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ABSTRACT
This article presents and evaluates a family of AlphaZero value
targets, subsuming previous variants and introducing AlphaZero
with greedy backups (A0GB). Current state-of-the-art algorithms
for playing board games use sample-based planning, such as Monte
Carlo Tree Search (MCTS), combined with deep neural networks
(NN) to approximate the value function. These algorithms, of which
AlphaZero is a prominent example, are computationally extremely
expensive to train, due to their reliance on many neural network
evaluations. This limits their practical performance. We improve
the training process of AlphaZero by using more effective training
targets for the neural network. We introduce a three-dimensional
space to describe a family of training targets, covering the original
AlphaZero training target as well as the soft-Z and A0C variants
from the literature. We demonstrate that A0GB, using a specific
new value target from this family, is able to find the optimal policy
in a small tabular domain, whereas the original AlphaZero target
fails to do so. In addition, we show that soft-Z, A0C and A0GB
achieve better performance and faster training than the original
AlphaZero target on two benchmark board games (Connect-Four
and Breakthrough).
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1 INTRODUCTION
Mastering complex board games has been a long studied topic in AI,
as board games provide well-defined complex challenges that allow
for easy measurement of performance, and thus make for ideal AI
testbeds. Over the past decades, computers have been able to defeat
human champions on many of these games, such as Checkers[15]
(1994), Chess[5] (1997) and more recently Go [19] (2016). Algo-
rithms for playing such games initially relied on exhaustive search
methods such as alpha-beta pruning in combination with hand-
crafted evaluation functions. More recently, these exhaustive search
methods have been outperformed by Monte Carlo Tree Search
(MCTS) and hand-crafted evaluations have given way to deep neu-
ral networks (NNs). A successful example of this is the AlphaZero
approach [19–21]. In contrast to vanilla MCTS, which performs
rollouts for evaluating leaf nodes, AlphaZero uses a policy-value
net—a NN that provides value estimates as well as policy priors to
MCTS. MCTS guided by this NN is used to generate data; the NN
is trained on this data to provide better estimates; and using the
improved NN, MCTS can in turn generate better training data, in
a mutually improving cycle. One way to view this combination of
NN and MCTS is as that of an expert and an apprentice, where the
apprentice (NN) continually learns new knowledge from the expert

agent (MCTS+NN), and is in turn able to improve the expert by
providing it with better estimates [1]. Even though these algorithms
are powerful, their interleaved training process has proven to be
computationally extremely expensive.

We argue that the training process of AlphaZero can be improved
by using more effective training targets for the neural network. The
value head of the neural network provides estimates for the value
of a given game position for the current player to move, and needs
a value target to be trained on. AlphaZero uses game outcomes
of self-play as training targets. The self-play, however, incorpo-
rates non-greedy behaviour, which is necessary to explore the state
space during training. Therefore, these self-play game outcomes
are only accurate value targets if the final agent, after training has
ended, incorporates non-greedy exploration as well—AlphaZero
behaves like an "on-policy" reinforcement learning algorithm (akin
to SARSA). In practice however, moves are selected greedily when
the trained solution is deployed, e.g. during tournament play. This
makes the "on-policy" training undesirable in two ways:

(1) Performance of AlphaZero is limited due to the value net-
work not converging to the true values for a greedy policy
that would be followed in a tournament setting.

(2) Learned values and performance of AlphaZero are sensitive
to the amount of exploration and associated hyperparame-
ters (move selection temperature and Dirichlet noise). The
more exploration is added in training, the more the value
estimates deviate from the true values for a greedy policy.

We propose a family of training targets for AlphaZero that sub-
sumes the original AlphaZero value target and others from the
literature. One specific target, resulting in AlphaZero with greedy
backups (A0GB), allows AlphaZero’s value network to train on
value estimates valid for greedy play, improving playing strength
and training efficiency.

Replacing the self-play game outcomeswith various other targets
has been explored in previous works [6, 12]. However, these papers
did not remove exploration from the value targets. Instead, they had
different motives for using alternative value targets. Moerland’s
version of AlphaZero aims to be suitable for continuous action
spaces [12], while Carlsson’s adaptation is motivated by the use of
additional samples from within the AlphaZero search tree [6]. The
value targets used in these papers are discussed in more detail in
Section 3. Even though these value targets are no longer on-policy,
they still have exploration incorporated within them.

The remainder of this paper first introduces background in Sec-
tion 2, and then elaborates on our proposed off-policy value target
in Section 3, relating it to other value targets used in the literature
by introducing a family of value targets. In Section 4, we show that



this new value target allows a tabular version of AlphaZero to con-
verge to an optimal policy whereas other value targets fail to do so.
In addition, we demonstrate our value target on two board games
(Connect-Four, Breakthrough). Section 5 provides the discussion
and conclusion.

2 BACKGROUND
TheAlphaZero algorithm builds on two primary components:Monte
Carlo Tree Search (MCTS) to perform search and Deep Neural Net-
works (NN) for function approximation. In this section, we first
give a brief overview of MCTS. After this, in Subsection 2.2, we
show how MCTS is combined with NN in the AlphaZero algorithm.
Finally, in Subsection 2.3, we explain the differences between on-
and off-policy learning in reinforcement learning algorithms.

2.1 Monte Carlo Tree Search
MCTS is a best-first anytime search algorithm which, in its vanilla
form, uses Monte Carlo sampling to evaluate the value of a state
[7, 9]. The algorithm starts from a state 𝑠 for which the optimal
action 𝑎 is to be determined. Then, over a number of simulations, a
game tree is progressively built, keeping track of the statistics of
all nodes representing possible future states. A single simulation
consists of four phases [4]:

(1) Selection: starting from the root node, a selection policy is
recursively applied to descend through the tree until an unse-
lected action is reached. This selection policy has to maintain
a balance between exploiting nodes with high value esti-
mates and exploring less frequently visited nodes. A popular
selection policy is called Upper Confidence Bound Applied
to Trees (UCT) [9], which selects nodes based on an upper
confidence bound for the value estimates:

𝑎 = argmax
𝑎′

(
𝑄 (𝑠, 𝑎′) + 𝑐𝑢𝑐𝑡

√
ln (𝑁 (𝑠))
𝑁 (𝑠, 𝑎′)

)
(1)

Here, 𝑄 (𝑠, 𝑎′) is the estimated value for selecting action 𝑎′
from state 𝑠 . 𝑐𝑢𝑐𝑡 is a coefficient determining the amount
of exploration in the search. 𝑁 (𝑠) and 𝑁 (𝑠, 𝑎′) are the visit
counts of state 𝑠 and the child node associated with action
𝑎′ respectively.

(2) Expansion: Typically one new node is added to the search
tree, below the newly selected action.

(3) Simulation: Starting from the new node, a simulation is
run according to a rollout policy to produce an outcome, or
return, 𝑟 . This rollout policy can be as simple as selecting
random actions at every step.

(4) Backpropagation:The outcome is backpropagated through
the selected nodes to update their statistics. This backprop-
agation is usually done by averaging the final reward over
the number of visits the node has received:

𝑄 (𝑠, 𝑎) ← (𝑁 (𝑠, 𝑎) ·𝑄 (𝑠, 𝑎) + 𝑟 )
𝑁 (𝑠, 𝑎) + 1

𝑁 (𝑠, 𝑎) ← 𝑁 (𝑠, 𝑎) + 1

These simulation steps are repeated until the available search time
has ended. The final action is selected by selecting the action with
the highest visit count.

2.2 Combined searching and learning
This section explains how MCTS and NNs can be combined to
improve the performance of MCTS, as done in the AlphaZero line
of algorithms. Vanilla MCTS relies on Monte Carlo evaluations
to get a value estimate of a state. These value estimates can be
inaccurate due to high variance. Instead, AlphaZero uses neural
networks as function approximators to estimate state values. NNs
can be trained in a supervised fashion, e.g. on a dataset of expert
play. One core insight that AlphaZero exploits is that this expert
play does not have to be human play. Instead, MCTS can be used to
create stronger games than the neural network itself would have
been able to play. These stronger game records can then be used to
train the neural network again, resulting in a self-improving cycle.

2.2.1 The self-play training loop. AlphaZero training consists of
two main steps that are performed in an iterative loop, as illustrated
byAlgorithm 1. The first step is to generate a set of training games
through self-play. For every move in these games, a tree search is
performed after which the next action is selected probabilistically
based on the visit counts at the root. During search, the neural
network is used in two ways. First, instead of doing a Monte Carlo
rollout to get a value estimate when a new node is reached, the
neural network provides a value estimate, 𝑣𝑁𝑁 (𝑠). Second, the
policy output of the neural network, 𝜋𝑁𝑁 (𝑠), provides a vector of
prior action probabilities. This output guides the search towards
moves that the neural network predicts to be promising. To do
this, the policy output is incorporated in a variant of the UCT
formula, called PUCT [2], for action selection during search as can
be seen in Equation 2. The states visited by all training games 𝑠 , the
associated game results 𝑦 and the normalized MCTS visit counts
of the root’s child nodes (which we call 𝜋𝑣𝑖𝑠𝑖𝑡𝑠 (𝑠)) are then stored
in a replay buffer. The second step is to train the neural network
on the replay buffer. The policy head is trained to approximate
𝜋𝑣𝑖𝑠𝑖𝑡𝑠 (𝑠) through a cross-entropy loss. Therefore, future searches
will be biased towards moves that are predicted to be visited often.
The value head is trained on the value targets, 𝑦, in this case the
final game outcome. This is done using a mean squared error loss.
An additional L2 regularization term is added to reduce overfitting
of the NN parameters, 𝜃 . The complete loss function is given in
Equation 3.

𝑃𝑈𝐶𝑇 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝑐𝑝𝑢𝑐𝑡 · 𝜋𝑁𝑁 (𝑎 |𝑠)
√
𝑁 (𝑠)

𝑁 (𝑠, 𝑎) + 1 (2)

𝑙 = (𝑦 − 𝑣𝑁𝑁 )2 − 𝜋𝑣𝑖𝑠𝑖𝑡𝑠 (𝑠)T log𝜋𝑁𝑁 (𝑠) +𝑤𝐿2 | |𝜃 | |2 (3)

2.2.2 Exploration in AlphaZero. To achieve diversity in the tree
search as well as in the replay buffer, three types of exploration
are present in the AlphaZero training. First, there is the explo-
ration associated with the PUCT parameter 𝑐𝑝𝑢𝑐𝑡 , as explained in
Subsection 2.1. Second, Dirichlet noise is added to the prior proba-
bilities of the root node’s children at the start of every search, to
ensure that every node has a nonzero chance of being visited at
least once during search. This modifies the PUCT equation at a root
node to Equation 4, with 𝜋𝑁𝑁,𝑛𝑜𝑖𝑠𝑦 (𝑎 |𝑠) as defined in Equation 5.
𝑓𝑑𝑖𝑟 ∈ [0, 1] and 𝛼 ∈ (0,∞] are hyperparameters that control the
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Algorithm 1: Simplified AlphaZero training loop
Result: A trained neural network
neural_network = NeuralNetwork();
replay_buffer = list();
while True do

samples = list();
// create a generation of new game samples

for 𝑖 ← 0 to 𝑛𝑔𝑎𝑚𝑒𝑠_𝑝𝑒𝑟_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
// play a single game

game = new_game(neural_network) ;
moves = list();
while game not terminal do

𝑠 = game.get_state() ;
// create and search tree

Tree = game.search() ;
// sample action

action = Tree.select_action();
// store move & tree

moves.append((𝑠 , Tree));
// apply action in real game

game.move(action) ;
end
// set policy and value targets

value = game.outcome() ; // set value target

for 𝑗 ← 0 to length(moves) do
(𝑠 , Tree) = moves[ 𝑗];
// set policy target

𝜋 = Tree.root.child_visits();
samples.append((𝑠 , 𝜋 , value));

end
end
// add new samples to replay buffer

replay_buffer.update(samples) ;
// train neural network on replay buffer

neural_network.train(replay_buffer);
end

amount and concentration of Dirichlet noise respectively.

𝑈𝐶𝑇𝑟𝑜𝑜𝑡 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝑐𝑝𝑢𝑐𝑡 · 𝜋𝑁𝑁,𝑛𝑜𝑖𝑠𝑦 (𝑠, 𝑎)
√
𝑁 (𝑠)

𝑁 (𝑠, 𝑎) + 1 (4)

𝜋𝑁𝑁,𝑛𝑜𝑖𝑠𝑦 (𝑠, ·) = (1 − 𝑓𝑑𝑖𝑟 ) 𝜋𝑁𝑁 (𝑠, ·) + 𝑓𝑑𝑖𝑟Dir(𝛼) (5)
Finally, after the search, the action to play is selected probabilis-

tically based on the exponentiated visit counts of each of the root’s
child nodes, following Equation 6. The temperature 𝜏 determines
the amount of exploration in the move selection in training games.

𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 (𝑠, 𝑎) ∝ 𝑁 (𝑠, 𝑎)1/𝜏 (6)

2.2.3 Comparing AlphaZero, AlphaGo and Expert Iteration. The
AlphaZero lineage of algorithms consists of a number of sequen-
tially developed algorithms. The first algorithm in this series is
AlphaGo [19], which is initially trained in a supervised fashion on
a dataset of human expert play . After this, it improves its playing

strength further through self-play. This version has separate policy
and value networks. The second algorithm in the series, AlphaGo
Zero [21], no longer has separate policy and value networks, com-
bining them into a single network. Also, AlphaGo Zero does not
use supervised training on a human dataset, only learning from
self-play. The third algorithm that was developed, AlphaZero [20],
is a version of AlphaGo Zero suitable for other games than Go
=. It no longer makes use of any Go-specific game features. Fur-
ther, the neural network training is now done asynchronously, in
parallel with the game generation. Recently, a fourth algorithm
was proposed, MuZero [16], which employs a learned game model
within the MCTS simulation. In addition to the AlphaZero lineage,
another, very similar, algorithm has been developed in parallel: Ex-
pert Iteration (ExIt)[1]. This algorithm is used to play a game called
Hex. Initially, ExIt only trained a policy network. This network was
trained similarly to AlphaGo Zero. Experiments with an additional
value head were also performed. The value estimates, however,
were not generated from games with full searches performed in
every move. Instead, the value target was retrieved from playing
games purely based on the prior policy of the policy network. The
output of the policy network is used in the MCTS in a slightly differ-
ent manner than is done by AlphaZero. The modified UCT formula
from ExIt is reproduced in Equation 7. Here,𝑤𝑝 is a parameter to
control the relative importance of the neural network policy.

𝑈𝐶𝑇𝐸𝑥𝐼𝑡 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝑐𝑢𝑐𝑡

√
log𝑁 (𝑠)
𝑁 (𝑠, 𝑎) +𝑤𝑝

𝜋𝑁𝑁 (𝑠, 𝑎)
𝑁 (𝑠, 𝑎) + 1 (7)

2.3 On-policy and off-policy learning
The difference between on-policy and off-policy algorithms is an
important distinction in reinforcement learning, which makes it
also worth considering when studying AlphaZero-like algorithms.
In reinforcement learning, agents are acting in an environment
following a certain policy, the behavioural policy. Whilst doing
this, the algorithms learn about the values for a (possibly different)
target policy. If the behavioural policy and the target policy are
the same, the learning algorithm is called "on-policy", if not, the
algorithm is called "off-policy". On-policy learning is the simplest
and avoids many difficulties associated with off-policy learning,
such as the "deadly triad", where the combination of function ap-
proximation, off-policy learning and bootstrapping can result in
divergent behaviour [22]. Despite this caveat, off-policy learning
may improve the learning process by decoupling exploration from
the value estimate, and multiple successful reinforcement learning
algorithms have used it [10, 11].

3 VALUE TARGETS IN ALPHAZERO
In this section, we start with explaining the notation of AlphaZero
self-play. After this, in Subsection 3.2, three value targets from the
literature are described. A new greedy value target is proposed in
Subsection 3.3. Finally, we show how these targets are related to
each other in Subsection 3.4

3.1 Policies, value functions and notation
In AlphaZero, two types of games are used during self-play. First,
there are the "real" games in which AlphaZero plays against itself.
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All states encountered in these real games are then used to train the
neural network. Second, there are the "simulated" games: for every
move that AlphaZero makes in a real game, it performs a Monte
Carlo Tree Search. This search consists of many simulated games,
from which the game tree is constructed. For every node in this
game tree, statistics are kept as explained in Subsection 2.1. Both
the real game as well as the simulated games make use of a perfect
model of the game. After finishing a real game, we can traverse
through both the real game as well as through the game trees to
find suitable value targets. We consider the following two policies
for traversing through these games and trees:

(1) 𝜋𝑀𝐶𝑇𝑆 (𝑠, 𝑠𝑟𝑜𝑜𝑡 ): starting at state 𝑠 , in the MCTS tree which
was created from root node 𝑠𝑟𝑜𝑜𝑡 , this policy selects the next
action based on the normalized visit counts of the children
of node 𝑠 . This is a policy that traverses the game tree built
of simulated games. We leave out the 𝑎 parameter in these
policies, slightly abusing our previously used notation for
policies. Leaving out this parameter indicates the function
returns a probability vector over all possible actions.

(2) 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 (𝑠): the AlphaZero move policy at a root state 𝑠 .
This policy traverses the real game. Every move is performed
by running MCTS, and selecting actions with probabilities
proportional to the exponentiated visit counts at the root
node—which is influenced by the Dirichlet noise and the
temperature, as explained in subsubsection 2.2.2.

Both policies have to incorporate exploration. 𝜋𝑀𝐶𝑇𝑆 includes ex-
ploratory moves through exploration within PUCT. In contrast,
𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 needs to incorporate exploration to create diverse train-
ing data for the Neural Network, and avoid overfitting. Both these
policies have greedy versions associated with them: 𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦

and 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 , which select the action with the highest
visit count (in simulated and real games, respectively) greedily.
These are not directly used during the games of self-play training,
but deployment in e.g. a competition would use 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 .

Every node in a search tree has two values associated with it:
(1) 𝑉𝑁𝑁 (𝑠): The value of the represented state according to the

current neural network.
(2) 𝑉𝑀𝐶𝑇𝑆 (𝑠, 𝑠𝑟𝑜𝑜𝑡 ) The value of the represented state according

to an MCTS search starting at root state 𝑠𝑟𝑜𝑜𝑡 .
Note that for any terminal state, the values of𝑉𝑀𝐶𝑇𝑆 (𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 , 𝑠𝑟𝑜𝑜𝑡 ),
𝑉𝑁𝑁 (𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ), and the final game outcome 𝑉𝑡𝑟𝑢𝑒 (𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ) are
identical. At any leaf node in the search tree with only a single visit,
𝑉𝑀𝐶𝑇𝑆 (𝑠𝑙𝑒𝑎𝑓 , ·) = 𝑉𝑁𝑁 (𝑠𝑙𝑒𝑎𝑓 ). Let’s denote the multi-timestep
state transition function with 𝐾𝑛

𝜋 : 𝑆 −→ 𝑆 , which uses policy 𝜋
to traverse either the simulated game tree or the real game for 𝑛
moves. 𝑛 = ∞ indicates that the game tree is traversed until a leaf
node or a terminal node is reached.

Now, to relate all value targets to on-policy and off-policy learn-
ing, consider the optimal value function, 𝑣∗ (𝑠). The optimal value
function is the maximum value function over all policies [18]:

𝑣∗ (𝑠) = max
𝜋

𝑣𝜋 (𝑠)

Ideally, AlphaZero would learn these optimal values and their as-
sociated optimal policy. However; since this is computationally
not feasible, it is instead desirable to learn about the policy that is
used during final play: 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 , with the associated value

target:

𝑦∗ = 𝑣𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦
(𝑠) = E

[
𝑉𝑡𝑟𝑢𝑒

(
𝐾∞𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦

(𝑠)
)]

Finally, to describe how the different value targets approximate
this value target, we introduce three kinds of policies: the ideal
target policy, the actual target policy and the behavioural policy.
As explained in Subsection 2.3, the behavioural policy is the policy
that the agent follows during self-play: 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 . The ideal tar-
get policy is the target we wish to learn about: 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 .
The actual target policy is the policy that is being learned about
through the value targets. Getting this actual target policy to be a
close approximation of the ideal target policy, with low bias1 and
variance, is the goal for designing the value targets. Actual target
policies that have exploration incorporated within them result in
biased value targets: sub-optimal exploratory moves bias the value
of all states further on. Target policies that perform multiple steps
using 𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦 contain more variance. As every step taken in
𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦 selects its action based on fewer MCTS visits than
the previous one, more uncertainty and thus variance is added to
the value target. A higher variance can limit the learning speed of
AlphaZero as more samples are needed to get a reliable estimate.

3.2 Value targets from the literature
We can now describe the original AlphaZero and other value targets
𝑦 in the literature using the notation previously described. These
value targets are also illustrated in Figure 1.

AlphaZero target. In the original AlphaZero paper, the value
target for every state 𝑠 is set to be equal to the final game outcome
of playing the game, following the non-greedy AlphaZero policy
𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 . This results in the following value target:

𝑦𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 (𝑠) = 𝑉𝑀𝐶𝑇𝑆 (𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 , 𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 )
= 𝑉𝑡𝑟𝑢𝑒 (𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 )

where 𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = 𝐾
∞
𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜

(𝑠). This value target does not boot-
strap, uses single sample backups and has 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 as its target
policy, making it a form of on-policy learning2. Due to the explo-
ration in the target policy, this value target is biased by exploratory
moves.

Soft-Z target. Instead of waiting for the final game outcome, it is
also possible to use the MCTS values of the root node as a value
target. We call this approach soft-Z, similar to the naming used by
Carlsson [6].

𝑦𝑠𝑜 𝑓 𝑡−𝑍 (𝑠) = 𝑉𝑀𝐶𝑇𝑆 (𝑠, 𝑠)
The MCTS value of a state converges to the true game value as the
number of simulations approaches infinity. However, as AlphaZero
is limited in the number of MCTS simulations it can perform, this
value target is also biased by exploratory moves during the MCTS

1The bias that we talk about here is a different bias than the one associated with the
bias-variance trade-off between bootstrapping and Monte Carlo methods. That bias is
associated with the (transient) effect of value initialization. The bias we are considering
here is permanent and associated with the difference between the actual and ideal
target policy
2The replay buffer that is used for training the neural network also contains samples
that were sampled from older versions of 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 . One could argue that this
makes AlphaZero off-policy, but we do not go into the details about the effects of
replay buffers in this work.
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search. This value target bootstraps in the simulated game tree,
averages multiple samples for a single backup (all simulations of
the MCTS search) and has the target policy 𝜋𝑀𝐶𝑇𝑆 , making it a
form of off-policy learning.

A0C target. Moerland [12] has proposed to use a different value
target in an AlphaZero variation for continuous action spaces. This
target selects one child node of the root greedily, and backs up the
MCTS value of this child:

𝑦𝐴0𝐶 (𝑠) = 𝑉𝑀𝐶𝑇𝑆

(
𝐾1
𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦

(𝑠), 𝑠
)

This is again an off-policy value target. The target policy of this
target takes a single step using 𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦 and afterwards uses
𝜋𝑀𝐶𝑇𝑆 . This target policy should be closer to 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 , yet
it still does not eliminate all exploration due to the usage of 𝜋𝑀𝐶𝑇𝑆

after the first step. This target again bootstraps in the simulated
game tree and averages multiple samples for a single backup, yet
over fewer samples than soft-Z does.

3.3 A greedy value target
As previously mentioned, we desire to find a value target which
has a target policy that closely approximates 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 ,
whilst following 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 as our behavioural policy. The pre-
viously described value targets all fail in that they do not have a
greedy target policy and are therefore biased. The AlphaZero target
incorporates exploration from 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 . Soft-Z and A0C both
incorporate exploration from 𝜋𝑀𝐶𝑇𝑆 . We propose a new greedy
value target, resulting in AlphaZero with greedy backups: A0GB.
This target no longer incorporates any exploration inside the target,
allowing it to be valid for a greedy policy. This value target is found
by following the MCTS policy greedily until a leaf- or terminal state
is found. The value of this state is then used as the value target:

𝑦𝐴0𝐺𝐵 (𝑠) = 𝑉𝑀𝐶𝑇𝑆

(
𝐾∞𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦

(𝑠), 𝑠
)

= 𝑉𝑁𝑁

(
𝐾∞𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦

(𝑠), 𝑠
)

This off-policy value target once again bootstraps, although it does
deeper backups than both soft-Z and A0C. It no longer is able to
average multiple samples since the node from which the value is
backed up only has a single MCTS visit. This value target follows a
greedy policy until reaching a terminal or leaf node, and therefore
has a greedy target policy: 𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦 . Although this policy
is greedy, it is still only an approximation for 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 .
Descending the tree until a leaf node results in an increasingly
noisy policy as every subsequent node has fewer MCTS visits than
the previous one, whereas 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 would perform a full
MCTS search at every subsequent node. This difference results in
value targets with higher variance.

3.4 Relationship between value targets
We now describe in more detail how the different value targets re-
late to one another. We can construct a value target based on three
parameters, as illustrated in Figure 2: two parameters of bootstrap-
ping and one parameter of backup width. In contrast to many other
forms of reinforcement learning, where the agent moves through
the environment in one "direction", AlphaZero can move through
the environment in two orthogonal directions: in the direction of

Actions with highest visit
counts in search tree

AlphaZero backups

Soft-Z backups

A0C backups
Greedy backups
(proposed)

Real game

Si
m

ul
at

ed
 g

am
es

Figure 1: The relationship between the different value tar-
gets; AlphaZero uses terminated games, while greedy back-
ups target leaves of the tree (not necessarily terminal).

the real game of self-play, and in the direction of the simulated
games within the MCTS trees. This also means that we can boot-
strap in these two directions. From here on, we consider n-step
bootstrapping in these two directions. It should be noted that in
the resulting family of value targets, the action selection or the tree
search itself are not modified. We only change how the training
targets for the value head of the neural network are constructed
once a full game of self-play has been completed.

When dealing with real-game bootstrapping, the only policy we
can follow is 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 , as the states found through following
this policy are the only states that have actually been visited. This
also implies that if we are bootstrapping time-wise over a greater
number of steps, more exploration is incorporated in the value
target.

Considering simulated-game bootstrapping, we can follow any
policy as long as this policy does not take us outside of the search
tree. One particularly interesting policy to follow is 𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦 ,
as this policy is the policy that is currently estimated to be the
strongest. The more steps that are taken in this direction however,
the fewer MCTS visits the states have received. This results in a
noisier policy and therefore could result in higher variance for the
value target.

For the backup width, we can choose to backup only the neural
network value estimate, 𝑉𝑁𝑁 , or backup the averaged value based
on the subtree below this state in the tree, 𝑉𝑀𝐶𝑇𝑆 . 𝑉𝑀𝐶𝑇𝑆 also
includes exploratory moves in the value estimate. If the simulated
bootstrapping is done over more steps, these two values become
more similar as the node which is used to bootstrap from has fewer
visits and a smaller subtree below it. In the limit, at a leaf node,
these values are equal to one another: MCTS has only visited this
state once.

We can write all previously described value targets in the fol-
lowing manner:

𝑦𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠) = 𝑉𝑀𝐶𝑇𝑆

(
𝐾
𝑛𝑠𝑖𝑚
𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦

(𝑠𝑟𝑜𝑜𝑡 ), 𝑠𝑟𝑜𝑜𝑡
)

𝑠𝑟𝑜𝑜𝑡 = 𝐾
𝑛𝑟𝑒𝑎𝑙
𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜

(𝑠)
(8)

Where 𝑛𝑠𝑖𝑚 and 𝑛𝑟𝑒𝑎𝑙 are the amount of steps to bootstrap in the
simulated and the real game respectively. How all four value targets
outlined above are described by this unified notation can be seen
in Table 1. An implementation of these value targets is shown in
Algorithm 2.

As previously mentioned, a desirable value target has a target
policy that approximates 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜,𝑔𝑟𝑒𝑒𝑑𝑦 closely with low bias
and variance. Target policies that incorporate exploration within
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𝑛𝑠𝑖𝑚 𝑛𝑟𝑒𝑎𝑙 width
AlphaZero 0 ∞ single sample
soft-Z 0 0 multi sample
A0C 1 0 multi sample
A0GB ∞ 0 single sample

Table 1: Relationship within the family of value targets in
the unified notation as described by Equation 8.

them result in biased value targets. The amount of exploration in-
corporated in the value target is dependent on the backup-width
and the real-game backup depth. The variance is dependent on
all three dimensions: increasing the real-game backup depth re-
sults in an increased variance, as the method becomes closer to a
Monte Carlo method than a TD method. Similarly, increasing the
simulated-game backup depth also increases the variance. Reducing
the backup-width results in larger variance as well. These effects
result in the soft-Z, A0C and A0GB being viable options in the
bias-variance trade-off. Whereas soft-Z has the highest bias, it also
has the lowest variance. A0GB has the lowest bias, yet it also has
the highest variance. A0C sits in between these two targets on both
measures. The AlphaZero value target has both a high variance as
well as a high bias, making this value target sub-optimal in both
aspects. This value target, however, is on-policy and thus avoids
the deadly triad.
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width limited by

MCTS visit count

Figure 2: The three dimensions in which a value target can
vary. The area beyond the red-dashed line (from Soft-Z to
A0GB) cannot be reached as going deeper in the simulated-
game tree results in fewer visits of backup target and there-
fore directly results in a narrower backup.

4 EXPERIMENTS AND RESULTS
In order to expose the differences between the various value targets,
we first present results from a simple tabular domain in Subsec-
tion 4.1. In this domain the optimal strategy is trivial, and the

Algorithm 2: Generalized sample generation of one game
Result: Training samples for neural network
// play a single game

game = new_game() ;
moves = list();
while game not terminal do

𝑠 = game.get_state() ;
Tree = game.search() ; // create and search tree

action = Tree.select_action() ; // sample 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜

moves.append((𝑠 , Tree)); // store move & tree

game.move(action) ; // apply action in real game

end
// set policy and value targets

samples = list();
for 𝑖 ← 0 to length(moves) do

(𝑠 , Tree) = moves[𝑖];
𝜋 = Tree.root.child_visits() ; // set policy target

// traverse real game through 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜

(𝑠𝑟𝑒𝑎𝑙 , Tree𝑡𝑎𝑟𝑔𝑒𝑡 ) = moves[𝑖 + 𝑛𝑟𝑒𝑎𝑙 ];
// follow 𝜋𝑀𝐶𝑇𝑆,𝑔𝑟𝑒𝑒𝑑𝑦 in simulated game tree

𝑠𝑠𝑖𝑚 = Tree𝑡𝑎𝑟𝑔𝑒𝑡 .traverse(𝑛𝑠𝑖𝑚);
𝑉𝑀𝐶𝑇𝑆 = Tree𝑡𝑎𝑟𝑔𝑒𝑡 .value(𝑠𝑠𝑖𝑚); // set value target

samples.append((𝑠 , 𝜋 , 𝑉𝑀𝐶𝑇𝑆 ));
end

learned values are easy to analyze. Subsequently, in Subsection 4.2,
we present evaluations in the two board games Connect-Four and
Breakthrough as examples of complex sequential interactions with
large state spaces, which require function approximation.

4.1 A tabular domain
In this section, we show the behaviour of the different value targets
in a small tabular domain. First, we describe the domain and tabular
AlphaZero modifications, then we present and interpret the results.

Domain description. The example Markov decision process de-
picted in Figure 3 illustrates a problem where significant explo-
ration, with on average poor returns, is needed to be able to reach
a final positive reward. This domain has similarities to the Deep
Exploration domain [13], bsuite’s Deep Sea Exploration [14] and
cliff-walking [22]. It is a single-player environment, where the agent
has to move around in a grid. In every turn the agent can choose
between moving up, right or down. The terminal states are the
coloured blocks with a number in it, which is the reward the agent
receives for reaching that state. It is obvious that the optimal policy
would be to always move to the right in every state. We use this
domain to illustrate the issues of the different backup styles.

Tabular AlphaZero modifications & experiment setup. The tabular
version of AlphaZero no longer uses a Neural Network for function
approximation. Instead, it uses policy and value tables, that use
moving average filters to keep track of the prior policies and values.
The value table is initialized with a value of 0 for every state. The
policy table is initialized with equal probabilities for every action.
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Figure 3: The gridworld domain on which a tabular version
of AlphaZero is demonstrated.

Figure 4: Value estimates in the gridworld domain, after 40
000 games of self-playwith 100MCTS simulations permove.

Exploration and search hyperparameters set to the same values
as for the domains with function approximation. The gridworld
domain is setup with 𝐿 = 8 and each agent is trained for 40 000
games of self-play.

Results. The resulting value estimates and the corresponding
probability of moving right for the previously described experi-
ment can be seen in Figure 4 and Figure 5 respectively. During
training, state 7 has been visited 14, 43, 106 and 540 times in total
for the AlphaZero, soft-Z, A0C and A0GB value targets respectively.
The off-policy value target results in the policy with the highest
probability of moving to the right for every state and is the only
policy that selects moving to the right when doing a greedy action
selection, for all states. Also, this value target results in the highest
value estimates for every state.

4.2 Domains with function-approximation
In this section, we show the behaviour of the different value targets
in two domains with function approximation. The description of
the domain and corresponding hyperparameters is followed by the
results and their interpretation.

Domain description: Connect-Four and Breakthrough. The value
targets are tested on the two board games Connect-Four and Break-
through with a 6 × 6 board, illustrated in Figure 6. These domains
are selected as they are both commonly used for research on MCTS
[3, 17] and they require much less computational power to perform
experiments on than for example Chess or Go.

Figure 5: Color indicates policy probability of moving right
after 40 000 games of self-play with 100 MCTS simulations
per move. Arrows indicate the greedily selected action ac-
cording to the tabular policy.

(a) Connect-Four (b) Breakthrough

Figure 6: Illustrations of the two board game domains on
which AlphaZero value targets are compared.

Hyperparameter selection & experiment setup. The large num-
ber of hyperparameters of AlphaZero and availability of computa-
tional rescources limits the possibility of doing extensive hyperpa-
rameter optimization for all hyperparameters. As our research is
strongly dependent on the amount of exploration within 𝜋𝑀𝐶𝑇𝑆

and 𝜋𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 , three hyperparameters are identified to be most
influential: 𝑐𝑈𝐶𝑇 , 𝑓𝑑𝑖𝑟 and 𝜏 . Their values are selected by individ-
ually varying them on Connect-Four for the original AlphaZero
value target. 𝑐𝑈𝐶𝑇 , 𝑓𝑑𝑖𝑟 and 𝜏 are set to 2.5, 0.25 and 1.0 respectively.
They are kept constant amongst all different value targets and both
games. 500 games of self-play are performed each neural network it-
eration, and 100 MCTS simulations were executed per move during
training. Three experiments were performed. The first experiment
compares the training performance of the different value targets
on Connect-Four. Here, the greedy neural network policy was pit-
ted against a pure MCTS opponent with 200 simulations for 400
games every 10 network iterations. A similar experiment is per-
formed on Breakthrough. However, since all AlphaZero variants
very quickly learn to significantly outperform our pure MCTS base-
lines in Breakthrough, all AlphaZero variants were tested against a
baseline AlphaZero that was trained for 50 000 games instead. The
final experiment is designed to measure the sensitivity of the value
targets to exploration. Agents were trained for 25000 games on
Connect-Four and pitted against a pure MCTS opponent with 5000
simulations for 800 games with varying temperature coefficients.
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Figure 7: Performance of the neural network in Connect-
Four versus a pure MCTS opponent with 200 simulations.

Figure 8: Performance of AlphaZero in 6x6 Breakthrough
against an on-policy trained AlphaZero, trained for 50 000
games.

Results. In Figure 7 and Figure 8, the training performance of
AlphaZero is shown for Connect-Four and Breakthrough respec-
tively. As expected, the performance of all AlphaZero agents in-
creases over its training period, for both Connect-Four as well as
Breakthrough. In both games, the agents trained with the original
on-policy AlphaZero value target learns significantly slower than
the three alternative value targets. In addition, the final perfor-
mance is worse. Interestingly, there is only a marginal difference
in performance between the three alternative value targets. The
results of the temperature sensitivity experiment can be seen in
Figure 9. The A0GB value target is less sensitive to the temperature
parameter than the original AlphaZero value target.

5 DISCUSSION AND CONCLUSIONS
In this work, we evaluated a number of different value targets to use
in an AlphaZero algorithm. The value target used in the original
AlphaZero algorithm incorporates exploration within the value
target, which results in bias. Therefore, AlphaZero is unable to
converge to an optimal policy. In addition, this value target suffers
from high variance. We introduce a three-dimensional space to
describe a family of training targets that subsumes the original
AlphaZero training target, two other variants from the literature
and a novel greedy training target.

Figure 9: Performance of AlphaZero with 100 simulations
after training for 25000 games onConnect-Four for different
values of the temperature coefficient 𝜏 during training. In
the final evaluation, the moves are selected greedily.

Our results show that within a small tabular domain, the new
greedy value target is the only target resulting in the correct greedy
action selection. This confirms the hypothesis that with a limited
amount of MCTS simulations, all three non-greedy value targets
are unable to find the optimal policy, even after playing a large
number of games in a small environment. Even though this specific
value target is the only tested value target that is able to find the
optimal policy in the tabular domain, there is only little difference
in the performance of different value targets from this family in the
board games Connect-Four and Breakthrough, although they all
performed significantly better than the original AlphaZero value
target. All three off-policy value targets are trading off variance and
bias in different ways. It is possible that the amount of variance is
more important in the case of Connect-Four and Breakthrough, as
the amount of computation and the limited size of the neural net-
work prevent AlphaZero from finding a policy close to the optimal
one. An alternative explanation would be that limited hyperparam-
eter tuning is a key limiting factor in that it brings the performance
of the three value targets closer together.

Future research may exploit off-policy training to improve ex-
ploration, further explore the family of value targets (e.g. such as
TD(𝜆) backups in the two dimensions), or extend the analysis to
the training targets of AlphaZero’s policy head. One potential off-
policy value target variant worth exploring would traverse the real
game until an exploratory move is made, after which the simulated
tree is followed greedily. This removes exploration from real-game
bootstrapping. It is also an open question whether the winner’s
curse applies to A0GB (see discussion in Double Q-learning [8]).
Another route worth exploring would be to train the value head
on additional moves that exist in the game tree but are not played
in the real game, similar to the TreeStrap algorithm that updates a
heuristic function based on all search node values for a minimax
search [23]. This is now possible as our proposed value target does
not require a final game outcome.
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