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QUASIFOLDS, DIFFEOLOGY AND NONCOMMUTATIVE GEOMETRY

PATRICK IGLESIAS-ZEMMOURAND ELISA PRATO

A�������. After embedding the objects quasifolds into the category {Di�feology},
we associate a C⇤-agebra with every atlas of any quasifold, and show how di�ferent
atlases give Morita equivalent algebras. This builds a new bridge between di�feology
and noncommutative geometry— beginning with the today classical example of the
irrational torus — which associates a Morita class of C⇤-algebras with a di�feomorphic
class of quasifolds.

I�����������

This paper is a follow-up to “Noncommutative geometry & di�feology: the case of
orbifolds” [IZL17]. In that article, a construction was established that associated a C⇤-
algebra with every orbifold, in a functorial way. Here we extend the construction to the
more general quasifolds.1

First of all, we identify quasifolds [EP01] as objects in the category {Di�feology} [PIZ13].
These are di�eological spaces that are locally di�feomorphic, at each point, to some quotient
Rn/Γ, for some integer n, and for Γ — which may change from point to point — a
countable subgroup of Aff(Rn). As it appears clearly, the de��nition is similar to that
of orbifolds [IKZ10], except for the group Γ, which can be in��nite, while it is ��nite for
orbifolds — whose original de��nition as independent objects has been published by
Ishiro Satake in [IS56, IS57].
By considering quasifolds as di�feologies, they inherit a structure of category which we
denote by {Quasifolds}, whose morphisms are smooth maps in the sense of di�feology.
This remark carries a strong content, as can be seen in the lifting of smooth functions
between quasifolds (§2): the same phenomenon happening for orbifolds, where smooth
maps may not lift locally equivariantly, happens also for strict2 quasifolds. We have a
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2010Mathematics Subject Classi�cation. Primary 53; Secondary 58B34.
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INdAM. And for E.P. also supported by the PRIN Project “Real and Complex Manifolds: Geometry,
Topology and Harmonic Analysis” (MIUR, Italy) and by GNSAGA (INdAM, Italy).

1This also provides an answer to the referee of the ��rst paper, who suggested to move on to more general
di�feologies, in order to produce more interesting objects.

2Which are not orbifolds.
1



2 PATRICK IGLESIAS-ZEMMOURAND ELISA PRATO

priori the sequence of categories:

{Manifolds}� {Orbifolds}� {Quasifolds}� {Di�feology}.

Then, we generalize to quasifolds the functor toward noncommutative geometry, devel-
oped in [IZL17] for orbifolds. In the same way, we associate with each atlas of a quasifold
a structure groupoid,3 in (§5). The objects of this groupoid are the elements of the nebula of
the strict generating family associated with the atlas. The arrows between the objects are
the germs of the local di�feomorphisms of the nebula that are absorbed by the evaluation
map, that is, which project to the identity on the quasifold.
In parallel with the case of orbifolds, in (§3) and in (§4) we generalize to quasifolds the
two fundamental results:
T������. Any local smooth map on Rn that projects to the identity in the quotient
Rn/Γ, where Γ is a countable subgroup of Aff(Rn), is everywhere locally the action of
some γ 2 Γ.
T������. Local di�eomorphisms between quasifolds lift by local di�eomorphisms on
the level of the strict generating families. Pointed local di�eomorphisms lift by pointed
local di�eomorphisms, where the source and the target can be chosen arbitrarily in the
appropriate �bers over the quasifold.
The di���culty here is to pass from the action of a ��nite group on a Euclidean domain to
the action of a possibly in��nite, but countable group, whose orbits can be dense. This
has led us to a substantial revision of the methods, focusing on the countable nature of
the groups, and has resulted in proofs that are minimal and essential.
As said above, in (§5) we de��ne the structure groupoid associated with an atlas of the
quasifold. Then, thanks to the previous theorem, in (§6) we prove the following:
T������. Two di�erent atlases of a same quasifold give two equivalent groupoids, as
categories [SML78]. Consequently, two di�eomorphic quasifolds have equivalent structure
groupoids.
In other words, the class of the structure groupoid is a di�feological invariant of the
quasifold. Then, in (§7), we give a general description of the structure groupoids.
Next, in (§9) we prove the following:
T������. The groupoids associated with two di�erent atlases of a same quasifold satisfy
the Muhly-Renault-Williams equivalence.
Then, having proved in (§8) that the structure groupoids associated with the atlases of
a quasifold are étale and Hausdor�f, we show that they ful��ll the conditions of Jean
Renault’s construction of an associated C⇤-algebra, by equipping the set of morphisms
with the same counting measure as in the case of orbifolds. And in (§10) we prove then,
thanks to (§9), the main result:

3Which can be regarded as the gauge groupoid of the quasifold structure.
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T������.TheC⇤-algebras associated with di�erent atlases of a same quasifold areMorita-
equivalent. Therefore, di�eomorphic quasifolds have Morita-equivalent C⇤-algebras.

Finally, we illustrate this constructionwith two simple examples: the traditional irrational
torus Tα and the Q-circle, quotient of R by Q. In these two examples, we observe that
our construction gives the expected result. In work in progress, we apply these techniques
also to the class of symplectic toric quasifolds [EP01, FBEP01].

From the very beginning, with the 1983 paper [PDPI83] on the irrational torus Tα, it
was clear that there existed some connection between di�feology and noncommutative
geometry. Beginning with the fact that two such tori Tα and Tβ were di�feomorphic
if and only if α and β were equivalent modulo GL(2,Z), which is the same condition
for their algebra to beMorita-equivalent [MR81]. That could not be just chance. This
work, which began with the case of orbifolds [IZL17] and which continues here with
quasifolds, shows and describes the logic behind this correspondence. We can reasonably
expect wider links between the two theories, which will be addressed in the future.

N��� 1. Unlike the categorical approach, which de��nes its objects directly by means
of higher structures (stacks, n-categories etc.), we induce the groupoid generating the
C⇤-algebra of the quasifold via its singular geometry encoded in the di�feology. So, to
the current standard way {groupoid!C⇤-algebra}, we add a ��rst ��oor {di�feology!
groupoid}, which is not trivial and makes this construction non-tautological.

N��� 2. The irrational tori in arbitary dimension, or quasitori, are particular quasifolds
that are dual smooth geometric versions of quasilattices. Knowing how to associate a
C⇤-algebra to a quasifold in a structural fashion can be viewed as a kind of geometric
quantization. In fact, the study of the spectrum of the Hamiltonian in a quasicrystal was
at the origin of Alain Connes’ noncommutative geometry. It is obviously interesting to
have a smooth version of this, which is what we are providing.

N��� 3.We assume that the reader is familiar with the basic concepts in di�feology and
we refer to the textbook [PIZ13] for details. Let us just recall that a di�feology on a set X

is a setD of smooth parametrizations, called plots, that satisfy three fundamental axioms:
covering, locality and smooth compatibility. That said, there are a couple of important
di�feological constructions that we use in the following. First, the quotient di�eology: every
quotient of a di�feological space inherits a natural di�feology for which the plots are the
parametrizations that can be locally lifted by plots in the source space. Then, the subset
di�eology: every subset of a di�feological space inherits a di�feology for which the plots are
the plots of the ambient space, but with values in the subset. For example, in di�feology
a subset is discrete if the subset di�feology is the discrete di�feology, that is, the plots are
locally constant. For example Q⇢ R is discrete. Finally, the local di�eology:4 a map f ,
from a subset A of a di�feological space X to a di�feological space X

0, is a local smooth
map if and only if its composite f �P with a plot P in X, de��ned on P

�1(A), is a plot in

4Introduced with the de��nition of local smooth maps in [PI85, §1.2.3], see also [PIZ13, §2.1].
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X
0. That is equivalent to: A is an open subset for theD-topology5 and f restricted to A is

smooth for the subset di�feology. With local smooth maps come local di�feomorphisms,
which are the fundamentals of modeling spaces in di�feology [PIZ13, §4.19], on which
many constructions of subcategories are based, like manifolds, manifolds with boundary
and corners, orbifolds, quasifolds etc.
T�����. It is a pleasure for one of the authors (PIZ) to thank Anatole Khelif for useful
discussions on C⇤-algebras.

D������������Q���������

The notion of quasifold has been introduced in 1999 in the paper “On a generalization
of the notion of orbifold” [EP99], see also [EP01]. The idea is that a n-quasifold is a
smooth object which resembles locally everywhere a quotient Rn/Γ, where Γ is some
countable subgroup of di�feomorphisms. The analogy with orbifolds, for which Γ is
��nite, is indeed clear. On the other hand,Di�eology has been precisely developed, from
the mid ’80, to deal with this kind of situation, beginning with “Exemple de groupes
di�férentiels. . . ” [PDPI83]. In particular, orbifolds have been later successfully included
as a subcategory in {Di�feology} in the paper “Orbifolds as Di�feology” [IKZ10]. It was
natural to try to include also quasifolds, and this is what we do now.

1.W��� �� � ������������� ���������?—We have indeed a di�feological version of
quasifolds, formally de��ned by:
D���������. A n-quasifold is a di�eological space X which is locally di�eomorphic,
everywhere, to some Rn/Γ, where Γ is a countable subgroup, maybe in�nite, of Aff(Rn).
The group Γ maybe changing from place to place.
In more words, this de��nition means precisely the following: for all x 2X, there exist
a countable subgroup Γ ⇢ Aff(Rn), and a local di�feomorphism φ from Rn/Γ to X,
de��ned on some open subset U⇢Rn/Γ, such that x 2 φ(U). The subset U is open for
the D-topology, that is in this case, the quotient topology [PIZ13, §2.12] by the projection
map6 class: Rn

!Rn/Γ. That said:
D���������.Any such di�eomorphism is called a chart. A set of chartsA , covering X,
is called an atlas.
N���. In the following we consider only quasifolds that support a locally �nite atlas,
that is, every point in the quasifold is covered by a ��nite number of charts. For example, a
symplectic toric quasifold has a canonical atlas made of a ��nite number of charts [FBEP01,
Thm. 3.2].
R����� 1.This approach to quasifolds considers spaces that are already equipped with
a smooth structure, that is, a di�feology, and then, checks if that di�feology is generated by

5See [PIZ13, §2.8].
6In this paper the word class will denote generically the class map from a space onto its quotient, for a

relation which has been clearly identi��ed.
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local di�feomorphisms with some quotients Rn/Γ. This is the standard construction of
modeling di�feology we mentioned above; it applies to manifolds, orbifolds. . . and now
quasifolds. It is a reverse construction as the usual one, where the smooth structure is
built after equipping the underlying set with a family of injections, compatible according
to some speci��c conditions. Recent works and results involving quasifolds in symplectic
geometry can be found in [FBEP18], [FBEP19], and [BPZ19].
R����� 2.The groupΓ is chosen inside the a���ne group and not just the linear subgroup,
as it is the case for orbifolds. In this way, one immediately has the well known example
of the irrational torus Tα = R/Z+αZ [PDPI83], where αx 2 R�Q, as a quasifold.
But, we can notice that Γ could be embedded in GL(n+ 1,R) by considering Rn as the
subspace of height 1 in Rn

⇥R, and an element (A, b ) 2Aff(Rn) acting on Rn
⇥ {1}

by ✓
A b
0 1

◆✓
X

1

◆
=
✓

AX+ b
1

◆
.

Hence, the a���ne or linear nature for the subgroup Γ is not really discriminant.
R����� 3. InExample of Singular Reduction in Symplectic Di�eology [PIZ16], an in��nite
dimensional quasi-projective space is built inside the category of di�feology. That is, an
example of an in��nite dimensional analog of the present concept of quasifold. That leaves
some space for a generalization of the kind of constructions explored in this paper.

2. S��������� ������� ����������—As an object of the category of di�feological
spaces, quasifolds inherit automatically the notion of smooth maps. A smooth map from
a quasifold to another quasifold is just a map which is smooth when the quasifolds are
regarded as di�feological spaces. It follows immediately that the composite of smoothmaps
between quasifolds is again a smooth map. Hence, quasifolds form a full subcategory of
{Di�feology} we shall denote by {Quasifolds}.
A special phenomenon appearing in the case of orbifolds persists for quasifolds: smooth
maps between di�feological quasifolds may have no local equivariant lifting, as shown by
the following example inspired by [IKZ10, Example 25].
Let α 2R�Q and Cα be the irrational quotient:

Cα =C/Γ with Γ = {e i2παk
}k2Z.

This di�feological space7 falls into the category of quasifolds.
Let now f : C!C be de��ned by

f (z) =

8
><
>:

0 if r > 1 or r = 0

e�1/r ρn(r ) r if 1

n+1
< r  1

n and n is even
e�1/r ρn(r ) z if 1

n+1
< r  1

n and n is odd,

7Appearing already in [PI85, Appendix 6].
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F����� 1. The function ρn .

where r =
p
|z |2 and ρn is a function vanishing ��atly outside the interval ]1/(n +

1), 1/n[ and not inside, see Figure 1.

If we consider now τ 2U(1), one has: f (τz) = f (z) on the annulus 1

n+1
< r  1

n if n
even, and f (τz) = τ f (z) if n is odd. That is, f (τz) = hz (τ) f (z), where hz (τ) = 1 or
hz (τ) = τ depending on whether z is in an even or odd annulus. Hence, class( f (γz)) =
class( f (z)) for all γ 2 Γ. Then, the map f projects onto a smooth map φ : Cα! Cα
de��ned by

φ(class(z)) = class( f (z)).

Next, assume that f 0 is another lifting of φ. For all z 2 C, there exists γ(z) 2 Γ such
that f 0(z) = γ(z) f (z). We then get a smooth map z 7! f 0(z)/ f (z) = γ(z) de��ned on
C� {0}. Since Γ ⇢U(1) is di�feologically discrete [PIZ13, Exercise 8 p. 14], this map is
constant γ(z) = γ and f 0(z) = γ f (z) on C� {0}, and by continuity on C. Thus, two
lifts ofφ di�fer only by a constant inΓ, which gives the same function h 0z = hz . Therefore,
because the homomorphism hz ��ips from the trivial homomorphism to the identity on
successive annuli, φ has no local equivariant smooth lifting.

3. L������ ��� ��������—LetQ =Rn/Γ. Consider a local smooth map F from Rn

to itself, such that class �F= class. In other words, F is a local lifting of the identity on
Q . Then,
T������. F is locally equal to some group action F(r ) =

loc
γ · r = Ar + b , where

γ = (A, b ) 2 Γ, for some A 2GL(Rn) and b 2Rn .

Proof. Let us assume ��rst that F is de��ned on an open ballB . Then, for all r in the ball,
there exists a γ 2 Γ such that F(r ) = γ · r . Next, for every γ 2 Γ, let

Fγ :B !Rn
⇥Rn with Fγ(r ) = (F(r ),γ · r ).

Let ∆⇢Rn
⇥Rn be the diagonal and let us consider

∆γ = F
�1

γ (∆) = {r 2B | F(r ) = γ · r }.

L���� 1.There exist at least one γ 2 Γ such that the interior⌫∆γ is non-empty.
  Indeed, since Fγ is smooth (thus continuous), the preimage ∆γ by Fγ of the diagonal
is closed inB . However, the union of all the preimages F

�1

γ (∆)—when γ runs over
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Γ — is the ballB . Then,B is a countable union of closed subsets. According to Baire’s
theorem, there is at least one γ such that the interior⌫∆γ is not empty.…
L���� 2.The union⌫∆Γ = [γ2Γ⌫∆γ is an open dense subset ofB .

  Indeed, letB0 ⇢ B be an open ball. Let us denote with a prime the sets de��ned
above but forB0. Then, ∆0γ = (Fγ ñB0)�1(∆) = ∆γ \B

0, and then⌫∆0γ =⌫∆γ \B
0.

Thus,B0 \⌫∆Γ =B0 \ ([γ2Γ⌫∆γ) = [γ2Γ⌫∆0γ , which is not empty for the same reason
that [γ2Γ⌫∆γ is not empty. Therefore,⌫∆Γ is dense.…
Hence, there exists a subset of Γ, indexed by a family I , for which Oi =⌫∆γi

⇢ B is
open and non-empty,[i2I Oi is an open dense subset ofB , and F ñ Oi : r 7!Ai r + bi ,
where (Ai , bi ) 2Aff(Rn). Since F is smooth, the ��rst derivative D(F) restricted to Oi
is equal to Ai , and then the second derivative D

2(F) ñ Oi = 0, for all i 2 I . Then,
since D

2(F) = 0 on an open dense subset ofB , D
2(F) = 0 onB , that is D(F)(r ) =A

for all r 2B , with A 2GL(n,R). Now, the map r 7! F(r )�Ar , de��ned onB , is
smooth. But, restricted on Oi it is equal to bi . Its derivative vanishes on the open dense
subset [i2I Oi and thus vanishes onB . Therefore, F(r )�Ar = b on the wholeB ,
for b 2Rn and F(r ) =Ar + b onB , with γ = (A, b ) 2 Γ. É
4. L������ ����� ���������������—LetQ = Rn/Γ andQ0 = Rn0/Γ0, where
Γ ⇢Aff(Rn) and Γ0 ⇢Aff(Rn0) are countable subgroups. Then,

T������. Every local smooth lifting ˜f of any local di�eomorphism f ofQ is necessarily
a local di�eomorphism. In particular n = n0. Moreover, let x 2 dom( f ), x 0 = f (x),
r, r 0 2Rn be such that class(r ) = x and class(r 0) = x 0. Then, the local lifting ˜f can be
chosen such that ˜f (r ) = r 0.

Note that n is also the di�feological dimension of Rn/Γ, see [PIZ13, §1.78].

Proof. Let the local di�feomorphism f be de��ned on U with values in U
0. By de��nition

of local di�feomorphism, they are both open for the D-topology. Then Ũ= class
�1(U)

is open inRn . Since the composite f � class: Ũ!U
0 is a plot inQ0, for all r 2 Ũ there

exists a smooth local lifting ˜f : Ṽ!Rn0 , de��ned on an open neighborhood of r , such
that class

0
�

˜f = f � class ñ Ṽ.

Rn
� Ũ� Ṽ Rn0

Q �U Q
0

class

˜f

class
0

f

Rn
Ṽ
0
⇢ Ũ
0
⇢Rn0

Q U
0
⇢Q

0

class

ˆf

class
0

f �1

Let x = class(r ), x 0 = f (x), r 0 = ˜f (r ), and then x 0 = class
0(r 0).
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Next, let Ũ
0 = class

0�1(U0). Since the composite f �1
� class

0 is a plot in Q , there
exists a smooth lifting ˆf : Ṽ

0
!Rn , de��ned on an open neighborhood of r 0, such that

class �
ˆf = f �1

� class
0 ñ Ṽ0. Let r 00 = ˆf (r 0), which is a priori di�ferent from r .

Now, we consider the composite ˆf � ˜f : W̃!Rn , where W̃= ˜f �1(Ṽ0) is a non-empty
open subset of Rn since it contains r . Moreover, ˆf � ˜f (r ) = r 00. It also satis��es class �

( ˆf � ˜f ) = class. Indeed, class � ( ˆf � ˜f ) = (class �
ˆf ) � ˜f = ( f �1

� class
0) � ˜f = f �1

�

(class
0
�

˜f ) = f �1
� ( f � class) = ( f �1

� f ) � class= class. Thus, thanks to (§3), there
exists, locally, γ 2 Γ such that ˆf � ˜f = γ ñ W̃. By the way, r 00 = ( ˆf � ˜f )(r ) = γ · r .
Let ¯f = γ�1

�
ˆf , then: class �

¯f = class � γ�1
�

ˆf = class �
ˆf = f �1

� class
0, and ¯f is

still a local lifting of f �1. Thus ¯f � ˜f = 1
W̃
, that is, ¯f = ˜f �1 ñ W̃. We conclude that,

around r , ˜f is a local di�feomorphism. Now, if we consider any another point r 000 over
x 0, there exists γ 0 such that γ 0 · r 0 = r 000; changing ˜f to γ 0 � ˜f and ¯f to ¯f � γ 0�1, we get
˜f (r ) = r 000, and ˜f and ¯f still remain inverse of each other.

Therefore, for any r 2Rn over x and any r 0 2Rn over x 0 = f (x), we can locally lift f
to a local di�feomorphism ˜f such that ˜f (r ) = r 0. É

S��������G�������� �� �Q��������.

In this section, we associate a structure groupoid — or gauge groupoid — which is a
di�feological groupoid [PIZ13, 8.3], with every atlas of a quasifold. Then we show that
di�ferent atlases give equivalent groupoids: as categories, according to the Mac Lane
de��nition [SML78], and in the sense of Muhly-Renault-Williams [MRW87]. We give a
precise description of the structure groupoid in terms or the groupoid associated with
the action of the structure groups Γ, and the connecting points of the charts. This
construction is the foundation for a C⇤-algebra associated with the quasifold.

5. B������� ��� �������� �� � ���������.—Let X be a quasifold, letA be an
atlas and letF be the strict generating family overA . We denote byN the nebula8 of
F , that is, the sum of the domains of its elements:

N =
a
F2F

dom(F) = {(F, r ) | F 2F and r 2 dom(F)}.

The evaluation map is the natural subduction

ev:N !X with ev(F, r ) = F(r ).

Following the construction in the case of orbifolds [IZL17], the structure groupoid of the
quasifold X, associated with the atlasA , is de��ned as the subgroupoid G of germs of

8See de��nition in [PIZ13, § 1.76].
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F����� 2. The three levels of a quasifold.

local di�feomorphisms ofN that project to the identity of X along ev. That is,
®

Obj(G) = N ,

Mor(G) = { germ(Φ)ν | Φ 2 Diff
loc
(N ) and ev�Φ= ev ñ dom(Φ)}.

The setMor(G) is equippedwith the functional di�feology inherited by the full groupoid
of germs of local di�feomorphisms [IZL17, §2 & 3]. Note that, given Φ 2 Diff

loc
(N )

and ν 2 dom(Φ), there exist always two plots F and F
0 inF such that ν= (F, r ), with

r 2 dom(F), and a local di�feomorphism φ ofRn , de��ned on an open ball centered in r ,
such that dom(φ)⇢ dom(F), φ= Φ ñ {F}⇥ dom(F) and F

0
�φ= F ñ dom(φ). That

is summarized by the diagram:

dom(F)� dom(φ) dom(F0)

X

F

φ

F
0

N���. According to the theorem in (§3), the local di�feomorphisms, de��ned on the
domain of a generating plot, and lifting the identity of the quasifold, are just the elements
of the structure group associated with the plot. We can legitimately wonder what is the
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point of involving general germs of local di�feomorphisms, if we merely end up with
the structure group we could have began with. The reason is that the structure groups
connect the points of the nebula that project on a same point of the quasifold, only
when they are inside the same domain. They cannot connect the points of the nebula
that project on the same point of the quasifold but belonging to di�ferent domains, with
maybe di�ferent structure groups. This is the reason why we cannot avoid the use of
germs of local di�feomorphisms in the nebula, to begin with. That situation is illustrated
in Figure 2.

6. E���������� �� ��������� ��������� Let us recall that a functor S: A!C is
an equivalence of categories if and only if, S is full and faithful, and each object c inC is
isomorphic to S(a) for some object a in A [SML78, Chap. 4 § 4 Thm. 1]. If A andC are
groupoids, the last condition means that, for each object c ofC, there exist an object a of
A and an arrow from S(a) to c .

In other words: let the transitivity-components of a groupoid be the maximal full sub-
groupoids such that each object is connected to any other object by an arrow. The functor
S is an equivalence of groupoids if it is full and faithful, and surjectively projected on the
set of transitivity-components.

Now, consider an n-quasifold X. LetA be an atlas, letF be the associated strict gener-
ating family, letN be the nebula ofF and let G the associated structure groupoid. Let
us ��rst describe themorphology of the groupoid.

P����������. The �bers of the subduction ev: Obj(G)!X are exactly the transitivity-
components of G. In other words, the space of transitivity components of the groupoid G
associated with any atlas of the quasifold X, equipped with the quotient di�eology, is the
quasifold itself.

T������. Di�erent atlases of X give equivalent structure groupoids. The structure
groupoids associated with di�eomorphic quasifolds are equivalent.

In other words, the equivalence class of the structure groupoids of a quasifold is a di�feo-
logical invariant.

Proof. These results are analogous to the results of [IZL17, §5]. They have the same kind
of proof. The fact that the structure groups Γ of the quasifolds are countable instead of
��nite has no negative consequences, thanks to (§4).

Let us start by proving the proposition. Let F: U ! X and F
0
: U
0
! X

0 be two
generating plots from the strict familyF , and r 2U⇢R and r 0 2U

0
⇢R0. Assume

that ev(F, r ) = ev(F0, r 0) = x , that is, x = F(r ) = F
0(r 0). Note that F= f � class ñU

andF
0 = f 0�class

0 ñU0, where f , f 0 2A . Then,ψ= f 0�1
� f , de��nedon f �1( f 0(U0))

to U
0, is a local di�feomorphism that maps ξ= f (class(r )) to ξ0 = f 0(class

0(r 0)).
Then, according to (§4), n = n0 and there exists a local di�feomorphism ϕ of Rn , lifting
locally ψ and mapping r to r 0. Its germ realizes an arrow of the groupoid G connecting
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(F, r ) to (F0, r 0). Of course, when F(r ) 6= F
0(r 0) there cannot be an arrow, by de��nition.

Therefore, as in the more restrictive case of orbifolds, the ��bers of the evaluation map are
the transitive components of the structure groupoid G of the quasifold.

Now, the theorem follows the formal ��ow of (op. cit. §5): letA andA 0 be two atlases
of X and considerA 00 =A

`
A
0. With an obvious choice of notation: Obj(G00) =

Obj(G)
`

Obj(G0) and G00 contains naturally G and G0 as full subgroupoids. The
question then is: howdoes the adjunction of the crossed arrows betweenG andG0 change
the distribution of transitivity-components? According to the previous proposition, it
changes nothing since, for G, G0 or G00, the set of transitivity-components are always
exactly the ��bers of the respective subductions ev. In other words, the set of groupoid
components is alwaysX, for any atlas ofX. ThusG andG0 are equivalent toG00, therefore
G and G0 are equivalent. É
7.G������ ����������� �� ��� ��������� ��������.—The general description
of the structure groupoid of a quasifold X follows exactly the description in the case of
orbifolds (op. cit.). We remind it here for clarity. Let X be a quasifold. LetA be an atlas,
letF be the associated strict generating family, and let G be the associated groupoid.
We know from the previous paragraph that the groupoid components in Obj(G) are
the ��bers of the projection ev: (F, r ) 7! F(r ). Then, the (algebraic) structure of the
groupoid reduces to the algebraic structure of each full subgroupoid Gx , x 2X, that is,

⇢
Obj(Gx ) = {(F, r ) 2N | F(r ) = x},
Mor(Gx ) =

�
g 2MorG

�
(F, r ), (F0, r 0)

�
| F(r ) = x

 
;

more precisely, g= germ(ϕ)r where ϕ is a local di�feomorphism de��ned in the domain
of F to the domain of F

0, mapping r to r 0 and such that F
0
� ϕ =

loc
F on an open

neighborhood of r . In other words,

Obj(Gx ) = ev
�1(x) and Mor(Gx ) = (ev�src)�1(x).

Let f be a chart inA , letU= dom( f ) and let Ũ= class
�1(U)⇢Rn be the domain of

its strict lifting F= f � class ñ Ũ, where class: Rn
!Rn/Γ. Without loss of generality,

we shall assume that the domains of all charts, and thus the domains of the strict liftings,
are connected.

The subgroupoid Gx is the assemblage of the subgroupoids GF

x . For all F 2F ,
⇢

Obj(GF

x ) = {F}⇥ dom(F),
Mor(GF

x ) = {germ(ϕ)r 2Mor(Gx ) | r,ϕ(r ) 2 dom(F)}.

That is, Mor(GF

x ) = src
�1(Obj(GF

x ))\ trg
�1(Obj(GF

x )). The assemblage is made ��rst
by connecting the groupoid GF

x to GF
0

x with any arrow germ(ϕ)r , from (F, r ) to (F0, r 0)
such that x = F(r ) = F(r 0) and ϕ(r ) = r 0. Secondly, by spreading the arrows by
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composition. We can represent this construction by a groupoid-set-theoretical diagram:

G=
a
x2X

Gx and Gx =GF
1

x — GF
2

x — · · · — G
F

Nx
x

where the Fi ’s are the charts having x in their images andNx is the number of such charts
(the atlasA is assumed locally ��nite). The link between two groupoids: G

Fi
x —G

F j
x

represents the spreading of the arrows by adjunction of one of them. Note that this is
absolutely not a smooth representation ofG, since the projection ev�src: Mor(G)!X

is a subduction. Moreover, the order of assembly has no in��uence on the result.
E�������. In the case of orbifolds, where the structure group is ��nite, this assemblage
of groupoids can be completely visual: for example, the teardrop in [IZL17, Figure 3].
It is more di���cult in the case of a strict quasifold, with dense structure group. For
example, the irrational torus Tα =R/(Z+αZ), which was described as a di�feological
space in [PDPI83] for the ��rst time. Now, with the identi��cation of this new subcategory
{Quasifolds} in {Di�feology}, the irrational torus becomes a quasitorus.9 For the generating
family {class: R! Tα}, the objects of the structure groupoid equal just R. Moreover,
in this simple case, as we see in (§11), the groupoid Gα is the groupoid of the action of the
subgroup Z+αZ by translation. Therefore, one has

Obj(Gα) =R and Mor(Gα) = {(x, tn+αm) | x 2R and n, m 2 Z},

where the bold letter t denotes a translation. The source and target are given by

src(x, tn+αm) = x and trg(x, tn+αm) = x + n+αm.

Also, the composition of arrows is given by

(x, tn+αm) · (x + n+αm, tn0+αm0) = (x, tn+n0+α(m+m0)).

The subgroupoid Gclass

α,τ , with τ 2Tα, is then

Gclass

α,τ = {(x, tk ) | class(x) = τ and k 2 Z+αZ}.

For example, at τ = 0 we get Gclass

α,0
= {(n+αm, tn0+αm0) | n, n0, m, m0 2 Z}.

8.T�� ��������� �������� �� ����� ���H��������.—LetA be an atlas of a
quasifold X. The structure groupoid G associated with the generating family of the atlas
A is étale, namely: the projection src: Mor(G)!Obj(G) is an étale smooth map, that
is, a local di�feomorphism at each point [PIZ13, §2.5].
P���������� 1. For all g 2Mor(G), there exists a D-open superset O of g such that src

restricted to O is a local di�eomorphism.
P���������� 2. The groupoid G is locally compact and Hausdor�.
N���. Since the atlasA is assumed to be locally ��nite, the preimages of the objects of G
by the source map, or the target map, are countable.

9Or, in this case, a quasicircle.
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dom(F) dom(F0)

dom( f ) dom( f 0)

X

ϕ s

class class
0

ψ

f f 0

F����� 3. Lifting local di�feomorphisms

Proof. This proof is the same as in the case of orbifolds [IZL17, §7]. We just have to pay
attention to the fact the structure group is now countable, and not just ��nite.
(1) Let us ��rst check that the groupoid G is étale. That is, src: Mor(G)! Obj(G) is
everywhere a local di�feomorphism.
Let us pick a germ g = germ(Φ)ν 2 Mor(G), with ν = src(g) = (F, r ) and trg(g) =
(F0, r 0). Thus, Φ is de��ned by some ϕ 2 Diff

loc
(Rn) with dom(ϕ) ⇢ dom(F), r 0 =

ϕ(r ) 2 dom(F0) and such that F
0
� ϕ = F ñB . We choose ϕ :B ! dom(F0) to be

de��ned on a small ball centered at r . By abuse of notation we shall denote g= germ(ϕ)r ,
where ϕ 2 Diff

loc
(dom(F), dom(F0)). That is, ϕ now contains implicitly the data source

and target. Now, let

F= f � class and F
0 = f 0 � class

0
,

where f and f 0 belong toA , class: Rn
!Rn/Γ and class

0
: Rn
!Rn/Γ0 are the pro-

jections. If ψ is the transition map f 0�1
� f , then class(r ) 2 dom(ψ) and ψ(class(r )) =

class
0(r 0). This situation is illustrated by the diagram of Figure 3, where, except for

the family ϕ s which will vary around ϕ, the vertices and arrows are ��xed as soon as the
representant Φ of the germ g is chosen. Now, let

O = {germ(ϕ)t | t 2B}⇢Mor(G).

Hence, src ñ O : germ(ϕ)t 7! t is smooth and injective,10 as well as its inverse t 7!
germ(ϕ)t , which is de��ned onB . Let us now show that O is a D-open subset, That
is, for each plot P: s 7! gs in Mor(G), the subset P

�1(O ) ⇢ dom(P) is open. Let
s 2 P

�1(O ), that is, gs 2 O , i.e. gs = germ(ϕ)rs
, where rs = src(gs ), the discrete index

F here is implicit.
Then, for all s 2 dom(P), there exists a small ballV centered at s and aplot s 0 7! (ϕ s 0 , rs 0),
de��ned onV , such that gs 0 = germ(ϕ s 0)rs 0

with germ(ϕ s )rs
= germ(ϕ)rs

and rs 0 2B .

10Maybe we should recall that germ(ϕ)t = germ(ϕ0)t 0 if and only if: t = t 0 and there exists an open ball
B centered at t such that ϕ ñB = ϕ0 ñB .
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Since s 0 7! ϕ s 0 is smooth, by de��nition the subset

{(s 0, r ) 2 V ⇥B | r 2 dom(ϕ s 0)}

is necessarily open. Since it contains (s , rs ), it contains a product V 0 ⇥B0, where V 0 is
a small ball centered at s andB0 is a small ball centered at rs . This implies that, for all
s 0 2 V 0,B0 ⇢ dom(ϕ s 0). In particular,B0 ⇢ dom(ϕ).
Then, ξ s = ϕ s � ϕ�1

: ϕ(B0)! dom(F0) is a local di�feomorphism of dom(F0). How-
ever, for all s 0, one has class

0
� ϕ s 0 = ψ � class, wherever it is de��ned. This is shown by

the above diagram, where the dots denote a local map.
Thus, class

0
� ξ s 0 = class

0. Indeed, class
0
� ξ s 0 = class

0
� ϕ s 0 � ϕ�1 = ψ � class � ϕ�1

and ψ � class = class
0
� ϕ. Now, thanks to (§7), for all s 0 2 V 0 there is a γ 0 2 Γ0 such

that ξ s 0 = γ 0, and the map s 0 7! γ 0 is smooth. Then, since V 0 is connected and Γ0
is discrete [PIZ13, Exercise 8], γ 0 is constant on V 0. Now s 2 V 0, thus, for s 0 = s ,
γ 0 = ϕ�1

� ϕ s = ϕ�1
� ϕ= 1. Hence, ϕ s 0 = ϕ on V 0, and gs 0 = germ(ϕ)rs 0

on V 0, that
is, P(V 0)⇢O . Then, each s 2 dom(P) such that P(s ) 2 O is the center of an open ball
whose image is contained inO . Therefore, P�1(O ) is a union of open balls, thus P

�1(O )
is open and O is D-open. Thus, the map src: germ(ϕ)t 7! t , restricted to O , is a local
di�feomorphism: the source map is étale.
(2) Next, let us check thatMor(G) is Hausdor�f. As above, let g= germ(ϕ)r 2Mor(G).
We can also representgby a triple (F, r, germ(ϕ)r ), withϕ 2 Diff

loc
(dom(F), dom(F0)).

Then, let g0 = germ(ψ)s be another germ represented by (G, s , germ(ψ)s ), di�ferent
from g, with ψ 2 Diff

loc
(dom(G), dom(G0)). We separate the situation in three cases:

F 6=G

or
F=G

8
<
:

r 6= s
or

r = s but germ(ϕ)r 6= germ(ψ)s
In the ��rst two cases (F 6=G, and F=G but r 6= s ), since the source map is étale and
since the Nebula is Hausdor�f, it is su���cient to consider two small separated ballsB and
B
0, centered around r and s , to get twoD-open subsets ofMor(G) that separate the two

di�ferent germs. Indeed, let O = src
�1(B ) and O 0 = src

�1(B0) be the D-open subset
on which the source map is a local di�feomorphism. If there were a point g00 2 O \O 0,
then src(g00)would belong toB \B0, which is empty.
The last case ((F, r, germ(ϕ)r ) and (F, r, germ(ψ)r ) with germ(ϕ)r 6= germ(ψ)r ) di-
vides in two subcases: codom(ϕ) 6= codom(ψ) and codom(ϕ) = codom(ψ).
In the ��rst sub-case, when codom(ϕ) 6= codom(ψ), since the codomains are di�ferent,
we consider a small ballB around r such that its images by ϕ and ψ are separated. Then
O = {germ(ϕ)t | t 2 B} and O 0 = {germ(ψ)t | t 2 B} are two open subsets in
Mor(G) that separate g and g0, since no germ in O 0 has the same codomain as any germ
in O .
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In the second sub-case, when codom(ϕ) = codom(ψ), let us consider the composite
f = ϕ �ψ�1, de��ned on an open neighborhood of ψ(r ). Thanks to the theorem of (§3),
f (s ) =

loc
γ 0 · s , for some γ 0 2 Γ0, which is the structure group of the quasifold for the plot

F
0. Sincewehave assumed that germ(ϕ)r 6= germ(ψ)r , we have thatγ 0 6= 1. Hence, there

is a small ballB around r onwhichϕ= γ 0�ψ. LetO 0 = {(F, t , germ(ψ)t ) | t 2B} and
O = {(F, t , germ(ϕ)t ) | t 2B}, that is, O = {(F, t ,γ 0 � germ(ψ)t ) | t 2B}. As we
know, they are two D-open subsets in Mor(G) and, since γ 0 6= 1, we have that O \O 0 =
?. Therefore, the two germs (F, r, germ(ϕ)r ) and (F, r, germ(ψ)r ) are separated.
In conclusion, Mor(G) is Hausdor�f for the D-topology.
According to the previous Note, the preimages of an object (F, r ) 2N =Obj(G) are
the germs of all the local di�feomorphisms Φ : (F, r ) 7! (F0, r 0), such that F(r ) = r 0 and
F=

loc
F
0
� ϕ around r , where ϕ is a local di�feomorphism of Rn . Since the atlasA is

locally ��nite, there are a ��nite number of F
0
2 F such that F(r ) = F

0(r 0). Now, for such
F
0 the number of r 0 2 domF

0 such that F
0(r 0) = F(r ) is at most equal to the number

of elements of the structure group Γ0, that is countable. Therefore, the preimages of
(F, r ) by the source map is countable, and that works obviously in the same way for the
preimages of the target map. É
9.MRW-����������� �� ��������� ���������.—We consider a quasifoldX and
two atlasesA andA 0, with associated strict generating familiesF andF0. We shall
show in this section that the associated groupoids are equivalent in the sense of Muhly-
Renault-Williams [MRW87, 2.1]; this will later give Morita-equivalent C⇤-algebras.
This section follows [IZL17, §8]; we just check that the fact that the structure groups are
countable and not just ��nite, does not change the result.
Let us recall what is an MRW-equivalence of groupoids. Let G and G0 be two locally
compact groupoids. We say that a locally compact space Z is a (G,G0)-equivalence if

(i) Z is a left principal G-space.
(ii) Z is a right principal G0-space.
(iii) The G and G0 actions commute.
(iv) The action of G on Z induces a bijection of Z/G onto Obj(G0).
(v) The action of G0 on Z induces a bijection of Z/G0 onto Obj(G).

Let src: Z ! Obj(G) and trg: Z ! Obj(G0) be the maps de��ning the composable
pairs associated with the actions of G and G0. That is, a pair (g, z) is composable if
trg(g) = src(z), and the composite is denoted by g · z . Moreover, a pair (g0, z) is
composable if src(g0) = trg(z), and the composite is denoted by z · g0.
Let us also recall that an action is principal in the sense of Muhly-Renault-Williams, if it
is free: g · z = z only if g is a unit, and the action map (g, z) 7! (g · z, z), de��ned on the
composable pairs, is proper [MRW87, §2].
Now, using the hypothesis and notations of (§6), let us de��ne Z to be the space of germs
of local di�feomorphisms, from the nebula of the familyF to the nebula of the family
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F
0, that project on the identity by the evaluation map. That is,

Z=
®

germ( f )r
����

f 2 Diff
loc
(dom(F), dom(F0), r 2 dom(F),

F 2F ,F
0
2 F

0 and F
0
� f = F ñ dom( f ).

´
.

Let11

src(germ( f )r ) = r and trg(germ( f )r ) = f (r ).
Then, the action of g 2Mor(G) on germ( f )r is de��ned by composition if trg(g) = r ,
that is, g ·germ( f )r = germ( f �ϕ)s , where g= germ(ϕ)s , ϕ 2 Diff

loc
(N ) and ϕ(s ) =

r . Symmetrically, the action of g0 2Mor(G0) on germ( f )r is de��ned if src(g0) = f (r )
by z · g0 = germ(ϕ0 � f )r , where g0 = germ(ϕ0) f (r ). Then, we have:
T������. The actions of G and G0 on Z are principal, and Z is a (G,G0)-equivalence
in the sense of Muhly-Renault-Williams.

Proof. First of all, let us point out that Z is a subspace of the morphisms of the groupoid
G00 built in (§6) by adjunction of G and G0, and is equipped with the subset di�feology.
All these groupoids are locally compact and Hausdor�f (§8).
Let us check that the action of G on Z is free. In our case, z = germ( f )r and g =
germ(ϕ)s , where f and ϕ are local di�feomorphisms. If g · z = z , then obviously g =
germ(1)r .
Next, let us denote by ρ the action of G on Z, de��ned on

G ?Z= {(g, z) 2Mor(G)⇥Z | trg(g) = src(z)} by ρ(g, z) = g · z.

This action is smooth because the composition of local di�feomorphisms is smooth, and
passes onto the quotient groupoid in a smooth operation, see [IZL17, §3]. Moreover, this
action is invertible, its inverse being de��ned on

Z ?Z= {(z 0, z) 2 Z⇥Z | trg(z 0) = trg(z)} by ρ�1(z 0, z) = (g= z 0 · z�1
, z).

In detail, ρ�1(germ(h)s , germ( f )r ) = (germ( f �1
�h)s , germ( f )r ), with f (r ) = h(s ).

Now, the inverse is also smooth, when Z ? Z ⇢ Z⇥ Z is equipped with the subset
di�feology. In other words, ρ is an induction, that is, a di�feomorphism from G ?Z to
Z ?Z. However, since G ?Z and Z ?Z are de��ned by closed relations, and G and Z are
Hausdor�f, G ?Z and Z ?Z are closed into their ambient spaces. Thus, the intersection
of a compact subset in Z⇥Z with Z ?Z is compact, and its preimage by the induction ρ
is compact. Therefore, ρ is proper. We notice that the fact that the structure groups are
no longer ��nite but just countable does not play a role here.
It remains to check that the action of G on Z induces a bijection of Z/G onto Obj(G0).
Let us consider the map class: Z ! Obj(G0) de��ned by class(germ( f )r ) = f (r ).
Then, let class(z) = class(z 0), with z = germ( f )r and z 0 = germ( f 0)r 0 , that is, f (r ) =
f 0(r 0). However, since f and f 0 are local di�feomorphisms, ϕ = f 0�1

� f is a local
11For the sake of simplicity, we make an abuse of notation: in reality one should write, more precisely,

src(germ( f )r ) = (F, r ) and trg(germ( f )r ) = (F0, f (r )).
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di�feomorphism with ϕ(r 0) = r . Let g = germ(ϕ)r 0 , then g 2 Mor(G) and z 0 =
g · z . Hence, the map class projects onto an injection from Z/G to Obj(G0). Now,
let (F0, r 0) 2 Obj(G0), and let x = F

0(r 0) 2 X. SinceF is a generating family, there
exist (F, r ) 2 Obj(G) such that F(r ) = x . Let ψ and ψ0 be the charts of X de��ned
by factorization: F = ψ � class and F

0 = ψ0 � class
0, where class: Rn

! Rn/Γ and
class
0
: Rn
! Rn/Γ0. Let ξ = class(r ) and ξ0 = class

0(r 0). Since ψ(ξ) = ψ0(ξ0) =
x , Ψ =

loc
ψ0�1
� ψ is a local di�feomorphism from Rn/Γ to Rn/Γ0 mapping ξ to ξ0.

Hence, according to (§4), there exists a local di�feomorphism f from dom(F) to dom(F0),
such that class

0
� f = Ψ � class and f (r ) = r 0. Thus, z = germ( f )r belongs to

Z and class(z) = r 0 (precisely the element (F0, r 0) of the nebula of F0). Therefore,
the injective map class from Z/G to Obj(G0) is also surjective, and identi��es the two
spaces. Obviously, what has been said for the side G can be translated to the side G0;
the construction is completely symmetric. In conclusion, Z satis��es the conditions of a
(G,G0)-equivalence, in the sense of Muhly-Renault-Williams. É

T�� C⇤-A�������O�AQ��������

We use the construction of the C⇤-Algebra associated with an arbitrary locally compact
groupoid G, equipped with a Haar system, introduced and described by Jean Renault in
[JR80, Part II, §1]. Note that, for this construction, only the topology of the groupoid
is involved, and di�feological groupoids, when regarded as topological groupoids, are
equipped with the D-topology12.
Wewill denote byC (G) the completion of the compactly supported continuous complex
functions on Mor(G), for the uniform norm. And we still consider, as is done for
orbifolds, the particular case where the Haar system is given by the counting measure.
Let f and g be two compactly supported complex functions, the convolution and the
involution are de��ned by

f ⇤ g (γ) =
X
β2Gx

f (β · γ)g (β�1) and f ⇤(γ) = f (γ�1)⇤.

The sums involved are supposed to converge. Here, γ 2 Mor(G), x = src(γ) and
Gx = trg

�1(x) is the subset of arrows with target x . The star in z⇤ denotes the conjugate
of the complex number z . By de��nition, the vector spaceC (G), equipped with these
two operations, is the C⇤-algebra associated with the groupoid G.

10.T�� C⇤-������� �� � ���������.—Let X be a quasifold, letA be an atlas and
let G be the structure groupoid associated withA . Since the atlasA is locally ��nite, the
convolution de��ned above is well de��ned. Indeed, in this case:
P����������. For every compactly supported complex function f on G, for all ν =
(F, r ) 2 N =Obj(G), the set of arrows g 2 Gν such that f (g) 6= 0 is �nite. That is,
#Supp( f ñGν)<1. The convolution is then well de�ned on C (G).

12Since smooth maps are D-continuous and di�feomorphism are D-homeomorphisms.
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Then, for each atlasA of the quasifold X, we get the C⇤-algebraA= (C (G),⇤). The
dependence of the C⇤-algebra on the atlas is given by the following theorem, which is a
generalization of [IZL17, §9].
T������.Di�erent atlases give Morita-equivalent C⇤-algebras. Di�eomorphic quasifolds
have Morita-equivalent C⇤-algebras.
In other words, we have de��ned a functor from the subcategory of isomorphic {Quasi-
folds} in di�feology, to the category of Morita-equivalent {C⇤-Algebras}.

Proof. Considering the proposition, Gν = trg
�1(ν) with ν 2 Obj(G). The space of

objects of G is a disjoint sum of Euclidean domains, thus {ν} is a closed subset. Now,
trg: Mor(G)!Obj(G) is smooth then continuous, for the D-topology. Hence, Gν =
trg
�1(ν) is closed and countable by (§8). Now, Supp( f ñ Gν) = Supp( f ) \Gν is

the intersection of a compact and a closed countable subspace, thus it is compact and
countable, that is ��nite.
Next, thanks to (§9), di�ferent atlases give equivalent groupoids in the sense of Muhly-
Renault-Williams. Moreover, thanks to [MRW87, Thm. 2.8], di�ferent atlases give
stronglyMorita-equivalentC⇤-algebras. Therefore, di�feomorphic quasifolds have strongly
Morita-equivalent associated C⇤-algebras. É
11. T�� C⇤-A������ �� ��� ���������� �����. — The ��rst and most famous
example is the so-called Denjoy-Poincaré torus, or irrational torus, or noncommutative
torus, or, more recently, quasitorus. It is, according to its ��rst de��nition, the quotient set
of the 2-torusT

2 by the irrational ��ow of slopeα 2R�Q. We denote it byTα =T
2/∆α,

where ∆α is the image of the line y = αx by the projection R2
! T

2 = R2/Z2. This
space has been the ��rst example studied with the tools of di�feology, in [PDPI83], where
many non trivial properties have been highlighted.13 Di�feologically speaking,

Tα 'R/(Z+αZ).

The composite

R R/(Z+αZ) Tα,
class f

with F= f � class,

summarizes the situation whereA = { f : R/(Z+αZ)! Tα} is the canonical atlas of
Tα, containing the only chart f , andF = {F = f � class} is the associated canonical
strict generating family. According to the above (§3), the groupoid Gα associated with
the atlasA is simply

Obj(Gα) =R and Mor(Gα) = {(x, tn+αm) | x 2R and n, m 2 Z}.

However, we can also identify Tα with (R/Z)/[(Z+αZ)/Z], that is

Tα ' S
1/Z, with m(z) = e2iπαm z,

13See for example Exercise 4 and §8.39 in [PIZ13].
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for all m 2 Z and z 2 S
1. Moreover, the groupoid S of this action of Z on S

1
⇢ C is

simply

Obj(Sα) = S
1 and Mor(Sα) = {(z, e2iπαm) | z 2 S

1 and m 2 Z}.

The groupoids Gα and Sα are equivalent, thanks to the functor Φ from the ��rst to the
second:

Φ
Obj
(x) = e2iπx and Φ

Mor
(x, tn+αm) = (e

2iπx
, e2iπαm).

Moreover, they are also MRW-equivalent, by considering the set of germs of local di�feo-
morphisms x 7! e2iπx , everywhere fromR to S

1. Therefore, their associatedC⇤-algebras
are Morita equivalent. The algebra associated with Sα has been computed numerous
times and it is called irrational rotation algebra [MR81]. It is the universal C⇤-algebra
generated by two unitary elements U andV, satisfying the relationVU= e2iπα

UV.
R����� 1.Thanks to the theorem (§10), and because two irrational tori Tα and Tβ are
di�feomorphic if and only if α and β are conjugate modulo GL(2,Z) [PDPI83], we get
the corollary that, ifα and β are conjugate modulo GL(2,Z), thenAα andAβ are Morita
equivalent. Which is the direct sense of Rie�fel’s theorem [MR81, Thm 4].
R����� 2. The converse of Rie�fel’s theorem is a di�ferent matter altogether. We should
recover a di�feological groupoid Gα from the algebraAα. Then, the space of transitive
components would be the required quasifold, as stated by the proposition in (§6). In the
case of the irrational torus, it is not very di���cult. The spectrum of the unitary operatorV

is the circle S
1 and the adjoint action by the operator U gives UVU

�1 = e2iπα
V, which

translates on the spectrum by the irrational rotation of angle α. In that way, we recover
the groupoid of the irrational rotations on the circle, which gives Tα as quasifold.
R����� 3.Of course, the situation of the irrational torus is simple and we do not exactly
know how it can be reproduced for an arbitrary quasifold. However, this certainly is the
way to follow to recover the quasifold from its algebra: ��nd the groupoid made with the
Morita invariant of the algebra, which will give the space of transitivity components as
the requested quasifold.

12. T�� ������� �� R/Q. —The di�feological space R/Q is a legitimate quasifold.
This is a simple example with a groupoid G given by

Obj(G) =R and Mor(G) = {(x, tr ) | x 2R and r 2Q}.

The algebra that is associatedwithG is the setA of complex compact supported functions
on Mor(G). Let us identifyC 0(Mor(G),C)with Maps(Q,C

0(R,C)) by

f = ( fr )r2Q with fr (x) = f (x, tr ), and let Supp( f ) = {r | fr 6= 0}.

Then,
A=

�
f 2Maps(Q,C

0(R,C)) | #Supp( f )<1
 
.
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The convolution product and the algebra conjugation are, thus, given by:

( f ⇤ g )r (x) =
X

s
fr�s (x + s )gs (x), and f ⇤r (x) = f

�r (x + r )⇤.

Now, the quotient R/Q is also di�feomorphic to the Q-circle

SQ = S
1/UQ, where UQ = {e

2iπ r
}r2Q

is the subgroup of rational roots of unity. As a di�feological subgroup of S
1,UQ is discrete.

The groupoid S of the action ofUQ on S
1 is given by:

Obj(S) = S
1 and Mor(S) =

ß
(z,τ)

���� z 2 S
1 and τ 2UQ

™
.

The exponential x 7! z = e2iπx realizes aMRW-equivalence between the two groupoids
G and S. Their associated algebras are Morita-equivalent. The algebraS associated with
S is made of families of continuous complex functions indexed by rational roots of unity,
in the same way as before:

S=
�
( fτ)τ2UQ

�� fτ 2C
0(S1

,C) and #Supp( f )<1
 
.

The convolution product and the algebra conjugation are, then, given by:

( f ⇤ g )τ(z) =
X

σ
fσ̄τ(σz)gσ(z) and f ⇤τ (z) = fτ̄(τz)⇤,

where τ̄ = 1/τ = τ⇤, the complex conjugate.
Now, consider f and letUp be the subgroup inUQ generated by Supp( f ); this is the
group of some root of unity ε of some order p . LetMp (C) be the space of p⇥ p matrices
with complex coe���cients. De��ne f 7!M, fromS to Mp (C)⌦C 0(S1

,C), by

M(z)στ = fσ̄τ(σz), for all z 2 S
1 and σ,τ 2Up .

That gives a representation ofS in the tensor product of the space of endomorphisms
of the in��nite-dimensional C-vector space Maps(UQ,C) byC 0(S1

,C), with ��nite sup-
port.
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