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ABSTRACT
The industrial challenge of the GECCO 2021 conference is an ex-
pensive optimisation problem, where the parameters of a hospital
simulation model need to be tuned to optimality. We show how
a surrogate-based optimisation framework, with a random ReLU
expansion as the surrogate model, outperforms other methods such
as Bayesian optimisation, Hyperopt, and random search on this
problem.

CCS CONCEPTS
•Mathematics of computing→Mathematical optimization;
• Computing methodologies → Active learning settings.
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1 INTRODUCTION
The industrial challenge of the GECCO 2021 conference is a rele-
vant optimisation problem from healthcare that contains various
challenging properties such as noise and an expensive objective
function [9]. The objective function is based on a simulator that
is used for resource planning tasks in hospitals under the specific
situation of the COVID-19 pandemic. The goal is to tune the param-
eters of the simulator such that it can be used to provide accurate
predictions.

Surrogate-based optimisation algorithms are designed to deal
with expensive objective functions by approximating the objective
with a surrogate model and then using this model to guide the
optimisation procedure. In this work we showcase the surrogate
algorithm that we use to tackle this challenge. In the remainder of
this section, we introduce the optimisation problem that needs to be
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solved in this challenge, and we give an introduction on surrogate-
based optimisation and the specific surrogate model that we use in
our approach. Section 2 describes the results that we have achieved
on this problem, as well as a comparison with related approaches.
We conclude this work in Section 3.

1.1 Hospital Simulation Model Optimisation
The problem under consideration is to find the optimal set of pa-
rameters for a Hospital Simulation model, BaBSim.Hospital. This
simulator is used for resource planning and allocation at hospi-
tals by simulating different discrete events, such as an increase
in the intake of patients or other scenarios during the COVID-19
pandemic [1, 2].

The simulator has a relatively long running time, on average 86
seconds on our machine, and has 29 parameters that need to be
configured. Each parameter is real-valued and has a recommended
range of values to limit the search space. More formally, we define
an output from the simulator 𝑓 (𝑥) that represents the objective
score of a proposed set of parameters 𝑥 . Then, the goal is to find
𝑥∗ with the lowest objective score possible. This equates to solving
the following minimisation problem

argmin
𝑥

𝑓 (𝑥)

subject to 𝑙𝑘 ≤ 𝑥𝑘 ≤ 𝑢𝑘 𝑘 = 1, . . . , 𝑑

where 𝑙𝑘 and 𝑢𝑘 denote the lower and upper bounds for the 𝑘-th
variable, respectively, and 𝑑 = 29 is the number of variables.

On top of that, however, we are also limited to a fixed number
of 200 evaluations of 𝑓 (𝑥). This puts more emphasis on an efficient
search through the solution space. It also means that we might
not expect to solve the problem optimally. To make things more
complicated, the simulator is non-deterministic, and the observed
evaluation of 𝑓 (𝑥) is therefore perturbed by random noise.

1.2 Surrogate-based optimisation
To deal with expensive objective functions using a low number of
function evaluations, we make use of a surrogate-based optimisa-
tion framework. In this framework, we perform three steps at every
iteration 𝑖:

(1) Evaluate objective function 𝑓 at candidate point 𝑥 (𝑖) .
(2) Approximate 𝑓 with a surrogate model 𝑔.
(3) Use 𝑔 to suggest a new point 𝑥 (𝑖+1) .
This is the approach taken by, for example, Bayesian optimi-

sation algorithms [11]. Usually, the first 𝑟 candidate points are
chosen randomly, which means step 3 is skipped for 𝑖 = 1, . . . , 𝑟 .
For step 2, typical choices of the surrogate model𝑔 are Gaussian pro-
cesses [11], Parzen estimators [3] or random feature expansions [5].
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Various methods exist to use the surrogate model to suggest a new
point 𝑥 (𝑖+1) . In this work, we use a continuous optimiser named
L-BFGS [12] to find a local minimum of 𝑔, and then add a random
perturbation, changing step 3 into:

𝑥 (𝑖+1) = argmin
𝑥

𝑔(𝑥) + 𝛿, (1)

where 𝛿𝑘 , the element of vector 𝛿 corresponding to the 𝑘-th variable,
is a normally distributed perturbation parameter 𝛿𝑘 ∼ 𝑁 (0, 𝜎𝑘 ). For
the standard deviation we chose 𝜎𝑘 = 0.1(𝑢𝑘 − 𝑙𝑘 )/

√
𝑑 . The goal of

the random perturbation is to avoid getting stuck in local optima
and to stimulate exploration of the search space.

1.3 Random ReLU Expansion Surrogate Model
The surrogate model used in this work is a random ReLU expansion
(RRE), where ReLU stands for rectified linear unit - a common
basis function used in the machine learning community. A RRE is
a specific case of random feature expansion

𝑔(𝑥) =
𝐷∑
𝑘=1

𝑐𝑘𝜑 (𝑤𝑇
𝑘
𝑥 + 𝑏𝑘 ), (2)

for which the approximation capabilities are well understood [8],
with 𝜑 equal to a ReLU. The ReLU is defined as

𝜑 (𝑧) =
{

𝑧, 𝑧 > 0,
0, 𝑧 ≤ 0, (3)

which causes the surrogate model 𝑔 to be piece-wise linear. Other
versions of the random ReLU expansion were introduced in [4]
and [6], but unlike those approaches we do not enforce any convex-
ity or integer constraints in this work. The model parameters𝑤𝑘

and 𝑏𝑘 are chosen randomly but stay fixed for the whole duration
of the algorithm, as is common in random feature expansions [5, 8].
The only model parameters that are trained are the parameters 𝑐𝑘 ,
for which we use the recursive least squares algorithm [10] with
a regularisation factor of 10−8. Finally, the total number of basis
functions is set to 𝐷 = 1000.

2 RESULTS
Using a benchmark suite for expensive optimisation problems [7],
we compared our approach to two surrogate algorithms: Bayesian
optimisation1 and HyperOpt [3], also known as TPE. Default values
were chosen for these algorithms. For these two algorithms, as well
as for our RRE approach, we started with 𝑟 = 2𝑑 = 58 random
iterations from a uniform distribution, as common choices for this
number are 𝑟 = 𝑑 and 𝑟 = 2𝑑 , with 𝑑 the number of variables. We
also compared with a pure random search, which is equivalent to
using any surrogate method with 𝑟 = 200, as the total number of
function evaluations equals 200.

Table 1 shows the best objective function value found by each
method after 200 expensive evaluations of the Hospital Simula-
tion objective function, averaged over five runs. Our RRE approach
achieves the best objective value out of all methods, namely 16.29,
however its variance is quite high and even comparable with ran-
dom search. Still, we choose to further fine-tune our approach while
disregarding other approaches, and look for ways to reduce the
1We use the implementation from https://github.com/fmfn/BayesianOptimization,
which uses a Gaussian process with a Matérn 5/2 kernel.

Table 1: Lowest objective value for different surrogate algo-
rithms after 200 iterations, averaged over five runs.

Method Result

Random search 17.65 (±2.17)
HyperOpt (TPE) 16.81 (±1.01)
Bayesian optimisation 16.78 (±1.32)
RRE (𝑟 = 58) 16.29 (±2.16)
RRE (𝑟 = 29) 14.81 (±0.69)

variance. We speculate that the large variance comes from the large
number of random evaluations 𝑟 , which limits the number of points
that are suggested by the surrogate model. Indeed, when lowering
𝑟 to 𝑟 = 𝑑 = 29, the variance is reduced, and the average best
objective value is reduced to 14.81 as well.

3 CONCLUSION
We have applied a benchmark suite of approaches to investigate
the performance of surrogate methods on the parameter estimation
of a Hospital Simulation model. We found that using random ReLU
expansions as a surrogate model provides the best performance
in this scenario. However, with 58 initial random samples this ap-
proach suffers from high variability. Halving the number of random
samples increases performance notably and results in a reduction
in variability. In the future, we will investigate other parts of our
approach, such as the exploration strategy, in order to achieve even
better results on this challenging problem.
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