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Abstract Eye gaze trackers (EGTs) are generally devel-

oped for scientific exploration in controlled environments

or laboratories and data have been used in ophthalmology,

neurology, psychology, and related areas to study oculo-

motor characteristics and abnormalities, and their relation

to cognition and mental states. The illumination is one of

the most restrictive limitation of the EGTs, due to a

problem of pupil center estimation during illumination

changes. Most of the current systems, indeed, work under

controlled illumination conditions either in dark or indoor

environments, e.g. using infrared sources or conforming

the sources of light to fixed levels or pointing directions.

This work is focused on exploring and comparing several

photometric normalization techniques to improve EGT

systems during light changes. In particular, a new wearable

and wireless eye tracking system (HATCAM) is used for

testing the different techniques in terms of real-time

capability, eye tracking and pupil area detection. Embed-

ding real-time image enhancement into the HATCAM can

make it an innovative and robust system for eye tracking in

different lighting conditions, i.e. darkness, sunlight, indoor

and outdoor environments.

1 Introduction

Eye gaze trackers (EGTs) have been and are currently used

in many research areas, such as marketing and advertising,

as well as in human factors engineering to evaluate com-

puter interfaces and web sites, Duchowski [9]. Moreover,

EGTs have been studied as input devices for computer

interfaces especially for people with disabilities. A specific

field of application, on which we are currently focusing our

efforts, is the study of oculomotor characteristics and

abnormalities, and their relation to cognition and mental

states. EGTs rely on an analytical relationship between

relative eye movements and the point of gaze over time,

and all the current systems which can be found in literature

are differentiated by the method which are used to calcu-

late eye movements. There are several eye-movement

measurement methods based on mechanical or optical

referenced objects mounted either on scleral contact-lens or

directly on the eye (e.g. search coil), which result very

precise although invasive, Duchowski [9]. Other methods,

based on electrooculogram (EOG), Robinson [33], Young

and Sheena [42], are affected by several disadvantages

such as obtrusiveness, low resolution, drift, noise, elec-

tromyogram (EMG) artifacts, in addition to discomfort for

the patient who is limited in his normal activities, DiSc-

enna et al. [6]. A specific class of EGTs, that tries to

overcome these drawbacks, is based on video-oculography

(VOG), which is a method for tracking eye movements by

digitally processing video images of the eyes. Pupil posi-

tion and iris landmarks are detected by means of image

processing algorithms and used to calculate eye rotation

angles and its center as well. Currently, EGTs can be split

into two different classes, remote and wearable. Remote

eye-tracking systems require the user to keep their head

still, thus making the systems unsatisfactory for prolonged
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use in interactive applications, even though they achieve an

optimal accuracy, specially for clinical usage, Meyer et al.

[27]. The second class, commonly referred to as head-

mounted EGTs, uses eye tracking systems, i.e. cameras or

other equipments, mounted directly on the user head. The

development of these wearable EGTs has opened new

scenarios where the user is free to move overcoming the

spatial limitations imposed by the remote systems, Zhu and

Ji [43]. In addition, their use outside controlled environ-

ments allows investigating eye-movement measurements

during natural tasks, e.g. driving cars, Land and Lee [21],

hand washing, Pelz et al. [30], walking through a room

cluttered with obstacles, etc.

On the other hand, the extended workspace of EGTs

introduces some difficulties in estimating the pupil center

during illumination changes and consequently to the det-

riment of robustness. At the present time, the eye locali-

zation, independently of illumination, is still a crucial

issue. Current systems, indeed, are constrained to be used

in controlled environments where illumination is kept

constant. However, in the last few years many efforts have

been provided to overcome this limitation. One of the most

significant approach is based on detecting eye tracking

using active infrared (IR) illuminators. In particular,

spectral (reflective) properties of the pupil, under near-IR

illumination, are exploited to maximize the image-contrast

between the pupil and the background. Based on this

principle, several tracking techniques, Morimoto et al. [29]

and Morimoto and Mimica [28], have been developed as

well as some commercial eye trackers have been produced,

LcTechnologies [22] and Anon [1].

For example, OpenEyes, developed by Li et al. [23],

which is a low cost head-eye tracker system composed of

two CCD cameras mounted on a pair of safety glasses. In

this system, one camera captures an image of the eye while

the other captures an image of the scene. An IR LED is

placed in axis with the eye-camera producing an illumi-

nation which allows, together with an ad-hoc algorithm

based on Random Sample Consensus (RANSAC) para-

digm, the discrimination of the pupil from the rest of the

eye, Dongheng et al. [7]. Also Babcock et al. [2] intro-

duced other EGTs based on an IR mirror, an IR camera and

an IR illuminator while Franchak et al. [12] introduced

very lightweight systems suitable for children based on two

light cameras and an IR LED to produce a reference point

on the pupil.

However, even though uniform and controlled IR illu-

mination eliminates uncontrolled specular reflection and it

is not perceivable by the user, it does not permit the natural

aversion response which protects eyes against retinal

injuries when viewing very bright light sources, San

Agustin et al. [34]. Even though low-power IR LEDs are,

generally, employed to avoid injuries, the irradiance level

must be kept less than 10 mW/cm2 for not chronic IR

exposure in the range of 720–1,400 nm, Sliney et al. [36].

Moreover, the use of IR illuminator systems, especially for

high-sensitive subjects (e.g. children), can produce red-

dening and lachrymation. Furthermore, in subjects with eye

glasses the lens disturb the IR light thus showing very weak

pupils. Finally, a large variation of bright light sources can

produce a diminished image of the pupil or even its dis-

appearance. These limitations in eye-tracking methods

using IR illuminators impose stable lighting conditions,

and therefore a restriction of the fields of application.

Therefore, it is very important to develop an EGT able to

robustly and accurately track eyes under several illumina-

tion conditions and during their changes.

This work is focused on a comparative performance

evaluation of the most relevant and widely used photo-

metric normalization techniques, through a wearable EGT

system. More specifically, eye gaze accuracy, pupillome-

try, and algorithm execution time have been evaluated in

three different illumination conditions: darkness, labora-

tory and sunlight conditions.

2 HATCAM—wearable EGT system

In this work, we use a new wearable and wireless eye

tracking system (HATCAM) which can be tailored to both

adults and children. It is comprised of only one lightweight

camera which was able to capture, by means of a mirror,

the eyes of the subject and the scene in front of him,

simultaneously. The system can be used indoor and out-

door environments. It exhibits the following proprieties:

1. wearability,

2. minimal obtrusiveness,

3. eye tracking and pupillometry capabilities,

4. lightweight below 100 g,

5. wireless communication.

The system configuration is shown in Fig. 1.

Fig. 1 HATCAM configuration
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In detail, the system is comprised of a wireless CMOS

camera (CP294) having low weight (20 g), low size

(2 9 2 9 2 cm), and an A/V transmitter up to 30 m of

distance. The camera has a resolution of 628 9 586 pixels

with F2.0, D45� optic, and an acquisition frequency of 25

frames per second (fps). The original lens of the camera

was removed and substituted with a wide-angle lens

without IR filter. This operation allows enlarging the view

angle and acquiring IR components, which emphasizes the

contrast between pupil and iris. This system is able to

capture simultaneously, without latency, the visual scene in

front of the subject and the position of the eyes. This is

achieved using a mirror (4 9 0.6 cm) placed on a shaft

linked to the head (see Fig. 1). Tilt and shaft of the mirror

and the camera orientation can be tailored to the forehead

profile of the user (see Fig. 1).

3 Eye tracking method

This section deals with the processing techniques used to

detect the center of the eye and how its movements are

mapped into the image plane. VOG method involves vis-

ible spectrum imaging. This technique is a passive

approach that captures ambient light reflected from the eye.

The mounted camera is modified to acquire also the near IR

components of natural light. Therefore, the system keeps

the advantages of IR illumination in increasing the contrast

between pupil and iris, and at same time preventing any

possible injuries due to artificial IR illuminators. Indeed, as

the bandwidth includes both visible light and IR compo-

nents, no illuminators are needed. Figure 2 shows the block

diagram of the image processing. In this diagram, image of

the eyes together with the scene are inputs of the pro-

cessing chain. More in detail, the first processing block

implements the eye extraction algorithm, the second

applies the photometric normalization algorithm of illu-

mination, the third block extracts the pupil contour and

implements the fitting algorithm. At this point, the center of

the eye is detected. The last block is constituted of an

appropriate function, which maps the eye center and

movements into the image plane. This function is generally

named ‘‘mapping function‘‘. In the next sections, each

block is described more in depth.

3.1 Eye extraction

Figure 3 shows how the HATCAM is able to acquire

simultaneously the eyes of the user and the scene in front of

him using the mirror. Eye extraction procedure is consti-

tuted of visual inspection of the first video frame, in which

a rectangular area including the eye is manually selected, in

order to delimit the smallest region including the eye (see

Figs. 3 and 4). This region is called region of interest

(ROI). Since the eye tracking is a head-mounted system,

the ROI does not change thourought the experiment. In

addition, only the red-image component is converted in

gray scale and used as input to the other processing blocks

(see Fig. 4), as this component is specifically helpful in

enhancing the contrast between pupil and background.

3.2 Photometric normalization techniques

Seven photometric normalization (photonormalization)

techniques were applied and compared. The purpose of the

illumination normalization is to reduce or eliminate some

Fig. 2 Block diagram showing all the algorithmic stages of the

processing of eyes and outside scene

Fig. 3 Example of single frame captured by the camera. The

rectangular area marked by red represents the ROI

Fig. 4 Red component of the ROI
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variations in the captured eyes due to different conditions

of illumination. It normalizes and enhances the eye image

to improve the recognition performance of the system.

The photometric normalization consists in removing the

mean of the geometrically normalized image and scaling

the pixel values by their standard deviation, estimated

over the whole cropped image, Ranawade [32]. All the

photometric normalization techniques applied in this work

are based either on homomorphic filtering or histogram

equalization. In recent years, several approaches have

been proposed to solve the brightness variation issue in

different fields of application such as face recognition,

Chen et al. [5], or automotive scenarios, Marsi and Sa-

ponara [26].

Six out of the seven explored photonormalization tech-

niques are based on the Retinex theory (from the words

‘‘retina’’ and ‘‘cortex‘‘, suggesting that both eye and brain

are involved in the processing) developed by Land and

McCann [20]. This theory is based on color constancy

assumption which ensures that the perceived color of

objects remains relatively constant under varying illumi-

nation conditions. Land and his colleagues assume that the

stimulus is not the result of the light source and surface

reflectivity only, but that the visual system processes the

stimulus, integrating the spectral radiance and generating a

ratio of integrated radiance of any region of the scene with

that of the brightest region. This stimulus is called light-

ness. This model eliminates the effect of a non uniform

illumination and is completely independent of any a priori

knowledge of the surfaces reflectance and light source

composition.

Two major assumptions underly this theory:

– The human visual system performs the same compu-

tation independently of the color channel,

– In each channel, the signal intensity is proportional to

the product of the illumination source and the surface

reflectance, which is determined by the object

characteristics.

According to this theory, the image intensity I(x, y) can

be simplified and formulated as follows:

Iðx; yÞ ¼ Rðx; yÞLðx; yÞ ð1Þ

where R(x, y) is the reflectance and L(x, y) is the lumi-

nance at each point (x, y). The luminance L is assumed to

contain low frequency components of the image while the

reflectance R mainly includes the high frequency com-

ponents of the image. This assumption can be easily

understood if considering that R generally varies much

faster than L does, in most parts of the image with a few

exceptions, e.g. shadow boundaries, where L changes

remarkably. In addition, in a real world scene, the illu-

mination can dynamically change much more than the

reflectance. In conclusion, there is a widely accepted

statement about human vision, which assumes that human

eyes respond to local changes in contrast to global

brightness levels.

Below a detailed description of the seven photonor-

malization techniques, used in this work, is reported.

3.2.1 Single scale retinex (SSR)

The latest version of Land Retinex theory was imple-

mented by Jobson et al. [16] as SSR. The main idea of the

algorithm is to process the image through a class of center

surround functions where each output value of the function

is determined by the corresponding input value (center) and

its neighborhood (surround). The center is defined as each

pixel value and the surround is a Gaussian function. The

mathematical form of the SSR is given by:

SSRðx; yÞ ¼ logðIðx; yÞÞ � log½Fðx; yÞ � Iðx; yÞ� ð2Þ

where SSR(x, y) is the Retinex output, I(x, y) is the input

image, and [F(x, y) 9 I(x, y)] is a convolution product

between I(x, y) and F(x, y). This latter function is a simple

linear filter with Gaussian kernel:

Fðx; yÞ ¼ ke
�r2

r2 ð3Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

; r is the standard deviation of the

filter, empirically determined, and controls the amount of

spatial detail that is retained in terms of pixels, and k is a

normalization factor that keeps the area under the Gaussian

curve equal to 1.

3.2.2 Multi scale retinex (MSR)

Although the SSR algorithm produces good results with a

properly selected Gaussian filter, it is still limited by an

important weakness: at large illumination discontinuities

caused by strong shadows that are casted over the scene

halo effects are often visible in the computed reflectance,

Jobson et al. [17]. To avoid this inconvenient, Jobson

extended the SSR algorithm to a multi scale form, where

Gaussian filters with different widths are used and the

output combines different implementations of distributed

SSR algorithms to compute the final illumination invariant

image representation. In detail, the MSR output is simply a

weighted sum of the outputs of several different SSR

outputs. Mathematically,

Ri
MSR ¼

X

N

n¼1

wnRi
n ð4Þ

where N is the number of scales, Ri
n is the ith component of

the nth scale, Ri
MSR is the ith spectral component of the

MSR output, wn and is the weight associated with the nth

24 J Real-Time Image Proc (2013) 8:21–33
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scale. The only difference between R(x, y) and Rn(x, y) is

that the surround function is given by

Fnðx; yÞ ¼ ke
�r2

r2
n ð5Þ

3.2.3 Single scale selfquotient image (SQI)

The SQI algorithm is an extension of the quotient image

(QI), Wang et al. [40, 41]. QI is a concept introduced by

Shashua and Riklin-Raviv [35]. It is based on the Lam-

bertian model where the image can be described by the

product of the albedo and the cosine angle between a point

light source and the surface normal:

Iðx; yÞ ¼ qðx; yÞnðx; yÞT � s ð6Þ

where q (x, y) is the albedo, nðx; yÞT is the surface

normal (shape) of the object (same for all objects of the

class), and s is the light source direction, which may

vary arbitrarily. QI of two objects belonging to the same

class is defined as the ratio between the albedo of each

object. The albedo represents the diffuse reflectivity or

reflecting power of a surface. It is defined as the ratio

of reflected radiation from the surface to incident radi-

ation upon it. Being a dimensionless fraction, it may also

be expressed as a percentage, and is measured on a

scale from zero for no reflecting power of a perfectly

black surface, to 1 for perfect reflection of a white

surface.

The SQI algorithm is defined as follows:

Qðx; yÞ ¼ Iðx; yÞ
F � Iðx; yÞ ð7Þ

where Q(x, y) is the result of the algorithm, I(x, y) is the

input image as defined in QI and F is a smoothing filter.

Unlike the QI, the SQI has several advantages, among

which the most relevant for our purposes is that no image

training processes are required which implies that it can

be used as a pure pre-processing algorithm. A crucial

issue to be carefully addressed in this technique is the

filter size. If the scale is too small, indeed, the filtered

image will be close to the original image, but if the filter

is too large, the filtered image will be more or less con-

stant, and the input image will be normalized with its

mean value.

3.2.4 Multi scale selfquotient image (MSQ)

The MSQ technique exhibits similarities to MSR, but

unlike it, this technique uses an anisotropic filter for the

smoothing operation. Moreover, MSQ allows overcoming

the limitation of the filter size by using several scale, as in

the MSR, in order to achieve more robust results, Wang

et al. [40].

3.2.5 Discrete cosine transform (DCT)

Chen et al. [5] proposed an alternative technique to nor-

malize illumination. This approach is employed to com-

pensate for illumination variations by truncating the low

frequency components of the DCT in the logarithm domain.

3.2.6 Wavelet-based normalization algorithm (WAN)

Du and Ward [8] presented a preprocessing technique

based on the wavelet transform. The authors proposed to

apply histogram equalization to the sub-band image gen-

erated by the so-called approximation wavelet-coefficients

and to emphasize the remaining sub-bands generated by the

detail-wavelet coefficients. Through the histogram equal-

ization step, the image contrast is improved while the

second step enhances the edge information. The final

compensated image is obtained by simply employing the

inverse wavelet transform on the modified coefficient sub-

bands.

3.2.7 Normalization histogram (NH)

Other photometric normalization techniques can also be

based on histogram equalization. Histogram equalization is

usually achieved by equalizing the histogram of the image

pixel gray-levels in the spatial domain so as to redistribute

them uniformly. Struc et al. [39] proposed the possibility to

replace it with an arbitrary distribution such as the normal,

the lognormal and the exponential.

3.2.8 Markov random fields method and models

Markov random field (MRF) is a special type of stochastic

process, which was originally used in statistical physics. It is

considered as a powerful tool for modeling images and

coping with high-dimensional inverse problems from low-

level vision, Perez [31]. When MRF is used in the image-

processing field, the image is assumed to be segmented of an

unknown number of regions, each modelled as individual

MRFs. This is achieved by dividing the image into windows.

The resulting segmentation (grid) is then used to estimate

model parameters. The key concept of the Markov property

is the neighborhood, which states that the probability dis-

tribution for a particular grid cell value only depends on the

cell values within the neighbourhood of the grid cell. The

probability model is often formulated in terms of potential

functions of the grid values and their choice is a crucial point

for the convergence of the method. The use of MRF involves

iterative algorithms that in theory converge to the exact

probability distribution, however, they might need many

iterations so they are often too slow in practical applications

and therefore critical for real time applications, Kjønsberg
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et al. [18]. Although real-time processing capabilities are

very hard to be implemented, they could be achieved by

massively parallel hardware architectures, which efficiently

exploit the inherent algorithmic parallelism of statistical

image models on Markov Random Fields [38].

3.3 Discussion on the photo-normalization techniques

for real-time applications

All the photonormalization techniques considered in this

work exhibit advantages and drawbacks, especially if used

in real time applications. Hereinafter, a brief discussion on

pros and cons of each technique is reported. All techniques

take advantage of transforming image into the logarithm

domain. Since the logarithm of the luminance is a crude

approximation of the perceived brightness, logarithm

transform can partly reduce the effect of lighting.

3.3.1 Single scale retinex

The Retinex is an image enhancement algorithm that

improves the brightness, contrast and sharpness of an

image. It performs a non-linear spatial/spectral transform

that provides simultaneous dynamic range compression and

color constancy. Computation of the Retinex algorithm

involves performing a large number of complex operations

and data transfers, at video frame rates. In the case of small

format images, standard general purpose computers provide

sufficient processing power and reasonable performance.

When applied to images acquired at real-time video data

rates ranging from 15 to 30 fps, a substantial increment in

processing speed afforded by hardware performance is

required. In addition, several potential applications, as eye

tracking, limit the hardware solutions to low-power, low

cost, embedded systems, Hines et al. [14]

3.3.2 Multi scale retinex

In the multi-scale version, the equation for single-scale is

repeated several times for Gaussians filters with different

kernel sizes. The multiscale retinex version is then simply,

the weighted sum of a set of single-scale retinex images.

The main conceptual problem is that a number of image-

processing tasks are performed simultaneously without

sufficient regard to the interactions occurring between them.

The main practical consequence of this is that MSR is not

appropriate for applications which are sensitive to color. A

more serious problem is that the implementation of the gray

world algorithm is not optimal. In addition, when the

algorithm makes use of a large scale implies wide illumi-

nation uniformity, but the use of smaller scales yields poor

colour constancy results due to local violations of the gray

world assumption, and leads to a grayed out image.

Averaging the results mitigates the errors, but also reduces

the chances for good performance, and thus it is often

unsatisfactory. In real-time applications, MSR suffers from

the same problems as the SSR and moreover the number of

the computational operations increases with the number of

the scales used, Barnard and Funt [4].

3.3.3 Single scale selfquotient image

SQI is designed for dealing with the illumination variation

especially in face recognition. It requires only one template

image for each person because it assumes the same 3D

geometry for all persons. In the SQI method the illumination

is eliminated by division over a smoothed version of the

image itself. It is very simple and can be applied to any single

image. However, the weighted Gaussian filter used in SQI

can be uneffective in keeping sharp edges in low frequency

illumination fields, and the parameter selection is empirical

and complicated. For real-time applications, the computa-

tional load depends on both the image size and the empirical

parameters, as well as on the filter scale, in the sense that it is

necessary a specific filter for every convolution window.

3.3.4 Multi scale selfquotient image

The technique exhibits similarities to the MSR technique,

but unlike that it uses an anisotropic filter for the smoothing

operation. The question of how to scale up these techniques

for use with larger numbers of objects still remains unan-

swered. In real time applications, this technique suffers from

the same drawbacks as both SQI and MSR put together.

3.3.5 Discrete cosine transform

The salient feature of DCT is that it does not need any

training or modelling step and bootstrap sets and can be

easily implemented for high speed computation. There

remains another issue: which and how DCT coefficients

should be discarded to obtain the well normalized image.

Accordingly, illumination variations of images can be

reduced by diagonally discarding these low-frequency

coefficients. Nevertheless, shadowing and specularity

problems are not perfectly solved because they lie in the

same frequency band as some features.

3.3.6 Wavelet-based normalization algorithm

Wavelet transform performs multiscale analysis capability,

with good edge-preserving ability in low frequency illu-

mination fields. In addition, wavelet decomposition get

different band information of the images. It has the

advantage of taking into account both contrast and edge

enhancements simultaneously.
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3.3.7 Normalization histogram

Histogram equalization increases the global contrast of the

image while simultaneously compensating for the illumi-

nation conditions present at the image acquisition stage, it

represents a useful preprocessing step, which can ensure

enhanced and more robust recognition performance. While

histogram equalization re-maps the histogram of a given

image to a uniform distribution, the target distribution

could easily be replaced with an arbitrary one. There is no

theoretical justification of why the uniform distribution

should be preferred to other target distributions. It is a

technique simply implementable in real time applications,

thanks to the low computational work load.

3.3.8 General discussion on computational load

All the above methods use mainly logarithmic transfor-

mation of pixel values, and the convolution of the input

image (entirely of a region) with surrounding filters. The

filter sizes are empirically chosen to obtain a good tradeoff

between real time performance (a small kernel size filter

makes the method very fast, Holappa et al. [15]) and pupil

tracking accuracy. In general, when small kernel size filters

are used the intrinsic information of the image is severely

reduced while using large kernel size halo effects might

appear. However, single and multiscale retinex (SSR and

MSR), SQI and MSQI methods are computationally

expensive but a possible good accuracy could be achieved

to be used as off-line post processing algorithms. On the

contrary, DCT already was used to implement real-time

face recognition, Chen et al. [5], could provide good time

performance as well as wavelet-based technique. The his-

togram normalization is a simple equalization, therefore it

is a very fast technique. All techniques here suggested are

implemented in a modified version of the Matlab INface

toolbox.

3.4 Pupil tracking

Pupil tracking algorithm extracts the contour of the pupil

exploiting the higher contrast of the pupil than the back-

ground due to the IR components of the natural light.

Figure 5 shows the algorithm block diagram. More in

detail, the first block applies a binarization of the image,

obtained by using a threshold, which can be chosen

according to two different criteria. Figure 6 reports the

histogram of the eye, i.e. the distribution of the image pixel

vs the gray levels from 0 to 255. The threshold should

divide the histogram into two groups of pixels having only

two levels of gray; the zero level should group all the pixel

belonging to the pupil whereas the 255 level should iden-

tify the background. The first criterion implies choosing the

threshold as the absolute minimum value in the range

comprised between the two highest peaks of the eye his-

togram as reported in Fig. 6. The latter criterion implies

taking the threshold as the level of gray at which the

cumulative sum of pixels, starting from 0, achieves the 3 %

of the total pixels of the image. This value was experi-

mentally estimated in order to discriminate the pupil at

best. An example of the binarization process is reported in

Fig. 7. The group of second, third and fourth block con-

stitutes the preliminary pupil contour detection. More

specifically, the second block identifies two sheafs of lines

starting from the middle points of the vertical sides of the

image, with an angular aperture of 30�. As result of the

Fig. 5 Block diagram of the pupil tracking algorithm

Fig. 6 Example of the histogram of the eye: Tc refers to the threshold

identifying the eye and the sclera region

Fig. 7 Example the eye image

after the binarization process
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binarization process, the image borders are expected to

belong to the background, therefore the starting point of

each line has a value of 255 in terms of gray level. Anal-

ogously, the pupil is expected to be placed roughly in the

middle of the image (this is assured by an accurate free-

hand selection of the ROI). When each line encounters,

along its path, a dark pixel, this latter can be thought to

belong to the contour of the pupil. The third block calcu-

lates the centroid of these points. The fourth block removes

all the outliers, being these points very far from the cen-

troid with respect to the large point density (pupil edge). At

this stage, the set of the obtained points constitutes a large-

grain approximation of the contour. The fifth block iden-

tifies a sheaf of lines starting from the centroid with an

angular aperture of 360�, and detects all discontinuities, but

now from black to white. The sixth block is another

removal operation of the outliers. The result of this algo-

rithm is a set of points constituting the pupil edge. This set

will be the input of the fitting algorithm (see Fig. 8).

3.5 Ellipse fitting

Ellipse fitting algorithm is implemented for pupil contour

reconstruction, and for detecting the center of the eye.

Ellipse is considered as the best geometrical figure repre-

senting the eye, being the eye image captured by the

camera a projection of the eye in the mirror. According

to the ellipse construction, it can be expressed by an

implicit second order polynomial, being a central conic

(with b2 - 4ac \ 0), such as:

Fðx; yÞ ¼ ax2 þ bxyþ cy2 þ dxþ eyþ f ¼ 0 ð8Þ

Ellipse fitting algorithms present in the literature can be

divided into two broad techniques: the clustering/vot-ing

(CV) and the least square (LS) techniques. The first one

uses two main approaches, such as RANSAC and Hough

Transform. RANSAC technique is extremely robust but it

is time-demanding and memory-consuming, Forsyth and

Ponce [11], and being an iterative algorithm does not have

fixed computation time therefore, it is not suitable for real

time applications. The Hough Transform suffers from

sensitivity limitations due to the presence of spurious and

blurred peaks, Grimson and Huttenlocher [13], and even

though many efforts were made for computational cost

reduction, the algorithm seems still to be excessively

resource consuming for real time machine vision, Bennett

et al. [3]. The LS method is based on finding a set of

parameters that minimize the distance between the data

points and the ellipse. According to literature, this

technique fulfills the real time issue. One implementation

of LS technique has been introduced by Fitzgibbon et al.,

which is a direct computational method (i.e. B2AC, the

acronym is based on the well-known discriminant formula

for quadratic polynomials) based on the algebraic distance

with a quadratic constraint, Fitzgibbon et al. [10]. In this

work, we use a custom B2AC algorithm, where a gaussian

noise is added for algorithm stabilization, Maini [25], to

calculate the center of the pupil (that coincides with ellipse

center), the axes dimensions as well as the eccentricity.

3.6 Mapping of the position of the eye

The mapping procedure associates the eye center position

to the image plane of the scene, providing as result the gaze

point, see (see Fig. 9). An experimenter guides this pro-

cedure. Firstly, the camera is positioned to capture both the

scene (in our case the screen) and the mirror. In detail, tilt

of the camera is adjusted as well as the tilt of mirror shaft

and the tilt of the mirror to reflect the eyes. Each participant

is asked to look at some specific points of the screen. These

points are identified by coordinates si = (xsi, ysi) referred

to the image plane (i.e. the image plane captured by the

camera), (see Fig. 3). The participants were instructed to

keep their head as still as possible and to carefully look at

each target point without blinking until looking at the next

one.

The mapping function gets as input the center of the eye

coming from Ellipse fitting block, and the coordinates of

point on the image plane.

Mapping functions are quadratic polynomials defined

as:

Fig. 8 Application of the pupil tracking algorithm. More specifically,

in black are the set of points of the eye including the outliers; in blue
are represented the various lines constructions; in orange, the pupil

contour are highlighted

Fig. 9 Block Diagram of the mapping function calculation process
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xsi ¼ a11 þ a12xei þ a13yei þ a14xeiyei þ a15xei
2 þ a16yei

2

ð9Þ

ysi ¼ a21 þ a22xei þ a23yei þ a24xeiyei þ a25xei
2 þ a26yei

2

ð10Þ

where xsi, ysi are the coordinates of the image plane (i.e. the

coordinates of the point on the screen mapped into

the image plane captured by the camera), and xei, yei are the

coordinates of the center of the eye coming from the ellipse

fitting block, referred to the image plane as well. The

coefficients a1,1–6, and a2,1–6 are unknown. Since each

calibration point defines two equations, the system is over

constrained with 12 unknowns and 18 equations, and can

be solved using least square method (LSM).

3.7 Experimental setup

Ten subjects, nine males and one female, volunteered to

participate in the experiment. Six subjects had dark eyes

and four had bright eyes. The average age was of 26.8 with

a standard deviation of 1.5. The experiment was performed

in three illumination conditions: darkness, laboratory and

sunlight condition. In detail, the laboratory condition was

achieved by white neon lighting equally distributed in the

room with a power of 50 lumens. Dark condition is

achieved by reducing by 55% the power of the illumina-

tion, and the sunlight condition is obtained performing the

experiment at 12:30 a.m. at the top floor of the university

building in a room having two walls completely windowed.

The experimental protocol was structured in three phases.

In the first phase the participant was instructed on the

experiment modalities. In the second phase calibration

procedure was performed, and finally the experimental test

was carried out. The whole experiment lasted about 8 min;

the first 4 min were used to describe the experiment and the

remaining 4 for calibration and testing part. More in detail,

during the first phase all the subjects were asked to sit on a

comfortable chair in front of a screen at a fixed distance of

70 cm, while they wear the HATCAM system. The system

was also equipped with a chin-support in order to avoid

head movement. In the calibration procedure, the system

was tailored (position and orientation of mirror and cam-

era) to the user characteristic profile. During the experi-

mental test, all subjects were asked to look at the point

which appears on the screen, kept, one by one, for 2.5 s.

Each subject was presented with 36 randomly distributed

points for each illumination condition (see Fig. 10), for a

grand total of 108 points. The sequence of illumination

conditions is randomly changed for each subject to avoid

systematic errors.

The different processing methods were tested in Matlab

environment running on a hardware platform based on

2.2 GHz Dual Core with 2G memory computer. In order to

estimate run time per frame, we used a dedicated function

interrogating the timer.

3.8 Results and discussion

The aim of this work was to compare the performance of

seven photonormalization algorithms on pupil area detec-

tion and gaze tracking under different illumination condi-

tions. Results are reported and discussed in terms of errors

between the estimated and real measurements. The per-

formance evaluation of the different algorithms took into

account the execution time as well. More specifically,

Fig. 11 shows an example of the all photonormalization

techniques applied to the same gray-level image of an eye.

Although the algorithms provide results whose differences

can be easily detected at a glance, a more quantitative

comparison has to be done. We performed a careful sta-

tistical analysis of errors calculated as difference between

real and estimated measurements for eye tracking and pupil

area detection. The errors, in terms of pixels, computed

Fig. 10 Example of the points showed on the screen for accuracy

EGT system evaluation

Fig. 11 Example of all photonormalization techniques applied to the

same gray-eye image. In detail: a original image, b reconstructed

image by applying DCT, c Reconstructed image by applying SSR, d
Reconstructed image by applying MSR, e reconstructed image by

applying NH, f reconstructed image by applying SQI, g reconstructed

image by applying MSQ, h reconstructed image by applying WAN
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through all the subjects and frames, are not normally dis-

tributed. In Fig. 12, by way of example, the error histo-

grams, for one algorithm and illumination condition, are

reported.This is also confirmed by the Lilliefors [24] test,

which returns a p value rejecting the null hypothesis of

normality in all the cases. Accordingly, we used the

Kruskal and Wallis [19] (Kruskal–Wallis) test, which is a

non parametric one-way analysis of variance by ranks for

testing equality of population medians. Like most non-

parametric tests, Kruskal–Wallis is performed on ranked

data, so the measurement observations are converted to

their ranks in the overall data set. This test does assume an

identically shaped and scaled distribution for each group,

except for any difference in medians. The null hypothesis

is stated as the probability that the samples come from

identical populations, regardless their distributions.

In place of the mean of distributions, we considered the

median as a measure of location, usually taken when the

distribution is skewed, such as in our case (see Fig. 12),

Stavig and Gibbons [37]. Tables 1 and 2 show median and

dispersion of each photonormalization technique in the

three illumination conditions for both eye tracking and

pupil area detection. The lowest values of median are

reported in bold. As it is well-known from the statistical

analysis, in order to evaluate performance of the seven

photonormalization techniques, it is not sufficient to com-

pare the means rather than medians (not being normal

distributions) of the groups, but we have to assess whether

the groups statistically come from different populations.

Applying the Kruskal–Wallis test to all the possible com-

binations among the seven techniques relatively to eye

tracking and for each illumination condition we obtained

four statistically equivalent classes of techniques, i.e. the

null hypothesis in each class cannot be rejected. In Table 3,

four different classes are identified for each illumination

condition. The classes are sorted out by increasing median,

therefore the best photonormalization techniques belong to

the class 1, as it exhibits the lowest median of error dis-

tributions. The techniques in common with all the three

illumination conditions are the NH and DCT. Similarly, we

applied the same methodology for the pupil area error

distributions and results are reported in Table 4. In this

case, we identified three classes for each illumination

condition. Following the same approach as above, the

technique in common with the three illumination condi-

tions is the DCT. In addition to the error statistical analysis,

we also considered the execution time of the seven algo-

rithms under the three different illumination conditions.

Even in this case, the Lilliefors test was applied to the

distributions of the execution time calculated for each

frame of the video recordings, for all the photonormaliza-

tion techniques and illumination conditions, giving as

result that all the distributions are not normal. In order to

compare the execution time, median and dispersion of

execution time distributions for all the seven techniques

were calculated and reported in the Table 5. It is worth-

while noting that the MSQ technique takes much more time

than the other ones, and it is not suitable for real time

applications. This is due to the fact that, in order to achieve

an accuracy in pupil detection and gaze tracking compa-

rable to the other techniques, it requires a larger kernel size

filter with a subsequent higher computational load. These

values reported in the table do not change under the three

illumination conditions. The fastest algorithm resulted to

be the NH. The choice of the most suitable technique

depends on the need of having an accurate rather than fast

Fig. 12 Example of the distributions of errors in eye tracking and

pupil area detection

Table 1 Median and dispersion of eye tracking errors in pixels

SSR MSR SQI MSQ DCT WAN NH

Laboratory 19.686 ± 10.771 22.091 ± 12.243 28.234 ± 13.339 28.108 ± 13.979 16.214 ± 7.016 23.853 ± 8.221 17.114 ± 7.364

Sunlight 18.712 ± 7.045 18.067 ± 7.384 32.375 ± 17.215 34.064 ± 17.731 16.522 ± 6.641 26.036 ± 9.135 16.053 ± 6.235

Darkness 23.037 ± 12.908 21.415 ± 11.870 29.052 ± 13.874 34.368 ± 19.000 16.051 ± 6.595 22.504 ± 5.64 17.599 ± 7.229
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algorithm. From Table 3 we can state that, for eye tracking

in all the illumination conditions, DCT and NH are the best

photonormalization techniques. Reading the first column of

Table 4 we derive that for the pupil area detection in lab-

oratory condition DCT, SSR and MSR are the best tech-

niques; in sunlight condition DCT, SSQ, MSQ and WAN

show the best results and in darkness condition DCT, SSR,

MSR and NH exhibit the lowest error. These results show

that DCT is one of the best techniques in pupil area

detection, and it is also very effective for eye tracking. NH

shows good results for eye tracking in all conditions and

also in darkness condition for pupillometry. The remaining

techniques are, in general, less effective under the three

illumination conditions both in eye tracking and pupil-

lometry. If we take into account also the execution time the

best technique resulted to be NH, which is executed in less

than 1 ms followed by SSR which is executed in less than

18 ms (but effective only for pupillometry during labora-

tory and darkness conditions) and third is DCT which is

executed in less than 23 ms. The remaining techniques are

slower.

As DCT resulted to be the best technique, it was opti-

mized in C?? language using openframeworks library. In

this case, the execution time per frame resulted to be much

lower than that calculated in Matlab environment as

reported in Table 5. In addition, the execution time of the

Table 2 Median and dispersion of pupillometry errors in pixel2

SSR MSR SQI MSQ DCT WAN NH

Laboratory 35.847 ± 24.253 36.024 ± 21.287 36.231 ± 26.491 35.688 ± 23.711 30.815 ± 20.722 47.547 ± 26.264 39.092 ± 15.661

Sunlight 48.884 ± 23.126 49.377 ± 21.06 25.381 ± 17.999 30.643 ± 17.589 35.716 ± 18.172 33.489 ± 21.401 76.348 ± 20.696

Darkness 45.971 ± 24.770 46.981 ± 26.079 69.495 ± 33.799 71.424 ± 36.997 41.632 ± 26.202 110.695 ± 34.020 37.557 ± 16.675

Table 3 Eye tracking error classes

Class 1 Class 2 Class 3 Class 4

Laboratory

Techniques DCT, NH SSR MSR SQI, MSQ, WAN

p value 0.6242 0.3399

Sunlight

Techniques DCT, NH SSR, MSR WAN SQI, MSQ

p value 0.5921 0.7577 0.9077

Darkness

Techniques DCT, NH SSR, MSR, WAN SQI MSQ

p value 0.3426 0.6688

Table 5 Median and dispersion of the execution time (s) intended as per-frame processing time

SSR MSR SQI MSQ DCT WAN NH

0.0175 ± 0.0011 0.0407 ± 0.0018 0.3028 ± 0.0199 1.3700 ± 0.0496 0.0224 ± 0.0019 0.0255 ± 0.0050 0.0098 ± 0.0008

Table 4 Pupillometry error

classes
Class 1 Class 2 Class 3

Laboratory

Techniques DCT, SSR, MSR NH, SQI, MSQ WAN

p value 0.3548 0.9478

Sunlight

Techniques DCT, SQI, MSQ, WAN SSR, MSR NH

p value 0.9512 0.6143

Darkness

Techniques DCT, SSR, MSR, NH SQI, MSQ WAN

p value 0.1364 0.9400
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whole algorithm for eye tracking was computed in detail

and reported in Table 6 using the openframeworks com-

mand ofGetElapsedTimeMillis() which gives the elapsed

time expressed in milliseconds. It is worthwhile pointing

out that the reported execution time are compatible for real

time applications and future works will be addressed to

implement this algorithm in embedded systems based on

linux OS such as FOXBOARD.

3.9 Conclusions

In this paper, we investigated on seven photonormalization

techniques in order to increase the robustness of the

HATCAM eye tracker. Our key approach was to evaluate,

in terms of accuracy of eye tracking, pupillometry and

execution time, seven photonormalization techniques under

three different brightness conditions: laboratory, sunlight,

darkness. The results showed that the DCT method is the

most effective in terms of accuracy of gaze point and

pupillometry. The NH is the best in terms of eye tracking

but is less effective in the pupillometry; nevertheless it

results to be the fastest. The execution time is a crucial

issue for the real time processing. Moreover, a fast pro-

cessing together with a fast camera could allow the system

to also detect fast saccadic movements. In conclusion to

obtain a good effectiveness in all the illumination condi-

tions this study suggests of using DCT, although when the

HATCAM is used only as eye tracker, the preference goes

to the NH technique.
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