobile, 

Cicchini, & Burr, 2019; Testolin & McClelland, 2020). Weber’s law is a 

characteristic of both nonhuman and human performance and explains the noisy 

representation of numerosities in the ANS (Cantlon & Brannon, 2006). The 

processing of features found to obey Weber’s law in classic psychophysical 

experiments (e.g., loudness, brightness, line-length, etc.) is considered very fast and 

automatic. Because numerosity processing was found to obey the same law, it has 

been suggested that numerosity processing is as basic, fast and innate as the 

processing of brightness, weight, pitch of sound, and so forth (Cantlon et al., 2009; 

Feigenson et al., 2004; Ross, 2003).  This has led to advance the idea that 

numerosity could reflect a primary visual property of a scene.  

On the other hand, several authors have claimed that there is no need to hypothesize 

a specific system for the processing of numbers, while the approximate number of 

objects in a scene might be derived by other lower-level proprieties of the image, 

such as texture density (Allïk & Tuulmets, 1991; Dakin et al., 2011; Durgin, 1995, 

2008; Morgan et al., 2014; Tibber et al., 2012). However, this possibility is still 

subject to debate, and other authors have suggested the existence of specialized 

mechanisms to perceive numerosity  (Anobile et al., 2014; Burr et al., 2018; Burr 

& Ross, 2008; Cicchini et al., 2016; Kramer et al., 2011; Ross & Burr, 2012, 2010).  
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Figure 1.1. Basic effect in numerical cognition. (A) The numerical ratio effect. 
The plot illustrates the relationship between numerical ratio and response time in a 
number comparison task. The x-axis describes the numerical ratio: smaller/larger 
numerosity. The y-axis represents the time it takes to respond to the larger 
numerosity. Task difficulty increases when the numerical ratio is closer to 1. Inside 
the plot are examples of symbolic and non-symbolic stimuli: the numerical ratio of 
3 and 8 is ~0.37, and the numerical distance is 5; the numerical ratio of 7 and 9 is 
~0.77, and the numerical distance is 2. It is also true, then, that task difficulty 
increases with the decrease in numerical distance. (B) Approximate representation 
of numerosities. Representation of numbers is thought to be represented on a 
logarithmic scale. This representation is assumed to be approximate and noisy: 
larger numbers are represented more approximately, and the representations of 
adjacent numbers overlap. (Adapted from Leibovich & Ansari, 2016).  

 

1.2 Adaptation and number 

One clear sign of the existence of a dedicated perceptual mechanism is its 

susceptibility to adaptation (Clifford & Rhodes, 2005; Mollon, 1974; Thompson & 

Burr, 2009). Adaptation is ubiquitous throughout all sensory systems. Adaptation 

represents a very common kind, throughout the perceptual processing pathways, of 

experience dependent plasticity, in which our perceptions are “recalibrated” 

according to the recent history of stimulation, to attune the sensory system to the 

recent sequence of stimuli and optimize the use of the limited resources of the 

system (Barlow & Földiák, 1989; Benucci et al., 2013; Boynton, 2004; Kohn, 2007) 

(although this is not the only role: Ross & Speed, 1991; Solomon & Kohn, 2014). 
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Number, like most other primary visual attributes, is highly susceptible to 

adaptation. Brief exposure to either very high or very low numerical quantities 

changes the apparent numerosity of stimuli subsequently displayed in the same 

position, causing a repulsive aftereffect whereby the adapted stimulus is perceived 

as more numerous (overestimation) if the adaptor included fewer dots, and less 

numerous (underestimation) if the adaptor contained more dots than the adapted 

stimulus (Arrighi et al., 2014; Burr & Ross, 2008). In his critique of the idea that 

adaptation acts directly on the abstract representation of numerosity, Durgin (2008) 

suggested that ‘cross-modal studies seem a more promising avenue for 

distinguishing aftereffects of perceived number from retinotopic aftereffects in the 

early visual analysis of texture density’. Unlike the visual analysis of texture 

density, the numerosity adaptation effects are spatially specific. In other words, it 

is possible to simultaneously adapt different locations of the visual field to high, 

low or neutral numerosities (Aagten-Murphy & Burr, 2016; Arrighi et al., 2014). 

Recently, Castaldi et al. (2016) studied the neural effects of adaptation, using 

functional magnetic resonance imaging (fMRI) techniques. They recorded the 

BOLD responses to various numerosities from intraparietal sulcus (IPS) and V1 in 

human observers, before and after they had adapted to an 80-dot stimulus. They 

used a classifier trained to discriminate between the numerosity of dot clouds before 

and after adaptation. Importantly, IPS classifiers trained with pre-adaptation 

presentations could accurately decode number only from other pre-adaptation trials 

and not from post-adaptation presentations, and vice-versa. This suggests that 

adaptation changes the cortical maps underlying the presentation of numerosity in 

IPS, and not in the early stages of analysis, as have been suggested by Durgin 

(2008). Arrighi et al. (2014) showed that numerosity adaptation occurs not just with 

the classic cloud of dots, but also with sequentially presented stimuli. Adapting to 

a slow presentation rate (2 Hz) caused an overestimation of the number of disks 

subsequently presented. On the other hand, adapting to a fast sequence (8 Hz) 

produced an underestimation of the subsequent stimuli (Figure 1.2A). Arrighi et al. 

went on to examine cross-modal adaptation to numerical sequences. They adapted 

to a stream of sounds and asked participants to estimate the number of visual 

flashes, and they also changed the apparent numerosity of a series of sounds after 
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visual flashes adaptation. Lastly, they showed that adaptation occurs independently 

of the format used to display numbers. They tested the effect of adaptation to a 

stream of flashes on “classic”, simultaneously presented cloud of dots. In all of 

these conditions, they found that the magnitude of the adaptation effect is 

completely comparable to the previous within-modality experiment, finding an 

effect of under- and over-estimation (depending on the numerosity of the adaptor) 

of about the same extent of the previous experiments (Figure 1.2B). Like adaptation 

to spatial numerosity, the temporal numerosity aftereffect was also spatially 

selective. All these results point to the existence of a very generalized number sense, 

transcending space, time, and sensory modality.  

 

 
Figure 1.2. Cross-format and cross-modal numerosity adaptation. (A) Sample 
results in the visual unimodal adaptation task. Adapting to low numbers (2 Hz, blue 
circles) produces an overestimation of numerosity and adaptation to high numbers 
(8 Hz, red circles) an underestimation. Data were well-fitted with linear regressions 
(lines on the data) forced to pass throughout zero. The shaded region represents the 
strength of the adaptation effect (adaptation index) given by the difference in slope 
of the regression lines. (B) Mean adaptation indexes for the various experimental 
conditions were: uni-modal visual and auditory adaptation; cross-modal auditory-
visual and visual-auditory adaptation; and “cross-format” adaptation (adapting to 
serial presentation, testing with simultaneous). Bars show average data, error bar 
represent ±1 s.e.m. (Reproduced with permission from Arrighi et al., 2014) 

 

Neurophysiological evidences from macaque monkeys have suggested that 

numerosity can be important for the generation of actions  (Sawamura et al., 2002, 
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2010). To test the link between numerosity and actions, Anobile et al., (2016) 

investigated whether adapting to actions could affect number perception. Subjects 

performed rapid or slow finger tapping and then judged the numerosity of 

sequences of flashes, or of arrays of dots. As with previous results, adapting to slow 

tapping caused overestimation, and adapting to fast tapping caused 

underestimation. Again, adaptation works equally well both for sequences of 

flashes and for clouds of dots (Figure 1.3A and 1.3B), and it also affects the 

apparent numerosity of auditory sequences  (Figure 1.3C and 1.3D; Togoli et al., 

2020). And just as the temporal adaptation is selective in spatiotopic rather than 

retinotopic coordinates, adaptation to tapping is selective depending on the spatial 

position of the tapping hand, not on which hand does the tapping.  Under the three 

conditions tested (right hand tapping right and left, and left hand tapping left) the 

adaptation effects were strong only when the hand (either left or right) was tapped 

on the same side as the stimuli were presented. This result is important as it reveals 

the interplay between action and perception in the numerical dimension, potentially 

underlying successful interaction between our body and objects in the environment, 

for instance when planning the number of movements to execute based on the 

number of elements in our peri-personal space. 

It has recently been questioned whether adaptation reveals changes in 

cognitive decisional processes rather than changes in neural mechanisms (Firestone 

& Scholl, 2016; Morgan et al., 2011). In the first part of the present work, it will be 

illustrated and discussed an experiment aimed to address the question about the 

nature of the core mechanism underlying the numerosity adaptation. To disentangle 

between the hypothesis that numerosity adaptation is a perceptual phenomenon 

occurring via recalibration of the tuning of numerosity mechanisms against the idea 

it just reflects a bias in the decisional processes, I studied visual and motor 

adaptation of numerosity perception while measuring confidence and reaction 

times.  
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Figure 1.3. Motor adaptation effect on numerosity perception. (A-D) 
Participants tapped rapidly or slowly in mid-air while keeping their eyes fixed on a 
central point on a blank monitor (motor adaptation). After the adaptation phase 
(~6s) a stimulus was briefly (~250 ms) presented around the motorically adapted 
region, or in the opposite hemifield. After a sequence of fast tapping, the perceived 
numerosity of dots (A), flashes (B) and sounds (C-D) were all underestimated 
compared to what happened with slow adaptation (red compared with blue 
symbols). The motor adaptation effects were all spatially selective, occurring only 
for stimuli presented around the adapted location (continuous lines) not extending 
to stimuli presented in the opposite hemifield (dotted lines). The effect on auditory 
numerosity also occurred in congenitally blind adults (D). (Reproduced with 
permission from Anobile, Arrighi, et al., 2016; Togoli et al., 2020).  

 

1.3 Mechanisms behind the numerosity perception 

Anobile et al. (2016) suggested that there exist three different regimes in number 

analysis (Figure 1.4).   

A particular aspect of numerical perception is the so called subitizing. It is 

the capacity to rapidly and accurately enumerate a small number of items (1-3 or 

4). The term subitizing (from the Latin “subitus” which means suddenly) was 

coined by Kaufman & Lord (1949). It has been historically demonstrated that when 

participants were asked to enumerate visual sets of items their enumeration time 

was almost constant up to 4 items (by about 40-100 ms/item). A similar trend was 

also found when researchers measured the performance precision (Dehaene, 2011; 

Whalen et al., 1999b). Subitizing is robust, and occurs for both sequential and 
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simultaneous stimuli, in all sensory modalities (Anobile, Arrighi, et al., 2019; 

Butterworth, 2019; Camos & Tillmann, 2008; Dehaene, 2011; Plaisier et al., 2009). 

Lastly, subitizing is highly dependent on attention (Anobile et al., 2012; Anobile, 

Tomaiuolo, et al., 2020; Burr et al., 2010, 2011; Egeth et al., 2008; Olivers & 

Watson, 2008; Pomè, Anobile, Cicchini, Scabia, et al., 2019; Railo et al., 2008; 

Vetter et al., 2008; Xu & Liu, 2008).  

As I mentioned above for higher numbers, numerosity is estimated slowly 

(with an increase by about 250-350 ms/item) and through an error-prone process, 

where error increases linearly with numerosity, following Weber’s law (Atkinson 

et al., 1976; Kaufman et al., 1949; Mandler & Shebo, 1982; Pomè, Anobile, 

Cicchini, & Burr, 2019; Ross, 2003). Weber fractions vary considerably between 

individuals, but also with eccentricity, being lower for centrally-viewed rather than 

peripherally-viewed stimuli (Anobile et al., 2014). Studies which manipulated 

attentional resources during numerosity tasks found that attentional costs remain 

constant over the estimation range (Burr et al., 2010; Shapiro et al., 1997). At high 

densities, texture-like mechanisms kick in. While it seems to be equally sensitive 

to all eccentricities, the reaction times decrease at a lower numerosity for the more 

eccentric stimuli (Pomè, Anobile, Cicchini, & Burr, 2019). In this regime, Weber 

fraction is not constant, but decreases with the square root of density. Importantly, 

the transition from numerosity to texture is determined by density, defined as 

average center-to-center spacing of the elements (Anobile et al., 2014).  

There are unlikely to be strict demarcations between the regimes. As 

suggested by Burr and colleagues  (2010, 2011) the numerosity range extends well 

into the subitizing range; but, when measuring thresholds, the most sensitive 

mechanism (subitizing) prevails, resulting in an errorless performance. However, 

when subitizing is compromised by diminishing attention, even for a low number 

of elements (1-4) estimation yields similar Weber fractions to the rest of the 

estimation range, and also adaptation occurs when attention is diminished. 

Similarly, when asked to make numerosity or density judgements between stimuli 

of equal area, one can act as a proxy to the other, and the most sensitive will prevail.  
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In the third and fourth chapter of the present work, I will illustrate and 

discuss two experiments that provide a genuine interconnection between subitizing 

and estimation mechanisms. 

 
Figure 1.4. Illustration of the three regimes of numerosity perception: 
subitizing, estimation and texture. (Reproduced with permission from Anobile, 
Cicchini, et al., 2016). 

 

1.4 Neural correlates of the ANS and arithmetic calculation  

Most of the current neuroscience research on numbers has focused on the neural 

correlates of the representation of numerical quantities in the brain. Single-cell 

recordings in macaque monkeys have identified neurons tuned to specific 

numerosities of visual arrays in the posterior parietal cortex and prefrontal cortex 

(Nieder et al., 2002; Nieder & Miller, 2004; Roitman et al., 2007; for review see: 

Nieder, 2016).  

One of the most influential models of how the numerical information can be 

represented in the human brain is the triple-code model (Dehaene et al., 2003). 

Based on behavioral, neuroimaging and neuropsychological studies, this model 

proposed that at least three different types of interconnected representations exist 
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of number. The first is a quantity system, a representation of the size and distance 

relations between numbers. The second is a visual representation in which numbers 

can be coded as strings of Arabic digits (visual system) and the last a semantic 

system where numbers are represented lexically, phonologically, and syntactically. 

The triple-code model proposes that three cerebral areas may be recruited during 

number processing: the bilateral intraparietal sulcus (IPS) which encodes the 

abstract representation of numerical magnitude; the left angular gyrus (AG), 

associated with verbal processing of numbers and the bilateral posterior superior 

parietal areas (SPL) associated with spatial and nonspatial attention. 

Neuropsychological observations show a double dissociation between the functions 

supported by IPS and left angular gyrus, suggesting that the neural bases of 

calculation are heterogeneous. For instance, in patients with left parietal lesions 

(within the angular gyrus) and/or atrophy showed most often impairment in 

multiplication performance and semantic representation of numerical quantities but 

not, or to a minor extent, addiction and/or subtraction performance (Dehaene & 

Cohen, 1997; Delazer & Benke, 1997; Van Harskamp & Cipolotti, 2001; Whalen 

et al., 1997). Conversely, observations of lesion or cortical stimulation intra-

operatively within left IPS, disrupted subtraction but not multiplication (Duffau et 

al., 2002; Van Harskamp & Cipolotti, 2001). These findings suggest that the left 

angular gyrus may support multiplications by recalling the solution from verbal 

memory, while IPS may be support subtractions through some sort of internal 

manipulation of numerical quantities  on an internal number line, probably similar 

to the strategy employed to solve numerical comparisons (Dehaene et al., 2003).  

The early neuroimaging studies were mostly performed using low resolution 

and whole brain averaging analysis. More recently, various techniques have been 

used to provide a more detailed and finer scale description of numerical 

representation.  The first attempt to obtain results more similar to those obtained 

from single neuron recordings in monkey used fMRI habituation. Piazza and 

collogues (2004) habituated participants to a constant number of items while 

varying stimuli low-level features (e.g. dot size, cumulative area and spacing, 

overall luminance and density): a change in numerosity lead to a release from 

adaptation in bilateral intraparietal cortex, the size of which reflected the ratio 
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between adaptation and deviant number, in agreement with Weber’s law (Cohen 

Kadosh et al., 2011; Demeyere et al., 2014; He et al., 2015; Jacob & Nieder, 2009; 

Piazza et al., 2004, 2007; Roggeman et al., 2011). Using this technique the authors 

reported tuning curves similar to those described in the macaque monkeys. 

Habituation signals have been recorded from the  parietal cortex of infants and 

children (Cantlon & Brannon, 2006; Hyde & Spelke, 2011; Izard et al., 2008), 

suggesting that numerosity perception is a very primordial processing preceding 

language and explicit numerical learning.  

To further investigate numerical representation at finer spatial scale, 

multivariate pattern analysis (MVPA), population receptive field (pRF) and high-

resolution functional imaging have been used. With the use of MVPA several 

experiments have demonstrated that it is possible to decode numerosity in the 

intraparietal sulcus (Bulthé et al., 2014; Castaldi et al., 2016; Damarla & Just, 2013; 

Eger et al., 2015; Eger et al., 2009). Eger and collogues (2009) were the first to 

successfully decode  symbolic and non-symbolic numerosities from the pattern of 

activity read out from the parietal regions.  

pRF analysis combined with high- resolution functional imaging has also 

allowed researchers to measure topographic numerosity maps in humans. These 

maps, where individuals voxels respond preferentially to different numbers of 

visual items, were found to be located superior/medially in the superior parietal 

lobule (Harvey et al., 2013). These maps are mostly (although not completely) 

overlapping with the visual field map representations: a series of retinotopic visuals 

field maps identified using phase-encoded mapping (Konen & Kastner, 2008; 

Sereno et al., 2001; Silver et al., 2005; Swisher et al., 2007), labelled from IPS0 

(the most posterior) to IPS 5 (the most anterior) (Konen & Kastner, 2008; Silver et 

al., 2005; Swisher et al., 2007). 

Recently, Castaldi et al. (2019) provided direct evidence for a sensory 

mechanism capable of differentiating signals related to numerosity from those 

related to associated non-numerical dimensions from early stages of cortical 

processing on, which can be independently and progressively amplified across the 

dorsal visual stream when numerical information is explicitly task-relevant. 



Chapter 1 
 

 14 

High-resolution neuroimaging has also allowed researchers to investigate 

the sub-regional specialization of IPS. Specifically, it has been found that that more 

medial parts of IPS are preferentially recruited during viewing of non-symbolic 

(over symbolic) numerical stimuli, while more lateral parts of IPS are preferentially 

recruited during numerical operations (comparison and calculation) (Castaldi, 

Vignaud, et al., 2020).  

Although the parietal cortex is fundamental to number processing and 

calculation, other regions are involved as well (Ischebeck et al., 2009; Zago et al., 

2008; Zhou et al., 2007). In a metanalysis, Arsalidou and Taylor (2011) showed 

that prefrontal cortex, particularly in middle and superior frontal gyri, is essential 

for number and calculation. They also showed that cingulate gyri and insula are 

active in various numerical tasks and calculation. Overall, these studies suggest that 

the network for numerosity processing and calculation involves a larger network 

that extends beyond the parietal cortex. 

 

Chapter five describes an fMRI study in which I investigated the neural 

correlates of numerosity perception when stimuli are presented in arrays of 

ungrouped and grouped items.  

 

1.5 Relation between the approximate number system and math abilities 

How do we develop mathematical competence? Is there a relationship between the 

ANS and math abilities? In recent years there has been substantial interest in 

addressing these questions by investigating individual differences in children and 

adults’ abilities when performing basic arithmetic operations and non-symbolic 

discrimination tasks. Some researchers have hypothesized that the ANS is a 

cornerstone for the development of mathematical abilities (Piazza, 2010). Halberda, 

Mazzocco and Feigenson (2008) found that number acuity remained a significant 

predictor of performance in standardized mathematical achievement tests, even 

when the effect of several other cognitive processes (e.g. intelligence, verbal IQ, 

visual working memory, gender) was statistically controlled. A good deal of other 
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evidence shows that numerosity discrimination thresholds are a reliable predictor 

of both current and future math achievements in school-age children (Anobile et 

al., 2013; Anobile, Arrighi, et al., 2018; Bonny & Lourenco, 2013; De Smedt et al., 

2009; Inglis et al., 2011; Libertus et al., 2011, 2013; Mazzocco et al., 2011; Starr et 

al., 2013) and adults (Halberda et al., 2012; Libertus et al., 2012; Lourenco et al., 

2012; Lyons & Beilock, 2011). A recent large-scale meta-analysis of multiple 

longitudinal data sets concluded that math ability at school entry is the strongest 

predictor of later school achievement (Duncan et al., 2007). Training studies on 

non-symbolic approximate number tasks show improvements in symbolic 

arithmetic performance in preschoolers (Park et al., 2016),  school-age children 

(Hyde et al., 2014; Räsänen et al., 2009; Wilson et al., 2006; Wilson et al., 2006, 

2009) and in adults (Park & Brannon, 2013, 2014). Accordingly, children with 

dyscalculia, a neurodevelopmental disorder affecting mathematical and numerical 

learning, often exhibit a reduced performance in comparing non-symbolic 

quantities with higher Weber fractions compared to typically developing children 

(Anobile, Cicchini, et al., 2018; Mazzocco et al., 2011; Piazza et al., 2010). 

Therefore, an accurate representation of non-symbolic numerical quantities 

constitutes an important predictor of later mathematical achievements. A “noisy” 

representation of non-symbolic numerical quantities can compromise the 

acquisition of subsequent numerical skills and math achievements. A study 

conducted by Anobile and colleagues (2018) found that math reasoning has a 

specific relationship with the encoding of spatial information about quantity in 

children. Here we assessed math abilities in a sample of children and adults, and 

we correlated it against the ability to discriminate as well to estimate the pattern of 

spatial and temporal stimuli. The correlation analysis between the ANS tasks 

(discrimination between cloud of dots, estimation of dots, estimation of sequences 

of flashes and sequences of sounds) revealed that these measures correlate each 

other in children, but not in adults. The experiment replicated previous studies 

showing that children with higher precision  in discriminating and  estimating 

simultaneous visual numerosity show higher abilities in formal math (Figure 1.5A 

and 1.5B; Feigenson et al., 2013; Halberda et al., 2008; Libertus et al., 2013; Piazza 

et al., 2010). Interestingly, the precision in estimating sequential numerosity 
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(sequences of flashes or sounds) was completely unrelated to math abilities in 

children (Figure 1.5C and 1.5D). These results are in line with the idea that human 

mathematical thought arises from the cultural recycling of ancient brain areas 

representing features more naturally linked to math concepts, such as visual space 

(Dehaene, 2011; Dehaene et al., 1999). 

 

 
Figure 1.5. Correlations between ANS and math skills in children. ANS Weber 
fractions are plotted against standardized math skills level for the four ANS tasks: 
(A) spatial ensemble discrimination, (B) spatial estimation, (C) estimation of 
flashes sequences, and (D) estimation of tones sequences. Filled symbols report 
statistically significant correlations (Pearson zero-order correlations with alpha-
level = 0.05/15 = 0.0033). (Reproduced with permission from Anobile, Arrighi, et 
al., 2018). 

 

Although the above mentioned studies strongly support a causal link 

between ANS and math capacity, the evidence in the literature remains 

controversial (Lindskog & Winman, 2016). Several studies have not found a 

correlation between the ANS precision and mathematical abilities in children 

(Holloway & Ansari, 2009; Lonnemann et al., 2011; Lyons et al., 2014; Rousselle 
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& Noël, 2007; Sasanguie et al., 2012, 2014) and in adults (Anobile, Arrighi, et al., 

2018; Castronovo & Göbel, 2012; Inglis et al., 2011; Price et al., 2012), while others 

found that training in approximate numerosity does not change formal math 

abilities (Obersteiner et al., 2013; Sullivan et al., 2016). It is important to point out 

that the existing body of studies has typically employed standardized or curriculum 

measures of mathematical achievement, which encompass a range of mathematical 

skills (e.g. number fact knowledge, conceptual understanding, strategy use and 

proficiency). Any meaningful relationship between numerical magnitude 

representations and mathematics will likely vary across different mathematical 

skills. In other words, numerical magnitude processing will be more important for 

some aspects of mathematical competencies than others (De Smedt et al., 2013). 

The inconsistencies in the results found in literature might be also explained by 

differences in the age of the participants, the stimuli used, indices that were 

calculated to tap into non-symbolic processing and mathematics achievement as 

well as by emotional states that could influence subject’s performance. In Chapter 

4 I will present a pilot study which suggests a possible explanation of the 

discrepancies in the literature about the relationship between ANS and math 

abilities. Lastly, in chapter 6 I will show that even participants’ emotional states 

play a role in mediating the link between the ANS and math achievement. 
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2.1 Introduction 

Perceptual adaptation is a form of short-term plasticity, usually generated by 

observing for some time a particular stimulus, such as a steadily drifting pattern. 

Adaptation has proven to be a fundamental psychophysical tool to study many 

perceptual properties, including high-level properties such as face identity and 

expression (Leopold et al., 2005; Mollon, 1974; Thompson & Burr, 2009). It has 

also proven invaluable in the study of the perception of numerosity, bringing this 

field of cognitive research into the realm of perceptual research (Burr & Ross, 2008; 

Butterworth, 2008; Castaldi et al., 2016). Recently, cross-modal and cross-format 

adaptation have been used to demonstrate a “generalized sense of number”, 

showing strong interactions between the numerosities of spatial arrays of objects 

and temporal sequences of events (Arrighi et al., 2014). Even more intriguingly, the 

authors went on to show interactions between numerosity perception and motor 

action: fast tapping reduces the apparent numerosity of both temporal sequences 

and spatial arrays, while slow tapping has the opposite effect (Anobile, Arrighi, et 

al., 2016). 

These results are clearly important as they point to specific neural 

interactions between different forms of numerosity representation, reinforcing the 

neurophysiological evidence reported in macaque monkeys (Nieder & Dehaene, 

2009). They also show strong neural links between numerosity and motor action, 

again with parallels in the neurophysiological literature (Sawamura et al., 2002). 

But do adaptation studies truly reveal underlying neural mechanisms as Mollon 

(1974) claimed (“if you can adapt it it’s there”)? Can we think of adaptation as the 

“psychologists microelectrode”, as suggested by Frisby (1979)? 

It has recently been questioned whether adaptation necessary reveals 

underlying neural mechanisms, with suggestions that they could result from 

changes in observer criteria, driven by cognitive, decisional processes, particularly 

for certain “high-level” aftereffects (for discussion see Firestone & Scholl, 2016). 

To demonstrate this possibility, (Xia et al., 2016) et al. (2011) showed that 

observers could simulate the effects of adaptation by adopting simple decision 

rules, along the lines of “if unsure say fewer”. This strategy resulted in a clear shift 
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of psychometric functions, without broadening the width of the functions 

(reflecting preserved precision). Therefore, it is possible that in the numerosity 

adaptation experiments the changes in the psychometric functions do not reflect 

changes in neural representations of number, but in a cognitive, decision strategy 

in reporting numerosity. Possibly after rapid tapping there is a tendency to report 

uncertain numerosities as low, and after slow tapping to report these as high. This 

could conceivably account for the changes in apparent numerosity, without 

invoking the action on neural mechanisms.  

Morgan et al.’s idea can be illustrated with a simple simulation shown in 

Figure 2.1. The red curve illustrates a typical psychometric function, modelled by 

a cumulative Gaussian error function. The blue curve illustrates a hypothetical 

function of subjective confidence, based on the consistency of participant 

responses: one when certain, zero when guessing. On the basis of data from this 

study (see Figure 2.3) we assume minimal confidence is 50%, but this is not 

essential to the demonstration. Confidence should be minimal at the point of 

subjective equality, where sensory information is least. The green curve is the 

simulation of the strategy “if unsure say ‘fewer’” (the product of the two probability 

functions), causing a downward shift of the curve, which necessarily shifts the 

function rightwards. The downward shift in the curve is virtually indistinguishable 

from a rightward shift caused by sensory adaptation to numerosity. However, if it 

is confidence that drives the downward shift, the confidence function itself should 

not change, but remain centred at the PSE of the unadapted function.  
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Figure 2.1. Simulation of psychometric function. Simulation showing how 
response biases could induce a shift in psychometric function resembling a real 
sensory change. The red curve shows a hypothetical psychometric function for a 
numerosity discrimination task. The blue curve plots confidence level based on the 
relative numerosity difference between the stimuli. The green curve shows the 
result of a decision strategy “less if unconfident”, obtained by the pointwise product 
of two functions.  

 

Gallagher and colleagues (2019) took advantage of this fact to propose a 

novel way of distinguishing between sensory effects in adaptation and higher-level 

decisional biases, based on the assumption that confidence in the perceptual 

decision will scale with the strength of sensory evidence. In the typical two-

alternative matching experiment used to measure adaptation, where participants 

choose which of two stimuli was the largest, the strength of sensory evidence will 

be weakest when their internal representations of magnitude are the same: that is, 

at the point of subjective equality (PSE). Therefore, the PSE should also correspond 

to the point of minimal confidence. If the PSE shifts with adaptation-induced 

changes in internal representations of magnitude, the shift in PSE should be 

accompanied by a comparable shift in minimal confidence. If, on the other hand, 

the adaptation results from weak confidence and a decision rule (as simulated in 

Figure 2.1), the confidence ratings should remain minimal at the point of physical 
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equality, and not shift with adaptation. Gallagher et al. (2019) showed that 

adaptation to visual motion shifted not only the point of perceived equality of 

motion, but also the point of maximal decisional uncertainty. On the other hand, 

instructing participants to introduce a systematic response bias (along the lines of 

replicating Morgan et al.’s experiment) did not shift the point of maximal 

uncertainty.  

 Another common tool in sensory research is reaction-times, which also vary 

systematically with sensory strength, well approximated by a power function of the 

stimulus strength plus a constant (Piéron’s law: Piéron, 1914). Following the same 

logic discussed above, reaction-times should also vary on a two alternative forced 

choice task, being maximal when the sensory representations of the two are most 

similar, at the point of subjective equality. Therefore, adaptation should also shift 

the peak in reaction-times, following the shift in PSE, if the effects are sensorial 

rather than decisional. If they remain anchored at physical equality, the adaptation 

is more likely to reflect response or decision biases.  

 In this study we investigate how adaptation to numerosity affects confidence 

ratings and reaction-times. We study two types of adaptation: visual adaptation to 

dense dot arrays (Burr & Ross, 2008), and motor adaptation to fast and slow hand-

tapping (Anobile, Arrighi, et al., 2016). The results show that both types of 

adaptation cause concomitant changes in both minimal confidence and maximal 

reaction-times, suggesting that the effects of both adaptation to high-numerosity 

and to manual tapping are sensory rather than biases in decision.  

 

2.2 Methods 

Stimuli were presented on an Acer LCD monitor (screen resolution of 1920×1080, 

refresh rate 60 Hz) subtending 50°×29° at the subject view distance of 57 cm. They 

were created with PsychToolbox routines for MATLAB (ver. R2016a, the 

Mathworks, Inc.) on a PC computer running Windows 7. In the motor adaptation 

conditions, hand movements were monitored by an infrared motion sensor device 

(Leap motion controller – https://www.leapmotion.com) running at 60 Hz.  
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We used a standard forced-choice paradigm (Figure 2.2). Stimuli were brief 

(250 ms) patches of dots, presented sequentially to the left and right of fixation, 

with a 200 ms pause between them. Each patch covered a circular region of 8° in 

diameter, centred at 7° from screen centre. Dots were 0.3° diameter, separated from 

each other by at least 0.25°, half white and half black (to balance luminance), 

presented on a grey background. The patch to the left of fixation was the reference, 

with numerosity fixed at 16 dots; that to the right was the probe, with numerosity 

varying randomly from 8 to 32 dots (numerosity drawn from linear rectangle 

distribution). Participants first judged whether the stimulus on the left or the right 

appeared more numerous, then indicated their confidence in the judgments by 

pressing the up or down arrow (low or high confidence respectively). We also 

measured the reaction-times of the numerosity judgments, and report the mean, 

after removing outliers (more ±3 standard deviations from the mean).   

 

2. 2. 1 Adaptation 

For the visual adaptation experiment, 12 participants (11 naïve to the purpose of the 

study and 1 author; mean age 28 with normal or corrected-to-normal vision) 

adapted to an array of 60 dots (adapt to high) at the same position as the probe 

stimulus, for 40 s at the beginning of each session, then for 6 s top-up periods. 

Stimuli were presented 1 s after adaptation. Each participant performed a total of 

432 trials. For the adaptation-to-tapping experiment, participants (9 naïve to the 

purpose of the study and 1 author; mean age 28 with normal or corrected-to-normal 

vision) made a series of hand-tapping movements (pivoting at the wrist) on the right 

side of the screen until a white central fixation point turned red (the stop signal); 1 

s later the stimuli were presented. In one condition participants tapped as rapidly as 

possible, in another at around 1 Hz. The program continuously monitored tapping 

via the infrared motion sensor: if a tap occurred after the presentation of the test 

stimulus, the trial would be aborted. After the stimuli presentation, subjects were 

required to press left arrow when the stimulus at left was perceived as more 

numerous, or right arrow when the righthand stimulus was perceived as more 

numerous. They then pressed up-arrow if they were confident about the numerosity 
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response or down-arrow if they were not. Participants were unaware that we also 

measured the reaction-time of the numerosity response, and they were not explicitly 

asked to make speeded responses. Three blocks of 24 trials were run for each 

condition.  

 

2. 2. 2 Manipulation of rewards 

We devised a control experiment to compare with adaptation, where we 

manipulated the reward rules. 10 adults participated in this study, 9 naïve to the 

purpose of the study (mean age 28 with normal or corrected-to-normal vision). Here 

there was no adaptation, but participants played a point-based game, with three 

types of reward regimes (in different blocks). In baseline blocks, they received 1 

point for each correct response and lost 1 for every error (performing on average at 

85% correct). In “reward-low” blocks, they received 2 points for correctly 

responded “less than”, and lost 1 for each error; and in “reward-high”, 2 points for 

correctly responding “greater than”, losing 1 for an error. They also indicated by 

pressing up-arrow if they were confident about the numerosity indicated was “less” 

or “greater than” or down arrow if they were not. They were given feedback on 

earning 50 points, and again at 80 points. Three blocks with at least 79 trials were 

run for each condition. We also measured the reaction-time of the response, and 

again participants were not explicitly asked to make speeded responses. 



Chapter 2 
 

 25 

 
Figure 2.2. Stimuli and procedure. On each trial subjects were required to 
indicate which of two stimuli were more numerous, then report whether they were 
confident with their response (both responses 2AFC). In the visual adaptation 
condition, a dense dot array was displayed first for 40 s than for 6 s top-up periods 
at the test location before the discrimination task (top left). In the motor adaptation 
condition (top right), participants were required to tap their hand with index finger 
extended, for 6 s on the right side of the screen, with their hand concealed by the 
screen and without touching any surface to minimize sensory feedback. Subjects 
either tapped as fast as possible or slowly, at around 1 Hz (tested in separated 
sessions). In all conditions, reaction times between the offset of the reference and 
the numerosity response were measured, although participants were never 
requested to make any speeded response. 

 

2. 2. 3 Data analysis 

The proportion of trials where the test appeared more numerous than the probe was 

plotted against physical numerosity and fitted with cumulative Gaussian error 

functions. The median of the error functions estimates the point of subjective 

equality (PSE), and the difference in numerosity between the 50% and the 75% 

points gives the just notable difference (JND). The distributions of average 

confidence responses (1 for high, 0 for low) and of the mean of reaction-times were 
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fitted with Gaussian distributions, and the peak of the fitted functions was taken as 

the point of maximum uncertainty or reaction-times.  

 

"($) = ' + ) ∙ +,- .
!(#$!#)!
&'! /     eqn. 2 

Where N is numerosity, P(N) the proportion of confident responses – or the 

average reaction-time – at that numerosity, b and a constants, $0 the mean of the 

Gaussian and σ the standard deviation. When fitting data pooled over participants, 

all parameters were free to vary. When fitting individual participant data, b and σ 

were fixed to the values obtained for the aggregate data.  

All analyses were performed both on the “aggregate participant”, pooling 

all data from all participants, and also on individual participant data. Significance 

of the aggregate data was calculated by bootstrap sign test: 10,000 reiterations, with 

replacement.  

Experimental procedures were approved by the local ethics committee 

(Comitato Etico Pediatrico Regionale Azienda Ospedaliero-Universitaria Meyer, 

Florence, Italy; protocol n. GR- 2013-02358262) and are in line with the 

declaration of Helsinki. All subjects gave written informed consent.  

 

2.3 Results 
2.3.1 Effects of adaptation on confidence and reaction times 

We monitored decision confidence and reaction-times (in an un-speeded 

task) while participants made numerosity judgements after adaptation, either to 

dense visual patterns or to hand-tapping. The major results were obtained from 

analysis of the “aggregate observer”, pooling data over all 12 participants (10 in the 

adaptation to hand-tapping). However, we also analysed individual data from all 

participants separately (Figures A1&A2) and, although the reduced data were 

necessarily more noisy, the group analysis gave essentially the same results as the 

aggregate. The results of the individual analyses are summarized in Figure A4 and 

in Table 2.1. 
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Figure 2.3 shows the main results from the aggregate data. Figures 2.3A 

and 2.3B are psychometric functions, plotting the proportion of trials (for all 

participants) where the test was reported as more numerous than the reference, as a 

function of the numerosity of the test patch. Both data sets were well fit by 

cumulative Gaussian error functions, which were clearly displaced by adaptation, 

both by visual dot-patterns and hand-tapping. In the un-adapted condition (Figure 

2.3A, blue symbols and curves), the psychometric function was centred at 17 dots, 

very near the actual reference of 16 dots. Visual adaptation to 60 dots clearly 

displaced the psychometric function rightwards, shifting the median (which 

estimates the PSE) to 22.7 dots, meaning that after adaptation the probe needed to 

be 33% more numerous than the reference to appear equal to it. A similar effect 

occurred for hand-tapping: slow tapping had little effect, with the PSE remaining 

at 15.9 (near the reference), while fast taping increased it to 18.1, again implying a 

decrease of apparent numerosity, in this case of 14%.  
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Figure 2.3. A-B: Psychometric, confidence and reaction times functions. 
Psychophysical functions showing proportion of trials in which the test was 
perceived more numerous than the reference, as a function of test numerosity. C-
D: Confidence levels and mean reaction times (E-F) as a function of test 
numerosity, for visual and motor adaptation (left and right panels respectively). In 
all graphs, blue and red curves indicate baseline and high adaptation for visual 
adaptation (panels on left hand side) and slow or fast tapping in the motor 
experiment (on right hand side). The dashed lines show the PSEs and arrows the 
peaks of the best-fit gaussians to the confidence or reaction time distributions. 

 

Both the confidence and mean reaction-time data were well fit by Gaussian 

functions (R2 > 0.75 in all cases). The peaks of these functions (indicated by the 

arrows, and reported in Table 2.1), clearly also shift with adaptation, both to visual 

numerosity and hand-tapping. The shift is in the same direction as the shift in PSEs, 

tending to align peaks in confidence and reaction-times with the PSEs. These results 
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on the aggregate observer are very similar to those obtained from analysis of 

individual participants (Figure 2.4). 

 

 
Table 2.1. PSEs, minimal confidence and peak reaction times for all three 
experiments. Data from the aggregate participant are shown on the middle column, 
average of individual participants on the right. 

 

The blue and red histograms of Figure 2.4(A-D) show the results of 

bootstrapping (10,000 repetitions, sampling with replacement). On each repetition, 

estimates were made for PSE, point of minimal confidence and maximal reaction-

time. It is clear from inspection that in all cases the distributions for the investigated 

conditions overlap very little, indicating that they are significantly different. 

Bootstrap sign test yielded significance levels of p < 0.003 in all cases. On 

adaptation to visual stimuli peaks in both the confidence (Figure 2.4A) and 

reaction-time (Figure 2.4C) were higher for the adapt-high condition than baseline 

Conditions
Aggregate Individual Participants

Mean sem Mean sem

Visual

Baseline
PSE 17.05 0.14 17.02 0.39

Peak Conf. 17.42 0.18 17.53 0.54

Peak RT 16.03 0.19 16.29 0.79

Adapt to high
PSE 22.76 0.20 22.82 0.87

Peak Conf. 23.63 0.34 23.16 0.88

Peak RT 24.22 0.49 23.35 1.09

Tapping

Slow adaptation
PSE 15.89 0.25 15.79 0.29

Peak Conf. 15.92 0.44 15.62 0.72

Peak RT 15.58 0.27 15.64 0.47

Fast adaptation
PSE 18.15 0.32 18.1 0.34

Peak Conf. 17.67 0.40 16.82 0.52

Peak RT 18.15 0.50 18.22 0.52

Control

Baseline
PSE 17.48 0.15 17.39 0.41

Peak Conf. 17.07 0.29 17.57 0.74

Peak RT 17.35 0.29 17.59 0.74

Reward-low
PSE 15.776 0.15 15.734 0.56

Peak Conf. 17.44 0.32 17.45 0.43

Peak RT 16.30 0.20 16.86 0.44

Reward-high
PSE 19.16 0.17 19,06 0.64

Peak Conf. 17.98 0.22 17.47 0.84

Peak RT 17.57 0.26 17,67 0.39
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in all 10,000 iterations (p < 10−4). On adaptation to tapping, peaks in confidence 

(Figure 2.4B) were lower for the adapt-high than adapt-low condition on only 34 

iteration (p = 0.0034), and for reaction-times (Figure 2.4D) only 20 times 

(p = 0.002) out of 10,000.  

We then used the bootstrapped distributions to pit two plausible models 

against each other: 1) that the shifts in the psychometric functions result from a 

response strategy for uncertain trials (Morgan et al., 2011: illustrated in Figure 2.1); 

2) that the change reflects adaptation-induced changes within sensory circuits. 

Model 1 predicts that the confidence and reaction-time distributions should not 

move with adaptation, so those for the adapt-high should be closer to PSEbase (or 

PSElow) than to PSEhigh. On the other hand, model 2 predicts that both peaks should 

follow the shifts in PSE, and therefore be closer to PSEhigh. We tested this by 

bootstrap sign test, counting how many iterations were closer to PSEbase (or PSElow) 

than PSEhigh. We also bootstrapped the PSEs themselves on each iteration, to 

include their error in the calculation (the orange distribution in Figure 2.4 shows 

the bootstrapped mid-points of the two PSEs). For visual adaptation, not a single 

iteration of either confidence or reaction-time peaks was closer to PSEbase than 

PSEhigh, implying the likelihood for the first model is p < 10−4. The tapping 

condition also showed a clear effect. For the confidence data, the likelihood of 

model 1 was p = 0.05, compared with p = 0.95 for model 2, giving a likelihood ratio 

of 19. Reaction-times were more significant, with likelihood of model 1 equal 

to 0.0064 compared with 0.9936 for model 2, 166 times less likely. All the 

bootstrapped sign tests provide strong evidence for model 2 for both types of 

adaptation, suggesting that the adaptation occurs within sensory rather than 

decision systems.  
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Figure 2.4. Frequency distributions of bootstrapped data of confidence and 
reaction-times. Frequency distributions of bootstraps for confidence (A-B) and 
reaction-times (C-D), for visual or motor adaptation experiment (left and right 
panels respectively). Data in blue represent visual baseline or slow tapping 
condition and red for high visual adaptation or fast motor tapping). Orange 
distributions show the bootstrapped mid-points between baseline (or slow) and 
adaptation (or fast tapping) PSEs. 

 

To test the validity of the confidence ratings, we separated the data into 

high- and low-confidence trials and fitted psychometric functions separately for 

each, calculating the just noticeable difference (JND), from the standard deviation 

of the fit. Standard errors and significance were calculated by bootstrap. As there 

were 3 times as many trials judged confident than unconfident, the data for 

confident judgements were under-sampled during bootstrapping to match sample 

sizes. Figures 2.5A and 2.5B show JNDs for the high-confidence trials were 

significantly lower than that for low-confidence, by at least a factor of two (p < 10−4 

in all cases), consistent with the idea that subjective confidence  reflects a genuine 

metacognitive ability which assesses the quality of sensory evidence (Mamassian, 

2016).  
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 We also correlated reaction-times against confidence (Figures 2.5C and 

2.5D). Each point of Figure 2.5C comes from Figures 2.3C and 2.3E, and those 

from Figure 2.5D from Figures 2.3D and 2.3F. The correlation was strong, with 

r = −0.87 and −0.89 for the two adaptation types, accounting for more than 70% of 

the variance. This shows that the two measures covary together, consistent with 

their being driven by a common factor, most probably perceived stimulus strength.   

 

 
Figure 2.5. Just noticeable difference of confidence split-data and correlations 
between reaction-times and confidence in visual and motor conditions. Bar 
graphs show precision for numerosity discrimination in the high or low confidence 
trials. In blue, data for baseline (or slow tapping) and red data for adaptation to high 
(or fast tapping) for visual and motor adaptation.  (C-D) Reaction-times (averaged 
over trials and subjects) as a function of confidence (averaged over trials and 
subjects) for the two adaptation conditions. Black lines represent the best-fitting 
linear regressions (C visual adaptation: R2 = 0.76; D motor adaptation: R2 = 0.79). 
Error bar represent ±1 s.e.m., *** p < 0.0001. 
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2.3.2 Control experiment: Effects of reward on confidence and reaction times 

In order to show that confidence and reaction times do not necessarily change with 

PSE, we devised a control experiment where we manipulated rewards. Here there 

was no adaptation, but participants played a point-based game, with three types of 

reward regimes (in different blocks). In baseline blocks, they received 1 point for 

each correct response and lost 1 for every error (performing on average at 85% 

correct). In “reward-low” blocks, they received 2 points for correctly responding 

“less than”, and lost 1 each error; and in “reward-high”, 2 points for correctly 

responding “greater than”, losing 1 for an error. This simple manipulation of 

rewards biased observers towards the double-reward response when uncertain, 

causing robust shifts in the PSE. Figure 2.6A shows the psychometric functions for 

the aggregate observer for the three conditions. The PSE for the standard condition 

was 17.5 (a constant bias of 1.5 from the physical equivalent of 16), while for the 

“reward-low” condition it was 15.8 (1.7 lower) and for “reward-high” was 19.1 (1.6 

higher). Both cases are near the predictions of the ideal observer (which predicts a 

shift of 1.2 towards the rewarded side).  

 However, the shift in PSE was not accompanied by concomitant shifts in 

confidence: the minima in the gaussians are very similar for all three conditions 

(17.4, 17.1 & 18.0 for low, baseline and high). Similarly, the peak reaction times 

did not follow the PSEs, but again tended to cluster around the baseline PSE (16.3, 

17.3 & 17.6). The histograms below the confidence and RT curves show the 

bootstrap analysis, similar to that of Figure 2.4. The bootstraps clearly overlap 

considerably. Again, we tested the two plausible models outlined for Figure 2.4, 

counting, for each condition, how many iterations were nearer to the PSE of that 

condition rather than to the PSE of the baseline (non-rewarded) condition. For the 

confidence measures the results were clear: the probabilities of model 2 (closer to 

the shifted PSE) being correct were p=0.046 for the reward-low condition, and 

p=10−4 for the reward-high condition, 20 and 10,000 times less likely than model 

1. The results for reaction times were similarly in favour of model 1, with 

probabilities for model 2 at p<10−4 for the reward-low condition, and p=0.012 for 

the reward-high condition, infinite and 81 times less likely than model 1. Reaction 

times in this experiment may have been less reliable, because of variable slowing 
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when integrating the reward “prior”. Again, the results from the aggregate observer 

are very similar to those obtained from analysis of individual participants (see 

Figure A3).  

 

 
Figure 2.6. Psychometric, confidence and reaction-times functions of the 
control condition. (A) Psychophysical functions of proportion of trials when the 
test was seen as more numerous than the neutral probe, as a function of physical 
numerosity in the control condition (baseline in orange, leftward condition in blue 
and rightward condition in red). (B) Expressions of confidence, as a function of 
physical numerosity. (C) Mean reaction-times (in seconds) as a function of physical 
numerosity. The continuous dotted lines indicate the PSE of the psychophysical 
curves. The histograms below the confidence and reaction time fits represent the 
bootstrap analysis. 
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2.4 Discussion 
The primary goal of this study was to probe the mechanisms of numerosity 

adaptation, to test whether adaptation affects sensory processing mechanisms 

directly, or indirectly via decision or response criteria. We argue that a change in 

sensory processing should result in a comparable change in minimum decision 

confidence and maximum reaction-times, which should shift to align with the point 

of subjective equality after adaptation, where the test and probe stimuli are, by 

definition, most similar perceptually. On the other hand, if the change in PSE results 

from a response bias, the peaks in confidence and reaction-times should not change 

with adaption (see Figure 2.1). Our results clearly support the claim that adaptation 

affects sensory processing directly. Two types of adaptation – to visual patterns and 

to hand-tapping – caused large shifts in PSEs, with concomitant shifts in peak 

confidence and reaction-times. In all cases, the sensory processing model was far 

more probable than that suggested by confidence-induced shifts in response criteria. 

On the other hand, when the PSEs were shifted by awarding rewards for specific 

responses, the shifts in PSE were not accompanied by shifts in confidence or RTs.  

 The results are interesting for several reasons. Firstly, there has been a long-

standing debate about the nature of numerosity processing, particularly about 

whether it is sensed directly, or is a by-product of texture processing (Anobile, 

Cicchini, et al., 2016; Burr et al., 2018). One of the strongest lines of evidence that 

numerosity is distinct from texture density comes from adaptation studies, 

particularly cross-modal and cross-format adaptation (Arrighi et al., 2014): 

adapting to sequences of flashes or tones affects the perceived numerosity of dot 

arrays, difficult to ascribe to texture perception. The demonstration that adaptation 

to fast or slow hand-tapping changes the perceived numerosity of spatial arrays is 

even more fascinating, as it links perception and action, implicating common 

mechanisms for perceiving and reproducing numerosity (Anobile, Arrighi, et al., 

2016, 2020). 

 However, paraphrasing Laplace (1812): “extraordinary claims require 

extraordinary evidence”. It is therefore reasonable to expect a rigorous 

demonstration that motor tapping affects the perception of numerosity directly, 

rather than merely biasing the decision or the response along the lines of Figure 
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2.1. The fact that all analyses show that both confidence and reaction-time peaks 

move to the adapted PSE strongly favours the hypothesis that adaptation causes 

changes at the sensory level. This has important ramifications for understanding the 

role of numerosity mechanisms in perception and action, relating well to the 

electrophysiological studies showing a clear selectivity for the number of self-

produced actions in the area 5 of the superior parietal lobule of monkey (Sawamura 

et al., 2002, 2010).  

The other more general result of this study is a method of validating 

adaptation and other effects of temporal and spatial dependency (such as serial 

dependence: see Cicchini et al., 2014, 2017; Fischer & Whitney, 2014; Fornaciai & 

Park, 2019). Adaptation is a fundamental tool in psychophysics, famously referred 

to as “the psychophysicist’s microelectrode” (Frisby, 1979). However, adaptation 

studies necessarily rely on subjective judgements, on participants reporting their 

subjective impressions. Most modern adaptation studies use two-alternative forced 

choice techniques that ask participants to compare the adapted test to a probe, 

yielding psychometric functions from which the point of subjective equality can be 

titrated. However, unlike other forced-choice tasks (such as measurement of 

contrast sensitivity), there is no right or wrong answer: just a subjective judgment 

that stimulus A was larger, brighter or more numerous than stimulus B. Over a 

considerable range around the point of subjective equality, judgments are difficult, 

but participants must respond, guessing if unsure. It requires only a slight tendency 

to respond stereotypically in one direction when unsure to shift the curves, robustly 

changing the PSE, without changing the slope of the function (Morgan et al., 2011). 

It therefore becomes important to have objective corroborative evidence that the 

point of subjective equality really does reflect sensory changes rather than response 

biases. Gallagher et al. (2019) suggested that minima in response criteria could 

provide useful corroboration, and demonstrated that they can do so for motion 

adaption (and also for serial dependence). We build on their idea, showing that even 

with a far more subtle forms of adaptation elicited by hand-tapping, the minima in 

confidence follow the changes in PSE.  

 We point out that we are testing a specific model of how decision criteria 

may affect PSEs; that a small tendency of response bias could affect trials of low 



Chapter 2 
 

 37 

confidence, causing reliable shifts in PSE (Morgan et al., 2011). With this particular 

model, as confidence is driving the response, this is unlikely to shift with the 

response PSE. However, other, more complex models of perceptual decisions 

(Maniscalco & Lau, 2014; Ratcliff & McKoon, 2008) may predict that confidence 

and RT do change with changes in PSE. Indeed, with these classes of models it is 

often difficult to distinguish experimentally between sensory and perceptual 

decision effects (Pelli, 1985). We therefore designed a realistic experiment that 

manipulated PSEs at the decisional level, by rewarding correct responses in a 

specific direction (high or low). This produced robust changes in responses, shifting 

the PSE as expected, as participants sought to optimize gains; however, the shifts 

in PSE were not accompanied by concomitant changes in confidence, nor in RTs. 

This is a clear existence proof that at least some types of manipulation on decisions 

are not paralleled by shifts in confidence, which may therefore be a signature of 

sensory changes. Gallagher et al. (2019) performed a similar experiment, 

instructing participants specifically to respond “left” or “right” when confidence is 

low, and also showed that this manipulation does not shift the point of minimal 

confidence. However, our task was more natural, in that we gave no instructions to 

participants on how to respond, nor that they should take confidence into account. 

It was a natural task with greater risks on one side than on the other (like those 

pioneered by Trommershäuser and colleagues (2005)) which human participants 

soon learn to optimize. Yet this very natural and spontaneous task, which shifted 

PSEs smoothly, caused no similar shifts in confidence or RTs.  

  In general, reaction-times provided more robust data than confidence for 

the sensory shifts in PSE. Reaction times could have several advantages to 

confidence measures. Firstly, they are objective and come at no extra cost, 

automatically encoded in the timestamps of the stimuli and responses, without 

having to ask participants to make a second response. Nor was it necessary to ask 

for a speeded response; we simply relied on the tendency of participants to respond 

reasonably quickly in order to finish the session as soon as possible. For the 

adaptation experiments, reaction-times proved to be more informative than 

confidence, in all cases providing stronger evidence for a shift in their peak. For 

example, for the aggregate data for adaptation to tapping, the Log10BF12 was 1.26 
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for confidence, compared with 2.22 for reaction-time data. For the analysis of 

individual data (where there are far fewer trials, hence more noisy estimates) the 

Log10BF12 for confidence was 1.14 compared with 2.46 for reaction-times. In all 

cases the log10-Bayes factors were greater than 1, considered strong evidence, but 

the reaction-time data gave log10BF > 2, considered decisive (Jeffreys, 1998). There 

is considerable evidence showing that reaction times vary monotonically with 

signal strength (Piéron, 1914), and should therefore be maximal at the point of least 

difference in the signals. Combined with the ease with which reaction-time data can 

be collected, with no additional load on participants, it would appear to be the 

preferred method.  

 To summarize, we present a new technique for investigating the 

mechanisms of numerosity adaptation and sensory adaptation in general. By 

simultaneously measuring subjective confidence and more importantly – reaction-

times, we demonstrate that adaptation to numerosity, either by observing visual 

stimuli of high numerosity or by subjects tapping in a particular region occurs at a 

sensory level, before stages of perceptual decision. Adaptation affects not only 

perceived numerosity, but also subjective confidence and reaction times, showing 

that they are a consequence of sensory adaptation, rather than the cause for the shift 

in the psychometric functions. 
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3.1 Introduction 

Recently, Starkey and McCandliss (2014) suggested that subitizing mechanisms 

may also come into play for higher numerosities, a process they term 

"groupitizing". This is very much like George Miller’s well-known notion of 

“chunking”, where complex sets of information such as long telephone numbers 

can be more easily recalled if parsed into three or four smaller “chunks”. Starkey et 

al. (2014)  measured counting speed of spatially clustered arrays in school-age 

children, and found that clustering, or grouping, increased performance. Crucially, 

both the number of clusters and the number of elements within each cluster was 

limited to the subitizing range (e.g. 7 = 2+2+3). Interestingly, the grouping 

advantage increased with age and correlated with arithmetic abilities, with more 

math-skilled children showing stronger groupitizing effects. More recently, it has 

been reported that grouping by color can also decrease reaction times in adults 

(Ciccione & Dehaene, 2020). Overall these studies suggest that serial counting 

without time constraints may be not a "pure" and direct measure of ANS precision, 

but could be tempered by arithmetical strategies, such as grouping, which involves 

processes such as parse-and-add.  

In this study, we ask whether grouping items by spatial proximity or color 

not only increases enumeration speed but also increases precision (measured as 

Coefficient of variation). We also investigated whether this grouping phenomenon 

is a general property of numerosity perception, applying to temporal sequences as 

well as spatial arrays. The results suggest that groupitizing occurs for estimation of 

both temporal and spatial dimensions of numerosity. We also observed a robust 

inter-individual variability in the magnitude of grouping-based improvement, with 

participants who were less precise in estimating numerosity in ungrouped arrays 

benefiting more from the groupitizing. This suggests that some participants may 

take advantage of intrinsic grouping in ungrouped arrays to increase their 

performance, therefore benefit less from the explicit experimentally induced 

grouping.  
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3.2 Methods 

Sixteen young adults (mean age=26, standard deviation=3.2, range= 23-36) 

participated in this study (12 male, 4 female, 13 participants were master’s students 

in psychology, 2 were grad-students and 1 a post-doc in neuroscience). All 

participants had normal or corrected-to-normal vision. All completed all tasks 

except one, who was unavailable to perform the two sequential numerosity 

conditions.  

Stimuli were created with Psychophysics toolbox for Matlab and displayed on a 60 

Hz – 15” screen monitor (MacBook Pro) placed at viewing distance of 57 cm. 

Subjects were tested in a quite, dimly light room. The experimental procedures were 

approved by the local ethic committee (Comitato Etico Pediatrico Regionale ¾ 

Azienda Ospedaliero-Universitaria Meyer ¾ Firenze FI). The research was 

performed in accordance with Declaration of Helsinki and informed consent was 

obtained from all participants prior to each experiment. 

Each trial started with a central fixation point that remained on screen for 

the entire experiment. After 500 ms a stimulus was displayed, followed by a blank 

screen. Participants estimated verbally the numerosity of the squares-array or 

square-sequence (in separate sessions with order pseudorandomized between 

subjects Figure 3.1C and 3.1D).  

The experimenter hit the spacebar when the participant responded (used to 

calculate reaction times), then entered the response on the numeric keypad, which 

initiated the following trial. Response time was measured from the stimulus offset 

to the beginning of vocalization. Participants were asked to respond as soon as 

possible, but also to concentrate on accuracy. Each condition was tested in separate 

blocks, and participants were never explicitly informed about the grouping cues.  

Numerosity levels ranged from 4 to 16 (grain of 1, resulting in 13 

numerosity levels). In the structured conditions, each numerosity was organized 

into clusters (between 2 and 4), each containing a variable number items (between 

2 and 6), resulting in the following configurations: 2, 2 - 2, 2, 1 - 3, 3 -  2, 2, 2  - 

3, 3, 1 - 3, 3, 2 - 2, 2, 2, 2 - 4, 4 - 4, 3, 2 - 4, 4, 1 - 3, 3, 3 - 3, 3, 3, 1 - 4, 4, 2, 1  

- 3, 3, 3, 2 - 3, 3, 3, 3 - 4, 4, 4 - 4, 4, 3, 3 - 4, 4, 4, 3 - 5, 5, 3 - 4, 4, 4, 4 - 5, 5, 
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6. As numerosities 4 and 16 were not analyzed (see data analyses), each grouped 

pattern comprised a minimum of 2 and a maximum of 4 clusters. All clusters except 

one (13 = 5, 5, 3) contained from 1 to 4 elements. On each trial, a given numerosity 

and configuration pattern were randomly selected. Each participant completed 

about 150 trials for each of the six conditions (around 14000 trials in total).  

 

 
Figure 3.1. Stimuli and procedure. A) Illustration about how stimulus position 
was defined in the grouping conditions (upper panel) with example configurations 
for numerosities 8 and 9 (lower panel). B) Examples of stimuli arrangement in the 
various conditions, when grouping was defined by spatial proximity, color or 
temporal proximity, together with related ungrouped conditions (on the left-hand 
side). C-D) Example of the time course for the spatial (C) and temporal (D) version 
of the experiment (tested in separate sessions). In the spatial numerosity conditions 
(C), a central patch of squares was presented for 500 ms. In the sequential 
numerosity condition (D) a series of squares was centrally presented. Participants 
were asked to verbally report the perceived numerosity. Stimuli are not depicted to 
scale.  

 

3.2.1 Stimuli 

3.2.1.1 Spatial arrays 

Stimuli were arrays of squares (0.4° × 0.4°) displayed for 500 ms on each trial. 

Squares could not overlap and were constrained to fall within a 6° × 6° virtual 

square area. In the conditions where spatial structure was manipulated, the 
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individual items were white squares within black borders (so luminance was not a 

cue to number). In the unstructured conditions, the position of each square was 

randomly selected from 154 possible positions (within the stimulus area), being the 

centers of equally spread sectors within the 6.5°×6.5° area (each grid 0.5°×0.5°). 

For the spatially grouped condition, stimuli were arranged in 4 possible groups of 

12 possible positions (see Figure 3.1A). Each group (spanning over a max area of 

1.5 × 1 deg) was located in one quadrant and centered at 3° from the central fixation 

point. Each group was first randomly assigned to one quadrant (between 1 and 4), 

then the individual items positions was randomly selected between one of the 12 in 

the selected quadrant. Within each quadrant, the maximum center-to-center 

distance between each element was 2° and the minimum was 0.5°.  

In the conditions where groups were defined by color, individual items 

could be red, green, blue or yellow (RGB: 255 0 0; 0 255 0; 0 0 255; 255 255 0). 

Color was assigned from left to right, so that similar colors appeared in vertical 

rows. For example, in the 3, 3, 2 condition depicted in Figure 3.1B squares were 

first randomly located, then the first three squares (from the left border) were 

colored red, the next three yellow and the remaining two blue (colors randomly 

chosen for each group).  In the unstructured color condition, positions were 

assigned with the same logic, but with colors assigned at random.  

 

3.2.1.2 Temporal sequences 

Stimuli were streams of 3° × 3° squares each presented at screen center for 70 ms, 

for a total trial duration of 3 secs (Figure 3.1D). The end of each trial was signaled 

by color change of the central fixation point, from white to green. Sequences were 

spaced pseudo-randomly: on every trial, a given number of impulses (chosen at 

random) were evenly spread within the 3-second sequence duration; then the timing 

of each impulse was randomly jittered by either ±0, ±20 or ±40 ms to create a 

pseudorandom sequence of impulses with a minimum ISI between consecutive 

flashes of 50 ms. In the ungrouped condition all stimuli were black, while in the 

grouped condition they were grouped by color: each flash within a group could be 

red, green, blue or yellow (color coordinates as before), with group color randomly 
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assigned. For example, in the 3, 3, 2 condition depicted in Figure 3.1B, the first 

three flashes were colored red, the following were yellow and the remaining two 

blue.  

 

3.2.2 Data analysis. 

Since participants were explicitly informed about the numerical range (4-16), we 

eliminated the two extreme numerosities from the analyses. We controlled for 

response outliers by eliminating trials with RTs longer than 3 standard deviations 

from the average response time, calculated separately for each numerosity level and 

participant. 

For each participant, we calculated for each numerosity the average 

perceived numerosity, the standard deviation of the responses and the median 

response time. Precision was measured by normalizing the standard deviation by 

the physical numerosity yielding the Coefficient of variation (CV), a dimensionless 

index of precision that allows comparison and averaging of performance across 

numerosities.  

 

12+33454+67	23	9):4)7426 = 	
s"
#"

                       eqn 1 

Where $( is the analyzed numerosity and s( 	the standard deviation of 

responses to numerosity i. Improvement (I) by grouping was measured by a 

normalized index yielding the proportion improvement:  

 

; = 	
)*#!)*$

)*#
         eqn 2 

Where 19+ and 19, 	are the Coefficient of variation for the ungrouped and 

grouped conditions.   

Data were analyzed by Repeated Measures ANOVAs, and effect sizes were 

reported as η², using JASP and Matlab. 
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3.3 Results 

We asked participants to estimate the numerosity of briefly presented visual 

impulses, presented either in simultaneous spatial arrays or temporal sequences. For 

both conditions (tested in separate sessions), we investigated the effects of task-

irrelevant grouping cues on numerosity estimation precision and speed. Grouping 

manipulations mainly followed the formal definition of Starkey and McCandliss 

(2014) with both the number of groups and the number of items/events within each 

group falling within the subitizing range: 2, 3 or 4 groups each containing 1, 2, 3 or 

4 items/events.  

 

3.3.1 Effect of grouping on perceived numerosity 

We first evaluated the effect of grouping on the accuracy of estimation of perceived 

numerosity. Figure 3.2 shows averaged responses as a function of physical 

numerosity. To statistically test differences across conditions, we ran Repeated 

measure ANOVAs (one for each numerosity format: simultaneous and sequential) 

with numerosity (11 levels, from N5 to N15) and grouping condition (4 or 2 levels 

for simultaneous and sequential numerosity respectively) as within subject factors. 

For both numerosity formats, the main effect of numerosity was obviously 

significant (simultaneous: F(10,150)= 834.289, p<0.001, η²= 0.982; sequential: 

F(10,140)= 282.289, p<0.001, η²= 0.953), but there was no significant effect of 

“condition” (simultaneous: F(3,45)= 1.285, p= 0.29, η²= 0.08; sequential: F(1,14)= 

0.281, p= 0.60, η²= 0.02) and the condition-by-numerosity interactions were 

insignificant (simultaneous: F(30,450)= 0.742, p= 0.84, η²= 0.047; sequential: 

F(10,140)= 0.311, p= 0.97, η²= 0.022). Overall, these results clearly indicate that 

grouping did not significantly affect average perceived numerosity.  
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Figure 3.2. Perceived numerosity.  Average perceived numerosity for spatial (A) 
and temporal (B) numerosity tasks, averaged across participants. 

 

3.3.2 Grouping and sensory precision 

Having established that grouping did not change average perceived numerosity 

(accuracy), we investigated its effect on sensory precision, indexed by Coefficient 

of variation (eqn. 1).  This is a classical psychophysical parameter and, in the case 

of numerosity, is believed to reflect the sensory noise associated with the estimation 

process: higher values reflect less precision in the estimates and thus more sensory 

noise. Figure 3.3 shows Coefficient of variations averaged across numerosities and 

participants for the ungrouped and grouped conditions, for estimations of spatial 

(A) and temporal (B) numerosity.  
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Figure 3.3. Sensory precision.  Average Coefficient of variation for the 
simultaneous (A) and sequential (B) numerosity tasks. (A) Bar graph of average 
Coefficient of variation in the four spatial conditions: the stimuli could be randomly 
presented, grouped by spatial proximity (all items were white squares), randomly 
presented but coloured and grouped by color. (B) Bar graph of average Coefficient 
of variation in the two sequential conditions: the sequence of flash could be 
randomly presented (all flash were black) and grouped by color.  Error bar represent 
±1 s.e.m. **p£0.01 *p<0.05 

 

For spatial presentations, Coefficient of variation was highest for the non-

grouped condition, higher than all the grouped conditions. Repeated measures 

ANOVA with numerosity (11 levels) and condition (4 levels) revealed a significant 

main effect of condition (F(3,45)= 4.9, p=0.005, h2= 0.247), with grouping 

decreasing Coefficient of variation compared to the spatially ungrouped condition 

(Figure 3.3A). The effect of numerosity was also significant (F(10,150)= 4.921, 

p<0.001, h2= 0.634), suggesting that Coefficient of variations are not constant with 

numerosity, while the interaction was not (F(30,450)= 1.365, p= 0.097, h2= 0.08), 

suggesting that the overall effect of grouping was constant across numerosity levels.  

To assess the effect of grouping separately for each condition, we then ran 

a series of repeated measures ANOVAs against the spatially ungrouped stimuli 

condition. The results revealed that grouping by spatial structure (F(1,15) = 9.38, p = 
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0.008) and by color gradient in space (F(1,15)= 13.908, p= 0.002) both induced a 

significant reduction of Coefficient of variation, and both had a quite large effect 

(spatial structure 22%, h2= 0.43, color gradient in space 22%, h2=0.48). Grouping 

by color without spatial gradient did not produce a significant reduction in 

Coefficient of variation (9%, F(1,15)= 2.264, p= 0.15, h2= 0.13). The ANOVA 

comparing the two color conditions (with and without a spatial gradient) revealed 

that grouping by color with a gradient in space produced a significant reduction in 

Coefficient of variation compared to color alone (14% reduction in WF, F(1,15)= 

5.165, p= 0.038, h2= 0.256). The interaction between numerosity-by-condition was 

never significant (p>0.05) in any condition comparison (Figure 3.4A-D), 

suggesting the effect was comparable across numerosity levels.   

 

 
Figure 3.4. Sensory precision across numerosity levels.  Average Coefficient of 
variation as a function of numerosity levels for all different experimental 
conditions. A-C: Performance in the spatially ungrouped condition (open squares) 
against grouping by spatial proximity (A, gray circles), color gradient in space (B, 
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gray circles) or only color (C, gray circles). D) Coefficient of variations for the two-
color conditions, ungrouped or grouped by color. E) Coefficient of variation for the 
sequential presentation when stimuli were shared the same color (black) or similar 
colored items were presented temporally close to each other. Error bar represent ±1 
s.e.m.  

 

Figure 3.3B shows the effects of grouping on sequential numerosity. Here, 

grouping was encouraged with sequences of same-colored flashes within the 

sequence. Again, grouping yielded a clear increase in precision compared to the 

ungrouped condition, with a Coefficient of variation reduction of about 15% 

(F(1,14)= 11.683, p= 0.004, h2= 0.455). Once again, the numerosity-by-condition 

interaction was not significant (p>0.05). 

 

3.3.3 Grouping and response times 

Like previous studies in the literature (Ciccione & Dehaene, 2020; G. S. Starkey & 

McCandliss, 2014), we also investigated the effect of grouping in term of response 

speed (Figure 3.5). Reaction times were around 2 seconds for all experiments with 

spatial arrays (Figure 3.5A), and around 1.2 secs for the temporal sequences 

(Figure 3.5B).  

Repeated measure ANOVA with numerosity (11 levels) and condition (4 

levels) as factors did not reveal a significant effect of spatial grouping condition 

(F(3,45) =1.008, p=0.40, η²= 0.06). However, separate repeated measure ANOVAs 

against spatially ungrouped stimuli revealed that grouping by spatial structure 

significantly reduced RTs from 2.02±0.26 to 1.86±0.22 secs, an effect of 8%  

(F(1,15)= 4.612, p= 0.048, η²= 0.235, for all the other ANOVAs min p=0.25). There 

was a significant reduction of response time induced by grouping of temporal 

sequences (RT unstructured= 1.27±0.083, RT grouped= 1.14±0.072, an effect of 

10%: F(1,14)=8.861, p=0.01, η²=0.388).  Again, the effect of numerosity was 

statistically significant (F(10,140)= 10.13, p<0.001, η²= 0.42) but not the numerosity-

by-condition interaction (F(10,140)= 0.924, p= 0.513, η²= 0.062). Finally, all 
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ANOVAs revealed a statistically significant effect of numerosity (reaction times 

increased with set size, all p<0.001), but no numerosity-by-condition interactions 

(p>0.05). 

 

 
Figure 3.5. Reaction times.  Average Reaction times for the various experimental 
conditions for simultaneous A) and sequential numerosity (B) formats. Error bar 
represent ±1 s.e.m. ***p<0.001, **p<0.01, *p<0.05 

 

3.3.4 Interindividual differences in grouping advantage 

The results so far show that grouping stimuli into easily separable, subitizable 

chunks yielded more precise estimates than with ungrouped patterns. The effect is 

robust, but there is also considerable interindividual variability. Here we asked 

whether the magnitude of improvement may be related to the baseline sensory 

precision. It is feasible that some participants always use grouping strategies to 

some extent, taking advantage of the intrinsic clustering of ungrouped patterns. If 

this were the case, we would expect these participants to benefit less from explicit 

grouping, as they were already using this strategy. That is to say, participants with 

the highest Coefficient of variations measured in the ungrouped conditions should 

benefit the most from the explicit grouping.  
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To test this notion, we correlated the magnitude of the grouping advantage 

(the normalized improvement by grouping (eqn. 2) against the baseline Coefficient 

of variation (Figure 3.6)). If grouping was to reduce all Coefficient of variations 

proportionally (multiplicatively), the correlation should be zero. If the effects were 

additive, then the correlation would be negative (proportionally greater for the 

lower Coefficient of variations). However, if those who had the highest Coefficient 

of variations profited proportionally more than those with lower Coefficient of 

variations, the correlations should be positive.  

 
Figure 3.6. Individual differences. Correlations between grouping effects 
(normalized improvement by grouping) on estimation precision and Coefficient of 
variation in the different experimental conditions (A: spatial grouping, B, C & E: 
colour groping on spatial numerosity, D: colour groping on sequential numerosity). 
Positive values indicate a reduction of Coefficient of variation induced by grouping. 
Positive correlations (Pearson r) indicate that participants with worse sensory 
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precision in the unstructured conditions (abscissa) gained more from grouping. 
Lines are best linear fit, one tailed p-values. *p£0.05 

 

For the four conditions that yielded a significant grouping effect – spatial 

grouping, color clustering (with and without spatial grouping) and temporal color 

clustering – the correlation was significantly positive (p < 0.05, one-tailed test). On 

the other hand, the condition in which grouping did not yield a significant advantage 

on numerosity precision (ungrouped space Vs ungrouped color in space), showed 

no significant advantage (p = 0.10).  

 

3.4 Discussion 

This study shows that using color, or spatial or temporal proximity to group items 

together robustly improves the precision of numerosity estimation, by up to 20%.  

 The magnitude of the advantage for grouping did not vary with numerosity, 

over the range tested, from 5 to 15 (Figure 3.4). That is interesting, as one may 

have expected proportionally greater effects for the larger numbers. But perhaps 

there was also a greater cost in subitizing and doing addition with larger numbers, 

so the net proportional gain was similar. We selected our number range to be 

comfortably inside the range where numbers are thought to be estimated directly, 

rather than via texture-density mechanisms (Anobile, Cicchini, et al., 2016; Burr et 

al., 2018). It would be interesting to test much higher numerosities and densities, to 

see if grouping can also aid in judgments of texture density. It would seem unlikely 

if based on subitizing, as subitizing is limited to about 4, but worth verifying.  

We also found smaller and less robust advantages in reaction times, 

confirming previous studies (Ciccione & Dehaene, 2020; G. S. Starkey & 

McCandliss, 2014). We found that grouping by spatial structure slightly reduced 

reaction times relative to the spatial ungrouped condition, by about 8%. However, 

RTs in the spatial gradient color condition were not significantly different from the 

ungrouped color condition. One possibility for this discrepancy may be that 
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grouping by the spatial dimension is more salient compared with grouping by color. 

Alternatively, colored items may induce a strong tendency to automatically group 

the stimuli, even when randomly scattered spatially. This idea is supported by the 

lower CVs in the ungrouped condition with coloured stimuli compared to those 

measured with achromatic stimuli. Not surprisingly, this statistically insignificant 

trend was not evident in the RTs, in line with the fact that in the present study RTs 

have proven to be less robust in detecting grouping effects than CVs.  

Previous research has shown that grouping, or groupitizing, speeds up serial 

counting (G. S. Starkey & McCandliss, 2014), but this does not help preschoolers. 

Furthermore, the grouping advantage correlated positively with arithmetical 

abilities in school-age children, suggesting that grouping relies, at least to some 

extent, on formal arithmetical knowledge. Thus, grouping may reflect an implicit 

math strategy of numerosity perception, like “parse the scene into subitizable 

groups then sum the subitized estimates”. That grouping not only speeds counting 

but also lowers numerosity estimation thresholds has broad implications. Precision 

in numerosity estimation and discrimination are predictive of child math abilities 

(Anobile, Arrighi, et al., 2018; Halberda et al., 2008), and are both impaired in 

dyscalculia (Mazzocco et al., 2011; Piazza, 2010). These results have been 

interpreted as a link between the perceptual ability to estimate numerosity and the 

cognitive ability to learn math (Butterworth, 2019; Piazza, 2010). However, if 

grouping strategies are spontaneously used by some participants, such as those with 

more spontaneous arithmetical skills, it could be this that mediates the link between 

numerosity and math proficiency. Use of grouping information, either intrinsic or 

explicitly introduced, requires some basic math skills, such as rapid addition of the 

numerosities of the sub-groups. It is likely that participants who opt for this strategy 

– rather than a global appraisal of the whole pattern – would be those with the 

greater math skills. This would have important implications for understanding the 

link between measures of numerosity sensitivity and math.  

In the present study, participants who were more precise in the ungrouped 

condition benefited proportionately less from grouped configurations than those 

with higher thresholds. One plausible explanation for this is that those with lower 

thresholds use grouping strategies even with the ungrouped patterns, taking 
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advantage of intrinsic grouping in randomness. These people may benefit less from 

the explicit grouping imposed by spatial or temporal proximity, and therefore show 

less improvement. This possibility is interesting, with implications about different 

individual styles in numerosity perception, well worth pursuing further.  

The correlation between numerosity precision and math skills is interesting. 

While thresholds for estimating numerosities at moderate, uncrowded densities 

predict well math performance (Anobile et al., 2013; Halberda et al., 2008; Piazza, 

2010), numerosity discriminations at high densities (Anobile, Castaldi, et al., 2016) 

do not; nor does subitizing (Anobile, Arrighi, et al., 2019). Furthermore, thresholds 

for temporal sequences do not predict math performance (Anobile, Arrighi, et al., 

2018), despite the clear evidence for a generalized number system encompassing 

space and time (Anobile, Arrighi, et al., 2016; Arrighi et al., 2014; Burr et al., 2018). 

All this suggests that some aspect of estimation of numerosity at low densities is 

related to math. A clear candidate mechanism could be “groupitizing”, the use of 

strategic grouping to parse arrays into subitizable chunks. As mentioned above, this 

strategy requires some basic arithmetical skills: simple but rapid addition. It is 

reasonable to suppose that this skill does not help in the subitizing range, where 

arrays are already subitizable without further parsing, so that is not predictive of 

math. Similarly, for high numerosities the parsing strategy would not be effective, 

as only a limited number of subitizable sub-sets can be counted. Why estimation of 

temporal numerosity sequences does not correlate with math is less clear, as the 

present results show that a grouping strategy is possible with temporal sequences, 

and that those who benefit most from the grouping cues are those with highest 

thresholds. Perhaps the fact that temporal sequences are necessarily one-

dimensional makes it harder to spontaneously group into sub-sets, particularly for 

young children. Also, in previous studies the presentations were constrained to be 

quite rhythmic, which does not lend to spontaneous parsing into groups. And 

perhaps phenomena such as “entrainment” tend to make the sequences even more 

rhythmical, and hard to group (Jones & Mcauley, 2005; McAuley & Jones, 2003). 

Again, this idea bears further investigation, particularly with children. 

To conclude, the current study demonstrated that use of grouping strategies 

can aid considerably in the estimation of numerosity. The strategy may be related 
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to mathematical abilities, and understanding it better could be of considerable 

importance in understanding the link between estimating numerosity and formal 

math skills. 
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4.1 Introduction  

Humans can generally count or estimate the number of objects in a scene quite 

easily, yet the perceptual mechanisms and the cognitive strategies underlying this 

ability are still little understood. Numerical judgments are extremely fast and 

virtually errorless up to four items, while they become slower or more approximate 

for larger numerosities (Atkinson et al., 1976; Jevons, 1871; Kaufman et al., 1949). 

This behavior suggests the existence of two independent systems for perception of 

very small and larger numerosities, the subitizing and the Approximate Number 

System (ANS) respectively (Dehaene, 2011).  

Interestingly, counting speed of larger numerosities also increases 

considerably if stimuli are grouped into smaller clusters (Beckwith & Restle, 1966; 

Wender & Rothkegel, 2000), a phenomenon that has been termed groupitizing (G. 

S. Starkey & McCandliss, 2014). Counting is particularly fast when the number of 

clusters and the number of items included in each cluster is very low (e.g. 8= 4+4), 

falling within the subitizing range (G. S. Starkey & McCandliss, 2014). Two recent 

studies have generalized the groupitizing effect to non-spatial grouping cues, 

different numerosity tasks and formats. Ciccione and Dehaene (2020) showed a 

groupitizing advantage only when items were divided into clusters of the same 

number of items, irrespective whether the items were grouped spatially or by color 

alone. Anobile et al. (2020) went on to show that groupitizing can also boost 

sensory precision measured with an approximate numerosity estimation task, both 

for spatial arrays and temporal sequences. Starkey and McCandliss (2014) noticed 

that school-age children with higher arithmetical abilities took most advantage of 

groupitizing cues, while there was no groupitizing effect in preschoolers, 

suggesting that the ability to groupitize may reflect the use of arithmetical strategies 

(e.g. divide-and-sum).  

A reasonable conclusion from these studies is that groupitizing arises from 

two independent factors: the ability to subitize small groups parsed from the larger 

set, and the ability to combine the group estimates through mental calculation. The 

first aspect implies that participants may recruit the subitizing system to estimate 

numerosities higher than the normal 4-item limit. This strategy would require 

considerable cross-talk between subitizing and ANS, usually considered to be 
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independent systems. However, there is some evidence for interconnection between 

the systems. Under dual task conditions, sensory thresholds for estimating 

numerosities in the subitizing range become comparable to those measured in the 

estimation range, suggesting that the estimation system works even within the 

subitizing range, but performance for low numbers normally augmented by the 

automatic deployment of visuo-spatial attentional resources (Burr et al., 2010, 

2011; Pomè, Anobile, Cicchini, Scabia, et al., 2019). The heavy reliance of 

subitizing on attention may therefore constitute a characteristic feature of this 

system and explain its higher precision. Thus, measuring performance under 

conditions of deprived attention may serve as a diagnostic test of whether 

groupitizing is based on the subitizing system.  

Number estimation is not always veridical. The clearest example comes 

from numberline studies, which require participants to map number onto space. 

Under many conditions, including deprived attention, the mapping shows a strong 

compressive non-linearity (Cicchini et al., 2014). While this has been described as 

reflecting a native logarithmic system of encoding number (Cicchini et al., 2014) 

several recent studies explain the non-linearity as an example of “central tendency” 

or “regression to the mean”, a principle observed in almost all perceptual systems 

(Hollingworth, 1910). Regression to the mean is well described within the Bayesian 

framework, where the mean can be considered a Bayesian prior (Anobile, Burr, et 

al., 2019; Cicchini et al., 2014; Jazayeri & Shadlen, 2010). An important prediction 

from this approach is that the magnitude of the compressive non-linearity should 

vary with the precision of the numerosity judgments: the worse the precision 

(higher Weber fractions), the greater should be the non-linearity. If groupitizing is 

rooted in the subitizing system, which needs attention to boost precision (Burr et 

al., 2010), we expect there to be less regression to the mean for grouped than 

ungrouped stimuli, and that this advantage should disappear under attentional 

deprivation. 

In the current study we tested whether the grouping-induced improvements 

in precision and accuracy of number estimation is based on extending the subitizing 

system to larger numerosities. To this aim we measured precision and accuracy of 

numerosity estimation for grouped and ungrouped arrays while modulating 
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attentional resources with dual tasks. If the groupitizing phenomenon is rooted in 

the subitizing system, attentional deprivation should affect precision more for 

grouped than ungrouped stimuli. We further explored whether groupitizing may 

rely on arithmetical computation, with a preliminary study correlating simple 

calculations skills with precision for estimating grouped or ungrouped 

numerosities.  

 

4.2 Methods 

Sample size was calculated with a Power analyses using G*Power software 

(version 3.1). As the main goal of the current experiment was to detect a numerosity 

thresholds change under attentional load the analyses aimed to calculate the 

required sample size to reliably detect a difference between two dependent means: 

average Weber Fractions in single and dual task conditions (two tailed paired t-

test). The effect size was estimated from Burr et al. (2010). With an ⍺ = 0.05 and a 

Power of 0.95, the analyses suggested a required sample size of 6.  

Twelve young adults (mean age=26.1, standard deviation=2.9, range= 22-

32) participated in this study. Participants were all psychology students with no 

mathematical or other learning disorders nor over-exercised calculation skills and 

all with a normal or corrected-to-normal vision.  

Stimuli were generated and presented with PsychToolbox(Brainard, 1997) 

routines for Matlab (ver. R2016b. 9.1.0.441655. The Mathworks, Inc., 

https://it.mathworks.com). Subjects sat 57 cm from a 19” screen monitor (60 Hz), 

in a quiet and dimly light room. One experimenter (P.A.M.M.) performed the tests 

throughout the study.  The experimental procedures were approved by the local 

ethics committee (Comitato Etico Pediatrico Regionale ¾ Azienda Ospedaliero-

Universitaria Meyer, Florence). The research was performed in accordance with 

the Declaration of Helsinki and informed consents were obtained from all 

participants prior to the experiment.  

Participants each performed five sessions: in four they were asked to 

estimate the numerosity of ungrouped or grouped arrays both in single or dual task 
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conditions, while in the fifth session they were given a mental calculation task. The 

conditions were tested separately with the order counterbalanced across subjects. 

No feedback was provided, and participants were not informed about the 

numerosity range. They were also not informed about the different spatial structures 

of the numerical arrays (ungrouped or grouped), and they were left free to choose 

any strategy to solve the task, and the possibility of performing mental calculation 

with the grouped stimuli was never mentioned. 

 

4.2.1 Numerosity Stimuli and Experimental paradigm 

Stimuli were the same as those used by Anobile et al. (2020). The arrays were sets 

of white squares (0.4° × 0.4°) with black borders (in order to balance overall 

luminance) constrained within a square area of 6° × 6°. The only difference from 

Anobile et al. (2020) was that in each trial, one item was randomly selected and 

replaced with a different shape, either a diamond, a triangle or a circle (with a total 

area equal to that covered by the squares). 

 In the ungrouped conditions, the position of each item was randomly 

selected from 106 possible positions within the stimulus area, the centers of equally 

spread sectors within the 6 × 6 area (each grid 0.5° × 0.5°). For the spatially 

grouped condition, items were arranged within a maximum of 4 groups (Figure 

4.1). Each group (spanning over a max area of 1 × 1.5 deg) was located in one 

quadrant centered at 3° from the central fixation point. Each group was randomly 

assigned to one quadrant (between 1 and 4), then the individual items positions 

were randomly selected out the 12 possible locations in the selected quadrant. 

Within each quadrant, the maximum center-to-center distance between elements 

was 2° and the minimum was 0.5°. 

Each trial started with a black central fixation point that turned white after 

1 sec and remained on screen for the entire experiment. After another 1 s an array 

of items was centrally displayed for 200 ms, followed by a blank screen. In the 

single tasks (performed separately with ungrouped and grouped stimuli), 

participants were asked to verbally estimate the numerosity of the array, 

disregarding the shape of the individual items. The response was entered by the 
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experimenter on the numeric keypad, who also initiated the following trial. 

Participants were asked to respond quickly, but to concentrate on accuracy. In the 

dual-tasks (again, performed separately with ungrouped and grouped stimuli) 

participants were asked first to identify the oddly shaped item by pressing the 

appropriate arrow key (diamond: left arrow; triangle: down arrow; circle: right 

arrow), then to verbally estimate the numerosity of the array. The experimenter 

(blind to the stimuli) hit the spacebar as soon as the response was spelled out, then 

inserted the number on a numeric pad.  

We tested all numerosities between 5 to 17. In the grouped conditions, each 

numerosity was organized into 2 – 4 clusters, each comprising a variable number 

of items (between 2 and 6), resulting in the following configurations: 2, 2, 1 - 3, 3 

- 3, 3, 1 - 2, 2, 2, 2 - 4, 4 - 3, 3, 3 - 3, 3, 3, 1 - 3, 3, 3, 2 - 3, 3, 3, 3 -  4, 4, 4  -  

5, 5, 3 -  4, 4, 3, 3 - 4, 4, 4, 3 - 4, 4, 4, 4 - 5, 5, 6 -  5, 4, 4, 4. All clusters except 

three (13 = 5, 5, 3; 16 = 5, 5, 6; 17 = 5, 4, 4, 4) contained 1 to 4 elements. 

On every trial, numerosities and configuration patterns (i.e. 3,3,3,1 or 

3,1,3,3) were randomly selected. Each participant completed 150 trials for each 

condition, with each numerosity presented in mean 12 times, for a total of 600 trials 

for the entire experiment. Trials with response times higher than 3 standard 

deviations were considered outliers and eliminated from the analysis (0.8% of the 

trails). 

 

4.2.2 Mental calculation test 

Mental calculation proficiency was measured by a custom-made computerized test. 

Each trial started with a central fixation cross. As soon as the participants pressed 

the space bar, the stimuli (1° ×1.5° digits, and 1° × 1° operand, Arial font) were 

displayed. Each trial required the participant to mentally solve an arithmetic 

operation. Each participant solved 37 operations in total.  Each operation was 

randomly selected trial-by-trial between:  3+3, 4+2, 2+5, 3+4, 4+4, 5+3, 3+6, 4+5, 

2x3, 2x4, 2x5, 2x6, 2x7, 2x8, 2x9, 3x3, 3x4, 3x5, 3x6, 4x4, 4x5, 4x6, 6-3, 6-4, 7-3, 

7-5, 8-3, 8-4, 9-4, 9-6, 2+1+2, 3+1+3, 3+3+3, 3+4+4, 5+3+5, 5+6+5, 6+5+6. 
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Participants mentally calculated the result as fast as possible and responded verbally 

(no explicit time limit was provided). The experimenter (blind to the stimuli) hit the 

spacebar as soon as the participants spelled out the result (which recording response 

time), then entered the response on the numeric keypad. Trials with response time 

higher than 3 standard deviations were considered outliers and eliminated from the 

analysis (1.3% of trails).  

 

 
Figure 4.1. Stimuli and procedure. (A) Illustration of the procedures followed to 
generate the stimuli in the ungrouped and grouped conditions. (B-C) In the 
numerosity estimation tasks each trial started with a central fixation point, followed 
by a briefly flashed ensemble of squared items, with one differing shape (diamond 
in the example).  (B) Single-task: Participants were asked to ignore the odd-shaped 
item and to verbally report the perceived numerosity. (C) Dual-task: participants 
first classified the odd-shape (by appropriate keypress), then verbally reported the 
perceived numerosity. (D) The calculation task started as the participant pressed the 
spacebar. On every trial, a particular arithmetical operation appeared on the screen 
(lasting until the response), and participants verbally reported (as fast as possible) 
the result.  

 

1000 ms

200 ms

How many?

Single-taskb

1000 ms

200 ms

How many?

Which was the odd-
shape?

Dual-taskc Calculation taskd

2 × 3 Result?

Spacebar

!

1.5° 2
1°

1°

1°

×

Example of stimulia

3°

6°

1°

1.5°

Ungrouped Grouped

  Possible location

A B 

C D 



Chapter 4 
 

 63 

4.2.3 Data analysis 

Data were separately analyzed for each subject. For the numerosity estimation task 

we calculated the average perceived numerosity (accuracy) and the response 

standard deviation (precision), separately for each numerosity and condition. 

Standard deviations were divided by the corresponding perceived numerosity, 

resulting in the Weber fraction (Wf), a dimensionless index of precision (Anobile, 

Arrighi, et al., 2018).  The Weber fractions calculated for each separate numerosity 

were also averaged across numerosity levels, in order to obtain a summary precision 

index. 

The magnitude of the attentional cost induced by grouped spatial structure 

was measured as the normalized difference between average Weber fractions 

calculated in the single (ST) and dual (DT) tasks, averaged across numerosity 

levels: 

 

>77+67426)?	52@7 = 	
-.%&!	-.'&
-.%&0-.'&

                                                    eqn. (1) 

Where A312 and A332  are average Weber fractions for the dual and single tasks.  

The thresholds improvements induced by grouping in the single task was 

measured as the normalized difference between average Weber fractions calculated 

in the ungrouped (NG) and grouped (G) conditions, averaged across numerosity 

levels: 

 

B:2C-474D46E	)FG)67)E+ = 	
-.($!	-.$
-.($0-.$

                                        eqn. (2) 

Where A3#,  and A3,  are the average Weber fraction for the ungrouped and the 

grouped conditions in the single task.  

Weber fractions were analyzed with Repeated Measures ANOVA and 

Bonferroni corrected post-hoc t-tests. Effect sizes (η² and Cohen’s d) are also 

reported when appropriate. The relation between attentional cost, total numerosity 

and number of groups was analyzed with zero-order (Spearman) and partial 

correlations. Log10 Bayes factors (LogBF) are reported alongside standard Rho (ρs) 

and p-values. Positive Log10 Bayes factors should be interpreted as lending 

substantial (0.5-1), strong (1-1.5), very strong (1.5-2) and decisive (>2) support to 
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the alternative hypothesis. Negative LogBF within these ranges is evidence for the 

null hypothesis.  

To evaluate non-linear compression of mean estimates of numerosity we 

fitted the data with power functions:  

 

H = )$4                                                                                        eqn. (3) 

Where y is the average estimate of numerosity, N physical numerosity and 

a and b constants free to vary. The value of the exponent b is an index of non-

linearity, with b = 1 implying a linear relationship, and b < 1 a compressive non-

linearity (b = 0.5 implies square root).  

The Bayesian central tendency model assumed that the perceived 

numerosity y was given as a weighted average of the physical numerosity and the 

mean of the range.  

 

H = $I1 − L5M + L5$0                                                               eqn. (4) 

Where L5 is the weight assigned to the prior, which for an optimal observer 

is proportional to the relative reliabilities (inverse variances) of the two sources of 

information. Under the simplifying assumption of Weber’s Law, this becomes: 

 

L5 =	
(-."∙#)!

(-."∙#)!0')!
                                                                               eqn. (5) 

Where A3( is the Weber fraction for condition, and N7& is the variance of the 

prior, estimated to best fit all four conditions simultaneously.  

For the mental calculation task, two separate z scores were calculated for 

each participant (using the mean and the standard deviation of the entire group), 

one for accuracy, the other for response speed. We then averaged the two z scores 

to yield a combined math performance index, following the procedure previously 

used by Anobile et al. (2018). Participants were categorized as belonging to the 

“low” or “high” math sample if the combined z-score for mental calculation was 

below or above the 50th percentile. To evaluate the relation between numerosity 

estimation and calculation skills we performed standard Pearson’ correlations, with 

correction for multiple comparisons.  
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Statistical analyses were performed using JASP (version 0.12.2, The JASP 

Team 2020, https://jasp-stats.org) and Matlab (R2016b). 

 

4.3 Results  

4.3.1 Effect of grouping and attention on numerosity estimation thresholds 

We used a dual-task paradigm to measure the effect of attentional deprivation on 

precision and accuracy of numerosity estimation for ungrouped and grouped spatial 

arrays. Participants estimated numerosity, either during a concurrent visual search 

task (spot out the odd-shaped item), or with the visual distractor present, but ignored 

(single-task). Figure 4.2A shows that when the distractor was ignored, leaving 

attentional resources for the numerosity task, there was a strong groupitizing 

advantage, about 20% on average. Depriving attention affected grouped but not 

ungrouped stimuli, annulling the groupitizing advantage. For ungrouped stimuli the 

small effect of attentional deprivation was similar at all numerosities (Figure 4.2B), 

while for grouped stimuli, it was clearly strongest at lower numerosities (Figure 

4.2C).  

These effects were born out by three-way repeated measures ANOVA, with 

spatial structure (ungrouped or grouped), attentional load (single or double task) 

and numerosity (13 levels) as factors. There were significant main effects for spatial 

structure (F(1,11) = 5.8, p = 0.034, η² = 0.013, d = 0.23) and for attentional load (F(1,11) 

= 11.2, p = 0.006, η² = 0.046, d = 0.44). Crucially, the interaction shown in Figure 

4.2A between attentional load and spatial structure was significant (F(1,11) = 5.4, p = 

0.04, η² = 0.011, d = 0.21). Post-hoc tests showed that with full attention, Weber 

fractions for grouped arrays were significantly lower than those for ungrouped 

arrays (t = 3.35, pbonf = 0.017, squares in Figure 4.2A), while in the dual-task they 

were statistically indistinguishable (t = 0.11, pbonf = 1). Modulating attention did not 

alter Weber fractions for ungrouped arrays (t = 1.37, pbonf = 1) while for grouped 

arrays, Weber fractions in dual-task were higher than that in single-task (t = 4.082, 

pbonf = 0.004).  There was also a significant interaction between numerosity and 

attentional load, being stronger at low numerosities (F(12,132) = 3.14, p < 0.0001, η² 
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= 0.04, d = 0.41). The triple interaction was not significant (F(12,132) = 0.9, p = 0.58, 

η² = 0.012, d = 0.22). Yet, if groupitizing is based on a capacity-limited, subitizing-

like system, depriving attention should most strongly impact the lowest grouped 

numerosities. Indeed, although the triple interaction did not reach significance, 

attention seems to affect estimation thresholds more for low numerosities, and only 

for grouped stimuli. Planned comparison t-tests confirmed that attentional 

deprivation did not significantly affect estimation thresholds of ungrouped stimuli 

for any of the numerosities tested (all p > 0.05 Figure 4.2B). On the other hand, 

when the stimuli were spatially grouped, attention most strongly modulated 

estimation thresholds for the lowest numerosity (N5: t = 5.149, pbonf = 0.0007; N6: t 

= 3.913, pbonf = 0.158; N7: t = 4.48, pbonf = 0.015; pbonf > 0.05 for all the other 

numerosity, Figure 4.2C, see also Figure 4.3B.  

 

 
Figure 4.2. Effect of attention on numerosity estimation precision. (A) Average 
Weber fractions for the four conditions showing the interaction between attentional 
load and stimulus configuration on numerosity estimation. The average Weber 
fraction for the 4 conditions were: STNG = 0.118 ± 0.002; STG = 0.099 ± 0.003; 
DTNG = 0.129 ± 0.002; DTG = 0.126 ± 0.002. (B-C) Average Weber fractions as a 
function of numerosity plotted separately for ungrouped (B) and grouped stimuli 
(C) for the single (squares) and dual (triangles) tasks. Symbols refer to average 
responses, with error bars ± 1 s.e.m. 
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To avoid a systematic association between total numerosity and number of 

groups, numerosities in the grouped condition were presented with different 

configurations, varying between 2 – 4 clusters. For example, the number eight was 

shown either with the (2, 2, 2, 2) or with the (4, 4) configurations. We tested whether 

the attentional modulation of thresholds was particularly marked for certain 

configurations, and whether it depended primarily on the number of groups or on 

the total numerosity, or both. We correlated the attentional cost (defined as the 

normalized difference between Weber fractions in the single and dual conditions: 

eqn.1) with the number of groups and total numerosity (Figure 4.3). As larger 

numerosities were generally divided into more groups than lower numerosities 

(positive correlation between total numerosity and number of subgroups: ρs = 0.51, 

p = 0.02, LogBF = 0.8), we also calculated partial correlations, evaluating the 

variance independently explained by each of these factors (total numerosity or 

number of groups). Attentional cost negatively correlated with both the number of 

groups and total numerosity (both ρs < 0.001, LogBF > 1.7), suggesting that the 

detrimental effect of attention was higher when both the number of groups and the 

total numerosity were lower and tended to decrease for larger numerosities. The 

correlation between the attentional cost and total numerosity remained significant 

even when taking into account the effect of the number of groups (ρs = −0.53, p = 

0.017, LogBF = 0.90). Similarly, the correlation between attentional cost and 

number of groups also remained significant when controlling for the total 

numerosity (ρs = −0.62, p = 0.006, LogBF = 0.99). These results indicate that 

attentional deprivation acts on both the total numerosity and on the number of 

groups: its negative impact on estimation thresholds was strongest for the lowest 

numerosities and for stimuli divided into fewer groups.  
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Figure 4.3. Relationship between attentional cost, number of groups and total 
numerosity. Attentional cost correlated with the number of groups (A) and with 
the total numerosity (B).  

 

4.3.2 Effect of spatial structure and attention on perceived numerosity 

Under many conditions, including deprived attention, the mapping shows a strong 

compressive non-linearity (Cicchini et al., 2014), considered by many as an 

example of regression to the mean. If groupitizing is rooted in the attention-

dependent subitizing system, which requires attention to boost numerical estimation 

precision, the effects of grouping and attentional deprivation should also be evident 

in estimation accuracy. 

Figure 4.4 (A-D) shows the average estimates of numerosity for the four 

conditions. In general, low numerosities were overestimated and high numerosities 

underestimated, both following a regression to the mean. However, as usually 

observed, the regression to the mean was greater at high numerosities (where 

precision is less), resulting in a strong compressive non-linearity. To measure the 

non-linearity created by these biases, we fitted each set of data with a power 

function (eqn. 3, methods), shown by the blue lines. The fits were all very good 

(total R2 over all conditions = 0.986).  

Importantly, as predicted, the non-linearity was not the same in all four 
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4.4E plots the index of the power function against average Weber fraction. The 

non-linearity clearly increases with Weber fractions, from 0.89 for the grouped 

single task condition (index of 1 means a linear function), to 0.80 for the ungrouped 

single task condition to 0.72 for the two dual task conditions. Where performance 

is most precise, it is also most accurate. The correlation between the two measures 

was r = −0.983, p = 0.008, LogBF = 0.84.  

To test the quantitative predictive power of the Bayesian model of central 

tendency, we fitted the data with the Bayesian prediction, given by eqn. 4 of 

methods. The equation essentially states that perceived numerosity will be a 

weighted average of the actual physical numerosity of the stimulus and the mean 

numerosity of the range tested (the prior). Relative weighting of the two is 

determined by their precision: the more precise the estimates, the higher the 

weighting (eqn. 5). That has two consequences. Assuming constant Weber fractions 

implies that thresholds increase linearly with numerosity, so the regression effects 

will be more pronounced at higher than at lower numerosities, leading to the 

compressive non-linearity. Secondly, as the Weber fractions increase between 

conditions, the prior (which we assume to remain constant between conditions) will 

have greater effect, resulting in the greater non-linearities that we observe (Figure 

4.4E).  

The fits are shown by the red curves of Figure 4.4A-D. The four fits have 

only 1 degree of freedom for all of them, the width of the prior (N7 of eqn. 5) was 

constant for all four conditions, selected to simultaneously minimize the residuals 

of all four fits. The resulting fits were excellent, with total R2 = 0.988 (compared 

with 0.986 for the power fits). Thus, the Bayesian central tendency model explains 

well the data, qualitatively and quantitatively.  
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Figure 4.4. Perceived numerosity. Perceived numerosity as a function of physical 
numerosity for estimation of ungrouped (A) or grouped (B) stimuli in single and 
dual task (C-D). Continuous lines are the best fit of power function (blue) and 
Bayesian modelling (red). (E) Power function index correlated with the average 
Weber fraction. Symbols refer to average across participants, with error bars ± 1 
s.e.m. 
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accuracy. The average accuracy across participants 90%±7%, and average speed 

1.3±0.3 secs. We combined z-scores of speed and accuracy (see methods) and 

correlated this index against Weber fractions for ungrouped and grouped stimuli.  

For ungrouped stimuli, Weber fractions were uncorrelated with the math index (r = 

−0.18, p = 0.288, LogBF = −0.24; Figure 4.5A); but for grouped stimuli the 

correlation was significant, and remained close to significance after correcting for 

multiple comparison (α = 0.5/2: r = −0.56, p = 0.029, LogBF = 0.54; Figure 4.5B). 

We also hypothesized that participants with higher arithmetical skills would gain 

more from grouping of stimuli than less skilled participants, which was verified by 

the positive correlation between “grouping advantage” and math index (r = 0.58, p 

= 0.023, LogBF = 0.61; Figure 4.5C).  While these results should be taken with 

caution before replication in future studies, they suggest the very interesting 

possibility that groupitizing could be a sensitive predictor of math skills. 

 

 
Figure 4.5. Relation between estimation precision and mental calculation 
abilities. (A-B) Weber Fractions plotted against math index for all participants. 
Bars show averages for median split. The correlation was insignificant for 
ungrouped but significant for grouped stimuli (values in graph and main text). 
(C) Groupitizing advantage as a function of math index. The correlation was 
positive and significant (values in graph and main text).  
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measuring the consequences of depriving attentional resources on numerosity 

estimation thresholds of spatially grouped and ungrouped items. As previous 

studies (Anobile, Castaldi, et al., 2020) have shown, numerosity thresholds for 

spatially grouped stimuli were lower than for randomly scattered stimuli. However, 

depriving attention with a concomitant dual task completely obliterated the 

groupitizing advantage, consistent with the suggestion that it relies on subitizing. 

We also explored the link between groupitizing and arithmetic, and showed that 

simple mental calculations skills in adult participants correlated with estimation 

thresholds for grouped but not ungrouped stimuli, and also with the advantage given 

by grouping.   

Although subitizing was originally thought to be pre-attentive, dependence 

on attention has become a signature of the subitizing system. Many studies have 

shown that attention has a much stronger detrimental effect in the subitizing than 

estimation range, enough to equate subitizing precision and reaction times to those 

of higher numerosities during dual tasks (Anobile et al., 2012; Burr et al., 2010; 

Pomè, Anobile, Cicchini, Scabia, et al., 2019; Railo et al., 2008; Vetter et al., 2008). 

The selective detrimental effect of attentional deprivation in the subitizing range 

was reinforced by a recent clinical single case study with a simultanagnosic patient 

(Anobile, Tomaiuolo, et al., 2020), who suffered a severe visual attentional deficit. 

PA showed no subitizing advantage for low numerosities, while his numerosity 

perception was relatively spared for intermediate numerosities, above the subitizing 

range. The subitizing advantage, at least in the visual domain, could thus emerge 

from the well-known capacity-limited attentive tracking system, that allows precise 

tagging of a few objects in space (Piazza, 2010). Other studies show that depriving 

auditory and haptic attentional resources also affects visual subitizing (Anobile et 

al., 2012). Future studies should investigate the effect of cross-modal attention 

deprivation on groupitizing. 

 The current study showed that performing a dual task completely 

eliminates the groupitizing advantage for estimation thresholds, in the same way 

that it eliminates the subitizing advantage for low numbers: estimation thresholds 

for grouped arrays in dual task became like those measured with ungrouped arrays 

in single task. Depriving attention during estimation of ungrouped arrays, on the 
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other hand, did not affect estimation thresholds. Given that the numerosities tested 

were the same across the grouped and ungrouped conditions (in both cases well 

exceeding the subitizing range), the only factor driving the attentional modulation 

was the spatial configuration. We presume that ungrouped arrays were judged 

primarily by estimation system, largely independently of attention, whereas 

grouped arrays trigger the additional intervention of the subitizing system, which 

boosts performance. However, as subitizing requires attentional resources, during 

dual-task only the estimation system could operate, bringing performance for 

grouped arrays down to that of ungrouped stimuli. In the grouped condition, the 

detrimental effect of dual task scaled both with total numerosity and with the 

number of groups, with stronger cost for low numerosities and lower number of 

groups. The higher cost of attention for low numerosities and fewer groups suggests 

that groupitizing acts on both these factors. With larger total numerosities and/or 

number of groups, the attentional free estimation system is likely to kick in, even if 

items are spatially segregated, resulting in a weaker attentional modulation of 

estimation thresholds. 

We also found that estimation biases differed across attentional and 

grouping conditions. All estimates departed from linearity and tended toward the 

center of the numerosity range, with the effect increasing when attention was 

deprived. The observed compressed non-linearity was well fitted by a Bayesian 

model of central tendency (Alais & Burr, 2004; Cicchini et al., 2012; Hollingworth, 

1910; Jazayeri & Shadlen, 2010). This effect has been described for a wide range 

of stimuli (Alexi et al., 2018; Cicchini & Burr, 2018; Liberman et al., 2014; St. 

John-Saaltink et al., 2016; Taubert et al., 2016; Xia et al., 2016), and is thought to 

maximize the perceptual efficiency by exploiting contextual effects. An important 

prediction of the Bayesian model is that the magnitude of the non-linearity should 

depend on perceptual thresholds. This prediction was borne out, with a strong and 

significant correlation between magnitude of non-linearity and Weber fractions. 

And the Weber fractions predicted well the form of the non-linearity, with only one 

degree of freedom (strength of the prior, unchanged between conditions).  

We further explored whether groupitizing may depend on the ability to 

make simple calculations on grouped stimuli (Anobile, Castaldi, et al., 2020; 
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Ciccione & Dehaene, 2020; G. S. Starkey & McCandliss, 2014). The correlation 

between arithmetic skills and Weber fractions of grouped (but not ungrouped) 

stimuli, and also with the groupitizing advantage in our small sample suggests that 

this may be the case. We emphasize, however, that although estimation thresholds 

of ungrouped arrays were uncorrelated with math ability in our small sample of 

adults, we do not believe that this contradicts theories suggesting that an efficient 

Approximate Number System (ANS) may be a pre-requisite for typical 

development of math skills (Dehaene, 1992; Halberda et al., 2008; Piazza, 2010). 

The link between ANS and math abilities is much less evident in adults than in 

children (Anobile, Arrighi, et al., 2018; Castaldi et al., 2018; Castaldi, Turi, et al., 

2020; Inglis et al., 2011). Many studies have reported that numerosity perception 

precision sharply improves during development and formal arithmetical learning 

(Halberda et al., 2012; Halberda & Feigenson, 2008; Libertus et al., 2012; Odic et 

al., 2013; Piazza et al., 2013; but see also: Holloway & Ansari, 2009; Iuculano et 

al., 2008; Sasanguie et al., 2013), while in educated adults, symbolic math abilities 

may be already steadily mapped into their basic non-symbolic representation, 

making the association less evident (Anobile, Arrighi, et al., 2018; Braham & 

Libertus, 2018; Feigenson et al., 2013; Inglis et al., 2011; Krueger, 1984). While 

ANS precision measured with ungrouped stimuli may be a reliable predictor of 

early math abilities in childhood, once the number acuity has refined and been 

mapped onto symbolic numbers, it could lose part of its predictive power. However, 

groupitizing relies less on approximate numerical estimation, but triggers 

calculation strategies to combine subitized subsets. This was confirmed by 

participant subjective reports. Although grouping strategies were never mentioned 

in participant instructions, when debriefed all participants reported to have used 

arithmetical strategies (addition and in some cases multiplication of the subgroups). 

Participants also reported that they had more difficulties in applying these strategies 

when the stimuli were ungrouped. In this condition, participants may have used a 

combination of different approaches, probably weakening the link with mental 

calculation skills. 

Importantly, the efficiency of the subitizing system by itself seems may not 

to be sufficient to predict calculation skills. Previous studies found no significant 
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correlation between subitizing capacity and math skills in children or adults 

(Anobile, Arrighi, et al., 2019). Moreover, while the subitizing system is already 

functional as early as 2 years of age (Klein & Starkey, 1988), 6-year-old 

preschoolers cannot take advantage of groupitizing (G. S. Starkey & McCandliss, 

2014). Thus, the relationship between groupitizing and arithmetic is most likely 

driven by using calculation skills to extend the subitizing range, rather than on the 

capacity to subitize. It should be mentioned, however, that exact serial counting 

speed has been shown to be a good marker of arithmetical abilities (Gray & Reeve, 

2014; Reeve et al., 2012), leaving open the possibility that the link between 

arithmetic and subitizing may emerge more clearly when slow counting is used 

instead of fast approximation, as in the current study. Also, a recent study on 

kindergarten children has suggested that subitizing may play a role in the 

development of symbolic number abilities, opening the possibility that the link 

would be stronger in the earliest developmental stages (Hutchison et al., 2020).  

In this study, like previous studies, we deliberately facilitated the use of 

grouping strategies by spatially grouping the stimuli. Other manipulations also aid 

grouping, such as organizing stimuli into same-coloured groups. It would be 

interesting to explore further what other organizations may encourage groupitizing. 

For example, mirror symmetry biases numerosity estimates, so symmetrical 

patterns appear less numerous than their asymmetric counterparts (Apthorp & Bell, 

2015). It is possible that symmetry would also facilitate grouping, leading to lower 

thresholds. This would be well worth exploring, together with other manipulations 

of shape and organization.  

While the correlational results of this study should be taken with some 

caution, given the small number of participants, our explorative analysis should 

encourage future work investigating whether numerosity thresholds measured with 

grouped arrays (using a variety of grouping cues) may prove to be a more sensitive 

predictor of arithmetical abilities in adults. These studies should also explore the 

contribution of other domain general processes, such as attentional and working 

memory resources to the groupitizing advantage and their predictive role with 

different components of the arithmetical competence.  
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5.1 Introduction 

In the first part of the thesis, I described the studies that explored the neural 

substrate underlying the ‘number sense’. These studies suggested that non-symbolic 

numerosities are processed by a dedicated brain circuitry that engages areas in a 

fronto-parietal network (Ansari & Dhital, 2006; Dormal & Pesenti, 2009). This 

network is sometimes described as being more right-lateralized (Dormal et al., 

2010; Pinel & Dehaene, 2010), especially in children (Cantlon et al., 2006; Izard et 

al., 2008) and gradually involves more bilateral regions with increasing practice 

with Arabic digits and arithmetical skills (Cantlon et al., 2006). Indeed, arithmetical 

calculation was found to heavily recruit the fronto-parietal network in the left 

hemisphere (Pinel & Dehaene, 2010). 

 Recently, one study described the neural substrate of addition testing both 

symbolic and non-symbolic formats (Bugden et al., 2019). They found that both 

formats engaged the bilateral IPS relative to color control tasks. However, symbolic 

addition elicited a left lateralized network including left precentral gyrus while non-

symbolic addition activated small clusters in the occipital lobe. In addition common 

neural activations for non-symbolic and symbolic addition were found in the 

superior parietal lobule and in the bilateral inferior temporal gyri (Bugden et al., 

2019). 

 Neuropsychological cases of double dissociations between the 

ability to solve multiplications and subtractions (reviewed in: Dehaene et al., 2003) 

have led to the suggestion that multiplications may be typically solved by recalling 

the solution from rote verbal memory, whereas subtractions may require actual 

computation based on some sort of internal manipulation of numerical quantities 

on an internal number line, possibly similar to the strategy employed to solve 

numerical comparisons. When tasks put greater requirement on verbal encoding of 

numbers and retrieve arithmetic facts, the left angular gyrus shows increasingly 

greater activation. For example, for exact calculation, the left angular gyrus, as well 

as inferior temporal gyrus shows greater activation for operations that require 

access to a rote verbal memory of arithmetic facts, than for operations that are not 

memorized and require quantity manipulation. 
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In the previous chapters, we found that groupitizing depends on subitizing 

and on calculation abilities (Maldonado Moscoso et al., 2020). It was suggested that 

groupitizing strategies required participants to subitize the items in each subgroup 

and then combine the group estimates through multiplication-and-sum strategies. 

Here, we explicitly tested the hypothesis that having to estimate the numerosity of 

grouped rather than ungrouped stimuli may automatically trigger arithmetical 

calculation and therefore recruit the network typically involved during calculation 

tasks compared to the one typically activated for non-symbolic numerosity 

perception and estimation.  

 

5.2 Methods 

5.2.1 Subjects and MRI acquisition procedure  

Fifteen adult volunteers (10 males and 5 females, 28,2 ± 6,2 years old) with normal 

or corrected to normal vision participated in the study. This study was approved by 

the ethical committee of the University of Regensburg and all participants gave 

written informed consent prior to the study. Due to technical problems during the 

data acquisition, one subject could not complete the study and was therefore 

discarded from the analysis. 

Functional images were acquired on a Prisma 3T scanner (Siemens, 

Erlangen, Germany) using 64 channel head coil (Erlangen, Germany) as T2*-

weighted fast-saturation echo-planar image (EPI) volumes with 2mm isotropic 

voxels (repetition time [TR] = 2000 ms, echo time [TE] = 30, flip angle [FA] = 52). 

T1-weighted anatomical images were acquired at 0.8 mm isotropic 

resolution (repetition time [TR] = 2400, echo time [TE] = 2.18, flip angle [FA] = 8; 

208 transversal slices were acquired). During the scanning head movements were 

minimized by padding and tape. Visual stimuli were viewed through a mirror 

anchored to the head coil, which back-projected the stimuli displayed onto a 

translucent screen located at the end of the scanner bore. Participants were asked to 

provide occasional responses by pressing one of three buttons on an MRI-

compatible response box. 



Chapter 5 
 

 79 

5.2.2 Stimuli and experimental design 

During the fMRI scanning participants were centrally presented with arrays of 

white items (0.4° x 0.4°) with black borders displayed on a grey background, with 

the overall luminance balanced. The stimuli were created as in Maldonado Moscoso 

et al. (2020): all but one items were squares, and one odd shape was randomly 

selected to be either a diamond, a triangle or a circle (with total area matched to that 

of the squares). Each array comprised 8, 12 or 16 items (Figure 5.1B). Item location 

within each array was either randomly selected from 106 possible coordinates 

within the 6° x 6° stimulus area (ungrouped spatial arrangement) or selected within 

a maximum of 4 groups (each group spanning 1° x 1.5° and being located at 3° 

from the central fixation point), so that the items were grouped (grouped spatial 

arrangement). In the latter case, locations of individual items were selected out of 

the 12 possible coordinates included in the selected quadrant and each group of 

items was randomly assigned to one quadrant. Grouped stimuli were created with 

two different configurations, so that there was no systematic association between 

the numerosity shown within each group and the overall numerosity. 

Each run was divided into two parts in which participants performed a 

numerosity and a shape control estimation tasks on exactly the same stimuli, 

following the instructions (Figure 5.1A). The two tasks were performed either in 

the first or in the second half of the run with counterbalanced order. Instructions 

were shown for 2 s and specified whether participants had to attend to the number 

of items (number task) or to the odd-shape presented on every trial (shape control 

task). Four seconds after the instructions, the first array was briefly presented for 

200 ms and participants were instructed to attend to the cued dimension and to hold 

this information in memory until the following trial was presented. After a variable 

ISI of 3.8 - 5.8 s, either a new array or a question mark was presented. If a new 

array was presented, participants had to update their memory with the new stimulus 

and no response was required. If a question mark appeared, participants had to 

either estimate the numerosity or the shape of the odd item, depending on the task. 

Responses were provided by pressing one out of three buttons of the response box.  

For each task, both grouped and ungrouped arrays were shown in different 

blocks, however the spatial arrangement change was not explicitly signaled (Figure 
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5.1A). For each task 48 trials were presented: 6 trials for each of the 6 conditions 

(3 numerosity x 2 spatial arrangements) and 12 question marks. 

Within each scanning session participants performed eight runs of ~10 min. 

Each run included 8 blocks where the two tasks alternated. The type of task the run 

started with was balanced across runs and participants.  

 

 
Figure 5.1. Overview of the experimental design and example of stimuli 

configuration. (A) Example of stimuli configurations. (B) One run comprised 8 

blocks in which stimuli configuration could be ungrouped or grouped. 
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19’’ screen monitor (60 Hz), in a quiet and dimly light room. Participants were 

asked to estimate the numerosity of grouped (3 blocks) or ungrouped (3 blocks) 

arrays. The presentation of the conditions was counterbalanced across participants 

and again participants were not informed about the different spatial arrangement of 

the stimuli. The duration as well as the dimensions of the arrays were the same used 

during MRI acquisition.  

Each trial started with a black central fixation point that turned white after 

1s and remained on screen for the entire experiment. The first array was centrally 

presented after 1 s and was followed by a blank screen. Participants were asked to 

verbally estimate the numerosity of the array, neglecting the shape of the individual 

items, but concentrating on providing the numerical estimation as quickly and 

accurately as possible. The experimenter entered the response on the numerical 

keypad and initiated the following trial. Numerosities between 5 to 17 were tested. 

In the grouped conditions, each numerosity was organized into clusters (between 2 

and 4), each containing a variable number items (between 2 and 6), resulting in the 

following configurations: 2, 2, 1 - 3, 3 - 3, 3, 1 - 2, 2, 2, 2 - 4, 4 - 3, 3, 3 - 3, 3, 

3, 1 - 3, 3, 3, 2 - 3, 3, 3, 3 -  4, 4, 4  -  5, 5, 3 -  4, 4, 3, 3 - 4, 4, 4, 3 - 4, 4, 4, 4 - 

5, 5, 6 -  5, 4, 4, 4. All clusters except three (13 = 5, 5, 3; 16 = 5, 5, 6; 17 = 5, 4, 4, 

4) contained from 1 to 4 elements. The numerosities as well as the configuration 

patterns were randomly selected on every trial. Each participant performed 150 

trials for each condition (ungrouped and grouped), with each numerosity presented 

on average 12 times, for a total of 300 trials for the entire numerosity estimation 

task.  

Stimuli were generated and presented using PsychToolbox routines 

(Brainard, 1997), operating under Matlab (ver. R2016b. 9.1.0.441655. The 

Mathworks, Inc., https ://it.mathworks.com). 
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5.2.3 Data analysis 

EPI images were preprocessed and analyzed with FSFAST tools of Freesurfer 6.0 

(https://surfer.nmr.mgh.harvard.edu/). Preprocessing included motion correction 

and smoothing with a 3D Gaussian kernel (FWHM = 5 mm). We performed 

surface-based reconstruction and individual participants’ data were sampled to the 

left and right hemisphere of fsaverage (the surface area of the Freesurfer average 

subject).  

The preprocessed EPI images were entered into two general linear models 

estimated on subject’s surface space. Predictors were convolved with the SPM 

canonical hemodynamic response function.  

In the first General Linear Model (GLM), for each participant we separately 

modelled the effects of the 4 conditions (2 spatial arrangements x 2 tasks), the 

instruction and the response trials. To identify which brain regions were involved 

in numerosity estimation of ungrouped and grouped arrays, for each participant we 

contrasted the activity elicited during the number task (separately when performed 

on ungrouped and grouped arrays) against that elicited during the respective control 

conditions (i.e., ‘Ungrouped number task > Ungrouped shape control task’; and 

‘Grouped number task > Grouped shape control task’). We then performed a 

random effects group analysis. The resulting statistical maps were thresholded at 

p < 0.001, using correction for multiple comparison at cluster level (Hagler et al., 

2006) with cluster forming threshold p < 0.001. Next, to reveal regions that 

responded more to the number task both when the arrays were ungrouped or 

grouped than to their respective control conditions, we performed a conjunction of 

random effect analysis across the two contrasts, i.e., ‘(Grouped number task > 

Grouped shape control task) ∩ (Ungrouped number task > Ungrouped shape control 

task)’. This analysis showed the brain regions that were activated for both contrasts 

(not just one or the other). Finally, for each participant we determined whether there 

were brain regions that showed greater activation specifically (and not shared) for 

the number task when the arrays were grouped or ungrouped after subtracting out 

activity associated with their control tasks, i.e. ‘(Grouped number task > Grouped 

shape control task) > (Ungrouped number task > Ungrouped shape control task)’; 

and ‘(Ungrouped number task > Ungrouped shape control task) > (Grouped number 
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task > Grouped shape control task)’. We then performed a random effects group 

analysis, as described above. 

In the second GLM we additionally modelled the effect for each numerosity 

separately, resulting in 14 predictors: 12 conditions (3 numerosities x 2 spatial 

arrangements x 2 tasks), the instruction and the response trials. The beta estimates 

for the 12 conditions were entered into pattern recognition analysis. For each 

participant we anatomically defined regions of interest (ROIs) from V1 to IPS5 

derived from a surface based probabilistic atlas (L. Wang et al., 2015) and other 

ROIs derived from the Freesurfer atlas (Destrieux et al., 2010). ROIs were created 

on Freesurfer surface and were back projected onto each participant’s volume 

space. Left and right hemisphere for each ROI were merged. ROIs from V1 to IPS5 

were further merged in three ROIs corresponding to early (V1 to V3), intermediate 

(V3A, V3B and V7 also known as IPS0) and higher-level (IPS1 to IPS5) ROIs. 

Then, we also defined a region called IPS excluding IPS0-5 which was defined by 

excluding the ROIs from IPS0 to IPS5 from the intraparietal and transverse parietal 

sulci ROI as defined by the Freesurfer atlas. This region was found to be specifically 

involved during calculation and numerosity comparison as opposed to numerosity 

perception (Castaldi, Vignaud, et al., 2020). The parietal and angular gyrus (from 

now on referred as angular gyrus for brevity) ROI was defined based on the 

Freesurfer atlas. 

Within each of these bilateral ROIs we selected on a subject-by-subject 

basis an equal number of 1000 voxels that responded most strongly to the 

orthogonal contrast (‘all numerosities > baseline’) for pattern recognition analysis. 

Pattern classification analysis was performed in sckit-learn (Pedregosa et al., 2011) 

using beta estimates after subtracting the voxel-wise mean across conditions. Linear 

support vector machines (SVM) with regularization parameter C = 1 was applied. 

Classification analysis was performed following a leave one run out cross-

validation scheme. Classification accuracy obtained from each cross-validation 

cycle were then averaged together. Pairwise classification was performed for all 

pairs of numerosities, keeping patterns separated by task (always selecting trials 

recorded during the number task only) and by spatial arrangements (Train 

ungrouped -Test ungrouped; and Train grouped-Test grouped). We then also tested 
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for the ability of the classifier to generalize across spatial arrangements. 

Classification accuracy was then averaged across all pairs of numerosity. 

Significance against the theoretical chance level (50%) was tested with one-sample 

t-test and significance was reported after correction for multiple comparisons, as 

well as log10 Bayes Factor (logBF). Bayes factors should be interpreted as lending 

positive (< 0.5), substantial (0.5 - 1), strong (1 - 1.5), very strong (1.5 - 2) support 

to the alternative hypothesis. Repeated measure ANOVA and Bonferroni corrected 

t-test were performed on classification accuracy with ROIs and spatial 

arrangements as factors. Greenhouse-Geisser was applied when sphericity was 

violated. Effect size (O&) was also reported when appropriate.  

From psychophysical data, we calculated the average perceived numerosity 

and the response standard deviation, separately for each participant, numerosity and 

condition. We then calculated Weber fraction (Wf) by dividing the standard 

deviations by the corresponding perceived numerosity. The Wfs calculated for each 

numerosity were then averaged across numerosity levels in order to obtain two 

summary precision indices for each participant: one for ungrouped condition and 

the other one for grouped condition.  

Wfs were analyzed with a paired samples t-test. Effect size (Cohen’s d) were 

also reported. We also performed Pearson’s correlations between the behavioral 

Weber fraction and classification accuracy in the V1-V3 and angular gyrus ROIs.  

 

5.3 Results 

5.3.1 Psychophysical performance 

Before scanning, participants were tested with a behavioral experiment to measure 

Weber fractions for numerosity estimation of stimuli with different spatial 

arrangement. We replicated the single task used in Maldonado Moscoso et al. 

(2020) by asking participants to estimate the numerosity of ungrouped and grouped 

arrays. Wfs for ungrouped and grouped stimuli were compared with paired sample 

t-tests. The results support previous evidence (Maldonado Moscoso et al., 2020) 
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showing that Wf were lower when stimuli were grouped compared to when they 

were ungrouped (t = –7.52, p < 0.0001, Cohen’s d = – 2.08). 

 

5.3.2 Behavioral performance during scanning  

Behavioral performance measured during the scanning was analyzed by repeated 

measures ANOVA with task (numerosity and shape control tasks) and spatial 

arrangement (ungrouped and grouped) as within subject variables. ANOVA were 

performed separately on accuracies and RTs as dependent variables. The interaction 

of task and spatial arrangements was significant for accuracy (F(1,13) = 13.257, 

p = 0.003, O&	 = 0.141). Post-hoc comparisons revealed that when estimating 

ungrouped arrays, the accuracy in the numerosity task was lower than in the shape 

control task (t = 4.778, p = 0.0004), suggesting that the latter task was slightly 

easier, although accuracy was very high in both cases (accuracy ungrouped 

numerosity task: 75%; accuracy ungrouped shape control task: 86%; Figure 5.2A). 

On the contrary when estimating grouped arrays, the accuracy between the 

numerosity and shape control task was not statistically different (t = 0.37, 

p = 0.99) and was in both cases very high (accuracy grouped numerosity task: 78%; 

accuracy grouped shape control task: 79%; Figure 5.2A). The accuracy for 

performing the numerosity task on ungrouped and grouped arrays as well as the 

shape control task on ungrouped and grouped arrays were not statistically different 

(ungrouped and grouped numerosity task: t = 1.473, p = 0.92; ungrouped and 

grouped shape control task: t = 2.739, p = 0.069).  

Neither the main effects nor the interaction between task and spatial 

arrangement (Figure 5.2B) were statistically significant for RTs (interaction: 

F(1,13) = 2.522, p = 0.136, O&	 = 0.033, main effect of task: F(1,13) = 1.09, 

p = 0.315, O&	 = 0.05; main effect of spatial arrangement: F(1,13) = 0.895, 

p = 0.361, O&	 = 0.01). 
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Figure 5.2. Behavioral performance during scanning. (A) Percentage of correct 

responses and average reaction time (B) to match stimuli for the two tasks in both 

ungrouped and grouped spatial configuration. Error bar represent ±1 s.e.m. 

***p < 0.001. 

 

5.3.3 Univariate analysis 

The contrast ‘Ungrouped numerosity > Ungrouped shape control’ (red activations 

in figure 5.3A) revealed greater activation for processing numerosity compared to 

the shape control task of ungrouped stimuli in parietal and frontal cortex. 

Specifically, activation covered the right superior and transverse occipital sulcus, 

right intraparietal and transverse parietal sulci (IPS), right superior parietal gyrus 

(SPG) and in the bilateral postcentral sulcus. In the frontal cortex activation covered 

the right inferior precentral sulcus and superior frontal gyrus.  

The contrast ‘Grouped numerosity > Grouped shape control’ (red 

activations in figure 5.3B) elicited activation in similar regions, however 

additionally recruiting the left hemisphere much more. Additional activations were 

also observed in right insula and in right inferior temporal gyrus. 
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elicited activation in several bilateral parieto-occipital and superior temporal areas. 

Widespread activations were also observed bilaterally in the frontal cortex (mainly 

in the superior and middle frontal gyrus and cingulate gyrus).  

The conjunction analysis ‘(grouped number task > grouped shape control 

task) ∩ (ungrouped number task > ungrouped shape control task)’ highlighted the 

regions commonly activated when performing the number task on both grouped and 

ungrouped stimuli relative to their respective control tasks. The results shown in 

figure 5.2C revealed that common neural activation was found for grouped and 

ungrouped number tasks in the right superior occipital sulcus and transverse 

occipital sulcus, right intraparietal sulcus and transverse parietal sulci (IPS), right 

superior parietal gyrus (SPG) and in the postcentral sulcus bilaterally. Activations 

were observed also in the frontal cortex, specifically in the right precentral sulcus 

and right superior frontal gyrus. The results suggest that these regions play an 

important role in the estimation of non-symbolic quantities irrespective of spatial 

configuration.  

 

 
Figure 5.3. Neural activations for ungrouped and grouped stimuli relative to 
their respective shape control tasks and conjunction analysis. Activation maps 
obtained from the surface-based group analysis (n = 14) showing the activation 
elicited by numerosity relative to the shape control task when items in visual arrays 
were randomly scattered in space (A) or grouped (B). Red and blue clusters 
respectively indicate greater activity for the numerosity relative to the control task 
and for the shape control relative to the numerosity task. (C) Brain regions 
commonly activated by the contrasts shown in (A) and (B). Red clusters represent 

Ungrouped numerosity > Ungrouped shape control Grouped numerosity > Grouped shape control

Grouped numerosity > Grouped shape control ∩ Ungrouped numerosity > Ungrouped shape control 
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the conjunction of the numerosity estimation task performed on both ungrouped 
and grouped arrays greater than their respective control conditions. Maps are 
thresholded at p < 0.001, uncorrected for multiple comparison and displayed on 
Freesurfer’s fs average surface. Color outlines mark anatomical sulci and gyri 
according to the Destrieux Atlas (Fischl et al., 2004). White outlines identify the 
region IPS0-5 based on visual topography (L. Wang et al., 2015). For both contrasts 
and for the conjunction analysis, the cluster summary tables can be found in A5. 

 

Finally, we looked for regions specifically activated for the number task 

when the arrays were grouped after subtracting out activity associated with their 

control tasks, i.e., ‘(Grouped numerosity > Grouped shape control) > (Ungrouped 

numerosity > Ungrouped shape control)’. This contrast elicited activations in 

bilateral angular gyrus and in left frontal regions covering the lateral orbital sulcus, 

and middle frontal gyrus (red activations in Figure 5.4). On the other hand, no brain 

regions showed greater activation specifically for the number task when the arrays 

were ungrouped, i.e., ‘(ungrouped numerosity > ungrouped shape control) > 

(Grouped numerosity > Grouped shape control)’.  

 

Figure 5.4. Neural activations for grouped compared ungrouped stimuli after 
subtracting out activity associated with their shape control tasks. Statistical 
results obtained from the surface-based group analysis showing distinct neural 
activity for the numerosity task when it was performed on grouped compared to 
ungrouped arrays. (n = 14). The maps show the regions with greater activations for 
numerosity estimation of grouped compared to ungrouped arrays, after subtracting 
out activity associated with their respective shape control tasks. The reverse 
contrast (grater activations for numerosity estimation of ungrouped compared to 
grouped arrays, after subtracting out activity associated with their respective shape 
control tasks) did not yield to significant activation. The cluster summary table can 
be found in A5. 

(Grouped numerosity > Grouped shape control) > (Ungrouped numerosity > Ungrouped shape control)
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5.3.4 Multivariate analysis 

So far, the results suggest that performing numerosity estimation on ungrouped and 

grouped arrays elicit partially shared and partially specific cortical areas. However, 

the fact that similar or overlapping regions are activated by estimation of ungrouped 

and grouped arrays does not necessarily imply that the same shared neural 

mechanisms are recruited in both cases, and instead it could reflect functionally 

different neural patterns within the same brain regions. For this reason, we further 

evaluated whether the pattern of activity elicited by numerosities with different 

spatial arrangements showed some similarities or differences across the regions 

along the dorsal pathway.  

We defined five different regions in each participant (Figure 5.5A). Within 

each region we selected the 1000 most activated voxels to the contrast (‘all 

numerosities > baseline’). These voxels were used to train and test classifiers to 

discriminate between numerosities within each spatial arrangement (ungrouped and 

grouped) during the numerosity estimation task. We tested whether the numerosity 

of a given visual array could be predicted within as well as across each spatial 

arrangement.  

 

5.3.4.1 Decoding within spatial arrangements  

Figure 5.5 B&C showed the performance of the classifier when discriminating 

between numerosities of ungrouped and grouped arrays respectively. When 

numerosities were shown with ungrouped arrays the different numerosities could 

be decoded significantly above chance in all ROIs (V1-V3 t = 3.65, p = 0.001, 

LogBF = 1.5 V3AB-V7 t = 3.28, p = 0.003, LogBF = 1.24, IPS1-5 t = 3.92, 

p = 0.0009, LogBF = 1.68, IPS excluding IPS0-5 t = 3.53, p = 0.002, 

LogBF = 1.41, angular gyrus t = 3.22, p = 0.003, LogBF = 1.19, thus suggesting 

strong evidence of difference from chance in all ROIs). When numerosities were 

shown with grouped arrays the decoding accuracy was above chance only in the 

parietal but not in the early and intermediate ROIs: V1-V3 t = −0.77, p = 0.77, 

LogBF = –0.77; V3AB-V7 t = 1.80, p = 0.048, LogBF = 0.26; IPS1-5 t = 3.55, 
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p = 0.002, LogBF = 1.42; IPS excluding IPS0-5 t = 4.1, p = 0.0006, LogBF = 1.81, 

angular gyrus t = 2.96, p = 0.006, LogBF = 1.07. Bayes factor (LogBF) provided 

substantial evidence in favor of no significant difference from chance in the primary 

ROI, and positive and strong evidence in favor of significant differences in 

intermediate and parietal ROIs respectively.  

Classification accuracies were analyzed with a repeated measures ANOVA 

with ROIs (5 levels) and spatial arrangements (2 levels) as factors. The results 

showed a significant interaction between ROIs and spatial arrangements 

(F(4,52) = 3.702, p = 0.01, p = 0.017 after Greenhouse-Geisser sphericity 

correction, O& = 0.065). Post-hoc comparisons revealed that the difference in 

classification accuracy between V1-V3 ungrouped and V1-V3 grouped was at 

significance (t = 3.53, p = 0.05), and significant for V1-V3 grouped and IPS 1-5 

grouped (t = –4.1, p = 0.004) and V1-V3 grouped and IPS excluding IPS 0-5 

grouped (t = –4.14, p = 0.003). There was no significant main effect of ROIs and 

Spatial arrangements (F(4,52) = 2.365, p = 0.065, p = 0.073 after Greenhouse-

Geisser sphericity correction, O&	 = 0.062; F(1,4) = 2.06, p = 0.175, O&	 = 0.042, 

respectively for ROIs and Spatial arrangements). 

 

5.3.4.2 Generalization across spatial arrangements 

We then tested for generalization of classification performance across spatial 

arrangements (Figure 5.5D). Significant generalization was observed in the parietal 

but not in the intermediate ROIs nor in the primary ROIs after correction for 

multiple comparisons (V1-V3: t = 2.63, p = 0.01, LogBF = 0.79; V3AB-V7: 

t = 1.51, p = 0.078 LogBF = 0.09; IPS1-5: t = 3.39, p = 0.002, LogBF = 1.31; IPS 

excluding IPS0-5: t = 4.17, p = 0.0005, LogBF = 1.86; angular gyrus: t = 3.45, 

p = 0.002, LogBF = 1.35. Bayes factors provided substantial, positive and strong 

evidence in favor of difference from chance in the primary ROI, intermediate and 

parietal ROIs respectively).  
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 Figure 5.5. ROIs illustration and results of multivariate pattern analysis. ROI 
localization of the occipital and parietal regions and results of multivariate 
classification for discrimination between numerosities when participants were 
performing the numerosity task on items with different spatial arrangement. (A) 
Color-coded ROIs on the inflated brain template. (B-C) Average decoding accuracy 
for different numerosities when training and testing the classifier with the pattern 
of activity elicited by the ungrouped (B) and grouped (C) arrays. (D) Average 
decoding accuracy for different numerosities when the classifier was trained on the 
pattern of activity elicited by one given spatial arrangement and tested on the pattern 
of activity elicited by the other. 
Bars show mean classification accuracy across subjects ± standard error of mean 
(Stars marks significance against chance (0.5), after correction for multiple 
comparisons: 0.05/5 = 0.01. * p =< 0.01; ** p < 0.001; *** p < 0.0001).  

 

5.3.5 Correlational analysis 

We correlated the Weber fraction measured in the behavioral experiment for 

grouped arrays and the classification accuracy for grouped stimuli based on the 

neural activity read out from the primary visual areas and the angular gyrus ROIs. 

As showed in Figure 5.6 classification performance from the angular gyrus 

correlated significantly with the Weber fraction measured behaviorally (r = –0.67, 

p = 0.009, LogBF = 0.86). However, there was no significant correlation with 

primary visual areas (r = –0.44, p = 0.11, LogBF = 0.02).  
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Figure 5.6. Relation between behavioral Wfs and classification accuracy in the 
numerosity grouped condition.  (A) Weber fractions plotted against classification 
accuracy in the primary visual areas (V1-V3) and (B) in the angular gyrus ROI.  

 

5.4 Discussion 

The present study explored the neural resources supporting numerosity estimation 

when stimuli were grouped (to facilitate “groupitizing”) and ungrouped. The results 

showed that the numerosity estimation of ungrouped and grouped stimuli shared 

the activation of a similar right lateralized fronto-parietal network. The estimation 

of grouped stimuli additionally elicited the recruitment of regions in the left 

hemisphere, specifically the angular gyrus. Multivariate pattern analysis showed 

that classifiers trained with the pattern of neural activations read out from parietal 

regions, but not from the primary visual areas, can decode different numerosities 

both within and across spatial arrangements. Finally, fMRI decoding performance 

of the angular gyrus but not the primary visual areas correlated with the behavioral 

Wfs measured in the estimation task.  

The results from the univariate analysis of the fMRI data showed that 

numerosity estimation of ungrouped and grouped stimuli activated both common 
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(mostly right-lateralized) and specific cortical areas within the fronto-parietal 

network. We identified a right lateralized fronto-parietal circuit that was more 

activated when participants estimated the numerosity of ungrouped stimuli 

compared when they estimated the odd-shape in the ungrouped arrays: the circuit 

including the right superior and transverse occipital sulcus, right IPS, right SPG, 

right inferior precentral sulcus and superior frontal gyrus and the bilateral 

postcentral sulcus. We cannot formally rule out the possibility that the activation of 

the listed areas may in part be driven by levels of different difficulty of the 

ungrouped numerosity and shape control tasks. However, in the comparison and 

estimation of non-symbolic tasks the activation of this right lateralized network has 

been previously reported by neuroimaging studies (Dormal et al., 2010, 2012), even 

when the difficulty of the numerosity estimation task with respect to its control task 

was matched (Piazza et al., 2006). Piazza et al. (2006) explored the neural activity 

associated with estimation of visual and auditory stimuli (squares or tone 

sequences) and compared it with a control task in which participants were asked to 

report whether the last stimulus in the sequence was identical to the first. They 

showed that estimation of these non-symbolic quantities elicited a greater activation 

of the right IPS, right precentral gyrus and right middle frontal gyrus compared to 

the control task. Importantly, the main and control tasks in Piazza et al.(2006)’s 

study were matched for difficulty, therefore this factor could not explain the right-

lateralized activity, similar to the one reported in the current study, for numerosity 

estimation.  

In the current experiment, we found that numerosity estimation of grouped 

stimuli activated similar regions in the right hemisphere but additionally recruited 

the same areas in the left hemisphere as well. Previous psychophysical evidence 

suggests that when participants estimate the numerosity of a stimulus divided into 

subitizable sub-groups they spontaneously employ arithmetical (subitize-and-sum) 

strategies to solve the task (Maldonado Moscoso et al., 2020; G. S. Starkey & 

McCandliss, 2014). Evidence in the literature from brain-damaged patients 

(Cipolotti et al., 1991; Dehaene et al., 1998; Jackson & Warrington, 1986) and 

fMRI studies (Chochon et al., 1999; Pinel & Dehaene, 2010) have suggested that 

left hemisphere is involved in mental arithmetic. The major involvement of the left 
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hemisphere may therefore implicate mental arithmetic strategies when items were 

grouped. 

Interestingly, the network recruited for estimating numerosities of grouped 

arrays is not completely different from that recruited for ungrouped arrays: the 

conjunction analysis showed that the neural network in the right hemisphere is 

largely shared between numerosity estimation of grouped and ungrouped arrays. 

This network includes the right IPS, the right superior and transverse occipital 

sulcus, the right SPG, the right precentral sulcus and in the right superior frontal 

gyrus.  

Beyond this common shared system, we also observed areas uniquely 

activated during numerosity estimation of grouped stimuli, specifically the bilateral 

angular gyrus and in the left orbital sulcus and in the left middle frontal gyrus. 

Although the angular gyrus has been shown to be activated in various cognitive 

domains (perceptual and motor reorienting, number processing, attention and 

spatial cognition, episodic memory retrieval and encoding, language processing, 

theory of mind; Cabeza et al., 2012), fMRI and neuropsychological studies have 

shown that the left angular gyrus plays an important role during calculation 

processing, in particular during multiplication and arithmetical fact retrieval from 

memory (Chochon et al., 1999; Delazer et al., 2003; Gerstmann, 1940; Grabner et 

al., 2007, 2013; Grabner, Ansari, et al., 2009; Grabner, Ischebeck, et al., 2009; 

Ischebeck et al., 2007; Lee, 2000; Stanescu-Cosson et al., 2000; see also: Dehaene 

et al., 2003, for a review). The activation of the angular gyrus can hardly be 

explained by task difficulty as on average the accuracy in grouped and ungrouped 

tasks isn’t statistically different. Rather, it is most likely that this activation reflects 

calculation procedure as previously reported by other studies (Göbel et al., 2001; 

Menon et al., 2000; Stanescu-Cosson et al., 2000). Interestingly, the activation of 

the left inferior and middle frontal regions was found in studies that investigated 

the neural substrates of symbolic and non-symbolic exact, compared to 

approximate, calculation. It has been suggested that this left lateralized parieto-

frontal network may play an important role for arithmetic fact retrieval (Piazza et 

al., 2006; Prado et al., 2011, 2014; Stanescu-Cosson et al., 2000). The activity 

revealed during estimation of grouped stimuli may implicate the automatic use of 
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multiplication strategies or retrieval of arithmetic facts (i.e., basic addition) to solve 

the task.  

Overall, the results from the univariate analysis showed that the numerosity 

estimation of both ungrouped and grouped stimuli compared to their shape control 

conditions elicited the activation of similar regions, but with different lateralization, 

in the fronto-parietal network and with different recruitment of the angular gyrus.  

The fact that different tasks elicit the activation of overlapping regions, 

however, does not necessarily imply that the same neural mechanisms are recruited, 

but may rather reflect intermingled neural populations that are differentially 

recruited for the different tasks. We therefore tested whether performing 

numerosity estimation on arrays with different spatial arrangements elicited similar 

patterns of neural activation. The results of the multivariate decoding analysis 

showed that the different numerosities could be read out from brain activity 

significantly above chance during numerosity estimation of ungrouped arrays all 

along the visual stream. On the contrary, when training the classifiers with the 

pattern of activity elicited by estimation of grouped stimuli, numerosity could be 

decoded above chance only in parietal regions. In this study, the total field area was 

matched between ungrouped and grouped stimuli, however, within this area, the 

location of the individual items was more scattered in the ungrouped than in the 

grouped arrays (by definition). Such difference may have elicited a distinct pattern 

of activity in the primary visual areas for the ungrouped compared to the grouped 

stimuli, therefore explaining the higher decoding performance in the former, but 

not in the latter case.  

We also observed that decoding in the parietal, but not the early visual ROIs, 

successfully generalized across spatial arrangements, suggesting that the 

numerosity information is similarly encoded in the parietal cortex independently of 

whether stimuli were ungrouped or grouped.  

Finally, we examined the behavioral relevance of the numerosity 

representations in the early visual areas and angular gyrus by correlating the 

individual behavioral Wfs against the fMRI decoding accuracies. Our results 

replicated previous evidence showing that numerical representation did not 
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correlate with behavioral acuity in the primary visual areas (Lasne et al., 2019). 

However, the correlation between precision of numerosity estimation of grouped 

stimuli and decoding accuracy in the angular gyrus was significant, with 

participants with higher precision (lower Wfs) having significantly more accurate 

decoding of neural activity in this region. The current results may therefore suggest 

that the angular gyrus plays a crucial role for estimation of grouped stimuli. 

In conclusion, we used fMRI to explore neural activation elicited by 

grouped compared with ungrouped stimuli. Univariate analysis showed that the 

estimation of both ungrouped and grouped stimuli activate a similar right lateralized 

fronto-parietal network. The possibility of using grouping strategies may 

automatically elicit a different strategy for numerosity estimation and results in the 

recruitment of a network involved in calculation, mostly including regions in the 

left hemisphere and the angular gyrus. Moreover, that classifiers can generalize 

across spatial arrangements in the parietal regions suggests that at this level the 

numerosity information is stored in a more abstract way, which prescinds the spatial 

arrangement, probably reflecting the participant’s response (numerosity estimated). 

This possibility is supported by the correlation between the participant’s behavioral 

acuity and the decoding performance in the angular gyrus, suggesting that the 

pattern of activity in this region reflects the perceptual decisions. Overall, and in 

line with the psychophysical findings, this experiment supports the hypothesis that 

the estimation of grouped stimuli relies on the system for numerosity estimation, 

but additionally recruit regions involved in calculation which enable us to more 

precisely and quickly estimate numerosity of grouped arrays. 
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6.1 Introduction 

Numerical and mathematical competencies are central predictors of an individual’s 

success in life. Developing adequate numerical and mathematical skills is a 

prerequisite to accomplishing numerous tasks in daily life, such as setting and 

keeping to a budget (Parsons & Bynner, 2005), as well as pursuing careers in the 

STEM fields: science, technology, engineering, and mathematics (STEM; Beilock 

& Maloney, 2015; Ferguson et al., 2015). Impairments in mathematical skills might 

be triggered by several factors and, amongst these, mathematical anxiety (MA) has 

been suggested to play a key role. MA has been defined as feelings of apprehension 

and increased physiological reactivity when individuals have to manipulate 

numbers, solve mathematical problems, or when they are exposed to an evaluative 

situation connected to math (Ashcraft, 2002; Hembree, 1990). Similar to other 

performance-based anxieties, MA involves psychological arousal, negative 

cognitions, escape and/or avoidance behaviors and, when the individual cannot 

avoid the situation, performance deficits. MA is also related to reduced cognitive 

reflection (Morsanyi et al., 2014; Primi et al., 2018), and poorer decision making 

performance (e.g., Rolison et al., 2016). In other words, MA is described as a 

multidimensional construct that is related to, but distinct from, other forms of 

anxiety, such as trait, social, or test anxiety (Ashcraft & Moore, 2009; Vukovic et 

al., 2013). MA has been shown to hinder math performance. It has been reported 

that individuals with higher levels of MA obtain lower scores in math achievement 

tests, take fewer math courses, and tend to avoid career paths involving 

mathematics (Ashcraft & Krause, 2007; Ashcraft & Moore, 2009; Ma, 1999). 

Two theoretical frameworks have traditionally been proposed to account for 

the link between MA and math achievements (Carey et al., 2016). The deficit theory 

posits that poor mathematical performance leads to future high levels of MA. In 

line with that, it has been suggested that MA could result from low numerical 

(and/or spatial) skills which compromise the development of high proficiency in 

mathematical problem solving (Maloney, 2016; Maloney et al., 2011). On the other 

hand, the cognitive interference theory posits that it is MA that affects subsequent 

mathematical performance. During the phases of information processing and recall, 

MA would create cognitive interference which affects mathematical performance. 
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According to this theory, anxiety would generate intrusive thoughts to reduce 

working memory (WM) capacity, with these thoughts acting as a secondary task 

draining resources that, otherwise, would have been allocated to solving the 

mathematical task (Ashcraft & Kirk, 2001). An alternative theory posits that MA 

and mathematical performance show a bidirectional relationship (Ashcraft & 

Krause, 2007); past failures and negative experiences in mathematical performance 

would lead to MA which, subsequently, would lead to poorer mathematical 

performance and vice versa (Ma & Xu, 2004). 

Whatever the nature of the link between MA and low achievement in math 

learning, several studies have highlighted various factors that might account for the 

negative relationship between these factors. A possible explanation of the gap in 

math performance between students with high and low levels of MA derives from 

behavioral and psychophysiological studies, which provide converging evidence 

for individual (cognitive, affective/ physiological, motivational) and environmental 

(social/ contextual) factors (Chang & Beilock, 2016). Recent reports, focused on 

genetic and neurophysiological factors, suggested that MA arises from a basic level 

deficiency in symbolic numerical processing. In particular, genetic studies of MA 

in twins evidenced that genetic factors accounted for about 40% of the variation in 

MA, and that 12% of the total variance in MA was associated with genetic 

influences related to math problem-solving (Malanchini et al., 2017; Z. Wang et al., 

2014). Finally, children with high mathematical anxiety (HMA), compared with 

low mathematical anxiety (LMA) peers, show reduced responses in posterior 

parietal cortex, including the intraparietal sulcus (IPS) and dorsolateral prefrontal 

cortex regions, known to play a critical role not only in numerical and mathematical 

cognition, but also in non-symbolic number evaluation (Castaldi et al., 2016; 

Dehaene et al., 1999; Eger et al., 2003; Piazza et al., 2004; Young et al., 2012).  

 Whilst symbolic numerical representation and arithmetic are recent cultural 

inventions specifically adopted by humans, humans share with many non-human 

animal species an intuitive “approximate number system” (ANS), which is the core 

ability to automatically and efficiently process numerical magnitude information 

(Dehaene, 2011). The sensory precision of this system is refined during 

development and varies considerably between individuals (Halberda et al., 2008, 
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2012; Odic et al., 2013). It is suggested that numerosity represents a primary visual 

attribute (Anobile, Cicchini, et al., 2016) and, in line with this idea, recent studies 

showed that numerosity is spontaneously perceived, even by 5-year old children 

(Cicchini et al., 2016). Interestingly, several studies reported strong correlations 

between the precision in numerosity judgments and current, future or past formal 

mathematical skills in children (Anobile et al., 2013; Anobile, Arrighi, et al., 2018; 

De Smedt et al., 2009; Feigenson et al., 2013; Halberda et al., 2008; Starr et al., 

2013). Complementary studies carried out on subjects with mathematical 

disabilities (developmental dyscalculia) show that a deficit in mathematical 

processing generalizes to yield severe difficulties in estimating and comparing 

numerosity (Anobile, Burr, et al., 2019; Landerl et al., 2004; Mazzocco et al., 2011; 

Piazza et al., 2010; Pinheiro-Chagas et al., 2014). In light of all these results, some 

authors suggested that an intact number sense might be a base prerequisite for the 

later mathematical acquisition or, in other words, that the number sense acted as an 

early non-symbolic start-up tool for the later development of language-based formal 

mathematical skills (Butterworth, 1999; Butterworth et al., 2011; Dehaene, 2011; 

Piazza, 2010). 

Given the intimate relationship between MA and mathematical 

achievements, and the complementary link between these and the ANS, it has also 

been suggested that there is a possible interplay between ANS and MA. However, 

evidence collected so far is controversial. In particular, two studies have found that 

individuals with HMA represent numerical magnitude less precisely than their 

LMA peers (Maloney et al., 2011; Núñez-Peña & Suaŕez-Pellicioni, 2014). 

However, as both studies tested with Arabic digits, they only supported a link 

between MA and symbolic representation of quantity, not numerosity. Recently 

Braham and Libertus (2018) showed that the association between precision in 

perceived numerosity (ANS acuity) and subjects’ performance in applied problem 

solving was present only in subjects with HMA levels, suggesting that an efficient 

ANS system might act as a potential protective factor for highly math anxious 

students. Another study reported a link between non-symbolic numerical 

processing and MA (Lindskog et al., 2017); these authors found that people with 

high levels of math anxiety show poorer precision in a non-symbolic numerical 
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comparisons task, compared to those with low levels of math anxiety. They also 

showed that the correlation between math skills and numerosity precision was fully 

mediated by participants’ level of MA. However, several studies measuring ANS 

acuity by means of non-symbolic tasks failed to find a significant correlation 

between ANS and MA in both adults as well as children, leaving open the question 

of whether this interplay occurs (Colomé, 2019; Dietrich et al., 2015; Gómez-

Velázquez et al., 2015; Hart et al., 2016; Z. Wang et al., 2015).  

The current study aims to assess the role of MA in math skills and 

numerosity perception. We devised two groups with extremely low or high levels 

of mathematical anxiety (drawn from a large sample of university students) and 

measured, in both groups, differences in ANS acuity and math abilities as well as 

correlations between these variables. We first investigated whether the numerosity 

thresholds were different in subjects with HMA compared to their LMA peers. 

Then we addressed the question whether any possible numerosity impairments in 

HMA participants ware selective for numerosity or whether it was related to a more 

general perceptual weakness in magnitude judgements.  This goal was achieved by 

measuring discrimination thresholds on a non-numerical magnitude task, in which 

participants were engaged in an object-size discrimination task. The issue of 

specificity was also tested by measuring a non-magnitude parietal function, as many 

studies suggested a key role of parietal cortex in both numerosity perception and 

math processing. To this aim, we decided to administer a Multiple Object Tracking 

(MOT) task as this task was shown to activate the parietal cortex, which has been 

found to correlate well with both numerosity and math abilities (Anobile et al., 

2013; Ansari et al., 2007; Corbetta & Shulman, 2002; Steele et al., 2012).  In order 

to assess the specific role played by MA in mathematical performance, we 

measured individuals’ anxiety on a more general dimension, such as performance 

anxiety (Ashcraft & Ridley, 2005; Lindskog et al., 2017). Finally, we tested for the 

potential mediation role of MA on the link between ANS and math abilities, using 

a mediation model in which ANS was associated with math achievement through 

math anxiety. Mediation implies a situation where the effect of the independent 

variable (X) on the dependent variable (Y) can be explained using a third mediator 

variable (M) which is caused by the independent variable and is itself a cause for 
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the dependent variable. By modelling an intermediate variable, the overall effect 

between X and Y can be decomposed into component parts called the direct effect 

of X on Y and the indirect effect of X on Y through M (i.e. the mediated effect).  

The importance of our study, which took into consideration several possible 

differences between subjects with high and low math anxiety, relies on the fact that 

such multidimensional analysis is the most suitable tool to investigate the effect of 

MA on both low-level quantity processing (ANS) as well as high-level 

mathematical proficiency. Such an approach is not only likely to allow a full 

understanding of the interplay between MA, math achievements and ANS, but will 

also improve understanding of the brain mechanisms underpinning these processes, 

as well as providing useful information about how to optimize mathematical 

learning procedures or customized early targeted interventions. 

 

6.2 Methods 

Participants were 88 university students attending an introductory statistics course 

at the School of Psychology of the University of Florence. They were selected from 

a class of 179 students based on their level of math anxiety. The LMA  group 

comprised 39 participants (69% female; age range 18–22 years, mean = 20.1, SD = 

0.7) who scored below the 25th percentile (score range 10-19 , mean = 16.3, SD = 

2.6 ) on the Abbreviated Math Anxiety Scale (AMAS; Hopko et al., 2003). The 

HMA group comprised 49 participants (82% female; age range 18–37, mean = 20.4, 

SD = 2.9,) who scored above the 75th percentile on the AMAS (score range 27- 40, 

mean = 30.1, SD = 3.2). All students participated on a voluntary basis. The whole 

procedure was performed in accordance with the declaration of Helsinki. 

Participants were tested individually. Before the testing sessions, students provided 

informed consent.  Math skills (MPP), Math anxiety (AMAS) and Test anxiety 

(TAI) were all measured before psychophysical experiments. The scales were in a 

paper-and-pencil format. The psychophysical tasks were then performed in a quiet 

and dimly illuminated room. Participants sat in front of a BARCO 27” monitor 

subtending 39° by 29° from the subject’s viewing distance of 57 cm. The monitor 

resolution was 1024 X 768 and the refresh rate equal to 120 Hz. Stimuli for the 



Chapter 6 
 

 103 

psychophysical experiments were all generated and presented with PsychToolbox 

(Brainard, 1997) routines for MATLAB (ver. 2010a, The Mathworks, Inc.).  

 

6.2.1 Measures  

The Mathematics Prerequisites for Psychometrics (MPP; Galli et al., 2011) is a test 

which was developed to measure the mathematical skills of students enrolled in 

statistics courses.  The scale was developed using item response theory (IRT) 

because it offers a different value of test precision for each specific level of 

underlying latent variable being measured, and it does not assume that a single 

estimate of reliability, and corresponding standard error of measurement, is 

sufficient to describe precision of measurement over all levels of ability (Embretson 

& Reise, 2000). The scale consists of 30 problems and has a multiple-choice format 

(one correct response out of four options). For example, “The value 0.05 is” (i) 

lower than 0; (ii) between -1 and 0; (iii) higher than 0.1; and (iv) between 0 and 1, 

and “Knowing that xy = 3 which of the following is true?” (i) y=3/x; (ii) y=3x; (iii) 

c=3x; and (iv) xy/3. The sum of correct responses gave us a single composite score 

for each participant. In the present sample, Cronbach’s α was .73 (IC: .70-.78). We 

used this measure as an estimate of the students’ math knowledge (Primi et al., 

2014).  

 

The Abbreviated Math Anxiety Scale (AMAS; Hopko et al., 2003) measures MA 

experienced by students in learning and test situations. Participants were required 

to respond on the basis of how anxious they would feel during given events (for 

example, “Listening to another student explain a math formula” or “Starting a new 

chapter in a math book”) by using a 5-point response scale (ranging from strongly 

agree to strongly disagree). High scores on the scale indicate HMA. A single 

composite score was obtained, based on participants’ ratings of each statement. In 

the present sample, Cronbach’s α was .84 (IC: .80 -.87).  
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The Test Anxiety Inventory (TAI; Spielberger et al., 1978) was developed to 

measure anxiety associated with task-performing situations in high school and 

college students. The test consists of 20 items, which investigate a range of anxiety 

symptoms occurring before, during or after exams. Responses are collected using a 

4-point Likert scale ranging from 1 (almost never) to 4 (always). The TAI yields a 

total score calculated as the sum of all 20 items, with higher scores corresponding 

to high test anxiety. In the present sample, Cronbach’s α was .94 (IC: .93 -.96).  

 

6.2.2 Numerosity discrimination task  

Stimuli consisted of two brief (250 ms) patches of dots, presented on either side of 

a central fixation point (Figure 6.1A). Dots were 0.25° in diameter, half white and 

half black (to balance luminance), presented at 80% contrast on a grey background 

of 40 cd/m2. They were constrained to fall within a virtual circle of 10° diameter, 

centered at 10° eccentricity. Standard numerosity (randomly left or right) was fixed 

at 24 dots while the probe adaptively changed, according to participant responses, 

with numerosity defined by an adaptive staircase QUEST algorithm (Watson & 

Pelli, 1983). All participants performed one session of 80 trials. Participants were 

asked to indicate the side of the screen with more dots. We plotted the proportion 

of trials where the standard stimulus appeared more numerous than the probe 

against the probe numerosity (on log axis) and fitted with cumulative Gaussian error 

functions. We defined the point of subjective equality (PSE) as the physical 

numerosity of the probe yielding 50% of probe more numerous responses.  Then 

we defined subjects’ precision as just notable difference (JND), that is the 

numerosity offset defining the 50-75% range of probe more numerous. Finally, 

normalizing PSE by JND we obtained a single index Weber Fraction (WF), a 

typical dimensionless psychophysical index for discrimination thresholds.  
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6.2.3 Size discrimination task 

Stimuli were gratings sinusoidally modulated in luminance with a spatial frequency 

of 2 cycles per degree and a Michelson contrast of 90% which were vignetted in an 

annular contrast window (Figure 6.1B). In each trial, two annuli were 

simultaneously presented for 250 ms on the left and the right side of the central 

fixation point, at an eccentricity of 10°. Subjects were required to indicate which 

stimulus appeared to be larger. The diameter of the test stimulus (presented 

randomly on the left or right) was 5° or 8° (40 trials each, randomized trial-by-trial), 

while the probe varied in diameter by a percentage drawn randomly from a 

Gaussian distribution centered at 0 with SD = 20%. To minimize alternative judging 

strategies (such as estimating border-to-center of the screen distance), we 

independently jittered the horizontal eccentricity of the test and the probe between 

8.5° and 11.5°, and their distance from the horizontal meridian within ± 3°. After 

the stimuli presentation, a 100 ms full-screen random noise mask was displayed to 

cancel out possible afterimages. The proportion of “test largest” trials was plotted 

against the log-ratio of the test to probe and fitted with cumulative Gaussian error 

functions. Even for the size discrimination task, the dependent variable which we 

took into account was Weber Fraction (see above), indicating subjects’ sensory 

precision in the size discrimination thresholds. 

 

6.2.4 Visual sustained attention task 

Visual sustained attention (Figure 6.1C) was measured by a multiple object 

tracking task (MOT; Pylyshyn & Storm, 1988). At each trial, a total of twelve disks 

with a diameter of 0.9° moved randomly on the full screen at 7°/s for a period of 2 

s. The green targets could be 2, or 3, or 4 (representing the three conditions) and 

the remaining stimuli (distractors) were red. After the 2 s, the green targets turned 

red (like the distractors), and continued to move randomly on the full screen for 4 

s. The participants were required to continue to track them with their attention. After 

this period, the disks stop moving, and 4 of them turned orange. Participants had to 

identify (using the mouse cursor) which one of the four orange items was a green 

target at the beginning of the trial (4AFC). Each experimental session had 10 trials 
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and participants performed 2 sessions, for a total of 20 trials. No feedback was 

provided. We measured the performance of the participants as the proportion of 

correct responses for each condition (Anobile et al., 2013).  

 

6.2.5 Data analysis 

Preliminarily, we tested differences within the group (LMA and HMA) on 

numerosity and size discrimination tasks as well as sustained attention with a mixed 

3 (within factor: tasks) X 2 (between factor: groups) ANOVA. Correlations 

between variables were tested by Pearson’s r. To further enhance the understanding 

of the mechanisms underlying the relationships among these variables, a mediation 

model was tested. Specifically, MA was modelled as the intermediate variable (M) 

between ANS and math proficiency. This procedure allowed us to conclude 

whether the independent variable influences the dependent variable directly (path 

c' in Figure 6.5) and/or indirectly (path a or b in Figure 6.5) through the mediator. 

Obviously, the direct and indirect effects added to the yield of the total effect (path 

c in Figure 5) of the independent variable on the dependent variable. The mediation 

model was estimated to derive from the total, direct, and indirect effects of ANS on 

math achievement through MA. The indirect effect of ANS on math achievement 

was quantified as the product of the ordinary least squares (OLS) regression 

coefficient estimating MA from ANS (i.e., path a in Figure 6.5) and the OLS 

regression coefficient estimating math achievement from MA when controlling for 

ANS (i.e., path b in Figure 6.5). To test the mediation model, we used the 

INDIRECT macro for SPSS (Hayes, 2013). The INDIRECT macro tested the 

hypothesized model using a bootstrapping procedure (with 5000 bootstrap samples) 

to estimate the 95% confidence interval for the indirect (mediated) effect (for more 

details, see Preacher & Hayes, 2008). Bootstrapping is a resampling strategy for 

estimation and hypothesis testing. With the bootstrapping method, the sample is 

conceptualized as a pseudo-population that represents the broader population from 

which the sample was derived, and the sampling distribution of any statistic can be 

generated by calculating the statistic of interest in multiple resamples from the 

dataset. The bootstrapping procedure has been suggested as representing the most 
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trustworthy test for assessing the effects of mediation models, overcoming issues 

associated with inaccurate p-values which result from violations of parametric 

assumptions (Hayes & Scharkow, 2013). Indeed, the bootstrapping procedure is 

advantageous because it does not impose the assumption of normality on the 

sampling distribution of indirect effects, and it retains high power while 

maintaining adequate control over Type I error rate (Hayes, 2009; MacKinnon et 

al., 2002, 2004; Preacher & Hayes, 2008). The bootstrap test is statistically 

significant (at .05) if both confident limits have the same sign (e.g., both positive 

and both negative). This indicates that zero is not a likely value, and therefore, that 

the null hypothesis of a null indirect effect has to be rejected.  

 

 
Figure 6.1. Stimuli and procedure. (A) Numerosity Discrimination: two patches 
of dots were briefly (250 ms) presented to both side of a central fixation point. 
Subjects were required to select which dots ensemble was more numerous. (B) Size 
Discrimination: Participants were asked to indicate which of two briefly (250 ms) 
presented annuli was perceived as being larger (method adapted from Pooresmaeili 
et al., 2013). (C) Multiple Object Tracking (MOT): At the beginning of the session, 
some disks (2, 3, or 4) out of twelve were colored in green with the remaining being 
red. All dots moved randomly on the screen (7°/s) for a period of 2 s then the green 
disks turned red (like the distracters) and subjects had to track them for 4 s. At the 
end of the tracking period, all dots stopped and 4 of them turned orange with one 
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of the orange dots being green at the beginning. This dot was the target subjects had 
to indicate in a 4-alternative forced paradigm (4ACF). 

 

Table 6.1. Descriptive statistics for LMA and HMA groups  

 

6.3 Results 

6.3.1 Differences between groups  

At first, we measured the difference in math anxiety between the students in the 

HMA and LMA group that turned out in being highly statistically significant (t(86) 

= – 21.85, p < 0.001). We then measured performance difference between HMA 

and LMA groups in the psychophysical tasks (see Table 6.1 for descriptive 

statistics). Numerosity and size discrimination thresholds (WF) were measured 

separately for each participant. Attentional performance in the MOT task was 

computed as a percentage of correct responses separately for the three experimental 

conditions (tracking of 2, 3 or 4 dots) however, given all these conditions turned 

out to be highly correlated to each other (Mot 2 and Mot 3 r = 0.351, p  < .001; Mot 

2 and Mot 4 r = 0.305, p = .004; Mot 3 and Mot 4 r = 0.61, p < .0001), we computed 

a single index to estimate the performance in the attentional task by averaging the 

scores across conditions. Individuals in the low and high math-anxiety groups, 

showed similar performance across all tasks (F(1,86) = 0.036, p = 0.85); the 

interaction was also not significant (F(2,172) = 1.539, p = 0.218). Post-hoc t-test 

LMA HMA
M SD N M SD N

ANS Wf (%) 23.57 8.69 39 24.41 9.02 49

Size Wf (%) 12.15 8.26 39 9.96 4.27 49

Attentional Index 0.69 0.11 39 0.71 0.1 49

Math
performance 23.63 3.51 38 21.33 3.75 49

Math anxiety 16.36 2.57 39 30.08 3.18 49

Test anxiety 34.34 9.42 38 55.20 12.12 49
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confirmed the differences between groups were not significant in both, numerosity 

and size discrimination tasks (Numerosity Wf: t(86) = -0.444, p = 0.658; Size Wf: 

t(86) = 1.607 p = 0.112, Figure 6.2A and 6.2B ). Similarly, performance in the 

attentional task did not turn out to be statistically significant between the two groups 

considering neither the aggregate index, nor each experimental condition (defined 

by the number of objects to track) independently (Mot 2: t(86) = -0.24 p = .8; Mot 

3: t(86) = -1.95 p = .05; Mot 4: t(86) = 0.28 p = .78). Finally, not only the LMA 

group had statistically higher math proficiency but also lower test anxiety scores 

compared to the HMA group (t(85) = 2.923, p = 0.004; t(85) = -8.75, p < 0.001 for 

math performance and test anxiety score respectively).  

 

 
Figure 6.2. Performance in the three different psychophysical tasks. (A) 
Average numerosity discrimination thresholds (Weber fraction) for subjects with 
high (HMA) and low (LMA) levels of math anxiety. (B) Average object-size 
discrimination thresholds (Weber fraction) for subjects with high (HMA) and low 
(LMA) levels of math anxiety. (C) Average proportion of correct response in the 
Multiple Object Tracking task, for subjects with high (HMA) and low (LMA) levels 
of math anxiety. 

 

6.3.2 Correlations between variables 

After showing that the two math-anxiety groups did not differ in their precision to 

discriminate stimuli numerosity or size and were also comparable in terms of 
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attentional performance, we investigated the relationships between perceptual and 

non-perceptual measures within the two groups (see Table 6.2 for full correlation 

values).  

 

 
Table 6.2. Pearson correlation. Pearson correlations between all measured 
variables in the HMA sub-group (above diagonal) and LMA sub-group (below 
diagonal). * p < 0.05, *** p < 0.0001 

 

For clarity, we will describe the data separately for the two math-anxiety 

groups. Within the HMA group, results demonstrated a significant correlation 

between MA level and math abilities, with individuals with higher levels of MA 

having lower math scores (r = -0.479, p < 0.001; Figure 6.3).  

Measure 1 2 3 4 5 6

1. Math performance - -.290* -.186 -.014 -.479*** -.009

2. ANS acuity -.205 - -.062 -.082 .481*** .073

3. Size acuity -.139 -.023 - .128 -.065 -.156

4. Attentional index .242 -.330* -.297* - -.255* -.212

5. Math anxiety -.261 .073 .140 -.256 - .104

6. Test anxiety .087 -.008 -.108 .047 .072 -
*p< 0.05, ***p< 0.001
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Figure 6.3. Correlation between math anxiety and math abilities.  Correlations 
between math anxiety and math in participants with LMA (orange) and those with 
HMA (blue). 

 

Moreover, participants with worse numerosity thresholds (higher Wf) also 

showed higher levels of MA (r = 0.48, p < 0.001; Figure 6.4A) and lower math 

scores (r = -0.29, p < 0.02; Figure 6.4B). Interestingly, object size discrimination 

thresholds were not related to math anxiety level (r = -0.065, p = 0.33, see Table 

6.1) nor to math scores (r = -0.19, p = 0.1, see Table 6.2). Within the HMA group, 

participants with better performance in the Multiple Object Tracking task (MOT) 

also had lower math anxiety levels (r = -0.255, p = 0.04, see Table 6.2). All the 

remaining correlations with the MOT task were not statistically significant (p > 

0.05). Finally, test anxiety did not significantly correlate with any of the aforesaid 

variables (p > 0.05, see Table 6.2). To further assess the specificity of the link 

between ANS, MA and math scores, we ran a series of partial correlations taking 

into account, as covariates, size acuity (WF) and attentional performance 

(attentional index). These analyses were only run within the HMA group, where 

bivariate correlations turned out to be statistically significant coefficients. Results 
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of partial correlations revealed that the link between ANS acuity and math anxiety, 

as well as with math performance, remained statistically significant even when 

simultaneously controlling for the effects of size acuity, attentional performance 

and test anxiety (r(partial)=0.478, p<0.001, r(partial)= -0.3, p=0.019 for math anxiety 

and math performance respectively).  

Within the LMA group, the pattern of correlations changed significantly. 

Despite math anxiety and math abilities being (marginally) negatively correlated (r 

= -0.26, p = 0.05; Figure 6.3) within this group, numerosity discrimination 

thresholds were not related to math-anxiety levels (r = 0.07, p = 0.33; Figure 6.4A) 

nor to math scores (r = -0.20, p = 0.1; Figure 6.4B).  

In order to check whether the lack of correlations between numerosity 

thresholds and MA, and math scores in the group with LMA was due to a difference 

between subject variance for WF between High and Low anxious individuals, we 

analyzed and compared variance of numerosity thresholds in the LMA and HMA 

groups by means of a bootstrap technique (Anobile, Arrighi, et al., 2019). On each 

of 10,000 iterations (sample-with-replacement), we computed Wf average standard 

deviation in the LMA and HMA groups separately. We then statistically computed 

the difference between HMA and LMA by counting the number of times that, in 

each of the 10,000 iterations, the difference between the average in the HMA 

sample was higher than the average in the LMA sample (one-tailed p value). The 

p-value was 0.56, suggesting that the lack of correlations described above did not 

depend on a different level of variance in the data of the two (LMA and HMA) 

groups.  With the same procedure we also excluded a difference in the degree of 

variability in the MA scores between the two groups (p = 0.1) 
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Figure 6.4. Relationship between ANS, MA and math abilities. (A) Correlations 
between Numerosity discrimination thresholds and math anxiety or (B) math scores 
for the low math anxiety participants (in orange) and high math anxiety participants 
(in blue). 

 

6.3.3 Mediation analysis 

Given the robust link between numerosity perception (ANS) and math abilities in 

the group with HMA (see right panel in Figure 6.4), we explored the nature of this 

link by measuring the mediating role of MA.  For this purpose, we ran a mediation 

model to derive the total, direct, and indirect effects of ANS on math achievement 

through MA. As shown in Figure 6.5, results indicate a significant total effect of 

ANS on math achievement while the direct effect, their relationship not mediated 

by MA, was found to be not significant. In contrast, a significant negative indirect 

effect of ANS on math achievement was found when MA was considered as a 

mediator. Indeed, the bias-corrected bootstrap 95% CI for the product of these paths 

(a-b) did not include zero (point estimate = -0.08, 95% CI = [-0.1459, -0.0109]), 

indicating an indirect effect (Preacher & Kelley, 2011).  
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Figure 6.5. Mediation analysis. Path coefficients for mediation analysis on 
achievement; a, b, c, and c' are unstandardized ordinary least squares (OLS) 
regression coefficients. *p < 0.05; **p < 0.01. 

 

6.4 Discussion  

In the current study, we found that numerosity and object size discrimination 

thresholds, as well as the ability to attentively track objects in space (MOT), did not 

differ, on average, between university students with high and low levels of math 

anxiety. Interestingly, within the high math-anxiety group, numerosity (but not 

object size) thresholds correlated with both math abilities scores and math-anxiety 

levels. Crucially, the link between numerosity and math was fully mediated by 

math-anxiety levels.  Overall, our data replicates previous studies on the link 

between math abilities and numerosity perception but also provided innovative 

information on the key role that math anxiety plays in such a relationship. 

Moreover, the fact that math anxiety was found not to be related to size 

discrimination thresholds, nor to the ability to attentively track objects in space 

(MOT), strongly suggests that the link between numerosity perception and math-

anxiety is not generic but reflects a specific relationship within the numerosity-

domain.  

 Several previous studies have shown that individuals with HMA performed 

worse on several numerical and mathematical tasks, compared with their low math 

anxious peers (Ashcraft & Faust, 1994; Maloney et al., 2011). Individuals with 
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lower levels of mathematical skills and high levels of math anxiety show the 

tendency to avoid situations and careers that require mathematical abilities 

(Ashcraft, 2002; Hembree, 1990). Given the significant impact of MA on an 

individual’s quality of life, it is important to better understand its nature. Moreover, 

to devise successful supporting strategies to reduce the level of anxiety related to 

math procedures, it might be important to find a predictor or a correlated dimension 

to MA which could be assessed even before the beginning of school. Some studies 

suggest that such a dimension might be ANS acuity. 

In the current study, we tackled this issue by investigating whether the 

performance in several perceptual tasks concerning parietal driven magnitude 

processing (discrimination of stimuli numerosity or size) were related to MA as 

well as math proficiency. We found that MA is an intermediary factor in the link 

between math abilities and numerosity perception (ANS acuity) in individuals with 

HMA. The ANS is considered to have evolutionary roots and it appears very early 

during development (Dehaene et al., 1998; P. Starkey et al., 1990). Maloney et al. 

(2010) suggested that a deficit of basic and core numerical knowledge, such as 

numerical information, could produce MA. By taking into account individuals 

located in the tails of the MA distribution, a procedure exploited by several previous 

studies (Colomé, 2019; Maloney et al., 2010, 2011; Núñez-Peña & Suaŕez-

Pellicioni, 2015; Suaŕez-Pellicioni et al., 2013), and by considering as a  measure 

of ANS acuity the Weber Fractions (Wf; Halberda et al., 2008; Mazzocco et al., 

2011; Piazza et al., 2004, 2010), we found that a significant correlation between 

ANS precision and MA only exists in HMA groups. Our data shows that individuals 

with very high levels of MA also have a noisy approximate number sense. Notably, 

the lack of correlation in the LMA group between these two variables was not due 

to a difference in variability between the two samples. These results are not just 

important per sè, but also because they are likely to resolve the controversy in the 

literature about a possible link between MA and ANS precision. For example, 

Lindskog and coll. (2017) reported that individuals with high levels of MA also 

show lower ANS precision compared to low mathematics-anxious individuals. 

However, other studies reported that MA and ANS acuity did not significantly 

covary in adults (Braham & Libertus, 2018; Dietrich et al., 2015) or in children 
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(Hart et al., 2016; Z. Wang et al., 2015). One possibility is that MA and ANS acuity 

covaried differently according to the MA level. For example, in the present study a 

significant correlation between these two dimensions was found just within the 

group of participants with HMA. On the contrary, by considering all participants as 

a whole, MA and ANS acuity shows a weaker correlation that turned out to be 

marginally significant. In other words, ANS precision and MA strongly correlated 

in the group of HMA individuals but much less in the group of LMA. If so, the 

statistical significance of the correlation amongst these dimensions, when the two 

groups are not independently taken into account, depends on the amount of HMA 

participants and the severity of their anxious levels, variables which robustly 

differed in the studies reporting conflicting results in the literature. 

Our data highlighted another important point: individuals situated at the 

lower tail of the HMA group performed better in the numerosity task than the 

individuals situated in the upper tail of the LMA group. This result supports the 

idea that an “optimum” level of MA might exist which, if exceeded, becomes 

deleterious not only for math performance (Evans, 2002), but also for 

discrimination of abstract numerosity. Furthermore, our findings provide 

supporting evidence for the theory that individuals with a noisy approximate 

number system may be more likely to have significant levels of MA. Poor ANS 

could increase the probability of going through an initial failure and negative 

learning experience during math education in childhood (Lindskog et al., 2017). 

One possible explanation of our data is that math abilities and ANS (Weber 

fraction) are separate (partially independent) predictors of MA, suggesting a 

bidirectional relationship between MA and math performance, in which a poor ANS 

induces a low performance in math related tasks and this, in turn, induces MA. This 

increase in MA might, subsequently, negatively impact math performance, 

establishing a vicious cycle that dramatically affect an individual’s performance 

and quality of life. 

 

Math anxiety is strongly correlated with math abilities in individuals with 

HMA. In line with previous studies, we found that higher levels of MA are linked 

to lower performance in school or college tests (Hembree, 1990; Ma & Kishor, 
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1997). MA is at least partly related to fear of failure, so that repeated experiences 

of failure in mathematics, involving low scores in formal assessments or personal 

experience of confusion and bewilderment in mathematical activities, may lead to 

anxiety.  Our results are also in line with other studies showing that adults with 

higher precision in discriminating non-symbolic quantities show higher abilities in 

math performance (Braham & Libertus, 2018; Fazio et al., 2014; Libertus et al., 

2012; Lindskog et al., 2017; Schneider et al., 2017). However, it should be 

mentioned that, despite many studies which found statistically significant 

correlations between math abilities and numerosity perception, the literature on this 

topic is still controversial as other studies report insignificant correlations (Inglis et 

al., 2011; Krueger, 1984) and the direction of the causal link between ANS and 

mathematical skills remains highly unclear. While some research suggests that the 

ANS is a precursor of later mathematical abilities (Anobile et al., 2013; Gilmore et 

al., 2010; Park & Brannon, 2013; Piazza, 2010) other research failed to find a 

correlation between ANS precision and mathematical achievements (Anobile, 

Arrighi, et al., 2018; Feigenson et al., 2013; Inglis et al., 2011; Krueger, 1984). 

Even if the reasons subtending these discrepancies are still unclear, recent works 

suggested the important role of the different tests used to assess formal math 

abilities (Anobile et al., 2013; Braham & Libertus, 2018; Lourenco et al., 2012; 

Piazza et al., 2010) the numerical ranges used to assess numerosity perception 

(Anobile, Arrighi, et al., 2019; Anobile, Castaldi, et al., 2016) as well as the age of 

the participants (Anobile, Arrighi, et al., 2018; Inglis et al., 2011). For example, 

Braham and Libertus (2018) recently found that students’ ANS acuity did not 

correlate with their ability to perform mathematical computations in written format, 

but the correlation occurred with their ability to perform speeded mental arithmetic 

and quantitative reasoning problems. Similarly, Anobile et al. (2013) found that 

numerosity thresholds in neurotypical primary school children were related to math 

tasks requiring the encoding of digit magnitude (e.g., choose the largest among 

others) but not with those more related to memory (e.g., tables) or transcoding (e.g., 

number writing or repetition), replicating evidence on dyscalculic children (Piazza 

et al., 2010). Other recent works suggested that the link between numerosity 

perception and math is present only for the perception of intermediate numerosity 
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levels and not for very low (Anobile, Arrighi, et al., 2019) or very high (Anobile, 

Castaldi, et al., 2016) numerous ensembles. The current study makes the general 

picture even more complicated as we found a significant correlation between math 

and ANS only among adults with relatively high level of math anxiety. 

The mathematical test used in the current study, which was developed by 

Galli and coll. (2011), includes 30 multiple-choice questions covering many aspects 

of arithmetic knowledge, such as probabilistic reasoning, use of fractions, 

percentages, ratios, calculation, sorting and others. The test, as a whole, is capable 

of differentiating subjects with low and high MA and also correlates with 

numerosity thresholds, at least in the high anxiety group. Future studies on larger 

and more heterogeneous populations than that involved here, could analyse if and 

which of these 30 items are more specifically related to both anxiety and numerosity 

perception. 

In addition to the controversial literature on the link between numerosity 

perception and math abilities, an influential recent theory challenged the idea that 

numerosity can be encoded by a specialized numerical system. This theory suggests 

that numerosity and other continuous quantities, such as objects sizes, are perceived 

by a generalized magnitude system (Henik et al., 2017; Leibovich et al., 2017). In 

the present study we didn’t find a significant correlation between size and 

numerosity threshold (Weber fractions). Moreover, whilst numerosity WFs were 

found to be significantly correlated with math scores, the correlation between math 

performance and size discrimination thresholds turned out in being not significant. 

These results clearly contradict the generalized magnitude theory and agree with 

studies suggesting separate mechanisms for the perception of objects’ numerosity 

and size. Among these, a recent study found similar results, with no correlations 

between numerosity and size thresholds as well as between numerosity and size 

sensory adaptation magnitudes, in both children and adults (Anobile, Burr, et al., 

2018). Regarding the selective link between numerosity and math abilities, Piazza, 

et al. (2013) showed that the exposure of non-schooled indigenous peoples to 

mathematical knowledge improves the sensitivity to numerosity but not to the size 

of objects. Similarly, Anobile, Burr, et al. (2018) found that discrimination 

thresholds for numerosity, but not for objects size, is compromised in dyscalculia. 
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Overall, despite being still under debate, our results favour the idea of a specialized 

numerosity system, specifically linked to math abilities and math anxiety. 

We didn’t observe an impairment in the performance of the visual sustained 

attention task in subjects with HMA, suggesting that they don’t suffer from a 

general attentional problem despite previous studies in the literature reporting that 

sustained attention correlates with non-symbolic numerical perception and 

mathematical skills (Anobile et al., 2013; Steele et al., 2012). Taken together, these 

results suggest that the link between non-symbolic numerical processing and MA 

is genuine and does not arise from a generic deficit in the processing of magnitude 

information or a generic attentional deficit. Even though our approach did not allow 

us to infer causal connections between the variables we investigated, and the 

present results cannot be generalized due to the specific sample we chose (students 

from the Psychology school with un unbalance sampling between male (34%) and 

female ( 76%) students), our findings might have important implications in the 

study of the relationship between ANS and mathematical skills in children with and 

without mathematical difficulties (e.g. dyscalculia), where MA is meant to play a 

key role. Indeed, the present results make clear that, in addressing deficits in 

mathematical performance, low-level aspects such as the ANS acuity as well as 

high-level aspects as MA have both to be considered. Future research may test the 

role of MA in the relationship between ANS and mathematical skills in a population 

of school-age children with a typical development as well as in age-matched 

subjects affected by dyscalculia, information which would provide a more detailed 

description of the interplay between MA, ANS and math proficiency.  
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7.1 Overview of the findings 

Several issues were tackled in this thesis such as the adaptability of non-symbolic 

processing using novel techniques; the role of stimuli configuration in defining 

subjects’ estimation ability, the nature of the relationship between 

grouped/ungrouped stimuli and calculation abilities, the different neural substrate 

of the estimation of grouped and ungrouped stimuli and, eventually, the mutual 

relationship between the ANS, math abilities and math anxiety. I first reported an 

experiment aimed to investigate the differences in terms of the shift of minimal 

confidence and maximal response time relative to the shift of point of subjective 

equality as a consequence of either visual or motor numerosity adaptation. The 

results showed that both kinds of adaptation changed the stimulus intensity value 

providing the maximum uncertainty. Similarly, also the peak for the slowest 

response times occurred at the adapted point of subjective (rather than physical) 

equality of the matching task, suggesting that adaptation (both perceptual and 

motor) acts directly on the sensory representation of numerosity, before any 

decisional process.  

I then focused on extending recent results about the groupitizing 

phenomenon. First, we demonstrated that groupitizing is able to shoot down the 

sensory noise of numerosity estimation, probably by triggering implicit and 

adaptive mathematical strategies. Then, we devised an experiment to test several 

key assumptions of groupitizing by leveraging on an attentional manipulation 

(known to strongly affect subitizing) and correlating the groupitizing advantage, as 

well the groupitizing thresholds with calculation skills. We found that, when 

subjects got engaged in a concurrent task while performing numerosity estimation 

(dual task paradigm), showed a strong impairment in the estimation precision of 

grouped, but not of ungrouped arrays. In other words, the results suggest that 

groupitizing (like subitizing) is an attention-based process that leverages on 

subitizing system and calculation abilities. What is more, measuring numerical 

estimation thresholds with grouped rather than ungrouped items may provide a 

more sensitive and robust index of math abilities in adults. Strong evidence in 

support of the mechanism underlying the groupitizing phenomenon comes from the 
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fMRI experiment. Performing the estimation of grouped compared to ungrouped 

stimuli elicited the activation of overlapping regions in the right fronto-parietal 

network, and the additional activation of the left fronto-parietal network typically 

involved during calculation tasks. Specifically, the involvement of the angular 

gyrus suggested the retrieve of arithmetic facts (i.e., basic additions or 

multiplications) in groupitizing strategies, supporting behavioral results. 

Second, the measurement of ANS precision of ungrouped stimuli in a cohort 

of university students with either high or low math anxiety while also assessing a) 

math proficiency using a standardized test; b) visuo-spatial attention capacity by 

means of a Multiple Objects Tracking task, and c) the sensory precision for non-

numerical quantities. The results show a significant correlation between math 

abilities and ANS precision in participants with high math anxiety. The data also 

revealed a relationship between ANS precision and math anxiety, and a mediation 

analysis revealed the mediator role of math anxiety in the relationship between ANS 

and math abilities showing a genuine interplay between extreme levels of math 

anxiety and the sensory precision in the processing of the non-symbolic numerosity. 

These results open up to the possibility of early interventions for subjects showing 

low ANS acuity that might prevent the development of math anxiety and promote 

successful math learning.   

 

7.2 Conclusion 

Overall, the studies presented in the present work explored different aspects of the 

complex and multifaceted field of numerosity perception.  

The adaptation technique has been used in an extensive portion of literature 

as a tool to prove the existence of a dedicated numerosity perceptual mechanism. 

Interestingly, the results from the first study presented in this thesis provides pivotal 

evidence to this field. Indeed, in the study on visual and motor adaptation, we 

validated Gallagher et al.’s (2019) pioneering technique by measuring changes in 

perceptual numerosity, confidence level and response time. The first result of the 

study is that visual numerosity adaptation effects not only numerosity judgments 

but also subject’s confidence and reaction times.  More interestingly, the study 
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demonstrated that motor adaptation changes the numerosity experience at a 

perceptual rather than at a cognitive/decisional stage. This study linked with 

previous evidences has brought to hypothesize the existence of a sensorimotor 

numerosity system, which encodes both external stimuli and internally generated 

actions. This sensory-motor system seems to be part of a wider  generalized system 

interfacing action with the processing of space, time and number magnitudes  (see: 

Anobile, Arrighi, et al., 2020). The link between action and numerosity opens up 

new questions: for instance, about their reciprocal interaction in the typical and 

atypical development and the role of motor skills and the ANS in the acquisition of 

the symbolic mathematical knowledge. 

The relationship between numerosity perception and math skills is 

important for its consequences in a wide number of fields, such as diagnostic and 

rehabilitation of mathematical skills impairments. Many studies have suggested that 

some aspects of estimation of numerosity is related to math. However, the evidence 

is non-conclusive, as mentioned above in this thesis, with some studies reporting a 

relationship between numerosity perception precision and formal arithmetical 

learning during the development while in educated adults this association appears 

to be less evident. The studies described in this thesis suggest that a promising 

candidate for the link between ANS and math abilities could be “groupitizing: the 

strategy of grouping parse arrays into subitizable chunks. This strategy requires 

some basic arithmetical skills: simple but rapid addition or multiplication. In 

support to this hypothesis I reported three experimental studies investigating the 

underling mechanism of groupitizing.  Even though in Chapter 3 we didn’t measure 

directly the link between estimation thresholds and math abilities we still found a 

relationship between subjective precision in the estimation of ungrouped and 

grouped configurations, suggesting that grouping strategies were used also in the 

ungrouped patterns by participants with a better ANS, that allowed them to take 

advantage of intrinsic grouping that could be found even in ungrouped 

configurations. Adults’ ability to take advantage of grouping strategy may be 

related to their mathematical abilities: for this reason, in Chapter 4 we step forward 

into the analyses of groupitizing strategies and we found that those participants who 

took more advantage from grouped configuration also had better arithmetical 
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abilities. The fMRI study indeed confirmed a neural basis for the use of calculation 

strategies (such as multiplication or addition) for grouped stimuli. 

Interestingly, in all of the studies we found that some subjects spontaneously (and 

also adaptively) use the spatial configuration of stimuli to boost their performance 

in an estimation task, this might imply that these strategies are also implemented 

during the estimation of ungrouped stimuli as well. It is likely that the controversial 

results in the relationship between ANS and math abilities could be related to the 

variability in strategies used by participants during estimation tasks. The reasons 

why some healthy adults are not able to take advantage of the explicit grouping 

isn’t explored in the present thesis, however it is a crucial aspect to investigate in 

future studies.  

To conclude, in Chapter 6 I presented a study suggesting fascinating 

implications to the field of numerosity perception. In fact, we found a link between 

math and ANS only among adults with a relatively high level of math anxiety. A 

likely explanation of this result is that individuals with a poor ANS performance 

show worse results in mathematical tasks compared to individuals with a normal or 

high performing ANS, and this increases their susceptibility to having math anxiety. 

 In conclusion, in light of the presented results, ANS precision could lose 

part of its predictive power of the mathematical skills of adults as it has been refined 

and mapped onto symbolic numbers. In correlational studies on adults, the lack of 

a relationship between ANS and math abilities should be taken with caution since, 

as proved here, behind this relationship there are a lot of perceptual, cognitive, and 

affective variables that could influence this relationship. 
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Results of individual analysis from study in 
chapter 2 
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Figure A1. Single-participant plots for the visual condition. The first column 
plots psychophysical functions of proportion of trials when the test was seen as 
more numerous than the neutral probe, as a function of physical numerosity 
(baseline in blue and adapt to high in red). The second column shows average 
confidence, the third mean reaction-times as a function of physical numerosity. 
Each row represents a participant. The dashed lines show the PSEs or the peaks of 
the best-fit gaussians to the confidence or reaction time distributions. 
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Figure A2. Single-participant plots for the motor condition. Conventions as for 
Figure A1, except that here blue refers to slow tapping adaptation and red to fast 
tapping adaptation.   
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Figure A3. Single-participant plots for the control condition. Conventions as 
for Figure A1, except that here orange refers to baseline, blue to the “reward-low” 
condition and red to the “reward-high” condition.   
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Figure A4. Minima of confidence distributions (A, B, C) and maxima of 
reaction-time distributions (D, E, F) plotted against PSEs for the visual (A-D), 
motor (B-E) and control condition (C-F). Single subject data are shown as filled 
squares and group averages as large open stars. Black lines represent best linear 
regression lines. Slopes are close to unity in all the adaptation conditions (0.85 and 
1.22 for confidence and reaction time for visual adaptation (A-D); 0.66 and 0.92 
for confidence and reaction time for motor adaptation (B-E)). Slopes in the control 
condition are close to zero (0.23 and 0.15 for confidence and reaction time (C-F)). 
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Cluster summary table of univariate analysis 
presented in chapter 5  

Ungrouped numerosity> Ungrouped shape control 

Left Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max CWP Size NVt
xs Label 

4 
-

38.
5 

-
43.
3 

37.
5 

3.6
79 

0.045
86 315.79 849 S_postcentral 

Right Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max CWP Size NVt
xs Label 

3 27.
2 

-
60.
4    

37.
1 

3.4
23 

0.000
20 1094.08 211

0 
S_intrapariet_and_P

_trans 

4 44.
2   

-
46.
5    

36.
1 

4.5
97 

0.000
20 954.12 246

9 
S_interm_prim-

Jensen 

5 8.5    24.
1    

39.
2 

3.5
58 

0.004
59 387.63 741 G_and_S_cingul-

Mid-Ant 

6 50.
0     3.5    21.

6 
3.7
66 

0.004
99 383.61 799 S_precentral-inf-part 

Ungrouped shape control> Ungrouped numerosity 

Left Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max CWP Size NVt
xs Label 

1 
-

17.
7 

36.
5 

44.
0 

-
4.8
59 

0.000
20 2832.55 494

1 G_front_sup 

2 
-

40.
0   

-
66.
4    

29.
4 

-
5.5
07 

0.000
20 1308.62 273

7 S_temporal_sup 

3 
-

35.
0    

22.
9   

-
16.
6 

-
4.7
67 

0.009
58 408.80 828 G_orbital 

Right Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max CWP Size NVt
xs Label 

1 12.
9    

58.
9    

20.
0 

-
4.8
83 

0.000
20 2467.94 386

5 G_front_sup 

2 45.
7   

-
64.
4    

29.
4 

-
5.3
40 

0.000
20 1404.88 275

8 G_pariet_inf-Angular 
 

 
 
 



  Appendix 
 

 156 

Grouped numerosity>Grouped shape control 
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Grouped shape control> Grouped numerosity 

Left Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max CWP Size NVt
xs Label 

1 
-

16.
3 

39.
2 

45.
2 

-
5.3
41 

0.000
20 2808.72 487

0 G_front_sup 

2 
-

59.
0   

-
51.
7    

24.
8 -6.975 0.000

20 1769.03 375
8 

G_pariet_inf-
Supramar 

3 -9.2   
-

48.
0     

7.2 
-

5.4
08 

0.000
20 1563.27 268

2 
G_cingul-Post-

ventral 

4 
-

13.
5   

-
48.
2    

40.
4 

-
4.7
49 

0.000
20 925.68 200

7 S_subparietal 

9 
-

57.
5     

2.4     8.7 
-

4.2
61 

0.014
15 343.65 885 G_and_S_subcentr

al 
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10 
-

47.
5   

-
33.
1    

20.
5 

-
5.4
07 

0.014
94 338.37 708 G_pariet_inf-

Supramar 

11 
-

23.
6   

-
42.
7    

54.
9 

-
4.1
78 

0.033
51 293.79 608 S_postcentral 

Right Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max CWP Size NVt
xs Label 

2 15.
5    

44.
2     2.8 

-
5.1
51 

0.000
20 1463.08 240

3 
 G_and_S_cingul-
Ant 

3 48.
7 

-
60.
3 

24.
7 

-
4.1
57 

0.000
20 1440.89 293

1 
G_pariet_inf-

Angular 

4 14.
5 

-
83.
0 

35.
3 

-
4.4
05 

0.000
20 998.63 141

6 G_cuneus 

5 22.
5 

50.
5 

29.
8 

-
4.1
80 

0.000
20 827.71 139

4 G_front_middle 

7 7.4 
-

56.
9 

50.
9 

-
5.2
18 

0.000
20 569.32 160

4 G_precuneus 

10 12.
3 

 -
67.
3 

-1.7 
-

3.4
96 

0.008
38 354.70 449 G_oc-temp_med-

Lingual 

11 11.
2 

-
10.
3 

40.
5 

-
3.6
56 

0.011
37 340.48 879 G_and_S_cingul-

Mid-Post 

15 30.
1 

-
41.
9  

-8.5 
-

3.7
85 

0.039
01 290.10 543 

S_oc-
temp_med_and_Lin

gual 
 

(Grouped numerosity>Grouped shape control)⋂( Ungrouped numerosity> Ungrouped 
shape control) 

Left Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max Size NVt
xs Label 

1 
-

45.
0 

-
40.
6 

40.
4 

4.0
19 276.69 742 S_postcentral 

Right Hemisphere 
Clust

er 
MNI

X 
MNI

Y 
MNI

Z Max Size NVtxs Label 

1 38.
1   

-
49.
1    

37.
7 

6.4
79 900.72 2330 S_intrapariet_and_P_trans 

2 32.
3   

-
65.
9    

28.
0 

5.1
11 899.90 1737 S_oc_sup_and_transversal 

3 8.3    30.
1    

39.
9 

5.1
30 371.29 706 G_front_sup 

4 41.
8     3.4    26.

1 
4.4
97 365.03 768 S_precentral-inf-part 
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(Grouped numerosity>Grouped shape control)>( Ungrouped numerosity> Ungrouped 

shape control) 
Left Hemisphere 

Cluste
r 

MNI
X 

MNI
Y 

MNI
Z Max CWP Size NVtx

s Label 

1 -37.5 48.5 -1.0 4.84
5 

0.0105
7 360.30 509 S_orbital_later

al 

2 -38.1   -68.0    46.1 3.74
6 

0.0421
5 281.61 495 G_pariet_inf-

Angular 
Right Hemisphere 

Cluste
r 

MNI
X 

MNI
Y 

MNI
Z Max CWP Size NVtx

s Label 

1 36.0 -70.7 43.4 4.34
9 

0.0049
9 382.25 753 G_pariet_inf-

Angular 
 

 
A5 Table 1. Cluster summary tables. For each contrast and for the conjunction 
analysis displayed in Figure 5.2 and 5.3, the table reports: the cluster number 
(Cluster), the MNI coordinates of the maximally activated vertex within each 
cluster (MNI X, Y, Z), the maximum -log10(p-value) in the cluster (Max), the 
cluster-wise p-value of each cluster (CWP), the cluster surface area in mm2 (Size), 
the number of vertices for each cluster (NVtxs) and the name of the region (as 
defined by the Destrieux Atlas) containing the maximally activated vertex within a 
given cluster (label).  
 


