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Abstract

Morin is a natural polyphenol,originally isolated from members of the Moraceae family, that can be

extracted  from  leaves,  fruits,  stems  and  branches  of  numerous  plants.  Several  evidence

demonstrated that Morin could have a beneficial effect on several human diseases. In fact, Morin

exerts antioxidant,  antidiabetic,  anti-inflammatory,  antitumoral,  antihypertensive,  antibacterial,

hypouricemic, and neuroprotective  effects, by modulating the activity of many enzymes. In some

cases, Morin  shows a systemic protective action, reducing negative side effects of several drugs,

without interfering with their functions. In addition,  in vitro and in vivo studies demonstrated that

Morin exhibits very low toxicity levels and its chronic administration is well tolerated. All these

findings  suggest  that Morin could be used,  either alone or in  combination with other drugs,  to

prevent many human pathologies.

Keywords:  Morin,  flavonoid,  polyphenol,  natural  drug;  anti-oxidant,  anti-diabetic;  anti-

inflammatory.
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Introduction

Plants, yeast and bacteria are the most important source of bioactive compounds for pharmaceutical

and medicine industry. In fact, several commercially available drugs, aimed to contrast bacterial in-

fections or to treat a wide range of diseases including diabetes, cancer and neurodegeneration, have

been directly derived from natural molecules or their semi-synthetic derivatives [1]. However, the

procedures leading to isolation and identification of pharmacologically active molecules from nat-

ural sources are often expensive and complicated,  due to their relative abundance and chemical

complexity.

Nevertheless, in many cases, this strategy has been successful, and allowed the identification of new

innovative  drugsand bioactive  compounds  Well-known  examples  are  acetylsalicylic  acid  and

metformin, derived from salicylic acid isolated from Salix alba, and galegine obtained from Galega

officinalis, respectively. In the last decades, many natural compounds have been characterized for

their pharmacological properties and have become drugs. It is not a coincidence that most of these

substances are contained in the extracts used for centuries by traditional medicine [2].

Morin,  3,5,7,2',4'-pentahydroxyflavone,  is  a  flavonol  isolated  as  a  yellow pigment  from plants

belonging to the Moraceae family. Morin is one of the principal constituents of many preparations

of botanical origin, and is recommended by traditional medicine to treat several human pathologies

[3]. Compelling evidence demonstrated that Morin is a bioactive compound, showing a broad range

of pharmacological activities and very low cytotoxicity. However, the action mechanism of Morin

remain  to  be  clarified.  Herein,  we  report  a  detailed  analysis  of  biological  properties  and

pharmacological activities of Morin.

Natural sources of Morin

Morin is present in several fruits and vegetables such as almond hulls [4], guava (Psidium guajava

L.) leaves [5], old fustic (Chlorophora tinctoria), mill (Prunus dulcis) [6], osage orange (Maclura

pomifera), Acridocarpus orientalis [7], onion, apple and in several beverages such as tea, red wine

[8], seaweeds [9], coffee and cereal grains. In addition, it represents one of the constituent of several

traditional herbal medicines [3].

Absorption and metabolism of Morin

Likewise other polyphenols, the free and glycosylated form of Morin can be detected in all its

natural  sources  [10;  11].  After  oral  uploading,  glycosylated,  methylated  or  sulfated  forms  of

polyphenols pass intact through stomach and reach the small intestine, where they are hydrolysed

by pancreatic and intestinal enzymes, and converted to the aglycone form [12; 13]. The hydrolysis
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step is essential to allow  their  intestinal absorption. In fact, most of glycosylated forms are not

uploaded from the enterocytes of small intestine, but are transported into the large intestine, where

they are metabolized from the resident bacteria.  Specific shuttle proteins enable the hydrophilic

morin aglycone to cross cellular membrane. Experiments carried out with human aortic endothelial

cells confirmed the involvement of an energy-dependent transport system in the delivery of Morin

from blood into the cells [14]. Likely, a similar mechanism contributes to transport Morin from the

intestinal lumen into enterocytes. Nevertheless, studies with human Caco-2 cells, demonstrated that

Morin possesses a very low intestinal permeability (Papp = 0.62 m/s) when compared with other

polyphenols [15]. In line with these findings, tests on Wistar rats have confirmed that the plasma

concentration  of  Morin  does  not  exceed 1%, also  after  oral  administration  of  high  doses  (200

mg/Kg)  [16].  The  poor  bioavailability  of  Morin  is  mainly  due  to  the  activity  of  Multidrug

Resistance-Associated  Protein-1,  a  carrier protein  widely  present  on  the  plasma-membrane  of

intestinal cells that is  responsible for the extrusion of Morin [15]. The inhibition of the Multidrug

Resistance-Associated Protein-1 by specific  drugs  significantly increases Morin upload,  thereby

confirming  the  role  of  this  transporter  in  regulating  intestinal  absorption  of  Morin  [17].  Once

absorbed, specific enzymes convert Morin into its glucuronidated, methylated and sulfated forms ,

which are then poured into the bloodstream [18].

A significant  increase  of  Morin  aglycone  in  the  blood,  can  be  detected  after  high  oral  dose

administration  (>100  mg/Kg)  of  Morin,  suggesting  that  activities  of  intestinal  glucuronyl

transferase/sulfotranferase enzymes are easily saturable [19].  Moreover, it has been demonstrated

that  hepatic  enzymes,  such  as  glucuronyl-transferase/sulfo-transferase  [19],  or  non-hepatic

cytochrome P450 and sulfotransferases, participate to Morin metabolism [20].

Physiological effects of Morin

Citotoxicity

Several studies demonstrated the low cytotoxicity of Morin on cellular cultures and animal models.

In  vitro,  Morin  showed  weak  cytotoxic  effects  (IC50=250  ±  40  µM)  on  human  promyelocytic

leukemia cells [21]. Moreover, in vivo studies revealed no toxic effects of Morin on F344 rats. After

13 weeks treatment with high Morin doses (from about 300 to 2400 mg/Kg b.w.) the rats didn’t

show any adverse effects, displaying only a modest alteration of liver functionality or a moderate

increase in liver or kidney weight. Based on these observations, authors calculated the no-observed-

adverse-effect level of Morin at about 300 mg/Kg of body weight/day [22].
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Antiperglycemic and antidiabetic activity

In an attempt to identify the herbal preparations with antidiabetic activity, some researchers have

analysed more than 160 traditional medicinal plant extracts. The methanolic extract of  Psidium

guajava L., which contains a high concentration of Morin, was one of the most active preparations

[23].  This extract  is  able  to  inhibit  the activity  of PTP1B, one of the most  important  enzymes

involved in  the negative  regulation of  insulin  receptor  signalling pathway [24].  In vivo studies

demonstrated that diabetic mice daily treated with Psidium guajava extracts, showed a significant

reduction of glycaemia, as well as a decrease in lipid liver deposits [25]. Similarly, the  Psidium

guajava  Linn extracts  showed  a  significant  antihyperglycemic  and  antioxidative  effect  in

streptozotocin-induced diabetic rats [26]. Moreover, lower blood glucose levels has been detected

in subjects affected by maturity-onset diabetes and in healthy volunteers after  administration of

Psidium  guajava extracts.  [27].  These  evidence  suggested  that  extracts  containing  high  Morin

concentration can complement orthodox anti-diabetic therapies. 

In vitro screening test, using in-house collection of 19 polyphenols, identified Morin as a potent

non-competitive  inhibitor  of  the  PTP1B  enzyme.  HepG2  cells  treated  with  25-50  µM  Morin

exhibited increased insulin receptor phosphorylation, resulting in increased glycogen synthesis and

in a decreased gluconeogenesis. In addition, it has been observed that Morin stimulates the insulin

activity, suggesting that it can act as insulin mimetic and insulin sensitizer [28]. More recently, other

experimental  evidence  confirmed that  Morin  is  able  to  improve glucose  metabolism control  in

animal models. Vanitha P.  et al. showed that Morin administration (50 mg/kg b.w.) contributes to

decrease  the  blood  glucose  levels  at  fasting  in  streptozotocin-induced  diabetic  rats  [29].  The

observed effects are comparable with those obtained following administration of glibenclamide, a

well-known antidiabetic drug. The effectiveness of Morin is, at least in part, linked to its ability to

protect  pancreatic  insulin-producing  cells  from death,  thereby  sustaining  insulin  release,  blood

glucose absorption, and glycogen synthesis in liver [29]. Interestingly, it  has been observed that

effectiveness  of  Morin in  the control  of  the postprandial  glycaemia in  diabetic  rats  is  strongly

enhanced when Morin is administered as zinc complex [30]. In fact, in diabetic rats, the chronic

treatment with low doses of the zinc-Morin complex (5 mg/kg b.w.) resulted in a glucose level

decrease  at  fasting,  in  an  improvement  in  insulin  sensitivity,,  in  a  reduction  of  the  level  of

glycosylated haemoglobin, circulating lipids and lipoproteins with respect to untreated diabetic rats.

No  significant  adverse  effects  or  alterations  in  both  carbohydrate  and  lipids  metabolism were

observed in  the control  rats  following the administration of the zinc-Morin complex [30].  It  is

important to consider that zinc ions are also potent inhibitors of PTP1B enzyme [31],  and that

intracellular zinc fluctuations contribute to the modulation of activity of several phosphotyrosine

protein phosphatases and to the regulation of specific signalling pathways [32]. Hence, Morin may
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contribute to enhance insulin receptor signalling by two different mechanisms: i)  direct inhibition

of PTP1B, ii) by increasing transport of zinc ions into the cells (Figure 1). 

Diabetes  induces  various  complications  including  neuropathy,  endothelial  dysfunction,  and

retinopathy. These effects are partially due to the covalent modification of proteins and lipids by

glucose.  These  glycosylated  adducts,  named  “advanced  glycation  end  products”are  thought  to

contribute  to  the  development  of  micro-  and  macrovascular  diseases.  Interestingly,  it  has  been

observed that Morin inhibits protein glycosylation in a concentration dependent manner, [33]. In

diabetic rats, one week treatment with Morin (15-30 mg/Kg b.w.)  significantly decreases the level

of inflammatory markers (TNF, IL1, IL-6) in brain,  , meanwhile increasing the circulating levels

of neurotrophic factors, thereby exerting a neuroprotective action. These results suggest that Morin,

besides to represent an effective anti-diabetic agent, could protect nervous cells from degeneration,

avoiding the onset of the  encephalopathy in subjects affected by diabetes [34].

Antioxidant activityReactive oxygen species (ROS) are implicated in the regulation of several cell

signalling pathways. When ROS production exceeds the ROS scavenging activity of antioxidant

enzymes (i.e. superoxide dismutase, catalase and glutathione peroxidase), proteins, carbohydrates,

lipids, and nucleic acids, can be damaged [35]. Polyphenols are natural antioxidants that can act as a

first line of cellular defence toward ROS [36]. Antioxidant activity of Morin is mainly due to the

presence of a double bond between C2-C3 atoms as well as to the presence of a hydroxyl group

activating the double bond at the C-3 position. Moreover, anti-lipid-peroxidation activity of Morin

seems to be strictly related with the presence of two hydroxyl groups on the 2' and 4' positions of

the B ring [37-39]. While the hydroxyl group in 4' position of B ring is thought to be responsible for

the antiradical activity of Morin, Myricetin, and Quercetin, the hydroxyl group in position 2' of B

ring, exclusively present in Morin, seems to be related to its more effective antiradical activity.  By

in silico studies, Morales J. et al. [40; 41]  demonstrated that the hydroxyl group in position 2' of B

ring forms a hydrogen bond with the oxygen atom in position 1 of C ring, inducing rotation of the B

ring,  which   acquires  a  planar  configuration  respect  to  ring  C.  This  configuration  favours  the

transmission of electronic effects from the B ring to the double bond of C ring, thereby making

Morin a good natural radical scavenger [42]. In vitro Morin inhibits the oxidation of LDL induced

by  2,2'-azo-bis-(2-amidinopropane)  dihydrochloride  and  contributes  to  prevent  oxidized  LDL

uptake  by  macrophages,  reducing  expression  of  CD36,  the  receptor  responsible  for  their

internalization. Furthermore, Morin can be useful to prevent negative effects of lipid peroxidation,

contributing  to  atherosclerosis  prevention  [43;  44]  and  protecting  cardiomyocytes,  endothelial

cells, and erythrocytes from the oxidative action of peroxyl radicals generated following treatment

with pro-oxidant agents such as 2,2'-azo-bis (2-amidinopropane) dihydrochloride, xanthine oxidase
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plus  hypoxanthine  system,  menadione,  3-morpholinosydnonimine-N-ethylcarbamide (SIN-1),  N-

nitrosodiethylamine.  Interestingly,  in  all  cases  Morin  resulted  more  effective  than  classical

antioxidant compounds such as Trolox (a vitamin E analogue), mannitol, and ascorbate [45-49].

Jonnalagadda J.V. et al. [50] demonstrated that Morin, due to its antioxidant and anti-inflammatory

activity, protects rats from Gentamicin-induced nephrotoxicity. In fact, Gentamicincytotoxic effects

are mainly mediated by ROS, which  trigger and sustainchronic inflammatory response that is the

cause of  tubular necrosis [51]. Administration of Gentamicin in combination with Morin (from 50

to 200 mg/Kg b.w./day) for fifteen consecutive days, leads to a decrease of the antibiotic-induced

nephrotoxicity,  reduction  of  cells  damage,  and  improvement  of  kidney  functionality.  In  vitro

experiments  showed  that  Morin  protects  lung  fibroblasts  from  DNA damage  and  from  lipid

peroxidation caused by exposition to H2O2 or γ-irradiation [52; 53]. Pre-treatment with Morin (100

mg/kg  b.w.)  in  mice  irradiated  with -irradiation  strongly  reduces  the  intestinal  mucosa

deterioration, inhibits inflammation and cells death, by preventing the intracellular reducing agents

depletion and the malondialdehyde production. These results suggested that Morin behaves as a

potent radioprotective agent [54]. Moreover, Kapoor R. et al showed that Morin decreases the ROS

levels  in  primary  rat  hepatocytes  exposed  to  high  glucose  concentration  (40  mM),  thereby

contributing to maintain mitochondrial integrity, to inhibit release of pro-apoptotic proteins, and to

prevent DNA damages [55].  In keeping with these findings,  in vivo  studies showed that Morin

treatment  (100  mg/Kg  b.w.)  protects  rat's  liver  exposed  to  cyclophosphamide  from  oxidative

damage [56]. Similar results  have also  been obtained  by Ray S.  et al  on rabbits treated with

cyclophosphamide/flutamide  Besides  to  protect  from the  oxidative  stress,  Morin  contributes  to

prevent  the  cholesterol  increase [57].  Morin  minimizes  the  side  toxic  effect  induced  by  some

chemotherapy agents such as doxorubicin and mitomycin C. In fact, Kok L.D. et al [58], showed

that Morin administration protects non-malignant cells from cytotoxic activity of drugs, without

interfering  with  their  effectiveness.  Morin  can also  inhibit  xanthine  oxidase,  one  of  the  most

important enzyme involved in the ROS production following ischemic-reperfusion events [59; 60].

In addition, it has been observed that Morin stimulates the expression of genes encoding proteins

involved in the antioxidant response (such as superoxide dismutase, catalase, heme oxygenase-1,

glutathione peroxidase and glutathione reductase) both in vitro and  in animal models,  preserving

the intracellular levels of glutathione, ascorbic acid and α-tocopherol [52; 61-63] (Figure 2).

Metal ions are essential for cells, being cofactors of several proteins and enzymes. Nevertheless,

when present in excess, they can contribute to elevate intracellular ROS levels through different

mechanisms,  such  as  the  Fenton  reaction.  Several  polyphenols  are  able  to  chelate  metals,

contributing to reduce their toxicity. Accordingly, it has been observed that  in vitro Morin forms

stable complexes with transition metal ions, such as iron, copper, chromium and cobalt, thereby
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inhibiting free metal-catalysed ROS production [64; 65]. In some cases, metal-Morin complexes are

more potent free radical scavengers than free Morin, mainly due to the acquisition of additional

superoxide dismutating centers [66].

Antinflammatory and antiallergic activity

Chronic  inflammation  contributes  to  the  development  of  pathologies  such  as  cancer,  diabetes,

cardiovascular and chronic bowel diseases, as well as of neurodegenerative disorders [67; 68]. At

the  molecular  level,  numerous  molecules  and  factors,  including  cytokines,  chemokines,  pro-

inflammatory  transcription  factors  and  enzymes,  and  matrix  metalloproteinases,  regulate

inflammation.  Many data  show that  Morin  is  able  to  inhibit  most  of  the  effectors  involved in

inflammation acting as a potent anti-inflammatotry agent by inhibiting activated macrophage cells

both in vitro [69; 70] and in vivo [71]. In vivo experiments demonstrated that Morin administration

(from 10 to 200 mg/kg b.w.) reduces colitis  triggered by treatment with trinitrobenzenesulfonic

acid,  preserving  intestinal  cells  from damages.  In  fact,  rats  treated  with  Morin  show a  lower

deterioration of bowel, a fewer granulocyte infiltration in the intestinal mucosa, and lower levels of

leukotriene B4 and malondialdehyde with respect to untreated rats [72]. More recently, Sunil K. et

al [73] demonstrated that Morin inhibits the activity of the transcription factor NF-kB, one of the

most important effector in the inflammatory response [74]. Morin inhibits the IkBα kinase pathway,

favouring the stabilization of IkBα, thus reducing the expression of inducible form of nitric oxide

synthase, as well as of the COX-2, IL-6, IL-8, and TNF genes. Similar results were obtained using

LPS-stimulated  RAW 264.7  cells  and macrophages  derived from mice  models  [75].  Moreover,

Morin is effective in reducing liver inflammation of rats  fed with a high fructose diet.  Excessive

fructose consumption causes activation of the SphK1/S1P-NF-kB signalling pathway, which,  in

turn,  triggers  liver  inflammation,  insulin  resistance,  and  the  increase  of  fat  depots  [76;  77].

Treatment with Morin causes a down-regulation of SphK1 activity and blocks the NF-kB nuclear

translocation,  inhibiting secretion of IL-1β, IL-6 and TNF-α by hepatocytes [78]. Other  in vivo

studies  demonstrated  that  pre-treatment  with  Morin,  reduces  NF-kB  activation,  the  expression

levels of TNF-α, IL-1, IL-6, and iNOS, and protects mice from the hepatic damage [79]. Taken

together, these data demonstrated that anti-inflammatory activity of Morin is, in part, attributable to

its ability to inhibit the NF-kB activity [80].

Few data  are   available  on   the  anti-inflammatory  activity  of  Morin  metabolites,  but  they  are

probably the main effectors of the observed phenomena. In keeping with this hypothesis, it has been

observed that sulfates/glucuronides metabolites of Morin strongly reduce the production of NO,

TNF-α,  and IL-12 in  macrophages  activated  with  LPS.  Interestingly,  these  metabolites  show a

potency 1000 fold higher than Morin. [81].
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Studies on mast cells suggested that Morin possesses also anti-allergic activity. For example, Morin

inhibits the release of IL-6, IL-8, and TNF-α from human umbilical cord blood-derived cultured

mast cells [82; 83]. Analyses of signalling pathways showed that Morin-induced inhibition of mast

cells degranulation is mediated by the inhibition of Syk kinase activation [84]. In fact, Morin is a

reversible inhibitor (IC50 value of 5.7 μM) of Fyn kinase, the main positive effector of Syk kinase in

mast  cells  following  IgE-mediated  activation  [85].  In  vivo  experiments  confirmed  that  Morin

suppresses IgE-mediated PCA in mice and inhibits degranulation and production of TNF-α and IL-4

in antigen-stimulated mast cells. Thus, reversible inhibition of Fyn kinase is the main mechanism

through which Morin exerts its anti-allergic activity [86].

 

 Antitumoral activity

Cancer is  the second leading cause of death in  the western countries  [87].  Carcinogenesis  is  a

multistep process, encompassing several stages consistent with initiation, which elicits oncogenes

activation  or  DNA  damages,  promotion,  in  which  anomalous  cells  proliferate  generating

preneoplastic  foci,  and progression,  the final stage in which preneoplastic  cells  shift  toward an

uncontrolled and invasive phenotype [88]. It has been suggested that numerous natural compounds,

including Morin, exert an anticancer preventive activity, reducing DNA damages and modulating

signalling pathways involved in proliferation and differentiation [89].

Chemopreventive activity

Morin inhibits carcinogenic activity and tumor-promoting activity of several chemical compounds.

For  instance,  treatment  with  Morin  (50  mg/kg  for  three  days)  protects  rats  treated  with  7,12-

dimethylbenz(a)-anthracene from oxidative stress, decreases the expression of tumor markers and

inhibits  tumor  growth  [90].  Moreover,  it  has  been  observed  that  Morin  blocks  liver  cells

transformation induced by 12-O-tetradecanoylphorbol-13-acetate [91].

These  evidence suggest  that  Morin could  act  as  an  anticancer  agent  better  than other  classical

cytotoxic drugs.

Inhibition of proliferation and induction of apoptosis

Morin inhibits  proliferation of cancer cells  by interfering with cell  cycle.  Brown J.  et al  [92]

demonstrated  that  Morin  induces  the  G2/M  phase cell  cycle  arrest in human  oral  squamous

carcinoma cells, without inducing apoptosis.  Other evidence demonstrated that Morin is able to

induce apoptosis in LNCaP prostate cancer cells and in Human Leukemia HL-60 cells. In HL-60

cells Morin promotes the activation of caspase-3 and Bax, stimulates expression of caspase-3 and -

9, triggers cytochrome c release from mitochondria and decreases expression of antiapoptotic Bcl-2
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expression.  These data  suggest  that apoptosis  induced by Morin might  involve a  mitochondria-

dependent pathway and   caspase-3 [8; 93]. Recently, studies conducted on multiple myeloma cells

demonstrated  that  Morin  increases  apoptosis  of  cancer  cells  through  the  SHP1-mediated

inactivation  of  STAT3  (signal  transducers  and  activator  of  transcription  3)  signalling  pathway.

Finally, it has been demonstrated that Morin increases apoptosis of the cancer cells by 30%, without

affecting viability of normal cells [94].

Modulation of signalling pathways

In animals treated with pro-carcinogenic agent 7,12-dimethylbenz(a)-anthracene, Morin treatment

inhibits tumor growth and decreases the expression of breast cancer specific tumor markers, thereby

confirming its anti-carcinogenic activity [90]. In addition, Morin could prevent the growth and the

dissemination of metastatic cancer cells by inhibiting the activity of NF-kB transcription factor. In

fact, a low Morin dose (50 μM) is sufficient to revert mesenchymal phenotype of highly metastatic

MDA-MB-231  breast  cancer  cells,  reducing  expression  of  N-cadherin,  metalloproteinase-9

secretion, and inhibiting activation of Akt pathway [95].

Inhibition of pro-carcinogenic effects of metal compounds

Morin binds metal ions such as iron, copper, chromium, vanadium and cobalt, thus inhibiting ROS

production  through  the  Fenton  or  Haber–Weiss  reactions.  In  addition,  Morin  prevents  metal-

catalyzed free radicals generation, thereby protecting biologically active molecules from oxidative

stress. It is interesting to note that metal-Morin complexes are more effective than Morin alone in

removing free radicals [96-98].

Effects on phase I enzymes and on P-glycoprotein

The  therapeutic  efficacy  of  many  anticancer  drugs depends  in  part  on  expression  of  drug-

metabolising enzymes such as those belonging to cytochrome P450 family.  These enzymes are

mainly expressed  in liver cells, but are also found  in the cells of esophageal squamous mucosa,

duodenum, and jejunum [99].  Many studies carried out on animal models,   showed that Morin

inhibits expression of Cytochrome P450-2C9 isoenzyme in liver [100] and of Cytochrome P450-

3A4 [101] in intestinal mucosa. Cytochrome P450 enzymes play a key role in the metabolism of

sterols, prostaglandins, drugs, or xenobiotic compounds. In some cases, these enzymes contribute to

conversion of  xenobiotic  compounds in highly reactive metabolites able  to react  with proteins,

lipids or nucleic acids, thereby initiating the carcinogenesis process. Polyphenols and Morin can: i)

increase the plasma lifetime of chemotherapy drugs, thus improving their effectiveness; ii) inhibit
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cytochrome  P450-mediated  carcinogen  activation,  reducing  intracellular  amount  of  pro-

carcinogenic compounds [102].

Failure of chemotherapy is  often due to high activity of P-glycoprotein,  a an efflux membrane

transporter  over-expressed  in  several  type  of  tumors.  The  P-glycoprotein  contributes  to  the

extrusion of many molecules, including anticancer drugs, immunosuppressants and antibiotics, thus

preventing  them  from  reaching  their  physiological  targets.  For  this  reasons  P-glycoprotein  is

considered  a  key  player  in  the  induction  of  chemoresistance  toward  a  large  number  of

chemotherapy  drugs  such  as  taxanes,  etoposide,  and  vinca-alkaloids  [103].  Several  studies

demonstrated that Morin inhibits P-glycoprotein, thereby acting as a bio-enhancer that increases the

bioavailability and bioefficacy of drugs [104-106]. This hypothesis is confirmed by independent

studies  showing  that  Morin  increases  the  bioavailability  of  etoposide  [107],  tamoxifen  [108],

vinblastine [109], nicardipine [110], methotrexate [111], paclitaxel [112], daunomycin [113] and

talinolol [114] in normal rats, as well as of etoposide in mammary tumor-bearing rats [115]. These

findings suggest that Morin administration could increase the dose of drug absorbed by cells, thus

increasing treatment efficacy [116].

Anti-hypertensive activity

Genetic factors, obesity and diabetes have a relevant role in the development of hypertension, which

is one of the most important risk factors for cardiovascular diseases in the world [117]. Endothelial

dysfunction, inflammation, and excessive ROS production contribute to the development of this

pathological  condition,  suggesting  that  antioxidant  agents  could  be  used  as  adjuvants  to  the

treatment of hypertension [118; 119]. Herrera M.D. et al., reported that Morin contributes to relax

vessels contracted by noradrenaline, KCl, and  phorbol ester derivatives, and to enhance the effects

of classical anti-hypertensive drugs, such as isoprenaline and sodium nitroprusside [120]. Morin

administration (50 mg/kg for six consecutive weeks) improves the conditions of albino Wistar rats

treated with deoxycorticosterone acetate-salt, a potent hypertension-inducing factor. In particular, it

has been observed that Morin induces a considerable decrease of the systolic and diastolic blood

pressure,  and  a  decrease  of   hepatic  and  renal  functional  markers  with  respect  to  untreated

hypertensive rats. Similar results have been confirmed in a recent study, showing that renal and

cardiac damages induced by deoxycorticosterone acetate are reduced in animals pre-treated with

Morin [121; 122]. Beneficial effects of Morin have been described also in hypertensive rats feeded

with  a  diet  rich  in  fructose.  In  this  animals,  Morin  pre-treatment  causes  a  reduction  of  blood

pressure, of serum insulin, of triglyceride levels, and a downregulation of endothelin-1 expression, a

vasoactive  peptide  that  contributes  to  the  development  of  hypertension  [123].  In  addition,  in

diabetic rats Morin promotes the production of the vasorelaxant nitric oxide, and the inhibition of

11



thromboxane A2, which acts as a vasoconstrictor. Taken together, these findings confirm the anti-

hypertensive role of Morin [124].

Antibacterial activity

Antimicrobial properties of many plant extracts have long been known [125; 126]. Kang S.S. et al

reported  that  Morin  inhibits  both  sortase  A and  B,  two  enzymes  expressed  in  Staphylococcus

aureus. In Gram-positive bacteria, Sortase A plays a critical function, modulating the adhesion of

bacteria  to the host tissue. Inhibition of sortase A by Morin prevents the establishment of infections,

without  affecting  microbial  viability  [127].  DNA helicase  is  another  enzyme  essential  for  cell

growth of bacteria, virus, and eukaryotic cells being involved in DNA metabolism .  In vitro tests

showed that Morin can inhibit ATPase activity of DNA helicase RepA, with an IC50 value of 45 M.

These results suggested that Morin could be useful to contrast growth of both  Gram-positive and

Gram-negative bacterial species [128]. Looking for natural antibacterial compounds, Arima H. and

Danno G. found that Morin-3-O--L-lyxopyranoside and Morin-3-O--L-arabopyranoside isolated

from leaves of guava (Psidium guajava L.) behave as antibacterial agents, showing a minimum

inhibitory  concentration  of  300  and  150  g/ml  for  Bacillus  cereus and  Salmonella  enteritidis,

respectively [11]. Further studies demonstrated that Morin inhibits growth of  E.coli and  S.aureus

[129]. More recently, it has been highlighted that Morin-3-O-arabinoside and Morin-3-O-lyxoside

extracted from P. guajava laves show antibacterial activity against several strains of spoilage and

foodborne  pathogenic  bacteria,  including  B.  stearothermophilus,  B.  thermosphacta,  E.  coli ,  L.

monocytogenes,  P. fluorescens,  S. enterica,  S. aureus, and  V. cholerae  (Figure 3). Taken together,

these findings suggest that Morin acts as food preservatives and can be useful to improve the shelf-

life and the safety of foods, thereby protecting humans from foodborne diseases.

Anti-uricemic activity

Uric acid is the final metabolite of purine catabolic pathwayand is  one  of  the  main antioxidant

agents of blood. The excess of uric acid is eliminated via the urine. When its synthesis is increased,

or its excretion is impaired, it rushes causing pain, chronic inflammatory, and kidney failure [130].

Recent studies demonstrated that Morin can be useful to reduce serum levels of uric acid in patients

suffering  of  hyperuricemia   .  It  has  been  observed  that  Morin  acts  through  two  different

mechanisms:  i)  by  inhibiting  liver  xanthine  oxidase  (Ki=7.9  μM),  thus  reducing conversion  of

xanthine into uric acid; ii) by inhibiting human urate anion transporter-1, the main responsible for

the urate reabsorption,present on the brush-border membrane of renal proximal tubule [131]. In vivo

studies   showed  that  in  hyperuricemic  animal  models,  the  treatment  with  Morin  leads  to  a

significant  reduction  of  the  plasma uric  acid  levels,  without  impairing  total  serum antioxidant
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capacity  or  causing  others  undesirable  side  effects  [132;  22].  Morin  administration  (50  and

100mg/kg  b.w.  for  3  days)  may  also  contribute  to  restore normal  levels  of uric  acid in  a

hyperuricemic mice model [133]. Moreover, Morin behaves as a competitive inhibitor of human

urate transporter in vitro with a Ki of about 6 μM, resulting more potent, but much less toxic, than

some  classical  urate-lowering  agents  (including  probenecid  and  sulfinpyrazone)  [134;  135].

Interestingly, Shi Y.W. et al reported that administration of ethanol extract of Ramulus Mori, which

contains mulberroside A, oxyresveratrol, 4-hydroxycinnamic acid, resveratrol, 7- hydroxycumarin

and Morin, contributes to regulate renal organic ion transporters, thereby reducing the levels of uric

acid and protecting the kidney function [136]. Taken together, these data suggest that Morin could

be considered an excellent alternative drug to the treatment of hyperuricemic patients.

Neuroprotective and anti-amyloidogenic activity

Neuronal cells are highly sensitive to environmental conditions, and  may suffer severe damages

when  exposed  to  oxidative  stress  conditions.  Chronic  ROS  production  triggers  and  feeds

inflammatory  processes,  thereby  inducing  apoptosis  of  nervous  cells  [137-138].  Compelling

evidence demonstrated that Morin exerts a relevant neuroprotective effect on cells and on animal

models,  and it  may be used as a new therapeutic agent for the treatment  of neurodegenerative

diseases. Morin exerts its activity through different mechanisms:

i) It  attenuates  ROS  formation  in  differentiated  PC12  cells  treated  with  1-methyl-4-

phenylpyridinium ion,  inhibits  caspase-3 activation and apoptosis.  In addition,  in animal

models,  Morin  treatment  relieves  symptoms of  Parkinson's  disease,  and  prevents

dopaminergic neuronal death and the striatal dopamine depletion in mice treated with 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine  [139].  Ibarretxe  G.  et  al [48]  showed  that

nanomolar concentrations of Morin protect oligodendrocytes and cortical neurons from ROS

accumulation mediated by AMPA receptors overstimulation.

ii) It  inhibits  glycogen  synthase  kinase  3,  a  pivotal  enzyme  involved  in  the  onset  of  the

Alzheimer disease. It has been demonstrated that dysfunction of glycogen synthase kinase 3

induces  alterations  in  the  choline  metabolism,  impairs  axonal  transport,  microtubule

dynamics  and  neurogenesis,  triggers  apoptosis,  blocks  the  differentiation  of  newborn

neurons, induces morphological alteration in neuronal cells and impairs their connectivity

[140]. Inhibition of glycogen synthase kinase 3 contributes to improve condition of patients

suffering  of  Alzheimer  disease.  Low  Morin  concentrations  (1-10  μM)  in  vitro  inhibits

glycogen synthase kinase 3 activity, thereby reducing Aβ-induced tau hyperphosphorylation,

without affecting cell viability. Comparable results were obtained with animal models of

Alzheimer disease. In these animals, Morin treatment (10 mg/kg b.w. for 7 days) results in a
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reduction of total levels of tau hyperphosphorylation, confirming the hypothesis that Morin

may have a potential role as therapeutic agent for treatment of tauopathies [141].

iii)  It inhibits NF-kB activity, thereby behaving as an anti-inflammatory agent.

iv)  It  inhibits  assembling  and/or  acts  as  disintegrating  agent  of  amyloid  fibers,  the  well

organized proteinaceous structures appearing in the late stages of degenerative pathologies

such  as  Alzheimer,  Parkinson’s  disease  or  type-2  diabetes.  [142].  Similar  results  were

obtained with peptide β-amyloid.  In vitro, Morin inhibits β-amyloid peptide fibrillogenesis

with IC50 value of about 25 µM and protects HT22 murine neuroblastoma cells from the

oxidative stress triggered by amyloid fibrils, confirming that this flavonoid, differently from

many other natural molecules, has a double action mechanism [143]. Nevertheless, the exact

mechanism by which Morin exerts its inhibitory activity on fibrillogenesis has not been yet

completely elucidated [144].  In silico analyses carried out using atomistic explicit-solvent

molecular dynamics simulations,  showed that  Morin binds to the ends of the β-amyloid

growing fibrils,  blocking the protein polymerization process [145].  Morin modifies both

tertiary  and  quaternary  structure  of  newborn  protofibrils,  thereby  inhibiting  their

cytotoxicity and their conversion in long mature amyloid fibrils [146].

v) It  inhibits  acetylcholinesterase  activity,  preventing  the  loss  of  acetylcholine,  a  typical

pathological event that characterizes patients affected by Alzheimer’s disease  [147]. 

vi) It  inhibits  β-Secretase  1,  the  enzyme  involved  in  the  abnormal  production  of  the

amyloidogenic peptide Aβ42.  In silico docking analysis revealed that Morin targets active

site  of   β-Secretase  1,  interacting  with  the  catalytic  residue  Asp228.  Morin  is  a  good

inhibitor of β-Secretase 1 and shows an IC50 value of about 20 µM [148].

vii)  It inhibits the membrane destructuring ability of wild type, and of  -synuclein mutants,

proteins implicated in the pathophysiology of both familial and sporadic Parkinson's disease.

Caruana M. et al showed that Morin and others polyphenols, such as baicalein and apigenin,

protect membrane against perturbations induced by aggregates obtained from wild-type and

some α-synuclein mutants.

Taken  together,  all  these  data  suggest  that  Morin  can  be  considered  an  interesting  starting

compound for the development of new generation drugs useful to the treatment of Parkinson's and

Alzheimer's disease [149].

Inhibitory activity of Morin on enzyme activity and protein function

Morin acts as inhibitor of key regulatory enzymes involved in the control of many intracellular

signalling pathways, showing IC50 or Ki values near to µM range (Table I). Morin binds into  the

active  site,  acting  as  competitive  inhibitor  of  the  cytochrome  P450-2C9,  of  monocarboxylate
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transporter-1, of multidrug resistance proteins 1 and 2, and of the fatty acid synthase. Nevertheless,

in other cases, the docking site of Morin remain to be identified. It has been reported that Morin

behaves as a non competitive inhibitor of DNA helicase RepA and PTP1B, or as a mixed type

inhibitor of urate-anion transporter. Finally, it has been suggested that  some polyphenols, including

Morin, could bind to specific sites on the enzymes surface, modulating theiractivity. For example,

X-ray analysis of the ATP synthase-Morin complex has actually identified a "polyphenol binding

pocket" [150]. Iglesias  et al [151] demonstrated that Morin is able to act as a potent inhibitor of

phospholipase A2 from Crotalus durissus cascavella venom, showing an IC50 value of about 5 M.

Morin interacts with the hydrophobic catalytic pocket of the enzyme, thereby inducing a strong

change  in  the  secondary  structure.  Nevertheless,  interaction  with  Morin  does  not  suppress

inflammatory and neurotoxic effects of phospholipase A2. Interestingly, independent works showed

that Quercetin,  a molecule structurally similar to Morin,  has a similar behaviour and is able to

inhibit  both  F1-ATPase  from bovine  heart  mitochondria  [152]  and  phospholipase  A2  from  C.

durissus terrificus venom [153]. Finally, Morin is able to interact with  human serum albumin with a

dissociation  constant  value  of  about  9  M.  The  bind  of  Morin  to  albumin  causes  significant

alteration of protein secondary structure content, suggesting that Morin could acts as a modulator of

albumin physiological functions [154].

Taken together, these evidence confirm that several enzymes and proteins possess binding sites for

polyphenols, thereby reinforcing the hypothesis that these natural compounds can participate to the

regulation of several human physiological functions.

Other activities of Morin

In  vitro studies  on  rat  chondrocytes,  have  demonstrated  that  Morin  is  able  to  inhibit

metalloproteinases  release  induced  by  IL-1β  stimulation,  thereby  preventing  breakdown  of  the

cartilage  matrix.  In  vivo investigation  on  a  rat  model  of  anterior  cruciate  ligament  transection

(ACLT)-induced osteoarthritis, demonstrated that Morin administration (50 mg/kg/d for four weeks)

inhibits  cartilage  degradation.  These  results  suggest  that  Morin  could  be  used  as  a  possible

therapeutic agent for the treatment of osteoarthritis [155].

Morin  has  been  reported  to  possess  protective  effect  on  hepatic  fibrosis  induced  by

dimethylnitrosamine in rats. Oral administration of Morin leads to reduction of hepatic expression

of collagen type I, TGF-β1, and α-SMA, some of most important hepatic fibrosis-related factors. In

addition, in dimethylnitrosamine treated rats, Morin administration normalizes the level of serum

alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin. These results suggest

that Morin may be useful also to prevent the development of hepatic fibrosis and cirrhosis [156].
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Finally,  flavonoids  such as Morin show inhibitory activity  against  a  variety of virus,  including

herpes simplex virus (HSV), respiratory syncytial virus, poliovirus and Sindbis virus.

Conclusions

Despite  the  improvement  of  knowledge  and  technologies,  the  war  against  pathologies  such  as

diabetes, cardiovascular diseases, cancer and neurodegenerative diseases is far from over. This is

due to a deficit of knowledge about the actual molecular mechanism contributing to the onset and

development of diseases and to the lack of innovative drugs. Many lines of evidence indicate that

development of new drugs is a key objective for the future.

To date, natural extracts or medicinal foods, recommended by traditional medicines to prevent or

treat several human pathologies, are the major font of innovative bioactive molecules.

In  the  last  years,  the  concept  of  dietary chemoprevention  is  gaining increasing  attention and

numerous natural compounds have recently been suggested as potential therapeutic agents. In this

context, Morin is a very interesting molecule with healing properties. One of the peculiarity of

Morin is its strong antioxidant and antiradical activity. Differently to other polyphenols, that can

generate ROS by undergoing auto-oxidation reactions [157], Morin retains its antioxidant character

also at  high concentration.  Morin is not toxic for animals for doses up to 300 mg/Kg of body

weight/day [158], and it is highly effective in protecting cells from oxidant insults generated by

oxidants, xenobiotics, excess of metals or radiations.  ROS can modulate the function of several

transcription  factors,  influencing  the  expression  of  genes  involved  in  the  synthesis  of  pro-

inflammatory cytokines, and can regulate cell survival and proliferation. This evidence can explain

why  Morin  may  act  also  as  a  potent  anti-inflammatory  and  antitumoral  agent.  Since  chronic

oxidative stress contributes to onset of diabetes, kidney failure, hypertension and neurodegenerative

diseases, we can suppose that Morin could exert a preventive activity toward such pathologies.

Thus,  the  ROS scavenger  activity  of  Morin  can  alone  justify  many of  the  observed beneficial

pharmacological activities.

Nevertheless, the direct interaction of Morin with protein targets or enzymes, strongly contributes to

the modulation of signalling pathways involved in the regulation of cells physiology or metabolism.

The high number of protein targets identified, suggest that Morin can simultaneously modulates  the

activity  of  different  signalling  pathway,  thereby  influencing  several  cellular  functions.  Finally,

Morin is  able  to inhibit  some cellular  membrane efflux transporters,  as  well  as some enzymes

belonging to cytochrome P450 family. The use of Morin to increase absorption and effectiveness of

drugs has been proposed and beneficial effects have been demonstrated.

In summary, to date a systemic analysis of Morin effects on human patients is still lacking. The few

tests performed on human patients confirm the data obtained with animal models [27] and, despite
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they are still insufficient to elect Morin as a true natural drug, they are an excellent starting point for

further investigations.
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Table I: Inhibitory effect of morin on potential physiological substrates

Enzyme or protein IC50 

(μM)

Ki 

(μM)

Reference

Fyn kinase 5.7 [86]

Trypsin 27 [159]

Topoisomerase I 139 [160]

Topoisomerase II 135 [160]

Fatty acid synthase 2.3 [161]

Xantine oxidase 7.9 [132]

ATP synthase (E.coli) 70 [150]

Esterase 1.8 [162]

Beta-site APP Cleaving Enzyme-1, β-secretase 21.7 [148]

ATP synthase (rat) 60 [163]

Monocarboxylate transporter 1 6.4 [164]

Glycogen synthase kinase β 1-10 [141]

Aldose reductase ~ 1 [165]

Peroxisome proliferator-activated receptor-α 8.6 [166]

Peroxisome proliferator-activated receptor-β 16 [166]

Peroxisome proliferator-activated receptor-γ 43 [166]

PTP1B 5.9 [28]

TC-PTP 19 [28]

YopH 5 [28]

IF1 3.6 [28]

IF2 66 [28]

LTP1 99 [28]

Acetylcholinesterase 210 [147]

Sortase A 37.4 [127]

Sortase B 8.5 [127]

Cytochrome P4502C9 1.8 [101]

URAT1 17 [134]

Glutathione S-transferase P1-1 > 50 [167]

Glutathione Reductase 118.7 [168]

HIV-1 Proteinase 24 [169]
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Multidrug resistance proteins 1 49 [170]

Multidrug resistance proteins 2 > 50 [170]

Cytochrome P4502C9 (CYP1A2) 9.5 [100]

DNA helicase RepA 45 18.1 [128]

Human serum albumin 9 [154]

Phospholipases A2 ~ 5 [171]
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Figure Legends

Fig. 1. Molecular mechanism of insulin sensitizing action of Morin. Morin, in the free form or

complexed with Zn2+ ions,  passes through the plasma membrane. Morin and Zn2+ ions  interact

with enzymes involved in the negative regulation of insulin receptor, such as PTP1B and/or other

PTPs .

 

Fig. 2. Antioxidant, anti-inflammatory and antitumoral activity of Morin. Morin contributes to

neutralize  the  negative  effects  of  ROS.  Besides  to  inhibit  ROS  production,  Morin  stimulates

expression of several antioxidant enzymes (*), decreasing the intracellular ROS levels and NF-kB

transcriptional  activity. Morin  contributes  to  also  inhibit  P-glycoproteins  activity  enhancing the

effectiveness  of  chemoterapy  drugs.  As  a  consequence,  Morin  sensitizes  cancer  cells  against

apoptosis and inhibits cell migration and invasion. Finally, through inhibition of Cytochrome P450

family enzymes Morin, inhibits activation of pro-carcinogenic molecules.

Fig. 3. Antibacterial and neuroprotective effects of Morin.
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