
Robust Multi-agent Q-learning
in Cooperative Games with Adversaries

Eleni Nisioti, Daan Bloembergen, Michael Kaisers
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract

We present RoM-Q 1, a new Q-learning-like algorithm
for finding policies robust to attacks in multi-agent sys-
tems (MAS). We consider a novel type of attack, where
a team of adversaries, aware of the optimal multi-agent
Q-value function, performs a worst-case selection of
both the agents to attack and the actions to perform.
Our motivation lies in real-world MAS where vulner-
abilities of particular agents emerge due to their char-
acteristics and robust policies need to be learned with-
out requiring the simulation of attacks during training.
In our simulations, where we train policies using RoM-
Q, Q-learning and minimax-Q and derive corresponding
adversarial attacks, we observe that policies learned us-
ing RoM-Q are more robust, as they accrue the highest
rewards against all considered adversarial attacks.

Introduction
Many real-world problems involve multi-agent systems
(MAS), where uncertainty is an emerging property arising
due to interactions among agents, rather than from external
model misspecification. Reinforcement learning (RL) algo-
rithms are increasingly being used to optimize the operation
of different types of MAS, with most recent prominent ex-
amples being complex multi-player computer games (Ope-
nAI et al. 2019; Vinyals et al. 2019). In multi-agent RL
(MARL), agents co-evolve and optimize policies based on
their expectation of rewards experienced in their environ-
ment. As rewards depend on the interactions between agents,
multi-agent policies are not inherently robust: a misalign-
ment of the behavior of a small number of agents between
the training and evaluation of a MAS can lead to arbitrarily
bad performance.

Robustness is a long-standing pursuit in the control and
reinforcement learning theory (Zhou, Doyle, and Glover
1996; Morimoto and Doya 2005). While single-agent ap-
proaches pursue robustness during learning or planning by
considering stochastic perturbations in transition probabili-
ties and rewards (Abbasi Yadkori et al. 2013; Mohammed

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The implementation of RoM-Q and simulations conducted for
this paper can be found at https://github.com/eleninisioti/robust-
marl

et al. 2019) or time-variant Markov dynamics (Lecarpentier
and Rachelson 2019), MARL studies robustness primarily
in terms of performance in the presence of different types
of agents. All robust approaches share, however, a common
ground: the environment is governed by some sort of uncer-
tainty. In MARL, a policy is considered robust when agents
perform well in various multi-agent environments, not nec-
essarily encountered during the training process.

Minimax decision rules are a common tool for design-
ing robust policies in MARL (Littman 1994; Li et al. 2019).
Devised in game theory to compute best-response policies
in zero-sum games (von Neumann and Morgenstern 1947),
minimax decision rules can be straightforwardly adopted
to design agents acting in their best interests by best-
responding to other agents that behave as zero-sum oppo-
nents (Littman 1994). As is customary, in this work we refer
to agents behaving as zero-sum opponents as adversaries.

Our motivation primarily lies in critical multi-agent sys-
tems: e.g., the operation of communication networks and
power grids is characterized by highly undesirable unsafe
regions, as they are associated with loss of information due
to over-flows or physical damage of components due to over-
loads. Policies for such systems are traditionally learned
offline under the assumption that all agents aim at maxi-
mizing a common objective. This leads to policies that are
not necessarily robust to misbehavior of even single agents
and, therefore, may remain vulnerable to attacks during de-
ployment. In this work, we focus on misbehavior due to a
fixed number of adversaries that arrive at some random time
step in the system, perform an adversarial selection of tar-
get agents and, then, directly manipulate their actions. We
refer to this type of attack as a multi-agent adversarial at-
tack. This is a novel type of attack that extends the classical
notion of worst-case selection of actions in an adversarial
attack to an adversarial choice among multiple agents. It is
of particular interest in MAS where individual agents may
be more vulnerable or vital to the operation of a network, as
their misbehavior can cause cascading failures.

To learn robust multi-agent policies we design a temporal
difference learning algorithm, where the value of the target
policy is computed assuming that a multi-agent adversarial
attack is taking place. We refer to this algorithm as robust
multi-agent Q-learning (RoM-Q). Training using RoM-Q is
performed in a centralized manner, where an agent observ-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/478963755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/eleninisioti/robust-marl
https://github.com/eleninisioti/robust-marl


ing the MAS states and actions learns a Q-value function
in the joint state-action space. To evaluate the target policy,
the agent considers all possible selections of a given num-
ber of adversaries and updates the Q-value function for the
worst-case selection. Thus, the learning update requires the
solution of different linear programs, each one following the
form used by minimax-Q, whose number depends on the
considered number of agents and adversaries. During train-
ing, each agent employs an ε-greedy policy, while during
evaluation, the greedy policy is executed.

Simulations are performed on a stylized problem setting
capturing the abstract essence of load balancing. Inspired by
real-world systems such as computer networks and the smart
grid, we model the MAS as a network of nodes, assigned
with the execution of tasks, that aims at minimizing the cost
of its operation and, most importantly, avoid an over-flow.
We use the terms nodes and agents interchangeably.

Related work
When studying robustness in MARL, there are two essen-
tially distinct ways to view adversaries. The Bayesian ap-
proach views adversaries as players in a game played be-
tween themselves and the cooperative agents comprising the
system (Johanson, Zinkevich, and Bowling 2008). Under
this direction, agents need to follow some form of opponent-
aware reinforcement learning and attempt to learn poli-
cies that converge to the Nash equilibria of a general-sum
or zero-sum game. The second approach computes best-
response policies to attacks based on the agents’ current es-
timation of the values of the optimal policy that can be found
a priori. A robust operator “imagines” attacks during train-
ing, in order to come up with a policy robust to this type
of attack without requiring the simulation of attacks during
training (Klima et al. 2019). As the effect of an attack is cal-
culated based on an agent’s own value function, a model of
the adversary is not required.

When studying robustnes in MARL, in addition to the
policies followed by adversaries, we also need to define the
type of attack. We consider that policies define the actions
that an adversary performs when controlling an agent, while
the type of attack includes all other parameters required to
fully describe the attack, which, among others, may include
the number of attackers, selection of agents and probabil-
ity of occurrence. We can argue that safety is in the eye of
the designer, with different approaches to robustness antic-
ipating different types of attacks. In the spirit of the recent
deep reinforcement learning bloom, adversaries often ma-
nipulate the observations of agents with the aim of fooling
the function approximators used for decision making. This
type of attack can be at most as effective as the direct manip-
ulation of actions considered in our single-step multi-agent
adversarial attack. The work in (Lin et al. 2020) introduces
a novel attack in cooperative systems, where an attacker first
uses reinforcement learning to find the actions that will have
the worst long-term effect on the system reward and, then,
manipulates the observations of an agent to lead the victim
to taking the wrong action. In contrast, our attack is short-
sighted, choosing the actions that will bring the lowest re-
ward in the current state. This is more appropriate in criti-

cal systems, where adversarial attacks attempt to bring the
largest damage in a short time span.

A variety of RL algorithms have already been combined
with minimax updates. The stage was set by the semi-
nal work of (Littman 1994) that introduced minimax-Q by
blending the framework of MDPs with Markov games. Min-
imax policy gradients were introduced in (Li et al. 2019) to
ensure robustness to various types of opponents in a multi-
agent setting with a continuous action space. Robust tempo-
ral difference learning (Klima et al. 2019) considered secu-
rity games where agents are attacked with a certain probabil-
ity and modified classical temporal difference learning with
minimax updates. Our work resembles this approach, as we
also define a temporal difference algorithm for being robust
to a certain type of attack. However, the type of attack that
we consider here differs from the one in (Klima et al. 2019):
adversaries in our formulation come in a certain number and
find the most vulnerable agents to attack, instead of assum-
ing that all agents are attacked with an equal probability.

Background
For our mathematical notation, we use S to represent a set,
~s for a vector, lower-case letters for random variables and
upper-case letters for functions. We only use vector notation
when referring to variables of a MAS2. We indicate that a
variable refers to agent i with a subscript, and use super-
scripts to denote other indexes, such as the time step.

Temporal difference learning Single-agent reinforce-
ment learning agents interact with an environment that can
be modeled as a Markov Decision Process (MDP) (Sutton
and Barto 1998). At a given point in time, an agent is in a
state s, performs an action a and observes a reward r and
the next state s′. The environment is characterized by the
reward function R(s, a) and the transition probability func-
tion T (s, a, s′). In temporal difference learning, an agent
computes the optimal policy in the absence of knowledge
of R(s, a) and T (s, a, s′). To achieve this, the agent contin-
uously refines its estimation of the Q-function, which cap-
tures the expected reward for any given state and action, by
interacting with the environment. The update equation for
Q-values is:

Qπ(s, a) = Qπ(s, a) + α
(
r + γV T (s′)−Qπ(s, a)

)
(1)

where α is the learning rate, quantifying how quickly the
agent forgets information about the past, and γ is the dis-
count factor, quantifying how much the agent discounts fu-
ture information. The quantity in the parenthesis is the tem-
poral difference error and denotes the difference between the
previous estimate of the policy and the improved estimate,
after experience gathered in the current time step. V T (s′) is
termed the value of the target policy and differs among learn-
ing algorithms. In Q-learning the value of the target policy
is equal to maxaQ(s′, a).

2We ignore the fact that a single agent can have a multi-
dimensional state or action space while the state of a MAS can
be one-dimensional, as it is not relevant to our discussion.



Stochastic games Stochastic games offer a learning
framework for a MAS. They can be seen as an augmenta-
tion of repeated games with states and one-step dynamics
described by an MDP. At a given point in time, the MAS
is in a state ~s that gives rise to a game played between N
agents. To model a MAS as a zero-sum game, we can as-
sume that agents are divided into D defenders and K ad-
versaries. Then, πD(~s) denotes the joint policy followed by
defenders, which is a mapping from the joint state space SD
to the joint action space AD. Equivalently, πA(~s) denotes
the joint policy followed by adversaries.

The value of a state ~s from the perspective of a defender
under the target policy can be computed as:

V T (~s) = max
πD(~s)

min
~aK

∑
~aD

Q(~s,~aK ,~aD)πD(~aD|~s) (2)

Minimax-Q Minimax-Q is an extension of Q-learning to
zero-sum stochastic games, where the policies of two play-
ers are proven to converge to the Nash Equilibrium of the
game (Littman 1994). The target value in this case is as
defined in Eq. (2). At each learning iteration, the player
chooses an action to execute based on its policy π(s) and
the exploration scheme, observes the state reward, the tran-
sition of the game state and the action of the adversary aK ,
and updates its Q-value function based on its current estima-
tion of the value function. It then uses linear programming
to update the policy and value function as follows:

π(s) = arg max
π′D(s)

min
a′K

∑
a′D

Q(s, a′K , a
′
D)π′D(~aD|s) (3)

V π(s) = min
a′K

∑
a′D

Q(s, a′K , a
′
D)πD(~aD|s) (4)

Robust Multi-agent Q-learning
In this section we present RoM-Q, a MARL algorithm for
learning policies robust to multi-agent adversarial attacks.

In our formulation, N agents are defenders, with each
agent i ∈ [1, · · · , N ] performing actions based on the pol-
icy defined over its own action space and the system state.
We denote the set of possible partitions of agents into K ad-
versaries and D defenders as CK , while cK denotes such a
partition. We employ temporal difference learning, as pre-
sented in (1), and define the value of the target policy as:

V T (~s) = min
~aj

min
j∈CK

max
π−j(~s)

∑
~a−j

Q(~s,~a−j ,~aj)π−j(~aD|~s)

(5)

where j refers to a set of agents and −j refers to all agents
not belonging in this set (−j = N/j). The two minimiz-
ers model the adversarial selection of both the target agents
(j ∈ Ck) and their actions (aj), assuming that all other
agents stick to their intended policy (maxπ−j ). Thus, our up-
date is similar to the one performed by minimax-Q, with one
notable difference: the type of an agent is not known a priori.
Instead, agents are attacked adversarially, by picking the par-
tition that will give the minimum Q-value. While minimax-
Q requires solving one linear program per sampling step, our

Algorithm 1: RoM-Q
Data: N ,S,A, α, γ, ε,K, h
Result: N policies πi(s)

1 for ~s ∈ S,~a ∈ A, i ∈ N do
2 Initialize Q(~s,~a), V (~s), πi(~s)
3 end
4 while learning has not converged do
5 with probability ε perform random action ~a

otherwise, select actions ~a = arg maxQ(~s,~a)
6 Observe reward r, next state ~s′
7 if s′ is terminal then
8 target = r
9 Sample new initial state s′

10 else
11 target = r + γV (~s′)
12 end
13 Q(~s,~a) = (1− α)Q(~s,~a) + α(target)
14 Find all possible subsets ck of K adversaries out

of N agents
15 for ck ∈ C do
16 π−ck(~s) = arg maxπ−ck

min~ack
∑
~a−ck

π−ck(~s)Q(~s,~ack ,~a−ck)

17 V−ck(~s) = min~ack
∑
~a−ck

π−ck [~s]Q(~s,~ack ,~a−ck)

18 end
19 Choose adversarial set c̄k = arg minck(V−ck(~s))
20 for node i ∈ {N − ck} do
21 πi(~s) = π−c̄k[i](~s)
22 end
23 V (~s) = min~ac̄k

∑
~a−c̄k

π−c̄k(~s)Q(~s,~ac̄k ,~a−c̄k)

24 end

addition of minimizing over all possible partitions renders
the calculation of V T (~s) a mixed integer linear program.
RoM-Q finds the optimal solution of Eq. (5) by solving a
linear program for each possible partition cK , the number of
possible partitions being (N !)/(K − N)!. This exhaustive
enumeration entails high complexity in general, but was not
prohibitive for the simulations performed on the toy network
examined in this paper. Future work may improve scaling by
approximating solutions with sampling.

Algorithm 1 presents the pseudocode for RoM-Q, which
requires as input the set of agents N , the state and action
space (S,A), the learning hyper-parameters (α, γ, ε), the
size of the adversarial attackK and the problem horizon (h).
At each time step, the MAS performs a random or greedy
action (line 5), observes the next state and reward (line 6)
and updates its Q-value function and value function (lines
13-23). In lines (7-10) the MAS is reset due to reaching a
terminal state. In our case, a state is terminal when one of
the agents has over-flown or the MAS has survived for h
consecutive time steps. While updating the Q-value func-
tion (line 13) requires a single update, updating the value
function requires computing the value of the target policy
for every possible partition of the MAS into defenders and
adversaries (lines 15-18) and then updating based on the par-
tition with the lowest value (19-23).



The multi-agent adversarial attack
In this section, we describe the type of attack that inspired
the design of RoM-Q. In general, this attack can be used
during evaluation against any policy and is not a component
of the RoM-Q algorithm.

An attack is essentially a deterministic policy that maps
states to agent and action selections. We denote this policy as
σ(~s) = (ck,~ack), where ck denotes the set of nodes selected
for attack and ~ack the actions they will perform. We con-
sider that adversaries, which arrive during evaluation with
a certain probability δ, select both nodes and actions adver-
sarially. These two selection steps are not independent: the
adversarial selection of nodes takes into account the effect
of the performed actions, so that the attack brings about the
largest decrease in the immediate reward in hindsight, i.e.
after the remaining defenders perform actions according to
the learned policy.

We assume that training has completed and the MAS has
learned a Q-value function Q(~s,~a) (which is not necessarily
the optimal one). To compute the optimal adversarial attack,
σ∗(~s), we consider all possible partitions C of the N agents
into K adversaries and N − K defenders, denoted as CK ,
and, for each partition cK ∈ C solve the following problem:

min
cK

V−cK (~s) = min
~acK

max
~a−cK

Q∗(~s,~a−ck ,~acK ) (6)

This means that adversaries marginalize over the actions of
defenders and, then, perform the actions that will incur the
minimum expected reward, based on the optimal joint pol-
icy. We denote this quantity as Vck(s), as it is a type of
value function, indicating the expected reward when adver-
sarial agents and defenders perform their actions and the
optimal policy is followed thereafter. We present the pseu-
docode for finding the optimal adversarial policy σ∗(~s) for a
given learned Q-value function Q∗(~s,~a) in Algorithm 2. We
should emphasize that the adversarial policy is determinis-
tic: as no learning takes place during deployment and pol-
icy π∗ is deterministic, computing a probabilistic adversarial
policy is not required. Thus, the value function computed by
the adversarial attack (line 4 in Algorithm 2) differs from the
value of the target policy in line 23 of Algorithm 1, which
was computed assuming that defenders follow a probabilis-
tic policy.

Experiments and results
In this section we evaluate the ability of RoM-Q to find
multi-agent policies that are robust to multi-agent adver-
sarial attacks. We experiment with a load balancing prob-
lem for a toy network characterized by a critical over-flow
area. We compare the performance of policies learned by
a multi-agent system using RoM-Q to the performance of
policies learned by Q-learning and minimax-Q, where eval-
uation takes into account the ability of these methods to get
optimal rewards in the absence of attacks, as well as their
ability to perform well when attacks take place.

Load balancing To simplify the analysis and reach intu-
itive conclusions, we limit simulations in this paper to a toy

Algorithm 2: Computing the optimal policy of a
multi-agent adversarial attack.

Data: Q∗(~s,~a),K
Result: σ∗(~s),∀~s ∈ S

1 Find all possible subsets cK of K adversaries out of
N nodes

2 for ~s ∈ S do
3 for ck ∈ C do
4 Vck(~s) = minack maxa−ck

Q∗(~s,~ack ,~a−ck)

5 end
6 Choose adversarial set c̄k = arg minck(Vck(~s))
7 ~ac̄k = arg min~ac̄k

max−ack Q
∗(~s,~ac̄k ,~a−c̄k)

8 σ∗(~s) = [c̄k,~ac̄k ]
9 end

n1

u1, p
over
1 , rarr

1 , pexec
1 , c1

n2

u2, p
over
2 , rarr

2 , pexec
2 , c2

poff
2,1

poff
2,1

Figure 1: Schematic of a toy network consisting of two
nodes.

network consisting of two inter-connected nodes, as pre-
sented in Fig. 1. Each node i is modeled by its capacity
ci, i.e. the maximum number of tasks it can hold, and the
probability of arrival of a new task in a given time step, rarr

i .
The number of tasks currently stored in a node comprise its
state and the system state consists of the states of all nodes.
Nodes are capable of executing a task using the action aexec

i

and off-loading a task using the action aoff
i . Executing a task

incurs a penalty pexec
i , while off-loading a task from node

i to node j incurs a penalty poff
i,j . Finally, over-flows incur

a disproportionately large penalty pover
i . In addition to these

costs received per time step, nodes also receive a reward ui
if the node has not over-flown in the current time step. This
toy problem can be viewed as a multi-agent variant of the
classical cliff walking problem, where the cliff region is de-
termined by the capacities of the nodes.

Training consists of Strain learning samples. If one of the
nodes over-flows, all nodes are reset to a zero state. At the
end of the training process, we find an optimal policy π∗i (~s)
for each node i. Policies are defined over the joint state space
and the action space of that node, which is the Cartesian
product of its two actions, i.e. πi(s) : S → Aei × Aoi . No
attacks take place during training.

Evaluation requires the definition of the adversarial pol-
icy, which is used to perform attacks during Seval eval-
uation steps. At each step, a greedy multi-agent policy
π∗(~s) competes against a greedy adversarial policy σ∗(~s).
Adversaries arrive randomly with a probability δ in a
given evaluation step. In our simulations, we consider
that K = 1 adversaries may arrive during evaluation.



Table 1: Learning hyper-parameters
Parameter Value

training samples Strain 1000000
evaluation samples Seval 20000

trials I 40
learning rate α 0.01

exploration rate ε 0.1
discount factor γ 0.9

Table 2: Network modeling parameters
Parameter Value
reward u [8, 8]

over-flow penalty pover [100,100]
capacity c [3,3]

arrival rate rarr [0.5, 0.5]
execution penalty pexec [4,1]
off-loading penalty poff [2,2]

number of adversaries K 1

We generate a pool of adversarial policies for evaluation:
{σ∗Q-learning(s), σ∗minimax-Q(s), σ∗RoM-Q(s)}. These are the ad-
versarial policies found using Algorithm 2 based on the opti-
mal policies learned using Q-learning (π∗Q-learning), minimax-
Q (π∗minimax-Q) and RoM-Q ((π∗RoM-Q)), respectively. In ad-
dition to evaluating the optimal policy learned by each
method, we also save intermediate policies during training
to examine how training converges to robust solutions. Fi-
nally, we compute confidence intervals at a 95% confidence
level, presented in plots as shaded regions, by performing I
independent training and evaluation trials, where the number
of the trial is used as a seed. We present all hyper-parameters
associated with learning in Table 1 and all parameters re-
lated to the modeling of the nodes and system in Table 2. By
varying these modeling parameters we can examine a wide
range of problem settings, where the properties of nodes
give rise to different vulnerabilities and optimal policies. In
our current simulations, we have opted for a problem set-
ting where node 1 receives a higher penalty for executing
than off-loading a packet and node 2 has a higher cost for
off-loading than executing. To make comparisons easier, we
choose the same arrival rate for the two nodes and set it to
a value low enough to ensure that nodes do not need to con-
stantly execute tasks to avoid an over-flow.

Learning optimal and adversarial policies
We now analyze the different learning methods in terms of
their ability to find policies with optimal rewards in the ab-
sence of attacks. We also visualize these optimal policies,
the state visits when following them during evaluation, and
their optimal adversarial policy.

The heatmaps in the left column of Fig. 2 illustrate the
number of visits per state using color, as well as the opti-
mal policies of the two nodes, using arrows. As we only
show visits after convergence to the optimal policy, some
states are never visited. There are two arrows starting from
each square of the state space: the green one visualizes the
actions of n1 and the orange one the actions of n2. When

Figure 2: Heatmap of state visits and actions of the opti-
mal policy (left) and the adversarial policies (right) for Q-
learning, minimax-Q and RoM-Q (from top to bottom).

node i executes a task, i.e. ae
i = 1, the arrow points to

a decrease in the value of its state (leftwards for n1 and
downwards for n2). Similarly, when node i off-loads a task,
i.e. aoff

i = 1, the arrow points to an increase in the value
of the other node’s state (upwards for n1 and rightwards
for n2) and a decrease in the value of its own state. For
states that have no indicated action, the optimal action is
~a = [ae1 = 0, ao1 = 0, ae2 = 0, ao2 = 0]. The right
column presents the respective optimal adversarial policies
σ∗Q-learning(s), σ∗minimax-Q(s), σ∗RoM-Q(s), where, in each state,
the node chosen to be controlled by the adversary and the
adversarial actions are shown in the appropriate color.

We observe that none of the three methods over-flows in
the absence of attacks. Q-learning learns policies that keep
the two nodes close to capacity, as nodes prefer to remain
inactive when they have a small number of tasks, in order
to avoid penalties associated with the off-loading or execu-
tion of tasks. The adversarial policy chooses to attack node



Figure 3: Evaluating Q-learning, minimax-Q and RoM-Q
in terms of the improvement of the average system re-
ward per sample during training. The optimal solution is
indicated with a dashed black line.

1 when its load is low, while node 2 is attacked when node
1 has a high load. Thus, adversaries following σ∗Q-learning at-
tack nodes in order to manipulate them into over-flowing the
other node. We can also observe that adversaries sometimes
choose to execute tasks: although this appears to come in
contrast to the adversary’s objective of over-flowing the sys-
tem, it incurs an additional cost, and can therefore be worst-
case for an one-step attacker. Minimax-Q learns a more
conservative policy, restricting nodes to visiting states with
low and intermediate node values. The optimal adversary
for minimax-Q, σ∗minimax-Q, has the objective of over-flowing
nodes by keeping them idle. Finally, RoM-Q learns a policy
where executions are frequent for both nodes. An important
difference between the policy learned by minimax-Q and
RoM-Q is that the former keeps the nodes idle when their
state is equal to 1. As we will see later in this section, this
makes minimax-Q less robust to attacks taking place during
evaluation.

To get a better understanding of the learning process, we
visualize the improvement in the performance of policies
during training time. In Figure 3, we present the evolution
of rewards, averaged over I trials, with training time mea-
sured in samples of experience. Performance is measured as
the average system reward per evaluation sample. As the du-
ration of an episode is 50 and, based on the values in Table
2, the optimal sum of rewards accrued during an episode is
700, the optimal value for the average reward is 14. In order
to examine the ability of the policies to avoid over-flow dur-
ing the course of an evaluation episode, we have measured
the evolution of the duration of episodes and observed that
all algorithms learn a policy that prevents over-flows after
around 0.2 · 106 samples.

Behavior under attacks
In this section we visualize the behavior of the learned poli-
cies when attacks take place during evaluation. Note that the
actions presented in this section are the ones under the opti-
mal policy, and differ from the ones executed during evalu-
ation, as, with probability δ = 1, an adversary is controlling
one of the two nodes. The adversarial policy used to produce
all heatmaps in Figure 4 is the one depicted on the bottom
right of Figure 2.

In Figure 4, we observe that Q-learning over-flows often
when being under attack. This is because its optimal policy
keeps both nodes close to capacity. Similarly, state visits un-
der minimax-Q visit the over-flow area, but with smaller fre-
quency. In contrast, RoM-Q remains in the safe region most
of the time despite attacks taking place. We also observe that
the policy learned using Q-learning experiences more over-
flows for the second node, while over-flows for minimax-Q
are distributed more evenly between the two nodes. This is
due to the adversarial policy, which attempts to over-flow
node 2 by manipulating node 1 when the load is low. By
being more robust than Q-learning, minimax-Q avoids some
over-flows occurring early in the episode, but ultimately fails
significantly more often than RoM-Q.

Robustness analysis
We now evaluate the performance of policies learned
by the different algorithms against different adver-
sarial policies, sampled from the following pool:
{σ∗Q-learning(s), σ∗minimax-Q(s), σ∗RoM-Q(s)}, and for differ-
ent probabilities of attack, δ.

We can derive various interesting observations by closely
inspecting Fig. 5. First, the performance of Q-learning drops
drastically for δ > 0.1 for any type of attack and exhibits
larger variation. Second, minimax-Q and RoM-Q exhibit
better robustness to attacks than Q-learning. Third, in the ab-
sence of attacks during evaluation, minimax-Q and RoM-Q
achieve slightly lower rewards than Q-learning, due to the
fact that their optimal policies are more conservative and
nodes execute tasks often in order to stay far from the over-
flow area. Finally, and most importantly, the policies learned
using RoM-Q achieve the highest reward against all types of
attacks and are thus the most robust.

Discussion and conclusions
We presented a reinforcement learning algorithm for learn-
ing policies robust to adversarial attacks taking place during
deployment. Attacks in our framework occur with unknown
probability and consist of a pre-determined number of ad-
versaries that choose both agents and their actions adversar-
ially. We demonstrated through simulations on a toy network
that taking into account the different vulnerabilities of agents
comprising the MAS is important when adversaries choose
their victims adversarially.

A limitation of RoM-Q is the complexity entailed in solv-
ing at each learning iteration a number of linear programs
that scales with the number of possible combinations of K
adversaries out of N agents. Although policies are learned
off-line, and can thus profit from simulation environments
rich in resources, it would be useful to find a variant of
RoM-Q with reduced complexity. If one considers that the
learning update in RoM-Q involves a mixed integer linear
program, a promising direction would be to express it in
a standard form that allows for approximate solutions and
comes with optimality guarantees, such as a multiple knap-
sack problem (Martello and Toth 1990), or to use (anytime)
sampling approximations. Overall, we believe that our new
approach defines a robustness to multi-agent adversarial at-



Figure 4: (From left to right): State visits and optimal actions for different probabilities of attack for Q-learning, minimax-Q
and RoM-Q.

Figure 5: (From left to right): Performance measured as the total reward accrued in episode for different adversarial and optimal
policies.

tacks that is both much needed and widely applicable for
deploying multi-agent learning solutions to critical systems.

References
[Abbasi Yadkori et al. 2013] Abbasi Yadkori, Y.; Bartlett,
P. L.; Kanade, V.; Seldin, Y.; and Szepesvari, C. 2013. On-
line learning in markov decision processes with adversari-
ally chosen transition probability distributions. In Advances
in Neural Information Processing Systems 26. Curran Asso-
ciates, Inc. 2508–2516.

[Johanson, Zinkevich, and Bowling 2008] Johanson, M.;
Zinkevich, M.; and Bowling, M. 2008. Computing robust
counter-strategies. In Platt, J. C.; Koller, D.; Singer, Y.;
and Roweis, S. T., eds., Advances in Neural Information
Processing Systems 20. Curran Associates, Inc. 721–728.

[Klima et al. 2019] Klima, R.; Bloembergen, D.; Kaisers,
M.; and Tuyls, K. 2019. Robust temporal difference learn-
ing for critical domains. In Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, 350–358.

[Lecarpentier and Rachelson 2019] Lecarpentier, E., and
Rachelson, E. 2019. Non-stationary markov decision
processes a worst-case approach using model-based
reinforcement learning. In NeurIPS.

[Li et al. 2019] Li, S.; Wu, Y.; Cui, X.; Dong, H.; Fang, F.;
and Russell, S. 2019. Robust multi-agent reinforcement
learning via minimax deep deterministic policy gradient.
Proceedings of the AAAI Conference on Artificial Intelli-
gence 33:4213–4220.

[Lin et al. 2020] Lin, J.; Dzeparoska, K.; Zhang, S. Q.; Leon-
Garcia, A.; and Papernot, N. 2020. On the robustness
of cooperative multi-agent reinforcement learning. ArXiv
abs/2003.03722.

[Littman 1994] Littman, M. L. 1994. Markov games as a
framework for multi-agent reinforcement learning. In In
Proceedings of the Eleventh International Conference on
Machine Learning, 157–163. Morgan Kaufmann.

[Martello and Toth 1990] Martello, S., and Toth, P. 1990.
Knapsack Problems: Algorithms and Computer Implemen-
tations. USA: John Wiley & Sons, Inc.

[Mohammed et al. 2019] Mohammed, A.; Hang, R.;
Haitham, B.-A.; Vladimir, M.; Rui, L.; Mingtian, Z.; and
Jun, W. 2019. Wasserstein robust reinforcement learning.
ArXiv abs/1907.13196.

[Morimoto and Doya 2005] Morimoto, J., and Doya, K.
2005. Robust reinforcement learning. Neural Comput.
17(2):335–359.

[OpenAI et al. 2019] OpenAI; :; Berner, C.; Brockman, G.;



Chan, B.; Cheung, V.; Debiak, P.; Dennison, C.; Farhi, D.;
Fischer, Q.; Hashme, S.; Hesse, C.; Józefowicz, R.; Gray, S.;
Olsson, C.; Pachocki, J.; Petrov, M.; de Oliveira Pinto, H. P.;
Raiman, J.; Salimans, T.; Schlatter, J.; Schneider, J.; Sidor,
S.; Sutskever, I.; Tang, J.; Wolski, F.; and Zhang, S. 2019.
Dota 2 with large scale deep reinforcement learning.

[Sutton and Barto 1998] Sutton, R. S., and Barto, A. G.
1998. Introduction to Reinforcement Learning. Cambridge,
MA, USA: MIT Press, 1st edition.

[Vinyals et al. 2019] Vinyals, O.; Babuschkin, I.; Czarnecki,
W.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.; Pow-
ell, R.; Ewalds, T.; Georgiev, P.; Oh, J.; Horgan, D.; Kroiss,
M.; Danihelka, I.; Huang, A.; Sifre, L.; Cai, T.; Agapiou, J.;
Jaderberg, M.; and Silver, D. 2019. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature
575.

[von Neumann and Morgenstern 1947] von Neumann, J.,
and Morgenstern, O. 1947. Theory of games and economic
behavior. Princeton University Press.

[Zhou, Doyle, and Glover 1996] Zhou, K.; Doyle, J. C.; and
Glover, K. 1996. Robust and Optimal Control. USA:
Prentice-Hall, Inc.


	Introduction
	Related work
	Background
	Robust Multi-agent Q-learning
	The multi-agent adversarial attack
	Experiments and results
	Learning optimal and adversarial policies
	Behavior under attacks
	Robustness analysis

	Discussion and conclusions

