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Abstract. For a binary integer program (IP) max cTx,Ax ≤ b, x ∈
{0, 1}n, where A ∈ R

m×n and c ∈ R
n have independent Gaussian entries

and the right-hand side b ∈ R
m satisfies that its negative coordinates

have ℓ2 norm at most n/10, we prove that the gap between the value
of the linear programming relaxation and the IP is upper bounded by
poly(m)(log n)2/n with probability at least 1 − 2/n7 − 2− poly(m). Our
results give a Gaussian analogue of the classical integrality gap result
of Dyer and Frieze (Math. of O.R., 1989) in the case of random pack-
ing IPs. In constrast to the packing case, our integrality gap depends
only polynomially on m instead of exponentially. Building upon recent
breakthrough work of Dey, Dubey and Molinaro (SODA, 2021), we show
that the integrality gap implies that branch-and-bound requires npoly(m)

time on random Gaussian IPs with good probability, which is polyno-
mial when the number of constraints m is fixed. We derive this result via
a novel meta-theorem, which relates the size of branch-and-bound trees
and the integrality gap for random logconcave IPs.

1 Introduction

Consider the following linear program with n variables and m constraints

valLP(A, b, c) := max
x

val(x) = cTx

s.t. Ax ≤ b (Primal LP)

x ∈ [0, 1]n

Let valIP(A, b, c) be the value of the same optimization problem with the addi-
tional restriction that x is integral, i.e., x ∈ {0, 1}n. Now we define the integrality
gap to be the quantity IPGAP(A, b, c) := valLP(A, b, c)− valIP(A, b, c).

The integrality gap of integer linear programs forms an important measure
for the complexity of solving said problem in a number of works on the average-
case complexity of integer programming [1,2,4,5,12,17].
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So far, probabilistic analyses of the integrality gap have focussed on 0–1
packing IPs and the generalized assignment problem. In particular, the entries
of A ∈ R

m×n, b ∈ R
m, c ∈ R

n in these problems are all non-negative, and the
entries of b were assumed to scale linearly with n.

In this paper, we analyze the integrality gap of (Primal LP) under the as-
sumption that the entries of A and c are all independent Gaussian N (0, 1) dis-
tributed, and that the negative part of b is small: ‖b−‖2 ≤ n/10.

We prove that, with high probability, the integrality gap IPGAP(A, b, c) is
small, i.e., (Primal LP) admits a solution x ∈ {0, 1}n with value close to the
optimum.

Theorem 1. There exists an absolute constant C ≥ 200, such that, for m ≥ 1,
n ≥ Cm4.5, b ∈ Rm with ‖b−‖2 ≤ n/10, if A and c have i.i.d. N (0, 1) entries,
then

Pr

(

IPGAP(A, b, c) ≥ 1015 · t · m
2.5(m+ log n)2

n

)

≤ 4 ·
(

1− 1

25

)t

+ n−7,

for all 1 ≤ t ≤ n
Cm2.5(m+logn)2 .

In the previous probabilistic analyses by [4,5,17], it is assumed that b = βn
for fixed β ∈ (0, 1/2)m and the entries of (A, c) are independently distributed
uniformly in the interval [0, 1]. Those works prove a similar bound as above,
except that in their results the dependence on m is exponential instead of poly-
nomial. Namely, for βmin := mini∈[n] βi, they require n ≥ (1/βmin)

m ≥ 2m and

the integrality gap scales like O(1/βmin)
m log2 n/n. We note that the integrality

gap in Theorem 1 does not depend on the “shape” of b (other than requiring
‖b−‖2 ≤ n/10). We give a high-level overview of the proof of Theorem 1 in sub-
section 1.2, describing the similarities and differences with the analysis of Dyer
and Frieze [5]

Building on breakthrough work of Dey, Dubey and Molinaro [2], we show
that the integrality gap above also implies that branch-and-bound applied to
the above IP produces a tree of size at most npoly(m) with good probability. For
this purpose, we give a novel meta-theorem relating the integrality gap and the
complexity of branch-and-bound for random logconcave IPs. We detail this in
the next subsection.

1.1 Relating the Integrality Gap to Branch-and-Bound

In recent breakthrough work, Dey, Dubey and Molinaro [2] provided a framework
for deriving upper bounds on the size of branch-and-bound trees for random IPs
with small integrality gaps. Their framework consists of two parts. In the first
part, one deterministically relates the size any branch-and-bound tree using best-
bound first node selection to the size of knapsack polytopes whose weights are
induced by reduced costs and whose capacity is equal to the integrality gap. We
recall that in the best-bound first rule, the next node to be processed is always
the node whose LP relaxation value is the largest. This is formally encoded by



On the Integrality Gap of Binary Integer Programs with Gaussian Data 3

the following theorem, which corresponds to a slightly adapted version of [2,
Corollary 2].

Theorem 2. Consider a binary integer program of the form

max cTx

s.t. Ax ≤ b (Primal IP)

x ∈ {0, 1}m.

Then, the best bound first branch-and-bound algorithm produces a tree of size

nO(m) · max
λ∈Rm

|{x ∈ {0, 1}n :

n∑

i=1

xi|(ATλ− c)i| ≤ IPGAP(A, b, c)}|+ 1. (1)

In the second part of the framework, one leverages the randomness in the
coefficients of A, c to upper bound the maximum size of any knapsack in (1).
In [2], they give such an upper bound for the specific packing instances studied
by Dyer and Frieze [5]. In the present work, we generalize their probabilistic
framework to random logconcave IPs. We now state our main meta-theorem,
which we prove in Section 7.

Theorem 3. Let n ≥ 100(m + 1), b ∈ Rm, and W :=

[
cT

A

]

∈ Rn×(m+1) be a

matrix whose columns are independent logconcave random vectors with identity
covariance. Then, for G ≥ 0, δ ∈ (0, 1), with probability at least

1− Pr
A,c

[IPGAP(A, b, c) ≥ G]− δ − e−n/5,

the best bound first branch-and-bound algorithm applied to (Primal IP) produces
a tree of size at most

nO(m)e2
√
2nG/δ. (2)

The class of logconcave distributions is quite rich (see subsection 2.6 for a
formal definition), e.g. the uniform distribution over any convex body as well
as all of its marginals are logconcave. We are therefore hopeful that interesting
bounds on the size of branch-and-bound trees can be obtained for a wide range
of random logconcave IPs, which by Theorem 3 reduces to obtaining suitable
bounds on the integrality gap.

When A, c have i.i.d. uniform [0, 1] coefficients and b = βn, β ∈ (0, 1/2)m

and βmin := mini∈[n] βi, Dyer and Frieze [5] proved that for n large enough

Pr
A,c

[IPGAP(A, b, c) ≥ αa1 log
2 n/n] ≤ 2−α/a2 + 1/(2n), ∀α ≥ 1,

where a1 = Θ(1/βmin)
m and a2 = 2Θ(m). In [2], Dey, Dubey and Molinaro use

this integrality gap result combined with a probabilistic analysis of the bound
in Theorem 2 to show that the tree size is at most

nO(ma1 log a1+αa1 logm)
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with probability 1 − 2−α/a2 − 1/n. A stronger bound can be obtained from
Theorem 3.

We first observe that 2
√
3IPGAP(A, b, c) = IPGAP(2

√
3A, 2

√
3b, 2

√
3c), not-

ing that W = 2
√
3

[
cT

A

]

has identity covariance. Plugging G = 2
√
3αa1 log

2 n/n

into Theorem 3 with δ = 1/(2n)− e−n/5, we get an improved tree-size bound of

nO(m)e2
√

4
√
3αa1 log2 n = nO(m)+4

√√
3αa1 .

Proceeding in a similar fashion, we can easily derive a tree-size bound for
Gaussian IPs by combining Theorem 1 and Theorem 3.

Corollary 1. For C ≥ 200 as in Theorem 1, m ∈ N, n ≥ Cm4.5, A ∈
Rm×n, c ∈ Rn with i.i.d. N (0, 1) entries and b ∈ Rm, ‖b−‖2 ≤ n/10. Then,
for 1 ≤ t ≤ n

Cm2.5(m+logn)2 , with probability at least 1 − 4(1 − 1
25 )

t − 2/n7, the

size of any best bound first branch-and-bound tree for solving (Primal IP) is at

most eO(
√
tm2.25)nO(

√
tm1.25).

Proof. Since A, b, c satisfy the conditions of Theorem 1, forG = 1015·m
2.5(m+logn)2

n ,
we have that IPGAP(A, b, c) ≥ tG with probability at most 4(1− 1

25 )
t + 1/n7.

Applying Theorem 3 to W with δ = 1/(2n7), using the fact that W ∈
Rm+1×n has i.i.d. N (0, 1) entries, with probability at least

1− (4(1− 1

25
)t + 1/n7)− δ − e−n/5 ≥ 1− 4(1− 1

25
)t − 2/n7,

we get that the size of the branch-and-bound tree is at most

nO(m)e2
√
2tGn/δ ≤ nO(m)eO(

√
tm1.25(m+logn))(2n7) = eO(

√
tm2.25)nO(

√
tm1.25). ⊓⊔

1.2 Proof Overview for Theorem 1

Our proof strategy follows along similar lines to that of Dyer and Frieze [5], which
we now describe. In their strategy, one first solves an auxiliary LP max cTx,Ax ≤
b − ǫ1m, for ǫ > 0 small, to get its optimal solution x∗, which is both feasible
and nearly optimal for the starting LP (proved by a simple scaling argument),
together with its optimal dual solution u∗ ≥ 0 (see subsection 2.2 for the for-
mulation of the dual). From here, they round down the fractional components
of x∗ to get a feasible IP solution x′ := ⌊x∗⌋. We note that the feasibility of
x′ depends crucially on the packing structure of the LPs they work with, i.e.,
that A has non-negative entries (which does not hold in the Gaussian setting).
Lastly, they construct a nearly optimal integer solution x′′, by carefully choosing
a subset of coordinates T ⊂ {i ∈ [n] : x′

i = 0} of size O(poly(m) logn), where
they flip the coordinates of x′ in T from 0 to 1 to get x′′. The coordinates of
T are chosen accordingly the following criteria. Firstly, the coordinates should
be very cheap to flip, which is measured by the absolute value of their reduced
costs. Namely, they enforce that |ci −AT

·,iu
∗| = O(log n/n), ∀i ∈ T . Secondly, T
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is chosen to make the excess slack ‖A(x∗ − x′′)‖∞ ≤ 1/ poly(n), i.e., negligible.
We note that guaranteeing the existence of T is highly non-trivial. Crucial to the
analysis is that after conditioning on the exact value of x∗ and u∗, the columns

of W :=

[
cT

A

]

∈ R(m+1)×n (the objective extended constraint matrix) that are

indexed by N0 := {i ∈ [n] : x∗
i = 0} are independently distributed subject to

having negative reduced cost, i.e., subject to ci − AT

·,iu
∗ < 0 for i ∈ N0 (see

Lemma 11). It is the large amount of left-over randomness in these columns that
allowed Dyer and Frieze to show the existence of the subset T via a discrepancy
argument (more on this below). Finally, given a suitable T , a simple sensitivity
analysis is used to show the bound on the gap between cTx′′ and the (Primal LP)
value. This analysis uses the basic formula for the optimality gap between pri-
mal and dual solutions (see (Gap Formula) in subsection 2.2), and relies upon
bounds on the size of the reduced costs of the flipped variables, the total excess
slack and the norm of the dual optimal solution u∗.

Adapting to the Gaussian setting. As a first difference with the above
strategy, we are able to work directly with the optimal solution x∗ of the original
LP without having to replace b by b′ := b− ǫ1m. The necessity of working with
this more conservative feasible region in the packing setting of [5] is that flipping
0 coordinates of x′ to 1 can only decrease b−Ax′. In particular, if the coordinates
of b − Ax′ ≥ 0 are too small, it becomes difficult to find a set T that doesn’t
force x′′ to be infeasible. By working with b′ instead of b, they can ensure that
b−Ax′ ≥ ǫ1m, which avoids this problem. In the Gaussian setting, it turns out
that we have equal power to both increase and decrease the slack of b − Ax′,
due to the fact that the Gaussian distribution is symmetric about 0. We are in
fact able to simultaneously fix both the feasibility and optimality error of x′,
which gives us more flexibility. In particular, we will be able to use randomized
rounding when we move from x∗ to x′, which will allow us to start with a smaller
initial slack error than is achievable by simply rounding x∗ down.

The Discrepancy Lemma. Our main quantitative improvement – the reduc-
tion from an exponential to a polynomial dependence in m – arises from two
main sources. The first source of improvement is a substantially improved ver-
sion of a discrepancy lemma of Dyer and Frieze [5, Lemma 3.4]. This lemma
posits that for any large enough set of “suitably random” columns in Rm and
any not too big target vectorD ∈ Rm, then with non-negligible probability there
exists a set containing half the columns whose sum is very close to D. This is the
main lemma used to show the existence of the subset T , chosen from a suitably
filtered subset of the columns of A in N0, used to reduce the excess slack. The
non-negligible probability in their lemma was of order 2−O(m), which implied
that one had to try 2O(m) disjoint subsets of the filtered columns before having
a constant probability of success of finding a suitable T . In our improved variant
of the discrepancy lemma, we show that by sub-selecting a 1/(2

√
m)-fraction of

the columns instead of 1/2-fraction, we can increase the success probability to
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constant, with the caveat of requiring a slightly larger set of initial columns. The
formal statement of our improved discrepancy lemma is given below.

Lemma 1. For k,m ∈ N, let a = ⌈2√m⌉ and θ > 0 satisfy
(

2θ√
2πk

)m (
ak
k

)
= 1.

Let Y1, . . . , Yak ∈ Rm be i.i.d. random vectors with independent coordinates. For
k0 ∈ N, γ ≥ 0,M > 0, assume that ∀i ∈ [m], Y1,i is a (γ, k0)-Gaussian convergent
continuous random variable with maximum density at most M . Then, if

k ≥ max{(4√m+ 2)k0, 144m
3
2 (logM + 3), 150 000(γ + 1)m

7
4 },

for any vector D ∈ Rm with ‖D‖2 ≤
√
k the following holds:

Pr



∃K ⊂ [ak] : |K| = k, ‖(
∑

j∈K

Yj)−D‖∞ ≤ θ



 ≥ 1

25
. (3)

The notion of Gaussian convergence used above (see Section 2.7 for a for-
mal definition), quantifies the speed at which the density of normalized sums of
i.i.d. random variables converges to the standard Gaussian density. This defini-
tion will in fact enforce that the entries of all the vectors in Lemma 1 have mean
0 and variance 1. Apart from the increased probability of success, we improve
many other aspects of [5, Lemma 3.4]. In particular, we remove the restriction
that the entries be bounded random variables, and we support targets of norm
exactly

√
k instead of kα, for any α < 1/2. Furthermore, [5, Lemma 3.4] is

proved only in the asymptotic regime where k → ∞, whereas we give explicit
parameter dependencies, which are all polynomial in m. Taken together, these
improvements make the lemma easier to use and more flexible, which should
enable further applications. We refer the reader to Section 6 for more details.

Reduced cost filtering. The second source of improvement is the use of a
much milder filtering step mentioned above. In both the uniform and Gaussian
case, the subset T is chosen from a subset of N0 associated with columns of
A having reduced costs of absolute value at most some parameter ∆ > 0. The
probability of finding a suitable T increases as ∆ grows larger, since we have
more columns to choose from, and the target integrality gap scales linearly with
∆, as the columns we choose from become more expensive as ∆ grows. Depend-
ing on the distribution of c and A, the reduced cost filtering induces non-trivial
correlations between the entries of the corresponding columns of A, which makes
it difficult to use them within the context of the discrepancy lemma. To deal with
this problem in the uniform setting, Dyer and Frieze filtered more aggressively,
by additionally restricting to the columns of A lying in a sub-cube [α, βmin]

m,
where α = Ω(log3 n/n) and βmin := mini∈[m] βi as above. This allowed them to
ensure that the distribution of the filtered columns in A is uniform in [α, βmin]

m,
thereby removing the unwanted correlations. In the packing setting, both ag-
gressive and reduced cost filtering can have success probability Θ(βmin)

m∆, so
aggressive filtering is not much more expensive than reduced cost filtering. For
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an illustrative calculation, if u∗ = 1m/(mβmin) and ∆ ≤ 1, then for i ∈ N0,
Ai ∈ [0, 1]m, ci ∈ [0, 1] distributed uniformly, the reduced cost filtering probabil-
ity is essentially equal to

Pr[AT

i u
∗ − ci ∈ [0, ∆]] ≤ ∆Pr[

m∑

j=1

Aij/(mβmin) ≤ 2]

≤ ∆volm({a ≥ 0 :

m∑

j=1

aj ≤ 2mβmin}) ≤ ∆(2eβmin)
m.

When Ai, ci have N (0, 1) entries however, we have PrAi,ci [A
T

i u
∗ − ci ∈ [0, ∆]] =

Θ(∆/‖(1, u∗)‖2) for ∆ ∈ [0, 1]. Given this much larger success probability, we
show how to work with only reduced cost filtering in the Gaussian setting. While
the entries of the filtered columns of A do indeed correlate, using the rotational
symmetry of the Gaussian distribution, we show that after applying a suitable
rotation R, the coordinates of the filtered columns of RA are all independent
(see Lemma 12). This allows us to apply the discrepancy lemma in a “rotated
space”, thereby completely avoiding the correlation issues in the uniform setting.

Sparsity of x∗ and boundedness of u∗. As already mentioned, we are also
able to substantially relax the rigid requirements on the right hand side b and to
remove any stringent “shape-dependence” of the integrality gap on b. Specifically,
the shape parameter βmin above is used to both lower bound |N0| by roughly
Ω((1 − 2βmin)n), the number of zeros in x∗, as well as upper bound the ℓ1
norm of the optimal dual solution u∗ by O(1/βmin) (this a main reason for
the choice of the [α, βmin]

m sub-cube above). These bounds are both crucial for
determining the existence of T . In the Gaussian setting, we are able to establish
|N0| = Ω(n) and ‖u∗‖2 = O(1), using only that ‖b−‖2 ≤ n/10. Due to the
different nature of the distributions we work with, our arguments to establish
these bounds are completely different from those used by Dyer and Frieze. Firstly,
the lower bound on |N0|, which is strongly based on the packing structure of the
IP in [5], is replaced by a sub-optimality argument. Namely, we show that the
objective value of any LP basic solution with too few zero coordinates must
be sub-optimal, using the concentration properties of the Gaussian distribution
(see Lemma 10). The upper bound on the ℓ1 norm of u∗ in [5] is deterministic and
based on packing structure; namely, that the objective value of a Primal LP of
packing-type is at most

∑n
i=1 ci ≤ n (since ci ∈ [0, 1], ∀i ∈ [m]). In the Gaussian

setting, we prove our bound on the norm of u∗ by first establishing simple upper
and lower bounds on the dual objective function, which hold with overwhelming
probability, and optimizing over these simple approximations (see Lemma 8).

Future directions. Given the above, a first question is whether one can extend
the integrality gap argument above to a larger class of logconcave IPs. An impor-
tant technical difficulty is to understand whether Lemma 1 can be generalized
to handle random columns whose entries are allowed to have non-trivial corre-
lations and whose entries have non-zero means. A second question is whether
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one can improve the current parameter dependencies, both in terms of improv-
ing the integrality gap and relaxing the restrictions on b. For this purpose, one
may try to leverage flipping both 0s to 1 and 1s to 0 in the rounding of x′ to
x′′. The columns of W associated with the one coordinates of x∗ are no longer
independent however. A final open question is whether these techniques can be
extended to handle discrete distributions on A and c.

1.3 Related Work

The worst-case complexity of solving max{cTx : Ax = b, x ≥ 0, x ∈ Z
n} scales

as nO(n) times a polynomial factor in the bit complexity of the problem. This is
a classical result due to Lenstra [15] and Kannan [14] which is based on lattice
basis reduction techniques.

Beyond these worst-case bounds, the performance of basis reduction tech-
niques for determining the feasibility of random integer programs has been an-
alyzed. In this context, basis reduction is used to reformulate Ax ≤ b, x ∈ Zn as
AUw ≤ b, w ∈ Zn for some unimodular matrix U ∈ Zn×n, after which a simple
variable branching scheme is applied (i.e., branching on integer hyperplanes in
the original space). Furst and Kannan [10] showed that subset-sum instances
of the form

∑n
i=1 xiai = b, x ∈ {0, 1}n, where each ai, i ∈ [n], is chosen uni-

formly from {1, . . . ,M} and b ∈ Z+, can be solved in polynomial time with

high probability in this way if M = 2Ω(n2). Pataki, Tural and Wong [20] proved
generalizations of this result for IPs of the form f ≤ Ax ≤ g, l ≤ x ≤ u, x ∈ Zn,
where the coefficients of A are uniform in {1, . . . ,M} and M is “large” compared
to ‖(g − f, u− l)‖. Apart from the different type of branching, compared to the
present work, we note that the IPs analyzed in these models are either infeasible
or have a unique feasible solution with high probability.

Another line of works has analyzed dynamic programming algorithm solv-
ing IPs with integer data [6,13,19]. For A ∈ Zm×n, b ∈ Zm, [13] proved that
max{cTx : Ax = b, x ≥ 0, x ∈ Zn} can be solved in time O(

√
m∆)2m log(‖b‖∞)+

O(nm), where ∆ is the largest absolute value of entries in the input matrix A
. Integer programs of the form max{cTx : Ax = b, 0 ≤ x ≤ u, x ∈ Zn} can
similarly be solved in time

n ·O(m)(m+1)2 · O(∆)m·(m+1) log2(m ·∆),

which was proved in [6]. Note that integer programs of the form max{cTx : Ax ≤
b, x ∈ {0, 1}n} can be rewritten in this latter form by adding m slack variables.

The complexity of integer programming has also been studied from the per-
spective of smoothed analysis. In this context, Röglin and Vöcking [22] proved
that a class of IPs satisfying some minor conditions has polynomial smoothed
complexity if and only if that class admits a pseudopolynomial time algorithm.
An algorithm has polynomial smoothed complexity if its running time is polyno-
mial with high probability when its input has been perturbed by adding random
noise, where the polynomial may depend on the inverse magnitude ϕ−1 of the
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noise as well as the dimensions n,m of the problem. An algorithm runs in pseu-
dopolynomial time if the running time is polynomial when the numbers are
written in unary, i.e., when the input data consists of integers of absolute value
at most ∆ and the running time is bounded by a polynomial p(n,m,∆). In par-
ticular, they prove that solving the randomly perturbed problem requires only
polynomially many calls to the pseudopolynomial time algorithm with numbers
of size (nmϕ)O(1) and considering only the first O(log(nmϕ)) bits of each of the
perturbed entries.

One may in fact compare the complexity of dynamic programming and
branch-and-bound for Gaussian IPs using the result of [22]. If we choose A ∈
R

m×n, c ∈ R
n as well as b ∈ R

m to have i.i.d. N(0, 1) entries, the result of [22] im-
plies that with high probability, to solve (Primal IP) it is sufficient to solve poly-
nomially many problems with integer entries of size nO(1). Since ∆ = nO(m) in
this setting (by Hadamard’s inequality), the result of [6] implies that (Primal IP)

can be solved in time nO(m3) with high probability. In comparison, by Corol-
lary 1, for any fixed ǫ ∈ (0, 1), branch-and-bound solves (Primal IP) in time

nO(m1.25), for n ≥ 2m, with probability 1− ǫ.

1.4 Organization

In Section 2, we give preliminaries on probability theory, linear programming and
integer rounding. In Section 3, we prove properties of the optimal primal and
dual LP solutions x∗ and u∗, and in Section 4, we characterize the distribution
of the columns of the objective extended constraint matrix corresponding to the
zero entries of x∗. In Section 5, we prove Theorem 1, using a discrepancy result
that we prove in Section 6. In Section 7, we prove Theorem 3, our meta-theorem
for random logconcave IPs.

2 Preliminaries

2.1 Basic Notation

We denote the reals and non-negative reals by R,R+ respectively, and the in-
tegers and positive integers by Z,N respectively. For k ≥ 1 an integer, we let
[k] := {1, . . . , k}. For s ∈ R, we let s+ := max{s, 0} and s− := min{s, 0} de-
note the positive and negative part of s. We extend this to a vector x ∈ Rn

by letting x+(−) correspond to applying the positive (negative) part operator
coordinate-wise. We let ‖x‖2 =

√∑n
i=1 x

2
i and ‖x‖1 =

∑n
i=1 |xi| denote the ℓ2

and ℓ1 norm respectively. We use log x to denote the base e natural logarithm.
We use 0m, 1m ∈ Rm to denote the all zeros and all ones vector respectively, and
e1, . . . , em ∈ Rm denote the standard coordinate basis. We write Rm

+ := [0,∞)m.
For a random variable X ∈ R, we let E[X ] denote its expectation and

Var[X ] := E[X2] − E[X ]2 denote its variance. For a random vector X ∈ Rd,
we define its mean E[X ] := (E[X1], . . . ,E[Xd]) and its covariance matrix

Cov(X) := E[XXT]− E[X ]E[X ]T = (E[XiXj]− E[Xi]E[Xj ])i,j∈[d].
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For any u ∈ Rd, we note that Var[uTX ] = E[(uTX)2]−E[uTX ]2 = uTCov(X)u.
We say that X has identity covariance if Cov(X) = Id, the d×d identity matrix.

X ∈ R
d is a continuous random vector if it admits a probability density

f : Rd → R+ satisfying Pr[X ∈ A] =
∫

A
f(x)dx, for all measurable A ⊆ Rd. We

will say that a continuous random vector has maximum density at most M > 0
if its probability density f satisfies supx∈Rd f(x) ≤ M .

2.2 The Dual Program, Gap Formula and the Optimal Solutions

A convenient formulation of the dual of (Primal LP) is given by

min val⋆(u) := bTu+
n∑

i=1

(c−ATu)+i (Dual LP)

s.t. u ≥ 0.

To keep the notation concise, we will often use the identity ‖(c − Atu)+‖1 =
∑n

i=1(c−ATu)+i .
For any primal solution x and dual solution u to the above pair of programs,

we have the following standard formula for the primal-dual gap:

val⋆(u)− val(x) := bTu+

n∑

i=1

(c−ATu)+i − cTx (Gap Formula)

= (b−Ax)Tu+

(
n∑

i=1

xi(A
Tu− c)+i + (1− xi)(c−ATu)+i

)

.

Throughout the rest of the paper, we let x∗ and u∗ denote primal and dual op-
timal basic feasible solutions for (Primal LP) and (Dual LP) respectively, which
we note are unique with probability 1. We use the notation

W :=

[
cT

A

]

∈ R
(m+1)×n, (4)

to denote the objective extended constraint matrix. We will frequently make use
of the sets Nb := {i ∈ [n] : x∗

i = b}, b ∈ {0, 1}, the 0 and 1 coordinates of x∗,
and S := {i ∈ [n] : x∗

i ∈ (0, 1)}, the fractional coordinates of x∗. We will also use
the fact that |S| ≤ m, which follows since x∗ is a basic solution to (Primal LP)
and A has m rows.

2.3 Chernoff Bounds and Binomial Sums

LetX1, . . . , Xn independent {0, 1} random variables with µ = E[
∑n

i=1 Xi]. Then,
the Chernoff bound gives [3, Corollary 1.10]

Pr[

n∑

i=1

Xi ≤ µ(1 − ǫ)] ≤ e−
ǫ2µ
2 , ǫ ∈ [0, 1]. (5)
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Pr[
n∑

i=1

Xi ≥ µ(1 + ǫ)] ≤ e−
ǫ2µ
3 , ǫ ∈ [0, 1].

The same concentration holds for the size of the intersection of two random
sets.

Lemma 2. Let K,K ′ be two i.i.d. random subsets of [ak], such that |K| =
|K ′| = k and where Pr[i ∈ K] = 1

a for every 1 ≤ i ≤ ak. Then for every
ǫ ∈ (0, 1) we have

Pr

[

|K ∩K ′| ≥ (1 + ǫ)k

a

]

≤ 2 exp

(

−kǫ2

3a

)

,

Pr

[

|K ∩K ′| ≤ (1− ǫ)k

a

]

≤ 2 exp

(

−kǫ2

2a

)

.

Proof. The set size |K ∩K ′| follows a hypergeometric distribution. To see this,
we let K ⊂ [ak] denote the set of successes, and we sample |K ′| elements from
[ak] without replacement. Then |K ∩ K ′| counts the number of successes. The
bound now follows directly from [3, Theorem 1.17]. ⊓⊔

We will need the following standard upper bound on binomial sums. For
n ≥ 1 and n/2 ≤ k ≤ n, we have that

|{S ⊆ [n] : |S| ≥ k}| =
n∑

i=k

(
n

i

)

≤ enH(k/n), (6)

where H(x) = −x log(x) − (1 − x) log(1 − x), x ∈ [0, 1], is the base e entropy
function [11, Theorem 3.1]. We recall that H(x) is concave in x and H(x) =
H(1− x), and hence is maximized at H(1/2) = log 2.

2.4 Bounds on the Moment Generating Function

Lemma 3. Let Z ∈ R be a random variable satisfying E[Z] = 0 and E[e|Z|] <

∞. Then, E[eZ ] ≤ E[cosh(
√

3/2Z)], where cosh(x) := 1
2 (e

x+e−x) =
∑∞

k=0
x2k

(2k)! .

Proof.

E[eZ ] =

∞∑

k=0

E[Zk]

k!
( by dominated convergence )

= 1 +

∞∑

k=1

E[Z2k]

(2k)!
+

∞∑

k=1

E[Z2k+1]

(2k + 1)!
( E[Z] = 0 )

≤ 1 +

∞∑

k=1

E[Z2k]

(2k)!
+

∞∑

k=1

(E[Z2k]E[Z2k+2])1/2

(2k + 1)!
( by Hölder’s inequality )
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≤ 1 +
∞∑

k=1

E[Z2k]

(2k)!
+

∞∑

k=1

(2k + 1)E[Z2k] + E[Z2k+2]/(2k + 1)

2(2k + 1)!
( by AM-GM )

= 1 +
3

2

E[Z2]

2
+

∞∑

k=2

E[Z2k]

(2k)!
(1 + 1/2 +

2k

2(2k − 1)
)

≤
∞∑

k=0

E[(
√

3/2Z)2k]

(2k)!
= E[cosh(

√

3/2Z)].

The last inequality follows by the fact that (3/2)k ≥ 3/2+ k
2k−1 whenever k ≥ 2.

⊓⊔

2.5 Gaussian and Sub-Gaussian Random Variables

The standard, mean zero and variance 1, Gaussian N (0, 1) has density function

ϕ(x) := 1√
2π

e−x2/2. A standard Gaussian vector in Rd, denoted N (0, Id), has

probability density
∏d

i=1 ϕ(xi) =
1√
2π

d e
−‖x‖2/2 for x ∈ Rd. A random variable

Y ∈ R is σ-sub-Gaussian if for all λ ∈ R, we have

E[eλY ] ≤ eσ
2λ2/2. (7)

A standard normal random variable X ∼ N (0, 1) is 1-sub-Gaussian. If variables
Y1, . . . , Yk ∈ R are independent and respectively σi-sub-Gaussian, i ∈ [k], then
∑k

i=1 Yi is

√
∑k

i=1 σ
2
i -sub-Gaussian.

For a σ-sub-Gaussian random variable Y ∈ R we have the following standard
tailbound:

max{Pr[Y ≤ −σs],Pr[Y ≥ σs]} ≤ e−
s2

2 , s ≥ 0. (8)

For X ∼ N (0, Id), we will use the following higher dimensional analogue:

Pr[‖X‖2 ≥ s
√
d] ≤ e−

d
2 (s

2−2 log s−1) ≤ e−
d
2 (s−1)2 , s ≥ 1. (9)

We will use this bound to show that the columns of A corresponding to the frac-
tional coordinates in the (almost surely unique) optimal solution x∗ are bounded.

Lemma 4. Letting S := {i ∈ [n] : x∗
i ∈ (0, 1)}, we have that

Pr[∃i ∈ S : ‖A·,i‖2 ≥ (4
√

log(n) +
√
m)] ≤ n−7.

Proof. Using the union bound over all n columns and Equation (9) we get that:

Pr[∃i ∈ S : ‖A·,i‖2 ≥ (4
√

log(n) +
√
m)]

≤ Pr[∃i ∈ [n] : ‖A·,i‖2 ≥ (4
√

log(n) +
√
m)]

≤ nPrX∼N (0,Id)[‖X‖2 ≥ (4
√

log(n) +
√
m)]

≤ n exp
(

−m

2
(4
√

log(n)/m)2
)

= n−7. ⊓⊔
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We will need the following analogue of the Chernoff bound for truncated
Gaussian sums.

Lemma 5. Let X1, . . . , Xn be i.i.d. N (0, 1). Then

Pr

[∣
∣
∣
∣
∣

n∑

i=1

X+
i − n√

2π

∣
∣
∣
∣
∣
≥

√
2ns

]

≤ 2e−s2/2, s ≥ 0.

Proof. For X ∼ N (0, 1), a direct computation yields µ := E[X+] = 1√
2π

. For

λ ∈ R, we get that

E[eλ(X
+−µ)] ≤ E[cosh(

√

3/2λ(X+ − µ))] ( by Lemma 3 )

≤ E[cosh(
√

3/2λ(X − µ))]
(
|X+ − µ| ≤ |X − µ|

)

≤ e
3
2λ

2/2 cosh(

√

3

2
λµ) ( by (7) )

≤ e(1+µ2) 3
4λ

2
(

cosh(x) ≤ ex
2/2
)

≤ eλ
2

(

µ2 =
1

2π
≤ 1

3

)

.

By the above, we have thatX+− 1
2π is

√
2-sub-Gaussian. Therefore, ifX1, . . . , Xn

are i.i.d. N (0, 1), the random variable Y = (
∑n

i=1 X
+
i ) − n√

2π
=
∑n

i=1(X
+
i −

1√
2π

) is
√
2n-sub-Gaussian. The desired result now follows directly from the sub-

Gaussian tail bound (8) and the union bound. ⊓⊔

2.6 Logconcave Distributions

A probability measure µ on Rd is logconcave µ admits a probability density
f : Rd → R+ such that log f : Rd → R ∪ {−∞} is concave. We say that a
random vector X ∈ Rd is logconcave if its distributed according to a logconcave
probability measure. Important examples of logconcave probability distributions
are the Gaussian distribution and the uniform distribution on a compact convex
set.

Logconcave distributions have many useful analytical properties. In particu-
lar, the marginals of logconcave random vectors are also logconcave.

Theorem 4 ([21]). Let X ∈ R
d be a logconcave random vector. Then, for

any surjective linear transformation T : Rd → Rk, TX is a logconcave random
vector.

The following theorem, which combines results from [16,9], yields important
properties of 1 dimensional logconcave distributions that we will need.

Theorem 5. Let ω ∈ R be a logconcave random variable with Var[ω] = 1.

– [16, Lemma 5.7]: Pr[|ω − E[ω]| ≥ s] ≤ e−s+1, ∀s ≥ 0.
– [9, Theorem 4]: ω has maximum density at most 1.
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2.7 A Local Limit Theorem

We now introduce the formalization of Gaussian convergence used in Lemma 1.

Definition 1. Suppose X1, X2, . . . is a sequence of i.i.d copies of a random vari-
able X with density f . For k0 ∈ N, γ ≥ 0, we define X to be (γ, k0)-Gaussian

convergent if the density fn of
n∑

i=1

Xi/
√
n satisfies:

|fn(x) − ϕ(x)| ≤ γ

n
∀x ∈ R, n ≥ k0,

where ϕ := 1√
2π

e−x2/2 is the probability density function of the standard Gaus-
sian.

The above definition quantifies the speed of convergence in the context of
the central limit theorem. The rounding strategy used to obtain the main result
utilizes random variables that are the weighted sum of a uniform and an inde-
pendent normal variable. Crucially, the given convergence estimate will hold for
these random variables:

Lemma 6. Let U be uniform on [−
√
3,
√
3] and let Z ∼ N (0, 1). Then there

exists a universal constant k0 ≥ 1 such that ∀ǫ ∈ [0, 1], the random variable√
ǫU +

√
1− ǫZ is (1/10, k0)-Gaussian convergent and has maximum density at

most 1.

We note that the O(1/n)-convergence rate to Gaussian achieved above is due
to the first 3 moments of X :=

√
ǫU +

√
1− ǫZ matching those of the standard

Gaussian, namely E[X ] = E[X3] = 0 and E[X2] = 1, and the fact that the
characteristic function c(s) := E[eisX ] decays like 1/|s|. More generally, if the
first l ≥ 2 moments match and the characteristic function decays quickly enough,
the convergence rate is O(1/n(l−1)/2). The proof follows from the following local
limit theorem (a special case of [8, Theorem XVI.2.2]):

Theorem 6. Let X1, X2, . . . be a sequence of i.i.d. random variables with den-
sity having moments E[X1] = 0,E[X2

1 ] = 1,E[X3
1 ] = 0, E[X4

1 ] = µ4 > 0. Also,
assume that we have |E[eisX ]| ≤ β/(|s|+ 1)α, ∀s ∈ R for some β, α > 0. Define
Sn = 1√

n

∑n
i=1 Xi and ϕ(x) = 1√

2π
exp(−x2/2). Then, for all n ≥ 1, Sn admits

a density fn satisfying

fn(x) = ϕ(x)

[

1 +
µ4 − 3

24n
(x4 − 6x2 + 3)

]

+ o

(
Cα,β

n

)

, ∀x ∈ R,

where Cα,β depends only on α, β.

Proof (Lemma 6). Letting X =
√
ǫU +

√
1− ǫZ, a straightforward calcula-

tion yields E[X ] = E[X3] = 0, E[X2] = 1 and µ4 := E[X4] = ǫ29/5 + 6(1 −
ǫ)ǫ + (1 − ǫ)23. Since convolution does not increase the maximum density, as
max{√ǫ,

√
1− ǫ} ≥ 1/

√
2, we see that the maximum density of

√
ǫU +

√
1− ǫZ
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is upper bounded by min{ 1
2
√
3ǫ
, 1√

2π(1−ǫ)
} ≤ 1 , where the terms correspond to

the maximum density of
√
ǫU and

√
1− ǫZ respectively. Further,

|E[eis(
√
ǫU+

√
1−ǫZ)]| = | sin(

√
3ǫs)√

3ǫs
e−(1−ǫ)s2/2| ≤ 2

1 +
√
3ǫ|s|

· 1

1 + (1− ǫ)s2/2

≤ 10

1 + |s| .

From here, maxx∈R |ϕ(x) 1
24 (x

4− 6x2+3)| is maximized at x = 0 attaining value

ϕ(0) 3
24 = 1

8
√
2π

. Let γ′ := 6
40

√
2π

≥ | (µ4−3)

8
√
2π

|. Applying Theorem 6 with β =

10, α = 1, one can choose k0 = Oα,β(1) large enough so that the o (Cα,β/n) term
is at most γ′/n for all n ≥ k0. The lemma now follows letting γ := 1/10 ≥ 2γ′.

⊓⊔

2.8 Nets

Let Sd−1 = {x ∈ Rd : ‖x‖2 = 1} denote the unit sphere in Rd. We say that
N ⊆ Sd−1 is an ǫ-net if for every x ∈ Sd−1 there exists y ∈ N such that
‖x− y‖ ≤ ǫ. A classic result we will need is that Sd−1 admits an ǫ-net Nǫ of size
|Nǫ| ≤ (1 + 2

ǫ )
d. See, for example, [7, Chapter 5]. We note that the same bound

holds if we wish to construct a net of some subset A ⊆ S
d−1 and we wish to have

Nǫ ⊆ A.

2.9 Rounding to Binary Solutions

In the proof of Theorem 1, we will take our optimal solution x∗ and round it
to an integer solution x′, by changing the fractional coordinates. Note that as
x∗ is a basic solution, it has at most m fractional coordinates. One could round
to a integral solution by setting all of them to 0, i.e., x′ = ⌊x∗⌋. If we assume
that the Euclidean norm of every column of A is bounded by C, then we have
‖A(x∗ − x′)‖2 ≤ mC, since x∗ has at most m fractional variables. However,
by using randomized rounding we can make this bound smaller, as stated in the
next lemma. We use this to obtain smaller polynomial dependence in Theorem 1.

Lemma 7. Consider an m × n matrix A with ‖A·,i‖2 ≤ C for all i ∈ [m] and
y ∈ [0, 1]n. Let S = {i ∈ [n] : yi ∈ (0, 1)}. There exists a vector y′ ∈ {0, 1}n with
‖A(y − y′)‖2 ≤ C

√

|S|/2 and y′i = yi for all i /∈ S.

Proof. Let Y be the random variable in {0, 1}n with independent components
such that E(Y ) = y. Note that this implies that Var(Yi) ≤ 1/4 for all i and
Var(Yi) = 0 for i /∈ S. Then:

E(‖A(y − Y )‖2)2 ≤ E(‖A(y − Y )‖22) =
n∑

i=1

‖A·,i‖22 Var(Yi)
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≤
∑

i∈S

C2 Var(Yi) ≤
C2|S|
4

So E(‖A(y − Y )‖2) ≤ C
√

|S|/2, which directly implies the existence of a value

y′ ∈ {0, 1}n with ‖A(y − y′)‖2 ≤ C
√

|S|/2. ⊓⊔

3 Properties of the Optimal Solutions

The following lemma is the main result of this section, which gives principal
properties we will need of the optimal primal and dual LP solutions. Namely, we
prove an upper bound on the norm of the optimal dual solution u∗ and a lower
bound on the number of zero coordinates of the optimal primal solution x∗.

Lemma 8. Given δ :=
√
2π
n ‖b−‖2 ∈ [0, 1/2), ǫ ∈ (0, 1/5), let x∗, u∗ denote

the optimal primal and dual LP solutions, and let α := 1√
2π

√
(

1−3ǫ
1−ǫ

)2

− δ2

and choose β ∈ [1/2, 1] with H(β) = α2

4 . Then, with probability at least 1 −
2
(
1 + 2

ǫ

)m+1
e−

ǫ2n
8π − e−

α2n
4 , the following holds:

1. cTx∗ ≥ αn.
2. ‖u∗‖2 ≤ 1+ǫ

1−3ǫ−(1−ǫ)δ .

3. |{i ∈ [n] : x∗
i = 0}| ≥ (1− β)n−m.

To prove Lemma 8, we will require two technical lemmas. The first, Lemma 9,
shows that a random Gaussian matrix forms a good embedding from ℓ2 into a
“truncated” version of ℓ1 (i.e., ℓ1 restricted to non-negative coordinates). The
second, Lemma 10, upper bounds the value of maximizing a Gaussian objective
over the hypercube restricted to vectors having a large number of coordinates
set to one.

Lemma 9. Let G ∈ Rn×d be a random matrix with independent N (0, 1) entries.
Then, for ǫ ∈ (0, 1),

Pr

[

∃ v ∈ Sd−1, ‖(Gv)+‖1 /∈
[
1− 3ǫ

1− ǫ
,
1 + ǫ

1− ǫ

]

· n√
2π

]

≤ 2

(

1 +
2

ǫ

)d

e−
ǫ2n
8π .

(10)

Proof. Let Nǫ denote an ǫ-net of Sd−1. Let B denote the event in equation (10).
Let E denote the event that there exists v′ ∈ Nǫ such that ‖(Gv′)+‖1 6∈ [1 −
ǫ, 1 + ǫ] n√

2π
.

We now show that Pr[B] ≤ Pr[E]. For this purpose, it suffices to show that
¬E ⇒ ¬B. We thus condition G on the complement of E and show that B does
not occur. For every v ∈ Sd−1, choose an ṽ ∈ Nǫ satisfying ‖v − ṽ‖2 ≤ ǫ. Then,
we have that

max
v∈Sd−1

‖(Gv)+‖1 ≤ max
v∈Sd−1

‖(Gṽ)+‖1 + ‖(G(v − ṽ))+‖1
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≤ (1 + ǫ)
n√
2π

+ ǫ max
v∈Sd−1

‖(Gv)+‖1 ⇒

max
v∈Sd−1

‖(Gv)+‖1 ≤ 1 + ǫ

1− ǫ

n√
2π

. (11)

To get lower bounds, we use that

min
v∈Sd−1

‖(Gv)+‖1 ≥ min
v∈Sd−1

‖(Gṽ)+‖1 − ‖(G(v − ṽ))−‖1

≥ (1 − ǫ)
n√
2π

− ǫ max
v∈Sd−1

‖(Gv)−‖1

= (1 − ǫ)
n√
2π

− ǫ max
v∈Sd−1

‖(Gv)+‖1. (12)

From this inequality, we deduce that

min
v∈Sd−1

‖(Gv)+‖1 ≥
(

1− ǫ

(

1 +
1 + ǫ

1− ǫ

))
n√
2π

=
1− 3ǫ

1− ǫ

n√
2π

. (13)

Thus ¬E ⇒ ¬B, as needed. Using that Gv ∼ N (0, In) for v ∈ Sd−1, we have
that

Pr[E] ≤
∑

ṽ∈Nǫ

Pr

[

‖(Gṽ)+‖1 6∈ [1− ǫ, 1 + ǫ] · n√
2π

]

= |Nǫ|PrX∼N (0,In)

[

‖X+‖1 6∈ [1− ǫ, 1 + ǫ]
n√
2π

]

≤ 2

(

1 +
2

ǫ

)d

e−
ǫ2n
8π ( by Lemma 5 ) .

The lemma thus follows. ⊓⊔

Lemma 10. Let c ∼ N (0, In) and α ∈ [0, 2
√
log 2]. Choose β ∈ [1/2, 1] satisfy-

ing H(β) = α2

4 . Then

Pr

[

max
x∈{0,1}n,‖x‖1≥βn

cTx ≥ αn

]

≤ e−
α2n
4 . (14)

Proof. For x ∈ {0, 1}n, we have that cTx ∼ N (0, ‖x‖1). By the sub-Gaussian
tail bound (8), we see that

Pr[cTx ≥ αn] = Prz∈N (0,1)[‖x‖2z ≥ αn] ≤ Prz∈N (0,1)[z ≥ α
√
n] ≤ e−

α2n
2 .

By union bound and (6), we conclude that

Pr

[

max
x∈{0,1}n,‖x‖1≥βn

cTx ≥ αn

]

≤ |{x ∈ {0, 1}n : ‖x‖1 ≥ βn}|Prz∈N (0,1)[z ≥ α
√
n]

≤ eH(β)ne−
α2

2 n = e−
α2n
4 , as needed. ⊓⊔
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We are now ready to prove Lemma 8.

Proof (Lemma 8).
LetW ∈ R(m+1)×n be as in (4). Applying Lemma 9 to (WT, ǫ) and Lemma 10

to (c, α, β), the events (E1) ‖(WTu)+‖1 ∈
[
1−3ǫ
1−ǫ ,

1+ǫ
1−ǫ

]

· n√
2π

, ∀‖u‖2 = 1, and (E2)

maxx∈{0,1}n,‖x‖1≥βn c
Tx < αn hold with probability at least 1−2

(
1 + 2

ǫ

)m+1
e−

ǫ2n
8π −

e−
α2n
4 . It thus suffices to prove that properties 1-3 hold under E1, E2. We prove

each in turn below.

Proof of 1. To lower bound cTx∗, i.e., the optimal LP value, it suffices to show
that every dual solution has value at least αn. Take u ∈ Rm

+ , then we can bound
the dual value val∗(u∗) using the inequalities

bTu+ ‖(c−ATu)+‖1 ≥ (b−)Tu+ ‖(WT(1,−u)T)+‖1

≥ −‖b−‖2‖u‖2 +
1− 3ǫ

1− ǫ

n√
2π

√

1 + ‖u‖22 ( by E1 )

=
n√
2π

·
(

−δ‖u‖2 +
1− 3ǫ

1− ǫ

√

1 + ‖u‖22
)

(15)

≥ n√
2π

√

(
1− 3ǫ

1− ǫ
)2 − δ2 = αn,

where the last inequality follows by minimizing the expression over ‖u‖, which
occurs at ‖u‖ = δ

√

( 1−3ǫ
1−ǫ )2−δ2

.

Proof of 2. To bound ‖u∗‖2, we compare bounds for val∗(u∗):

1 + ǫ

1− ǫ

n√
2π

≥ ‖(WT(1, 0m)T)+‖1 = ‖c+‖1 (by E1)

= val∗(0m) ≥ val∗(u∗)

≥ n√
2π

·
(

−δ‖u∗‖2 +
1− 3ǫ

1− ǫ

√

1 + ‖u∗‖22
)

( by (15) )

≥ n√
2π

·
(
1− 3ǫ

1− ǫ
− δ

)

‖u∗‖2

⇒ ‖u∗‖2 ≤ 1 + ǫ

1− 3ǫ− (1− ǫ)δ
.

Proof of 3. The optimal feasible solution x∗ is unique almost surely, and as
such it is a basic feasible solution. As such, we know that x∗ ∈ [0, 1]n has at
most m fractional components. In particular, |{i ∈ [n] : x∗

i = 0}| ≥ n−m−|{i ∈
[n] : x∗

i = 1}|. Thus, it suffices to show that |{i ∈ [n] : x∗
i = 1}| ≤ βn. Define

x̄ ∈ {0, 1}n satisfying

x̄i =







x∗
i : x∗

i ∈ {0, 1}
1 : x∗

i ∈ (0, 1), ci ≥ 0

0 : x∗
i ∈ (0, 1), ci < 0

, ∀i ∈ [n].
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Clearly, cTx̄ ≥ cTx∗ ≥ αn. Thus, by E2 we have that βn > |{i ∈ [n] : x̄i = 1}| ≥
|{i ∈ [n] : x∗

i = 1}|, as needed. ⊓⊔

4 Properties of the 0 Columns

For Y := (c, a1, . . . , am) ∼ N (0, Im+1) and u ∈ Rm
+ , let Y u denote the random

variable Y conditioned the event c −∑m
i=1 uiai ≤ 0. We will crucially use the

following lemma directly adapted from Dyer and Frieze [5, Lemma 2.1], which
shows that the columns of W associated with the 0 coordinates of x∗ are inde-
pendent subject to having negative reduced cost.

Recall that Nb = {i ∈ [n] : x∗
i = b}, that S = {i ∈ [n] : x∗

i ∈ (0, 1)} and that

W :=

[
cT

A

]

∈ R(m+1)×n is the objective extended constraint matrix.

Lemma 11. Let N ′
0 ⊆ [n]. Conditioning on N0 = N ′

0, the submatrix W·,[n]\N ′
0

uniquely determines x∗ and u∗ almost surely. If we further condition on the exact
value of W·,[n]\N ′

0
, assuming x∗ and u∗ are uniquely defined, then any column

W·,i with i ∈ N ′
0 is distributed according to Y u∗

and independent of W·,[n]\{i}.

Proof. Knowing N ′
0, we solve the following program to obtain its primal and

dual optimal feasible solutions x̄ and ū.

max cTx

s.t.
∑

i∈[n]\N0

xiaji ≤ bj ∀j ∈ [m]

xi = 0 ∀i ∈ N ′
0

x ∈ [0, 1]n.

This does not require knowledge of W·,N ′
0
, and the optimal feasible primal and

dual solutions are unique almost surely.
If N0 = N ′

0, then x̄ = x∗ and ū = u∗. Since these solutions satisfy comple-
mentary slackness, this is equivalent to the following system of equations.

(1− x̄i)(ci −
m∑

j=1

ūiaji)
+ = 0, ∀i ∈ [n]. (16)

x̄i(

m∑

j=1

ūiaji − ci)
+ = 0, ∀i ∈ [n]. (17)

ūj(b−Ax̄)j = 0, ∀j ∈ [m]. (18)

Note that for i ∈ N0, eqs. (17) and (18) are trivially satisfied. By definition,
the distribution of W·,i := (ci, a1i, . . . , ami) conditioned on eq. (16) for x̄i = 0
has the same law as Y ū. Note that each of these conditions depends on only one
i ∈ N ′

0, so all columns of W·,N ′
0
are independent.
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We conditioned only on N0 = N ′
0, which has non-zero probability, and we

have shown that for every possible realization of W·,[n]\N ′
0
, the columns of W·,N ′

0

are independently distributed as Y u∗
, which proves the lemma. ⊓⊔

To make the distribution of the columns A·,i easier to analyze we rotate
them.

Lemma 12. Let R be a rotation that sends the vector u to the vector ‖u‖2em.
Suppose (c, a) ∼ Y u. Define a′ := Ra. Then (c, Ra) ∼ (c′, a′), where (c′, a′) is
the value of (c̄′, ā′) ∼ N (0, Im+1) conditioned on ‖u‖2ā′m − c̄′ ≥ 0.

Proof. Recall that (c, a) ∼ Y u′
is generated by conditioning (c̄, ā) ∼ N (0, Im+1)

on c̄−uTā ≤ 0. The latter is equivalent to c̄−‖u‖2(Rā)m = c̄−uTR−1(Rā) ≤ 0,
i.e. to ‖u‖2(Rā)m− c̄ ≥ 0. Setting (c̄,′ ā′) = (c̄, Rā), we see that (c, Ra) ∼ (c′, a′),
where (c′, a′) is the value of (c̄′, ā′) ∼ N (0, Im+1) conditioned on ‖u‖2ā′m−c̄′ ≥ 0.

⊓⊔

We will slightly change the distribution of the (c′, a′m) above using rejection
sampling, as stated in the next lemma. This will make it easier to apply the
discrepancy result of Lemma 1, which is used to round x∗ to an integer solution
of nearby value. In what follows, we denote the probability density function of a
random variable X by fX . In the following lemma, we use unif(0, ν) to denote
the uniform distribution on the interval [0, ν], for ν ≥ 0.

Lemma 13. For any ω ≥ 0, ν > 0, let X,Y ∼ N (0, 1) be independent random
variables and let Z = ωY −X. Let X ′, Y ′, Z ′ be these variables conditioned on
Z ≥ 0. We apply rejection sampling on (X ′, Y ′, Z ′) with acceptance probability

Pr[accept|Z ′ = z] =
2ϕ(ν/

√
1 + ω2)1z∈[0,ν]

2ϕ(z/
√
1 + ω2)

.

Let X ′′, Y ′′, Z ′′ be the variables X ′, Y ′, Z ′ conditioned on acceptance. Then:

1. Pr[accept] = 2νϕ(ν/
√
1 + ω2)/

√
1 + ω2.

2. Y ′′ ∼ W + V where W ∼ N (0, 1
1+ω2 ), V ∼ unif(0, νω

1+ω2 ) and W,V are
independent.

Proof. Because Z ∼ N (0, 1 + ω2) and Z ′ = Z | Z ≥ 0, for the density function
fZ′ we have fZ′(z) = 2 · 1z≥0ϕ(z/

√
1 + ω2)/

√
1 + ω2.

Pr[accept] =

∫ ν

0

2ϕ(z/
√
1 + ω2)√

1 + ω2

2ϕ(ν/
√
1 + ω2)

2ϕ(z/
√
1 + ω2)

dz =
2νϕ(ν/

√
1 + ω2)√

1 + ω2
.

Now the probability density function of Z ′′, the variable Z ′ conditioned on ac-
ceptance, is:

fZ′′(z) =
fZ′(z) · Pr[accept|Z ′ = z]

Pr[accept]
= 1z∈[0,ν]/ν.
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So Z ′′ is uniformly distributed in [0, ν].
Let W = Y − ω

1+ω2Z. By a direct calculation, one can check that E[W ] =

E[Z] = E[WZ] = 0, E[Z2] = 1 + ω2, E[W 2] = 1
1+ω2 . Since W,Z are jointly

Gaussian, this covariance structure implies that W ∼ N (0, 1
1+ω2 ), Z ∼ N (0, 1+

ω2) and that W,Z are independent. Noting that Y = W + ω
1+ω2Z, we see that

the law of Y ′′ is the same as that of W + ω
1+ω2Z

′′, where W,Z ′′ are independent.
Finally observe that ω

1+ω2Z
′′ ∼ unif(0, νω

1+ω2 ). ⊓⊔

5 Proof of Theorem 1

Recall that S = {i ∈ [n] : x∗
i ∈ (0, 1)} and N0 = {i ∈ [n] : x∗

i = 0}. To prove
Theorem 1, we will need to condition on the following event, which we denote
by E:

1. ‖A·,i‖2 ≤ 4
√

log(n) +
√
m, ∀i ∈ S.

2. ‖u∗‖ ≤ 3.
3. |N0| ≥ n/500.

Using Lemmas 4 and 8 we can show that E hold with probability 1 − n−Ω(1).
Now we take our optimal basic solution x∗ and round it to an integral vector
x′ using Lemma 7. Then we can generate a new solution x′′ from x′ by flipping
the values at indices T ⊆ N0 to one. In Lemma 14 we show that with high
probability there is such a set T , such that x′′ is a feasible solution to our primal
problem and that val(x∗)− val(x′′) is small.

We do this by looking at t disjoint subsets of N0 with small reduced costs.
Then we show for each of these sets that with constant probability it contains
a subset T such that for x′′ obtained from T , x′′ is feasible and all constraints
that are tight for x∗ are close to being tight for x′′. This argument relies on
the Lemma 1 from the introduction, which we prove in Section 6.

If a suitable T exists, then using the gap formula we show that val(x∗) −
val(x′′) is small. Because the t sets independent the probability of failure de-
creases exponentially with t. Hence, we can make the probability of failure ar-
bitrarily small by increasing t. We know val(x∗) = valLP(A, b, c) and because
x′′ ∈ {0, 1}n we have valIP(A, b, c) ≥ val(x′′), so IPGAP(A, b, c) = valLP(A, b, c)−
valIP(A, b, c) ≤ val(x∗)− val(x′′), which is small with high probability.

Lemma 14. For n ≥ exp(k0), with k0 as in Lemma 6, we have that

Pr

[

IPGAP(A, b, c) > 1015t · m
2.5(logn+m)2

n
| E
]

≤ 2 ·
(

1− 1

25

)t

(19)

for 1 ≤ t ≤ n
20 000

√
mk2 , where k := ⌈165 000m(log(n) +m)⌉.

Proof. To prove the lemma, we show that the desired probability bound holds
when we condition on the exact values of N0 ⊆ [n] and W·,[n]\N0

subject to 1-3
defining E. Since N0 and W·,[n]\N0

determine E, this is clearly sufficient. By



22 Borst et al.

Lemma 11, we may further assume that this conditioning uniquely determines
x∗ and u∗.

Now let R be a rotation that sends the vector u∗ to the vector ‖u∗‖2em.
Define:

∆ := 10 000
√
mk/n = Θ(m1.5(m+ logn)/n),

Bi := RA·,i, for i ∈ N0,

Zt := {i ∈ N0 : ‖u∗‖2(Bi)m − ci ∈ [0, t∆]}, for 1 ≤ t ≤ 1

2∆k
.

We consider a (possibly infeasible) integral solution x′ to the LP, generated by
rounding the fractional coordinates from x∗. By Lemma 7 we can find such a
solution with ‖A(x∗−x′)‖2 ≤ (4

√
logn+

√
m)
√

|S|/2 ≤ (4
√
logn+

√
m)

√
m/2.

We will select a subset T ⊆ Zt of size |T | = k of coordinates to flip from 0 to
1 to obtain x′′ ∈ {0, 1}n from x′, so x′′ := x′ +

∑

i∈T ei. By complementary

slackness, we know for i ∈ [n] that x∗
i (A

Tu∗ − c)+i = (1 − x∗
i )(c − ATu∗)+ = 0

and that x∗
i /∈ {0, 1} implies (c−ATu∗)i = 0, and for j ∈ [m] that u∗

j > 0 implies
bj = (Ax∗)j . This observation allows us to prove the following key bound for the
integrality gap of (Primal LP)

val(x∗)− val(x′′) = val⋆(u∗)− val(x′′)

= (b−Ax′′)Tu∗

+

(
n∑

i=1

x′′
i (A

Tu∗ − c)+i + (1− x′′
i )(c−ATu∗)+i

)

(by (Gap Formula))

= (x∗ − x′′)TATu∗ +
∑

i∈T

(ATu∗ − c)i (by complementary slackness)

≤ √
m‖u∗‖2 ‖A(x′′ − x∗)‖∞ + t∆k (since T ⊆ Zt).

Condition 2 tells us that ‖u∗‖2 ≤ 3, and by definition we have

t∆k ≤ 27226 · 1010t · m
2.5(log(n) +m)2

n
,

so the rest of this proof is dedicated to showing the existence of a set T ⊆ Zt

such that ‖A(x′′ − x∗)‖∞ ≤ O(1/n) and Ax′′ ≤ b.
By applying Lemma 11, we see that {(ci, A·,i)}i∈N0 are independent vectors,

distributed as N (0, Im+1) conditioned on ci − AT

·,iu
∗ ≤ 0. This implies that

the vectors {(ci, Bi)}i∈N0 , are also independent. By Lemma 12, it follows that
(ci, Bi) ∼ N (0, Im+1) | ‖u∗‖2(Bi)m− ci ≥ 0. Note that the coordinates of Bi are
therefore independent and (Bi)j ∼ N (0, 1) for j ∈ [m− 1].

To simplify the upcoming calculations, we apply rejection sampling as spec-
ified in Lemma 13 with ν = ∆t on (ci, (Bi)m), for each i ∈ N0. Let Z ′

t ⊆ N0

denote the indices which are accepted by the rejection sampling procedure. By
the guarantees of Lemma 13, we have that Z ′

t ⊆ Zt and

Pr[i ∈ Z ′
t | i ∈ N0] =

2∆tϕ(∆t/
√

1 + ‖u∗‖22)
√

1 + ‖u∗‖22
≥ 2∆tϕ(1/2)√

10
≥ ∆t/5.
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Furthermore, for i ∈ Z ′
t we know that (Bi)m is distributed as a sum of indepen-

dent N(0, 1
1+‖u∗‖2

2
) and unif(0, t∆) random variables, and thus (Bi)m has mean

and variance

µt := E[(Bi)m|i ∈ Z ′
t] = ∆t/2,

σ2
t := Var[(Bi)m|i ∈ Z ′

t] =
1

1 + ‖u∗‖22
+

1

12

( ‖u∗‖2∆t

1 + ‖u∗‖22

)2

∈ [1/10, 2].

Now define Σ(t) to be the diagonal matrix with Σ
(t)
j,j = 1, j ∈ [m − 1], and

Σ
(t)
m,m = σt. Conditional on i ∈ Z ′

t, define B
(t)
i as the random variable

B
(t)
i := (Σ(t))−1(Bi − µtem) | i ∈ Z ′

t.

This ensures that all coordinates of B(t) are independent, mean zero and have
variance one.

We have assumed that |N0| ≥ n/500 and we know Pr[i ∈ Z ′
t|i ∈ N0] ≥ ∆t/5.

Now, using the Chernoff bound (5) we find that:

Pr[|Z ′
t| < 2t

√
mk] ≤ Pr

[

|Z ′
t| <

1

5
t∆|N0|/2

]

≤ exp

(

−1

8
· 1
5
t∆|N0|

)

≤
(

1− 1

25

)t

. (20)

Now we define:

θ :=

√
2πk

2

(⌈2√mk⌉
k

)−1/m

, d := A(x∗ − x′).

θ′ := 2
√
mθ. d′ := d− 1mθ′.

Observe that

θ =

√
2πk

2

(⌈2√mk⌉
k

)−1/m

≤
√
2πk

2

(
2
√
m
)−k/m ≤ 1

32m2n
.

So θ′ ≤ 1/8.

If |Z ′
t| ≥ ⌈2√m⌉kt, then we can take t disjoint subsets Z

(1)
t , . . . Z

(k)
t of Z ′

t of
size ⌈2√m⌉k. Conditioning on this event, we wish to apply Lemma 1 to each

{B(t)
i }

i∈Z
(l)
t
, l ∈ [t], to help us find a candidate rounding of x′ to a “good” integer

solution x′′.
Now we check that all conditions of Lemma 1 are satisfied. By definition we

have
(

2θ√
2πk

)m (
ak
k

)
= 1, and we can bound

∥
∥
∥(Σ(t))−1(Rd′ − emkµt)

∥
∥
∥
2
≤ max(1, 1/σt)(‖Rd‖2 + θ′ + kµt)
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≤
√
10(‖RA(x∗ − x′)‖2 + θ′ + k∆t/2)

≤
√
10

(√
m(4

√

log n+
√
m)/2 +

1

8
+

1

4

)

≤ 4
√

10m(logn+m) ≤
√
k.

We now show that the conditions of Lemma 1 for M = 1,γ = 1/10, and k0

specified below, are satisfied by {B(t)
i }

i∈Z
(l)
t
, ∀l ∈ [t].

First, we observe that the B
(t)
i are distributed as (B

(t)
i )m ∼ √

ǫV +
√
1− ǫU

for ǫ = 1
(1+‖u∗‖2

2)σ
2
t
, where U is uniform on [−

√
3,
√
3] and V ∼ N (0, 1). By

Lemma 6, (B
(t)
i )m is (1/10, k0)-Gaussian convergent for some k0 and has max-

imum density at most 1. Recalling that the coordinates of B
(t)
i , i ∈ Z ′

t, are

independent and (B
(t)
i )j ∼ N (0, 1), ∀j ∈ [m − 1], we see that B

(t)
i has inde-

pendent (1/10, k0)-Gaussian convergent entries of maximum density at most 1.
Lastly, we note that

k = 165 000m(log(n) +m) ≥ 165 000(m2 + k0m)

≥ max{(4√m+ 2)k0, 144m
3
2 (log 1 + 3), 150 000(γ + 1)m

7
4 }

as needed to apply Lemma 1, using that n ≥ exp(k0).
Therefore, applying Lemma 1, for each l ∈ [t], with probability at least

1− 1/25, there exists a set Tl ⊆ Z
(l)
t of size k such that:

∥
∥
∥
∥
∥

∑

i∈Tl

B
(t)
i − (Σ(t))−1(Rd′ − emkµt)

∥
∥
∥
∥
∥
∞

≤ θ. (21)

Call the event that (21) is valid for any of the t sets Et. Because the success
probabilities for each of the t sets are independent, we get:

Pr[¬Et | |Z ′
t| ≥ ⌈2√m⌉tk] ≤

(

1− 1

25

)t

.

Combining this with Equation (20), we see that Pr[¬Et] ≤ 2 · (1 − 1
25 )

t. If Et

occurs, we choose T ⊆ Z ′
t, |T | = k, satisfying (21). Then,

∥
∥
∥
∥
∥

∑

i∈T

A·,i − d′
∥
∥
∥
∥
∥
∞

≤
∥
∥
∥
∥
∥

∑

i∈T

A·,i − d′
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥

∑

i∈T

B·,i −Rd′
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥

∑

i∈T

(Σ(t))B
(t)
·,i + kµtem −Rd′

∥
∥
∥
∥
∥
2

≤ max(1, σt)
√
m

∥
∥
∥
∥
∥

∑

i∈T

B
(t)
·,i − (Σ(t))−1(Rd′ − emkµt)

∥
∥
∥
∥
∥
∞

≤ 2
√
mθ = θ′.
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Now we will show that when Et occurs, x′′ is feasible and ‖A(x′′ − x∗)‖∞ =
O(1/n). First we check feasibility:

m∑

i=1

x′′
i aji = (Ax′)j +

∑

i∈T

aji ≤ (Ax′)j + d′j + θ′

= (Ax′)j + (A(x∗ − x′))j = (Ax∗)j ≤ bj .

Hence the solution is feasible for our LP. We also have

‖A(x′′ − x∗)‖∞ = ‖Ax′′ −Ax′ − d‖∞
= ‖

∑

i∈T

A·,i − d′‖∞ ≤ ‖
∑

i∈T

A·,i − d‖∞ + θ′ ≤ 2θ′.

Now we can finalize our initial computation:

val(x∗)− val(x′′) ≤ √
m‖u∗‖2 ‖A(x′′ − x∗)‖∞ + t∆k

≤ 6
√
mθ′ + 10 000 ·

√
m · t · k2

n

≤ 12

32mn
+ 27226 · 1010t · m

2.5(log n+m)2

n

≤ 1015t · m
2.5(log n+m)2

n
. ⊓⊔

Now we have all ingredients to prove Theorem 1.

Proof (Theorem 1). Substituting ǫ = 1/9 in Lemma 8 gives

δ =
√
2π‖b−‖2/n ≤

√
2π/10 ≤ 1/3

α =
1√
2π

√

1− 3ǫ

1− ǫ
− δ2 ≥ 1√

2π

√
(
3

4

)2

− δ2

‖u∗‖2 ≤ ǫ+ 1

1− 3ǫ− (1 − ǫ)δ
≤ 3

Now note that H(499/500) < α2

4 , so β < 499/500. If we choose n, in such a way
that (499/500−β)n ≥ m, then (1−β)n−m ≥ n/500. So Lemma 8 yields that the
probability that conditions 2 and 3 do not hold is at most (20)m+1 exp(−2−11n)+
exp(−n/16π). We can still choose C such that n ≥ Cm and t ≤ n

Cm2.5(m+log n)2 ,

so by taking C ≥ 212, this probability is smaller than 2(1− 1/25)t. By Lemma 4
condition 1 holds with probability at least 1− n−7.

If 1, 2 and 3 hold Lemma 14 implies that IPGAP(A, b, c) ≥ 1015t·m
2.5(logn+m)2

n
holds with probability at most 2(1−1/25)t, as long as we set C ≥ max(exp(k0), 10

15)
for k0 as defined in Lemma 6. So:

Pr

[

IPGAP(A, b, c) > 1015t · m
2.5(log n+m)2

n

]
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≤ 2 ·
(

1− 1

25

)t

+ n−7 + 2

(

1− 1

25

)t

≤ 4(1− 1/25)t + n−7. ⊓⊔

6 Proof of the Improved Discrepancy Lemma

In this section, we prove Lemma 1, which is an improved variant of a discrepancy
lemma of Dyer and Frieze [5, Lemma 3.4]. This lemma is the main tool used to
restore feasibility and near-optimality of the rounding x′ of x∗ in the preceding
section. Compared to Dyer and Frieze’s original lemma, the main difference is
that we achieve a constant probability of success instead of (2/

√
3)−m, which

is crucial for reducing the exponential in m dependence of the integrality gap
down to polynomial in m. For this purpose, we choose our subsets of size k
from a slightly larger universe, i.e., 2

√
mk instead of 2k, to reduce correlations.

We also provide a tighter analysis of the lemma allowing us to show that the
conclusion holds as long as k = Ω(m7/4), where the Ω(·) hides a dependence on
the parameters of the underlying coordinate distributions. We restate the lemma
below.

Lemma 1. For k,m ∈ N, let a = ⌈2√m⌉ and θ > 0 satisfy
(

2θ√
2πk

)m (
ak
k

)
= 1.

Let Y1, . . . , Yak ∈ Rm be i.i.d. random vectors with independent coordinates. For
k0 ∈ N, γ ≥ 0,M > 0, assume that ∀i ∈ [m], Y1,i is a (γ, k0)-Gaussian convergent
continuous random variable with maximum density at most M . Then, if

k ≥ max{(4√m+ 2)k0, 144m
3
2 (logM + 3), 150 000(γ + 1)m

7
4 },

for any vector D ∈ Rm with ‖D‖2 ≤
√
k the following holds:

Pr



∃K ⊂ [ak] : |K| = k, ‖(
∑

j∈K

Yj)−D‖∞ ≤ θ



 ≥ 1

25
. (3)

Our proof of Lemma 1 follows the same proof strategy as [5, Lemma 3.4].
Namely, we use the second moment method to lower bound the success proba-
bility by E[Z]2/E[Z2], where Z counts the number of the k-subsets of [ak] which
satisfy (3). The value of θ is calibrated to ensure that

E[Z] =

(
ak

k

)

Pr



‖(
k∑

j=1

Yj)−D‖∞ ≤ θ



 ≈ 1.

This relies upon the fact that
∑k

j=1 Yj is very close in distribution to N (0, kIm)

and that the targetD is close to the origin. To lower bound the ratio E[Z]2/E[Z2],
the key challenge from here is to show that for two typical k-subsets K1,K2 ⊂
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[ak], the joint success probability is close to that of the independent case, i.e.,
where K1 ∩K2 = ∅. Namely, we wish to show that

Pr



‖(
∑

j∈Ki

Yj)−D‖∞ ≤ θ, i ∈ {1, 2}



 ≤ C Pr



‖(
k∑

j=1

Yj)−D‖∞ ≤ θ





2

(22)

for some not too largeC ≥ 1. This turns out to yield a lower bound E[Z]2/E[Z]2 =
Ω(1/C). To upper bound C, we rely upon the following key technical lemma,
which upper bounds the probability that two correlated nearly-Gaussian random
sums land in the same interval.

Lemma 15. Let r, k ∈ N such that α := k/(k − r) ≥ 4/3. Let Y1, Y2, . . . Yk+r

be i.i.d. copies of a (γ, k0)-Gaussian convergent random variable Y . Let U =
r∑

j=1

Yj , V =
k∑

j=r+1

Yj ,W =
r+k∑

j=k+1

Yj. Assume that k ≥ 280(γ + 1)α
7
2 , min{r, k −

r} ≥ k0 and θ ∈
[

0, 1√
k

]

. For any D ∈ R, we have that

Pr[U + V ∈ [D − θ,D + θ],W + V ∈ [D − θ,D + θ]] ≤ 4θ2

2πk

(

1 +
16

9α2

)

.

The correlation is quantified by α > 0, which controls the number of shared
terms k/α in both sums. As α increases, the probability of the joint event ap-
proaches the worst-case bound for the independent case. More precisely, if X1

and X2 are independent N (0, k) (i.e., sums of disjoint sets of k independent
standard Gaussians), D = 0 and θ is very small, then

Pr[X1 ∈ [−θ, θ], X2 ∈ [−θ, θ]] = PrX∼N (0,1)

[

X ∈
[

− θ√
k
,

θ√
k

]]2

≈
(

2θ√
k
ϕ(0)

)2

=
4θ2

2πk
.

In their proof, Dyer and Frieze proved a special case of the above for α ≈ 2.
In their setting, they pick K1,K2 ⊆ [2k] of size k, where the typical intersection
size is |K1∩K2| ≈ k/2. To upper bound C in (22), they apply Lemma 15 to each
of the coordinates

∑

j∈K1
Yj,i,

∑

j∈K2
Yj,i, for i ∈ [m], with α ≈ 2, to deduce

a 2O(m) bound on C. By increasing the universe size from [2k] to [ak], where
a = ⌈2√m⌉, we reduce the typical intersection size to k/a. This allows us to set
α ≈ 1/a, which reduces C to roughly (1 + 1

a2 )
m = O(1).

Remark on Gaussian convergence. The attentive reader may have noticed
that our definition of (γ, k0)−Gaussian convergence requires the density of the
normalized sum of k i.i.d. copies of a random variableX ∈ R to be within γ

k of the
density of the standard Gaussian, for k ≥ k0, which is a stronger requirement
than the more conventional γ√

k
-type convergence. Indeed, this faster rate of
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convergence can only be expected when the first three moments of X match
those of the standard Gaussian (as is the case in our application), whereas the
slower rate requires only that X have mean 0 and variance 1 and that the density
of X be sufficiently “nice”. One can show however that Lemma 1 still holds only
assuming γ√

k
-convergence, provided that the requirement k ≥ 150000(γ+1)m7/4

is replaced by k ≥ 1500002(γ + 1)2m7/2. It is in fact easy to verify that every
inequality in the proof of Lemma 1 utilizing Gaussian convergence is preserved
when replacing k by

√
k, and hence the required lower bound on k is replaced

by the same lower bound for
√
k. The larger m7/2 dependence on m would

however increase the dependence on m in Theorem 1, which is why we chose to
state Lemma 1 with the stronger Gaussian convergence requirement.

We now prove Lemma 1 using Lemma 15, deferring the proof of the latter to
the end of the section.

Proof (Lemma 1). For everyK ⊂ [ak] let EK denote the event that ‖∑
j∈K

Yj −D‖∞ ≤

θ. Let Z =
∑

K⊂[ak],|K|=k 1EK .

Pr



∃K ⊂ [ak] : |K| = k, ‖
∑

j∈K

Yj −D‖∞ ≤ θ



 = Pr[Z > 0].

By an application of the second moment method, if Z is a positive-integer
valued random variable of finite mean and variance then

Pr[Z > 0] ≥ E[Z]2

E[Z2]
.

Define Ki = {i+ 1, i+ 2, . . . , i+ k}, 0 ≤ i ≤ k.

E[Z] =
∑

K⊂[ak],|K|=k

Pr[EK ] =

(
ak

k

)

Pr[EK0 ],

E[Z2] =
∑

K,K′⊂[ak],|K|=|K′|=k

Pr[EK ∩ EK′ ],

where the first equality follows since Y1, . . . , Yak are independent and identically
distributed. By the same reasoning, Pr[EK ∩ EK′ ] depends only on |K ∩ K ′|.
Noting that |K0 ∩Kr| = k − r for 0 ≤ r ≤ k, we may rewrite E[Z2] as

E[Z2] =

(
ak

k

)2 k∑

r=0

Pr[|K ∩K ′| = k − r] Pr[EK0 ∩ EKr ],

where K,K ′ are independent uniformly random subsets of [ak] of size k. Since

we have Pr[|K ∩K ′| = k] =
(
ak
k

)−1
,

E[Z2] = E[Z] +

(
ak

k

)2 k∑

r=1

Pr[|K ∩K ′| = k − r] Pr[EK0 ∩EKr ].
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In the rest of the proof, we show E[Z2]/E[Z]2 ≤ 25, which implies the desired
lower bound E[Z]2/E[Z2] ≥ 1/25. This will be established for sufficiently large
k and the required constraints for k will be collected at the end. Let

J := [k] ∩
(

k − (1 + ε)k

a
, k − (1 − ε)k

a

)

for ε =
1

2
.

We decompose

E[Z2]/E[Z]2 =
1

E[Z]
+
∑

r∈J

Pr[|K ∩K ′| = k − r]
Pr[EK0 ∩EKr ]

Pr[EK0 ]
2

+
∑

r∈[k]\J
Pr[|K ∩K ′| = k − r]

Pr[EK0 ∩EKr ]

Pr[EK0 ]
2

. (23)

We upper bound E[Z2]/E[Z]2 in three steps. First, a lower bound on E[Z].

Then, a worst-case upper bound on
Pr[EK0∩EKr ]

Pr[EK0 ]
2 for every 1 ≤ r ≤ k, and finally

a superior average-case upper bound on
Pr[EK0∩EKr ]

Pr[EK0 ]
2 for r ∈ J .

Let us prove a trivial upper bound for θ. Since
(
ak
k

)
≥ ak, we have

(
2θ√
2πk

)m(
ak

k

)

= 1 ⇒ θ ≤ a−k/m

√

πk

2
.

If k ≥ 2m logm, then k/m ≥ log k, so that

θ ≤
(
2
√
m
)− k

m

√

πk

2
≤ 2−

k
m

√

πk

2
≤ 1√

k
.

Henceforth, we will assume θ ≤ 1/
√
k and require k ≥ 2m logm.

Lower Bound for the Expectation. The goal of this subsection is to show
that

E[Z] =

(
ak

k

)

Pr[EK0 ] ≥ 1/e.

Since the individual coordinates of each vector Yj , j ∈ [k], are independent:

Pr[EK0 ] =

m∏

i=1

Pr





k∑

j=1

Yj,i ∈ [Di − θ,Di + θ]



 .

Each term in this product is at least

Pr





k∑

j=1

Yj,i ∈ [Di − θ,Di + θ]



 ≥ 2θ√
2πk

exp

(

−D2
i

2k
− 2e

√
2π(γ + 1)

k

)

, ∀1 ≤ i ≤ m.



30 Borst et al.

To prove this estimate, let ḡki denote the density function of
k∑

j=1

Yj,i/
√
k. Then,

Pr





k∑

j=1

Yj,i ∈ [Di − θ,Di + θ]



= Pr





k∑

j=1

Yj,i√
k
∈
[
Di − θ√

k
,
Di + θ√

k

]


=

∫ Di+θ
√

k

Di−θ
√

k

ḡki (x)dx.

Recall that for i ∈ [m], Y1,i, . . . , Yk,i are i.i.d. (γ, k0)-Gaussian convergent
random variables. If k ≥ k0, we have that

ḡki (x) ≥ ϕ (x) − γ

k
, ∀x ∈ R,

where ϕ(x) := exp(−x2/2)√
2π

. Assuming that k ≥ 4
√
2πe(γ + 1)m, the desired

estimate is derived as follows:
∫ Di+θ

√
k

Di−θ
√

k

ḡki (x)dx ≥
∫ Di+θ

√
k

Di−θ
√

k

ϕ (x)− γ

k
dx

≥
∫ Di+θ

√
k

Di−θ
√

k

ϕ

(
Di√
k

)

− θ√
k
− γ

k
dx ( ϕ is 1-Lipschitz )

≥ 2θ√
2πk

(

exp

(

−D2
i

2k

)

−
√
2πθ√
k

−
√
2πγ

k

)

≥ 2θ√
2πk

(

exp

(

−D2
i

2k

)

−
√
2π(γ + 1)

k

) (

since θ ≤ 1√
k

)

≥ 2θ√
2πk

exp

(

−D2
i

2k

)(

1− 2
√
2π(γ + 1)

k

)

(

‖D‖2 ≤
√
k ⇒ exp

(

−D2
i

2k

)

≥ 1/2

)

≥ 2θ√
2πk

exp

(

−D2
i

2k
− 2e

√
2π(γ + 1)

k

)

(
since 1− x/e ≥ e−x, 0 ≤ x ≤ 1

)
.

Building on this estimate, we now consider all coordinates and get

Pr[EK0 ] ≥
(

2θ√
2πk

)m m∏

i=1

exp

(

−D2
i

2k
− 2e

√
2π(γ + 1)

k

)

≥
(

2θ√
2πk

)m

exp

(

−
m∑

i=1

D2
i

2k
− 1

2

)
(

since k ≥ 4
√
2πe(γ + 1)m

)

≥
(

2θ√
2πk

)m

exp (−1)
(

since ‖Di‖2 ≤
√
k
)

.

Since
(

2θ√
2πk

)m (
ak
k

)
= 1, we conclude that E[Z] ≥ 1/e, as needed.
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Upper bound on
Pr[EK0∩EKr ]

Pr[EK0 ]
2 . To analyze Pr[EK0 ∩ EKr ], for r ∈ [k], we

define

Ui :=

r∑

j=1

Yj,i, Vi :=

k∑

j=r+1

Yj,i,Wi :=

r+k∑

j=k+1

Yj,i, for i ∈ [m].

The probability of EK0 ∩ EKr can now be expressed as follows:

Pr[EK0∩EKr ] =

m∏

i=1

Pr[Ui+Vi ∈ [Di−θ,Di+θ],Wi+Vi ∈ [Di−θ,Di+θ]]. (24)

For i ∈ [m], let gi : R → R+ denote the probability density of Y1,i, which
satisfies supx∈R gi(x) ≤ M by assumption. Since Y1,i, . . . , Yk,i are i.i.d., we see
that Ui,Wi, Vi are independent, that Ui,Wi both have density g∗ri and that Vi

has density g
∗(k−r)
i , where g∗ri , g

∗(k−r)
i are the r and k − r-fold convolutions of

gi.
We now split the analysis into a worst-case bound for any r ∈ [k] and an

average case bound for r ∈ J .

Worst-case Upper Bound. Since the convolution operation does not increase
the maximum density, we note that maxx∈R g

∗r
i (x) ≤ M , i ∈ [m]. From here, we

see that

Pr[Ui + Vi ∈ [Di − θ,Di + θ],Wi + Vi ∈ [Di − θ,Di + θ]]

=

∫ ∞

−∞
Pr[Ui ∈ [Di − θ − y,Di + θ − y]]2g

∗(k−r)
i (y)dy

=

∫ ∞

−∞

(
∫ θ

−θ

g∗ri (Di − y + x)dx

)2

g
∗(k−r)
i (y)dy

≤
∫ ∞

−∞

(
∫ θ

−θ

Mdx

)2

g
∗(k−r)
i (y)dy = (2Mθ)2.

By (24), this gives Pr[EK0 ∩EKr ] ≤ (2θM)2m for r ∈ [k]. The worst case upper
bound is therefore

Pr[EK0 ∩ EKr ]

Pr[EK0 ]
2

≤ e2

(

(2θM)
√
2πk

2θ

)2m

≤ e2
(

M
√
2πk

)2m

.

Before moving on to the average case bound for Pr[EK0∩EKr ]
2/Pr[EK0 ]

2 for
r ∈ J , we first upper bound the total contribution to (23) of the terms associated

with r ∈ [k] \ J . Recall that J = [k] ∩
(

k − (1+ε)k
a , k − (1−ε)k

a

)

for ε = 1
2 . For

r ∈ J , note that |K0 ∩Kr| ∈ ( k
2a ,

3k
2a ). That is, |K0 ∩Kr| is close to the average

intersection size k
a for two uniform k-subsets K,K ′ of [ak]. Applying Lemma 2
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together with the worst-case upper bound for indices r ∈ [k] \ J , assuming that
k is large enough (to be specified below), we get that

∑

r∈[k]\J
Pr[|K ∩K ′| = k − r]

Pr[EK0 ∩EKr ]

Pr[EK0 ]
2

≤ e2(M
√
2πk)2m Pr

[

|K ∩K ′| 6∈ (
k

2a
,
3k

2a
)

]

≤ 4e2(M
√
2πk)2m exp(− k

12a
) ≤ 1. (25)

To establish the last inequality, using that a = ⌈2√m⌉ ≤ 3
√
m and x/c ≥ log x

for x ≥ 2c log c for c ≥ 1, it suffices to show that the logarithm of the last
expression is non-positive:

log(4e2) + 2m

(

logM +
log(2πk)

2

)

− k

12a

≤ m

(

log(8e2π) + 2 logM + log k − k

36m3/2

)

≤ m

(

log(8e2π) + 2 logM − k

72m3/2

) (

if k ≥ 144m3/2 log(72m3/2)
)

,

≤ 0
(

if k ≥ 72m3/2(2 logM + log(8e2π))
)

.

Simplifying the conditions above, (25) holds for

k ≥ max{144m3/2(logM + 3), 216m3/2(logm+ 3)}.

Average-case Upper Bound. Observe that for r ∈ J , we have r = k − k
α

for α ∈
[
4
3

√
m, 4

√
m+ 2

]
. To derive the average case bound, we will apply

Lemma 15 to Ui,Wi, Vi, Di and θ for each i ∈ [m] with parameters k,r,α and γ,
k0. We first show that the requisite conditions are satisfied for k large enough.
Firstly, recall that θ ∈ [0, 1/

√
k], α ≥ 4/3

√
m ≥ 4/3, and that Y1,i, . . . , Yk,i are

i.i.d. (γ, k0)-Gaussian convergent random variables. Assuming k ≥ (4
√
m+2)k0,

we have that min{r, k − r} = kmin{ 1
α , (1 − 1

α )} ≥ k0. Lastly, assuming k ≥
280(γ + 1)(4

√
m+ 2)7/2, we also have k ≥ 280(γ + 1)α7/2 by assumption on α.

Therefore, for r ∈ J , we may apply Lemma 15 to (24) to conclude that

Pr[EK0 ∩EKr ]

Pr[EK0 ]
2

≤
((

1 +
16

9α2

)
4θ2

2πk

)m

e2

(√
2πk

2θ

)2m

≤ e2
(

1 +
16

9α2

)m

≤ e2
(

1 +
1

m

)m

≤ e3.

Because 4
√
m+2 ≤ 6

√
m, we simplify the condition k ≥ 280(γ+1)(4

√
m+2)7/2

to the stronger condition k ≥ 150000(γ + 1)m7/4.
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In Conclusion: Combining the bounds from the previous sections, assuming
that the constraints on k are all satisfied, we get that:

E[Z2]/E[Z]2 =
1

E[Z]
+

k∑

r=1

Pr[|K ∩K ′| = k − r]
Pr[EK0 ∩ EKr ]

Pr[EK0 ]
2

≤ e +
∑

r∈[k]\J
Pr[|K ∩K ′| = k − r]

Pr[EK0 ∩ EKr ]

Pr[EK0 ]
2

+
∑

r∈J

Pr[|K ∩K ′| = k − r]
Pr[EK0 ∩EKr ]

Pr[EK0 ]
2

≤ e +
∑

r∈[k]\J
Pr[|K ∩K ′| = k − r]e2

(

M
√
2πk

)m

+
∑

r∈J

Pr[|K ∩K ′| = k − r]e3

≤ e + 1 + e3 ≤ 25.

Aggregating the constraints on k, the above gives a lower bound of 1/25 for
the success probability whenever k satisfies:

k ≥ max{2m logm, k0, 4
√
2πe(γ + 1)m, 144m3/2(logM + 3), 216m3/2(logm+ 3),

(4
√
m+ 2)k0, 150000(γ + 1)m7/4}.

Removing the dominated terms, it suffices for k to satisfy

k ≥ max{(4√m+ 2)k0, 144m
3
2 (logM + 3), 150000(γ + 1)m

7
4 },

as needed. ⊓⊔
Proof (Lemma 15). For convenience, let P = Pr[U+V ∈ [D−θ,D+θ],W+V ∈
[D−θ,D+θ]], and define the normalized sums: Ū = U/

√
r, V̄ = V/

√
k − r, W̄ =

W/
√
r. Let us denote the density of Ū and W̄ by ḡ, and the density of V̄ by h̄.

Ū , W̄ are independent and identically distributed, from which we see that

P = Pr
[

Ū
√
r + V̄

√
k − r ∈ [D − θ,D + θ], W̄

√
r + V̄

√
k − r+ ∈ [D − θ,D + θ]

]

=

∞∫

−∞

Pr

[

Ū ∈
[

D − θ√
r

− y

√

k − r

r
,
D + θ√

r
− y

√

k − r

r

]]2

h̄(y)

=

∞∫

−∞







θ√
r∫

− θ√
r

ḡ

(
D√
r
− y√

α− 1
+ x

)

dx







2

h̄(y).

Since Y is (γ, k0)-Gaussian convergent and min{r, k − r} ≥ k0, we have that

|ḡ(x) − ϕ(x)| ≤ γ

r
=

α

α− 1

γ

k
, |h̄(x)− ϕ(x)| ≤ γ

k − r
= α

γ

k
, ∀x ∈ R.
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Using the above, we upper bound P as follows:

P =

∞∫

−∞







θ√
r∫

− θ√
r

ḡ

(
D√
r
− y√

α− 1
+ x

)

dx







2

h̄(y)dy

≤
∞∫

−∞







θ√
r∫

− θ√
r

ϕ

(
D√
r
− y√

α− 1
+ x

)

+
γ

k

α

α− 1
dx







2

h̄(y)dy

≤
∞∫

−∞







θ√
r∫

− θ√
r

ϕ

(
D√
r
− y√

α− 1

)

+
2γ

k
+

θ√
r
dx







2

h̄(y)dy ( ϕ is 1-Lipschitz )

≤ 4θ2

r

∞∫

−∞

(

ϕ

(
D√
r
− y√

α− 1

)

+
2γ

k
+

θ√
r

)2

h̄(y)dy

≤ 4θ2

r



2ϕ(0)

(
2γ

k
+

θ√
r

)

+

(
2γ

k
+

θ√
r

)2

+

∞∫

−∞

ϕ

(
D√
r
− y√

α− 1

)2

h̄(y)dy





≤ 4θ2

r




2(γ + 1)

k
+

(
2(γ + 1)

k

)2

+

∞∫

−∞

ϕ

(
D√
r
− y√

α− 1

)2

h̄(y)dy



 ,

where the last inequality follows from θ ≤ 1√
k
, r = (1 − 1

α )k ≥ k/4 for α ≥ 4/3

and ϕ(0) ≤ 1
2 . Next, we upper bound the term Q =

∞∫

−∞
ϕ
(

D√
r
− y√

α−1

)2

h̄(y)dy.

Q =

∞∫

−∞

ϕ

(
D√
r
− y√

α− 1

)2

h̄(y)dy

≤
∞∫

−∞

ϕ

(
D√
r
− y√

α− 1

)2 (

ϕ(y) +
αγ

k

)

dy

=
αγ

k

∞∫

−∞

ϕ

(
D√
r
− y√

α− 1

)2

dy +

∞∫

−∞

ϕ

(
D√
r
− y√

α− 1

)2

ϕ(y)dy

=
α
√
α− 1γ√
2k

∞∫

−∞

ϕ

(
y√
2

)2

dy +

∞∫

−∞

ϕ

(
D√
r
− y√

α− 1

)2

ϕ(y)dy

=
α
√
α− 1γ

2
√
πk

+
1

(2π)3/2

∞∫

−∞

exp

(

−
(

D√
r
− y√

α− 1

)2

− y2

2

)

dy
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=
α
√
α− 1γ

2
√
πk

+
1

(2π)3/2

∞∫

−∞

exp

(

−y2

2

(

1 +
2

α− 1

)

+
2yD

√

r(α − 1)
− D2

r

)

dy

≤ α
√
α− 1γ

2
√
πk

+
1

(2π)3/2

∞∫

−∞

exp



−1

2

(

y

√

α+ 1

α− 1
− 2D
√

(α+ 1)r

)2

+
2D2

(α+ 1)r
− D2

r



 dy

≤ α
√
α− 1γ

2
√
πk

+
1

(2π)3/2

∞∫

−∞

exp



−1

2

(

y

√

α+ 1

α− 1

)2


dy

(

because α ≥ 4

3
⇒ 2D2

(α + 1)r
− D2

r
≤ 0

)

=
α
√
α− 1γ

2
√
πk

+
1

2π

√

α− 1

α+ 1
.

The final expression is:

P ≤ 4θ2

r

(

2(γ + 1)

k
+

(
2(γ + 1)

k

)2

+
α
√
α− 1γ

2
√
πk

+
1

2π

√

α− 1

α+ 1

)

.

Since r = α−1
α k, we have

P ≤ 4θ2

k

(

1 +
1

α− 1

)(

2(γ + 1)

k
+

(
2(γ + 1)

k

)2

+
α
√

(α − 1)γ

2
√
πk

+
1

2π

√

α− 1

α+ 1

)

.

We require P ≤ 4θ2

2πk

(
1 + 16

9α2

)
. Using α ≥ 4/3, observe that

(

1 +
1

α− 1

)√

α− 1

α+ 1
=

√

1 +
1

α2 − 1
≤ 1 +

1

2(α2 − 1)

≤ 1 +
16

14α2
( since 14α2 ≤ 32(α2 − 1) ).

So all we need is
(

1 +
1

α− 1

)(

2(γ + 1)

k
+

(
2(γ + 1)

k

)2

+
α
√

(α− 1)γ

2
√
πk

)

≤ 4

(2π)7α2
,

because 16
14 + 8

14 ≤ 16
9 . Using α ≥ 4

3 , we simplify the condition to

2(γ + 1)

k
+

(
2(γ + 1)

k

)2

+
α
√

(α− 1)γ

2
√
πk

≤ 1

(2π)7α2
.

A stronger condition is 3 · α3/22(γ+1)
k ≤ 1

(2π)7α2 , which is satisfied whenever

k ≥ 280(γ + 1)α
7
2 . ⊓⊔
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7 Bounding the Tree Size in Branch-and-Bound

The goal of this section is to prove Theorem 3 from the introduction. Our main
technical lemma, which will allow us to upper bound (1), is given below.

Lemma 16. Let d ∈ N, n ≥ 100d, G ≥ 0, and W = (W1, . . . ,Wn) ∈ Rd×n be a
matrix whose columns are independent logconcave random vectors with identity
covariance. Then, for δ ∈ (0, 1), with probability at least 1− δ − e−n/5, we have
that

max
‖u‖2=1

|{x ∈ {0, 1}n :

n∑

i=1

xi|uTWi| ≤ G}| ≤ 60(357n6)d+1e2
√
2nG/δ.

Before proving Lemma 16, we first show how to derive Theorem 3 from The-
orem 2 and Lemma 16.

Proof (of Theorem 3). For any λ ∈ Rm, we see that

{x ∈ {0, 1}n :

n∑

i=1

xi|(c−ATλ)i| ≤ G} = {x ∈ {0, 1}n :

n∑

i=1

xi|(WT(1,−λ))i| ≤ tG}

⊆ {x ∈ {0, 1}n :

n∑

i=1

xi|(
WT(1,−λ)

‖(1,−λ)‖2
)i| ≤ G}.

Given the above, we have that

max
λ∈Rm

|{x ∈ {0, 1}n :

n∑

i=1

xi|(c−ATλ)i| ≤ G}|

≤ max
‖u‖2=1

|{x ∈ {0, 1}n :

n∑

i=1

xi|(WTu)i| ≤ G}|. (26)

Applying Lemma 16 to W , δ and d = m + 1, with probability at least
1− δ − e−n/5, we get that

max
‖u‖2=1

|{x ∈ {0, 1}n :

n∑

i=1

xi|(uTW )i| ≤ tG}|

≤ 60(357n6)m+2e2
√
2nG/δ = nO(m)e2

√
2nG/δ. (27)

By Theorem 2 and the union bound, with probability at least

1− Pr
A,c

[IPGAP(A, b, c) ≥ G]− δ − e−n/5,

we have that the size of the branch-and-bound tree is at most

nO(m)e2
√
2Gn/δ. ⊓⊔
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We now sketch the high level ideas of the proof of Lemma 16. For g ≥ 0,
u ∈ Sd−1, define the knapsack

K(u, g) := {x ∈ {0, 1}n :

n∑

i=1

xi|uTWi| ≤ g}.

The proof of the lemma will proceed in two steps. In the first step, we show
that the expected size of the knapsack polytopeK(u,G) satifies EW [|K(u,G)|] ≤
e2

√
2nG, for any fixed u ∈ S

d−1 and G ≥ 0 (see Lemma 17). In the second
step, we extend this bound to all u ∈ Sd−1 via the union bound applied to a
carefully constructed net of knapsacks of the form K(u,G + 1/n) for u ∈ K,
where K ⊆ S

d−1 will have size |N | = nO(d). The slight increase in capacity
G → G + 1/n is to ensure that every K(u,G) knapsack is contained in some
K(u′, G+1/n) knapsack, for some u′ ∈ K. To ensure this, we rely on Lemma 18
below to help us control the distance between knapsacks induced by nearby u’s.

One complicating factor in the construction of K is the lack of any bound
on the norms of the column means µi := E[Wi], i ∈ [n]. To deal with arbitrary
means, we will make use of a hyperplane arrangement H induced by the µi’s,
such that for any full-dimensional cell C of H and i ∈ [n], we have that |uTµi| for
u ∈ C either lies in a small interval or is so large that xi = 0 for any x ∈ K(u,G).

We now give our main bound on the expected size of knapsack polytopes
with random weights.

Lemma 17. Let ω1, . . . , ωn ∈ R be independent continuous random variables
with maximum density at most 1. Then, for any g ≥ 0, we have

E[|{x ∈ {0, 1}n :
n∑

i=1

xi|ωi| ≤ g}|] ≤ e2
√
2ng.

Proof. Let K := {x ∈ {0, 1}n :
∑n

i=1 xi|ωi| ≤ g}. For any γ ≥ 0, we first note
that

|K| ≤ eγg
n∏

i=1

(1 + e−γωi). (28)

To see this, note that each x ∈ {0, 1}n can be associated with the term
eγ(g−

∑n
i=1 xiωi) on the right hand side (after expanding out the product) and

that each term with x ∈ K contributes at least 1.
For each i ∈ [n], letting fi : R → R+ be the probability density of ωi, we

have that

E[e−γ|ωi|] =
∫ ∞

0

e−γx(fi(x) + fi(−x))dx ≤ 2

∫ ∞

0

e−γxdx =
2

γ
, (29)

where we have used the assumption that maxx∈R fi(x) ≤ 1, ∀i ∈ [n].
Combining (28), (29), using that ω1, . . . , ωn are independent, we get that

E[|K|] ≤ eγg
n∏

i=1

E[1 + e−γωi ] ≤ eγg(1 +
2

γ
)n ≤ eγg+

2n
γ .
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Setting γ =
√

2n
g , we get that E[|K|] ≤ e2

√
2gn, as claimed. ⊓⊔

We remark that an eΩ(
√
nG) dependence above is necessary. This holds for

ω1, . . . , ωn uniform in [0, 1] and G ≤ n. Letting S = {i ∈ [n] : ωi ≤
√

G/n}, note
that any subset of at most ⌊

√
nG⌋ elements of S fits inside the knapsack K. It is

easy to verify that E[|S|] = n(
√

G/n) =
√
nG and that Pr[|S| ≥ ⌊

√
nG⌋] ≥ 1/2.

In particular,

E[|K|] ≥ E[|{T : T ⊆ S, |T | ≤ ⌊
√
nG⌋}|] ≥ 1

2
2⌊

√
Gn⌋ = eΩ(

√
nG), as needed.

The next lemma give us control on the distance between knapsack weights
induced by nearby u’s. The proof follows along the same lines as the upper bound
in Lemma 9, using Theorem 5 to give the requisite tailbounds.

Lemma 18. Let n ≥ 100d and W := (W1, . . . ,Wn) ∈ Rd×n be a matrix whose
columns are independent logconcave random vectors with identity covariance.
Then,

Pr[ max
‖u‖2=1

‖uT(W − E[W ])‖1 ≥ 4n] ≤ e−n/5.

Proof. Since the statement of the lemma is invariant to adding a fixed matrix
to W , we assume without loss of generality that E[W ] = 0. For i ∈ [n], ‖u‖2 =
1, by Theorem 4 we see that uTWi is logconcave. Furthermore, Var[uTWi] =
E[(uT(Wi − E[Wi]))

2] = ‖u‖22 = 1. Therefore, for λ ∈ [0, 1), by Theorem 5 part
1 we have that:

E[eλ|u
TWi|] =

∫ ∞

0

Pr[eλ|u
TWi| ≥ t]dt =

∫ ∞

0

Pr[|uTWi| ≥ log t/λ]dt

≤
∫ ∞

0

min{1, e1−log t/λ}dt =
∫ ∞

0

min{1, et−1/λ}dt

= eλ + e

∫ ∞

eλ
t−1/λdt = eλ + e

[
1

1− 1/λ
t1−1/λ

]∞

eλ

= eλ +
λ

1− λ
eλ =

eλ

1− λ
.

Therefore, for ‖u‖2 = 1 and s ≥ 2, we have that

Pr[

n∑

i=1

|uTWi| ≥ sn] ≤ min
λ∈[0,1)

e−λsn
E[e

∑n
i=1 λ|uTWi|]

≤ min
λ∈[0,1)

e−λsn eλn

(1− λ)n
= e−n(s−2−log(s−1)), (30)

where the minimum is attained at λ = s−2
s−1 ∈ [0, 1). Letting Nǫ be a minimal

ǫ-net of Sd−1, similar to the computation for (11), we get that

max
‖u‖2=1

‖uTW‖1 ≤ 1

1− ǫ
max
u∈Nǫ

‖uTW‖1. (31)
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Using the above for ǫ = 1
4 , we deduce the desired probability bound

Pr[ max
‖u‖2=1

‖uTW‖1 ≥ 4n] ≤
︸︷︷︸

by (31)

Pr[ max
u∈N1/4

‖uTW‖1 ≥ 3n]

≤
︸︷︷︸

by (30)

|N1/4|e−n(1−log(2)) ≤ 9de−n/4 ≤
︸︷︷︸

n≥100d

e−n/5. ⊓⊔

We now have all the ingredients needed to prove Lemma 16.

Proof (of Lemma 16). Let K(u, g) := {x ∈ {0, 1}n :
∑n

i=1 xi|uTWi| ≤ g} for
u ∈ Sd−1, g ≥ 0. Noting that |K(u,G)| ≤ |{0, 1}|n ≤ 2n, we may assume that

G ≤ n since otherwise the bound of nO(m)e2
√
2nG follows trivially.

We begin by constructing a suitable net of knapsacks as described at the
beginning of the section. Let µi := E[Wi], i ∈ [n], and let H in denote the
hyperplane arrangement on Rd induced by the hyperplanes uTµi =

j
2n2 , i ∈ [n],

j ∈ {−10n3, . . . , 10n3}. Noting that this arrangement has l := n(20n3 + 1)
hyperplanes, it is well-known that the number of d-dimensional cells of H is at
most

∑d
i=0

(
l
i

)
≤ ld+1 ≤ (21n4)d+1 (see for example [18, Proposition 6.1.1]).

Letting ǫ = 1/(8n2), for each d-cell C of H, let NC
ǫ denote a minimal ǫ-net of

Sd−1 ∩C. Finally, we let K := ∪CN
C
ǫ , where C ranges over all d-cells of H. The

size of K is bounded by

|K| ≤ (1 + 2/ǫ)d(21n4)d+1 ≤ (1 + 16n2)d(21n4)d+1 ≤ (357n6)d+1.

Claim. Let E1 denote the event that for all u ∈ Sd−1, there exists u′ ∈ K
such that K(u,G) ⊆ K(u′, G + 1/n). Then, E1 holds with probability at least
1− e−n/5.

Proof. Let E′
1 denote the event that ‖uT(W−E[W ])‖1 < 4n, for all ‖u‖2 ∈ Sd−1.

By Lemma 18, we see that E′
1 holds with probability at least 1−e−n/5. To prove

the claim, we condition on E′
1 and show that E1 holds.

Take u ∈ Sd−1. Let C denote a d-cell of H containing u, and let u′ ∈ K
denote the closest point in NC

ǫ ⊆ C ∩ S
d−1 to u.

Let B ⊆ [n] denote the (possibly empty) subset of indices such that either

µT

i v ≤ −5n or µT

i v ≥ 5n is valid for all v ∈ C. Let A = [n] \B. Since 5n = 10n3

2n2 ,

for all i ∈ A, there exists ji ∈ {−10n3, . . . , 10n3−1} such that ji
2n2 ≤ µT

i v ≤ ji+1
2n2

is valid for all v ∈ C. In particular this implies that for all i ∈ A, u, u′ ∈ C, we
have

|(u− u′)Tµi| ≤
1

2n2
. (32)

We first show that if x ∈ K(u,G), then xi = 0, ∀i ∈ B. For the sake of
contradiction, assume x ∈ K(u,G) and xi = 1 for some i ∈ B. Then, since
G ≤ n, we have that

n∑

j=1

xj |uTWj | ≥ |uTWi| ≥ |uTµi| − |uT(Wi − µi)|
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≥
︸︷︷︸

i∈B

5n− ‖uT(W − E[W ])‖1 >
︸︷︷︸

by E′
1

5n− 4n ≥ G,

a clear contradiction to the assumption that x ∈ K(u,G).
Take x ∈ K(u,G). We now show that x ∈ K(u′, G+ 1/n) as follows,

G ≥
n∑

i=1

xi|uTWi| ≥
n∑

i=1

xi(|(u′)TWi| − |(u− u′)T(W − µi)| − |(u− u′)Tµi|)

≥
(

n∑

i=1

xi|(u′)TWi|
)

− ‖(u− u′)T(W − E[W ])‖1 −
∑

i∈A

1/(2n2)

( since xi = 0, ∀i ∈ B and (32))

≥
(

n∑

i=1

xi|(u′)TWi|
)

− 4nǫ− |A|/(2n2) ≥
(

n∑

i=1

xi|(u′)TWi|
)

− 1/n. ⊓⊔

For u ∈ Sd−1, by Theorem 4 we know that uTWi, for i ∈ [n], are independent
and logconcave. Furthermore, Var[uTWi] = E[uT(Wi−µi)

2] = ‖u‖22 = 1, ∀i ∈ [n].
Therefore, by Theorem 5 part 2, the densities of uTWi, i ∈ [n], have maximum
density at most 1. Applying Lemma 17 with ωi = uTWi, i ∈ [n] and g = G+1/n,

we get that EW [|K(u,G+ 1/n)|] ≤ e2
√

2n(G+1/n) ≤ e2
√
2nG+4.

Let E2 denote the event ∀u ∈ K, |K(u,G + 1/n)| ≤ |K|e2
√
2nG+4/δ for

δ ∈ (0, 1). By Markov’s inequality, for u ∈ K we have that

Pr[|K(u,G+ 1/n)| ≥ |K|e2
√
2nG+4/δ] ≤ δ/(|K|).

Therefore, by the union bound, E2 occurs with probability at least 1− δ.
By the above claim, noting that

|K|e2
√
2nG+4 ≤ (357n6)d+1e2

√
2nG+4 ≤ 60(357n6)d+1e2

√
2nG,

we see that

Pr[ max
u∈Sd−1

|K(u,G)| ≤ 60(357n6)d+1e2
√
2nG/δ] ≥ 1− Pr[¬E1]− Pr[¬E2]

≥ 1− δ − e−n/5,

as needed. ⊓⊔
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