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ABSTRACT
We study the writeback-aware caching problem, a variant of clas-

sic paging where paging requests that modify data and requests

that leave data intact are treated differently. We give an 𝑂 (log2 𝑘)
competitive randomized algorithm, answering an open question

of Beckmann et al. [8] and Even et al. [21] about the existence of
a randomized poly-logarithmic competitive algorithm. Our algo-

rithm also works for arbitrary page weights. We also give an 𝑂 (𝑘)
competitive deterministic algorithm, extending the previous result

of Beckmann et al. [8] to the weighted setting.

Interestingly, we also show that any polynomial-time random-

ized algorithm must be Ω(log2 𝑘)-competitive, assuming 𝑁𝑃 ⊄

𝐵𝑃𝑃 , based on a connection to online set-cover and using ideas of

Feige and Korman [24]. This gives a surprising separation from the

classical paging problem, where several tight 𝑂 (log𝑘)-competitive

algorithms are known.

A key underlying observation is that writeback-aware caching

is algorithmically equivalent to Read/Write (RW) paging, which

is an interesting problem on its own and has also been studied

previously. We consider a further generalization of RW-paging to

multi-level paging, where a page can have ℓ different types (RW-

paging corresponds to ℓ = 2), and give 𝑂 (𝑘)-competitive deter-

ministic and 𝑂 (log2 𝑘)-competitive polynomial-time randomized

algorithms, without any dependence on ℓ .

Our randomized algorithms are based on first finding an𝑂 (log𝑘)-
competitive fractional solution to an online linear problem that has

additional complicating constraints beyond the usual covering or

packing type. Then, we round this fractional solution online losing

an additional 𝑂 (log𝑘) factor. For ℓ = 1, which corresponds to the

well-studied weighted paging, our approach gives a substantially

simpler and natural rounding algorithm compared to the previous

approaches, which might be of independent interest, albeit at the

loss of an additional 𝑂 (log𝑘) factor.

∗
Supported by the ERC Consolidator Grant 617951 and the NWO VICI grant

639.023.812.

†
Supported in part by US-Israel BSF grant 2018352 and by ISF grant 2233/19 (2027511).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’21, July 6–8, 2021, Virtual Event, USA.
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8070-6/21/07. . . $15.00

https://doi.org/10.1145/3409964.3461801

CCS CONCEPTS
• Theory of computation→ Caching and paging algorithms;
Rounding techniques; Linear programming.

KEYWORDS
Online Algorithms, Competitive Analysis, Caching

ACM Reference Format:
Nikhil Bansal, Joseph (Seffi) Naor, and Ohad Talmon. 2021. Efficient On-
line Weighted Multi-Level Paging. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA
’21), July 6–8, 2021, Virtual Event, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3409964.3461801

1 INTRODUCTION
Paging is one of the earliest and most extensively studied problems

in online computation and competitive analysis [1, 3, 5, 6, 14, 15,

25, 29–31, 34, 35, 37, 39], including works on non-standard caching

models, e.g., elastic caches [27], caching with time windows [28],

caching with dynamic weights [21], and caching with machine

learning predictions [33]. In fact, online paging has become a focal

point for many of the recent developments in competitive anal-

ysis, e.g., the online primal-dual method, projections, and mirror

descent [16–18]. Our paper studies writeback-aware caching, a non-
standard caching model studied recently, and its generalizations.

Before describing this model, let us first recall the standardweighted

paging problem.

Weighted Paging. In this problem, there is a universe of 𝑛 pages,

each page has a weight (fetch cost), and there is a cache that can hold

up to 𝑘 pages. At each time step a page is requested, if the requested

page is already in the cache then no cost is incurred, otherwise the

algorithm must fetch the page into the cache, incurring a cost equal

to its weight. The goal is to minimize the total cost incurred.

By now, weighted paging is well understood. In their seminal

paper, Sleator and Tarjan [35] showed that any deterministic algo-

rithm is at least 𝑘-competitive, and that LRU (Least Recently Used)

is exactly 𝑘-competitive for unweighted paging. The 𝑘-competitive

bound was later generalized to weighted paging as well [20, 38].

When randomization is allowed, Fiat et al. [25] gave the elegant
Randomized Marking algorithm for unweighted paging, which is

Θ(log𝑘)-competitive against an oblivious adversary.

Building on a long line of work, Bansal et al. [5] gave a Θ(log𝑘)-
competitive randomized algorithm for weighted paging based on

the online primal-dual framework [4, 18]. Their algorithm uses a

two-step approach. First, a deterministic competitive algorithm is

designed for a suitable fractional version of the problem. Then, a
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randomized online algorithm is obtained by rounding the determin-

istic fractional solution online. In particular, the online rounding

maps a fractional solution into a probability distribution over in-

tegral cache states. This mapping is maintained carefully, so that

when the fractional solution changes, the probability distribution

can be updated, so that the expected cost in updating it is 𝑂 (1)
times the fractional cost. This online rounding is highly implicit

and impractical, in sharp contrast, e.g., to the elegant Randomized

Marking algorithm of [25] for unweighted online paging, which is

easy to describe and implement in practice.

1.1 Our Model and Results
In writeback-aware caching, paging requests that modify the data

(called write requests) and requests that leave the data intact (called

read requests) are treated differently. Upon eviction, a modified data

item needs to be written back to memory, incurring a high cost,

while an unmodified data item can just be discarded, incurring a

much lower cost. This distinction is further motivated by other

recent trends in memory systems (see [8] for more details). Fur-

thermore, this lack of symmetry between the cost of read and write

has provided new perspectives on algorithm design, where write-

efficiency is required, and has lead to a long line of recent research

on algorithms that mitigate writing into memory [9–13, 19, 26].

The theoretical study of writeback-aware caching was recently

initiated by Beckmann et al. [8]. A simpler version of the prob-

lem was already studied by Farach-Colton and Liberatore [22] who

showed that the offline problem is NP-complete. Beckmann et al. [8]
generalized classical paging algorithms and obtained the first𝑂 (𝑘)-
competitive deterministic algorithm for writeback-aware caching.

They left the problem of obtaining randomized online paging algo-

rithms in this setting open. Even et al. [21] considered a model in

which page weights may change over time. Note that in writeback-

aware caching, when a page residing in the cache is modified by

a write request, its weight increases. However, the model of [21]

is too restrictive to capture writeback-aware caching, and in fact

[21] state obtaining a randomized algorithm for writeback-aware

caching as an open problem.

Results for writeback-aware caching. Weexplorewriteback-aware

caching in full generality and assume that read and write costs can

be page-dependent, in contrast to the uniform read and write costs

assumption of [8]. We call this problem the weighted writeback-
aware caching. We obtain the following results.

Theorem 1.1. There is an 𝑂 (𝑘)-competitive deterministic algo-
rithm for weighted writeback aware caching.

This extends the results of [8] to the weighted setting. When

randomization is allowed, we show the following.

Theorem 1.2. There is an 𝑂 (log2 𝑘)-competitive randomized al-
gorithm for weighted writeback-aware caching against an oblivious
adversary.

At first glance, writeback-aware caching may seem as a simple

variant of weighted paging. However, it turns out that there are fun-

damental differences from weighted paging. In particular, we show

the following hardness result, which gives a surprising separation

from weighted paging.

Theorem 1.3. For writeback-aware caching, unless 𝑁𝑃 ⊂ 𝐵𝑃𝑃 ,
there is no polynomial-time randomized algorithm that is 𝑜 (log2 𝑘)-
competitive against an oblivious adversary.

In particular, the competitive factor we achieve for writeback-

aware caching in Theorem 1.2 is tight, and cannot be improved from

𝑂 (log2 𝑘) to𝑂 (log𝑘), while maintaining polynomial-time running

time. Our techniques also imply the following.

Theorem 1.4. For writeback-aware caching, any randomized on-
line algorithm (possibly exponential-time) that first solves the frac-
tional problem and then does online rounding, must lose a factor of
Ω(log𝑘) in the rounding.

These hardness results are based on the observation thatwriteback-

aware caching can encode the online set-cover problem, and is thus

qualitatively different, and much harder than weighted paging.

Later, we will elaborate on the new algorithmic ideas required

for writeback-aware caching beyond those for weighted paging.

We also develop a new online rounding technique for writeback-

aware caching which is very simple to implement. In particular,

this gives the first distribution-free rounding for weighted paging

with a poly-logarithmic competitive ratio.

Read/Write paging and Multi-level paging. Our main algorith-

mic tool is a more general variant of weighted paging, that we

call Read/Write (RW) paging. In this problem each page 𝑝 has two

copies, (𝑝, 1) and (𝑝, 2), corresponding to write and read copies of
𝑝 , respectively. Requests for pages are either write or read. A write

request for page 𝑝 can only be served by copy (𝑝, 1), while a read
request can be served by both (𝑝, 1) and (𝑝, 2). The cache is not
allowed to contain both copies of a page, and evicting (𝑝, 1) costs
at least as much as evicting (𝑝, 2).

We show that RW paging is (algorithmically) equivalent to

writeback-aware caching and design our algorithms for thewriteback-

aware caching problem through this problem. We describe the

precise relation between the two problems in Section 2.

In fact, we generalize RW paging to multi-level paging, where

there are ℓ copies of each page, at levels 1, . . . , ℓ . A request (𝑝, 𝑖)
for page 𝑝 at level 𝑖 can be satisfied by any copy of page 𝑝 at levels

1, . . . , 𝑖 . For any page 𝑝 , at most one copy, over all levels, can be

stored in the cache. The eviction costs are arbitrary for each page

and level, provided that for each page they are monotonically non-

increasing over the levels. Note that RW-paging corresponds to the

case ℓ = 2.

Interestingly, RW and multi-level paging are intriguing prob-

lems by themselves, with several natural motivations. In practical

systems, multi-level paging models situations where a request for

a data item can be satisfied by several pages. For example, Intel’s

Optane SSD [36] can serve requests in different granularities, e.g.,

fetching a 4KB aligned chunk into the cache can serve read requests

for any of the 8 sectors contained in it, and may be preferable to

fetching individual sectors. A different setting in which a request

can be satisfied by more than one data item (called substitutability)

is caching of a training set in deep learning training [32].

We prove Theorem 1.1 and Theorem 1.2 in this general setting

of multi-level paging.
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Theorem 1.5. There is an 𝑂 (𝑘)-competitive determinsitic algo-
rithm, and an 𝑂 (log2 𝑘)-competitive, polynomial-time randomized
online algorithm for ℓ-level multi-level paging.

We remark that our bounds have no dependence on the number

of levels ℓ .

1.2 Overview of techniques
Our randomized online algorithms follow the two-step approach

of weighted paging. First, a fractional deterministic competitive

algorithm is designed, and then a randomized online algorithm is

obtained by rounding the deterministic fractional solution online.

Non-covering LP. The deterministic algorithms (both fractional

and integral) for RW-paging and multi-level paging follow from

many of the ideas developed in previous works, but there are some

crucial differences. First, the constraint that for any page 𝑝 there

can be at most one copy (𝑝, 𝑖) over all 𝑖 ∈ [ℓ], introduces non-trivial
interactions between the copies of a page. This introduces additional

comparison (or precedence) constraints (of the type 𝑥𝑖 ≤ 𝑥 𝑗 ) in the

LP formulation, in addition to the standard covering constraints for

paging problems. Second, we need a somewhat non-standard LP,

where the variables correspond to prefixes of copies of a page.

To illustrate the variety of techniques, we provide both primal-

dual algorithms, and algorithms with a potential function based

analysis.

Distribution-free rounding. Our online rounding algorithmmakes

its decisions at each step using a very simple rule, based only on the

fractional solution and the pages in current cache. It is thus distri-
bution free, in contrast to the way fractional solutions to weighted

paging are rounded, where the online rounding maintains a proba-

bility distribution over integral cache states, and updates it when

the fractional solution changes.

Roughly, our rounding algorithm tries to mimic the fractional

algorithm, but evicts pages𝑂 (log𝑘) times more aggressively. How-

ever, as it can only evict pages currently residing in cache, it works

with the right conditional probability versions of these fractional

variables. Due to the random evictions, the cache may still have

more than 𝑘 pages, which is handled via a fixing step, that evicts
some pages carefully. As the eviction rule is 𝑂 (log𝑘) times more

aggressive, the cost for the fixing step can be amortized with the

overall fractional cost. However, making these ideas precise re-

quires some care, and we use a careful coupling argument together

with induction over time.

An obvious benefit of our rounding algorithm is that it is easy to

implement and is very efficient. Moreover, combined with a simple

multiplicative update rule for computing the fractional solution,

this gives a very simple overall algorithm.

Implications for weighted paging. The 𝑂 (log2 𝑘)-competitive al-

gorithms we develop for writeback-aware caching and RW-paging

are also applicable to weighted paging. Even though this factor is

inferior to the known 𝑂 (log𝑘)- competitive algorithm of Bansal et

al. [5], the 𝑂 (log2 𝑘)-competitive algorithm is an extremely simple

and clean algorithm which is very easy to implement.

The hardness results. To show Theorem 1.3, we observe that the

set cover problem can be reduced to RW-paging, and that this reduc-

tion works both in the offline and online settings. Usually, in online

algorithms, one does not consider polynomial-time computabil-

ity issues, but in an elegant and surprising result [24], Feige and

Korman showed that unless NP ⊂ BPP, there is no 𝑜 (log𝑚 log𝑛)-
competitive algorithm that runs in polynomial-time, for the online

set cover problem on 𝑛 elements and𝑚 sets. Fortunately, the on-

line instances in the result of [24] have a nice structure, and work

directly with our reduction, allowing us to prove Theorem 1.3.

Finally, Theorem 1.4 follows by considering an integrality gap

instance for the set cover problem and the reduction above.

1.3 Organization
The paper is organized as follows. In Section 2 we formally define

the problems we consider in the paper. In Section 3 we prove our

lower bounds on the competitive factor for the RW-paging problem

by reducing from the online set cover problem.

In Section 4 we show the algorithmic results for the weighted

multi-level paging problem. Specifically, in Section 4.1 we develop

a deterministic integral 𝑂 (𝑘)-competitive algorithm and in Sec-

tion 4.2 we develop a deterministic fractional 𝑂 (log𝑘)-competitive

algorithm. In the full version of the paper we give an alternate

deterministic integral 𝑂 (𝑘)-competitive algorithm via the online

primal-dual method for the problem.

Finally, in Section 4.3 we describe the distribution-free online

rounding. For ease of exposition and since it is of independent

interest, we first describe the rounding for weighted paging in

Section 4.3.1, yielding a randomized integral𝑂 (log2 𝑘)-competitive

algorithm for the problem. Later, in Section 4.3.3, we generalize it

to multi-level paging.

2 PRELIMINARIES
We define the problems we study, and set up the notation.

Weighted Paging. In the online weighted paging problem there

is a cache of size 𝑘 and a universe of 𝑛 > 𝑘 pages. Each page 𝑝 is

associated with a positive eviction cost 𝑤 (𝑝) ≥ 1
1
. At each time

step 𝑡 there is a request for one of the pages, denoted by 𝑝𝑡 . If

𝑝𝑡 is already in the cache then no cost is incurred, otherwise the

algorithm must bring 𝑝𝑡 into the cache, possibly evicting some

other page. The goal is to serve a given request sequence, while

minimizing the total cost of page evictions.

Writeback-Aware Caching. The basic setting here is the same as

in weighted paging. However, each request is either a read request
or a write request. We say that a page 𝑝 in the cache is dirty at time

𝑡 if, since the last time 𝑝 was loaded into the cache, there was a

write request to 𝑝 . Otherwise, we say that 𝑝 is clean. Evicting a

dirty page costs more than evicting a clean page. We thus associate

with each page 𝑝 two possible weights,𝑤1 (𝑝) ≥ 𝑤2 (𝑝) ≥ 1, where

𝑤1 (𝑝) is the eviction cost of 𝑝 when it is dirty, and 𝑤2 (𝑝) is the
eviction cost when it is clean. The goal is to serve a given request

sequence, with minimum total cost.

1
Total fetch cost and eviction cost are equal up to an additive constant.
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RW-Paging. The basic setting here is the same as in weighted

paging, except that for each page 𝑝 we now have a pair of pages

(𝑝, 1), (𝑝, 2), where (𝑝, 1) is the write copy of 𝑝 , and (𝑝, 2) is the
read copy of 𝑝 . The eviction costs satisfy𝑤 (𝑝, 1) ≥ 𝑤 (𝑝, 2) ≥ 1. A

request for page (𝑝, 1) is served by fetching it into the cache, while

a request for (𝑝, 2) can be served with either fetching (𝑝, 1) or (𝑝, 2)
into the cache. A crucial restriction is that at most one page of each

pair, (𝑝, 1) and (𝑝, 2) can be in the cache at the same time. The goal

is to serve a given request sequence with minimum cost.

Equivalence of RW-Paging and Writeback-Aware Caching. We

now show that writeback-aware caching and RW-paging are al-

gorithmically equivalent. Consider an instance of the writeback-

aware caching with cache size 𝑘 and 𝑛 pages with eviction costs

𝑤1 (𝑝) ≥ 𝑤2 (𝑝) ≥ 1. Define the following RW-Paging instance in

which there is a cache of size 𝑘 and 𝑛 pairs of pages (𝑝, 1), (𝑝, 2)
with eviction costs𝑤 (𝑝, 𝑖) = 𝑤𝑖 (𝑝). Given a request sequence for

the writeback-aware caching problem, define a request sequence

for the RW-paging problem in which every write request to a page

𝑝 is replaced by a request for (𝑝, 1), and every read request to 𝑝 is

replaced by a request to (𝑝, 2). This reduction goes in both direc-

tions: from writeback-aware caching to RW-paging and vice versa.

Lemma 2.1. Consider the two instances of writeback-aware caching
and RW-paging obtained by the above reduction. Then the integral
optima of both these instances are equal. In particular, there is an
𝛼-competitive algorithm for RW-paging iff there is an 𝛼-competitive
algorithm for writeback-aware caching.

Proof. Consider an integral solution 𝑆 to the RW-paging in-

stance. This solution defines a solution 𝑆 ′ to the writeback-aware

caching instance in a natural way. At any point of time, 𝑆 and 𝑆 ′

maintain the same cache with respect to every page 𝑝 , i.e. if 𝑆 has

page (𝑝, 𝑖) in the cache, then 𝑆 ′ has 𝑝 in its cache. Solutions 𝑆 and

𝑆 ′ have the same cost except for the case when (𝑝, 2) is replaced
by (𝑝, 1) in 𝑆 . In this case 𝑆 ′ has no cost as 𝑝 just becomes dirty in

𝑆 ′. Thus, the cost of 𝑆 ′ is not higher than the cost of 𝑆 .

Conversely, consider an integral solution 𝑆 ′ to the writeback-

aware caching instance, and define a solution 𝑆 for the RW-paging

instance as follows. For every page 𝑝 , consider a time interval [𝑡1, 𝑡2]
in which 𝑝 is fetched to the cache at time 𝑡1 and remains in the

cache until it evicted at time 𝑡2. If 𝑝 is dirty at time 𝑡2, then we load

(𝑝, 1) to the cache at time 𝑡1 and evict it at time 𝑡2, otherwise we

load (𝑝, 2) to the cache at time 𝑡1 and evict it at time 𝑡2. The cost

of solution 𝑆 is not higher than the cost of 𝑆 ′. Thus, the integral
optima of the two instances are of equal value. □

Weighted Multi-Level Paging. This problem is a generalization of

RW-paging. The basic setting is the same as in weighted paging. In

this problem, requests are given for both a page and a level: for each

page 𝑝 there are ℓ copies (𝑝, 1), (𝑝, 2), . . . , (𝑝, ℓ), representing the

levels, where level 1 is the highest, and ℓ the lowest. A request (𝑝, 𝑖)
for page 𝑝 and level 𝑖 can be served by any copy of 𝑝 of level higher

than 𝑖 , i.e. any (𝑝, 𝑗) such that 𝑗 ≤ 𝑖 . Eviction costs are associated

with the copies of page 𝑝 , satisfying: 𝑤 (𝑝, 1) ≥ 𝑤 (𝑝, 2) ≥ · · · ≥
𝑤 (𝑝, ℓ) ≥ 1. For every page 𝑝 , the cache is restricted to contain at

most one of its copies (𝑝, 1), (𝑝, 2), . . . , (𝑝, ℓ) at any time.

Fractional Versions. Our randomized algorithms will be based

on fractional versions and LP formulations of these problems. We

present a linear programming (LP) formulation for the ℓ-level pag-

ing along the same lines as weighted paging (see [7] for details).

Let 𝑦 (𝑝, 𝑖, 𝑡) denote the fraction of (𝑝, 𝑖) present in the cache

at time 𝑡 . For each 𝑝, 𝑖 , we define the prefix variables 𝑢 (𝑝, 𝑖, 𝑡) =

1 − ∑𝑖
𝑗=1 𝑦 (𝑝, 𝑗, 𝑡), so that 𝑢 (𝑝, 𝑖, 𝑡) = 0 if the sum of fractions of

(𝑝, 𝑗) for 𝑗 ≤ 𝑖 is 1. In other words, if (𝑝𝑡 , 𝑖𝑡 ) is requested at time 𝑡 ,

then 𝑢 (𝑝𝑡 , 𝑖𝑡 , 𝑡) fraction of page 𝑝 must be fetched in total (among

copies 1, . . . , 𝑖𝑡 ) to the cache.

Note that these variables must satisfy that𝑢 (𝑝, 𝑖, 𝑡) ≥ 𝑢 (𝑝, 𝑖+1, 𝑡)
for every 𝑝, 𝑡, 𝑖 = 1, . . . ℓ − 1. For page 𝑝 , 1 − 𝑢 (𝑝, ℓ, 𝑡) is the total
space in the cache occupied by copies of page 𝑝 .

To make sure that our cache is feasible we need that the cumu-

lative fraction of pages in the cache at any time is at most 𝑘 , or

equivalently,

∑
𝑝 𝑢 (𝑝, ℓ, 𝑡) ≥ 𝑛 − 𝑘 .

As inweighted paging, we use the variables 𝑧 (𝑝, 𝑖, 𝑡) to denote the
movement cost for𝑢 (𝑝, 𝑖) at time 𝑡 . As the weights are geometrically

decreasing, the objective below iswithin a factor of 2 of the objective

that measures that change in 𝑦 (𝑝, 𝑖, 𝑡).
This yields the following linear program.

min

∑
𝑡

∑
𝑝

∑
𝑖∈ℓ

𝑧 (𝑝, 𝑖, 𝑡)𝑤 (𝑝, 𝑖) +
∑
𝑡

∞ · 𝑢 (𝑝𝑡 , 𝑖𝑡 , 𝑡)

s.t.

∑
𝑝 :𝑝∈𝑆

𝑢 (𝑝, ℓ, 𝑡) ≥ |𝑆 | − 𝑘 ∀𝑆 ⊂ [𝑛]

𝑢 (𝑝, 𝑖 − 1, 𝑡) − 𝑢 (𝑝, 𝑖, 𝑡) ≥ 0 𝑖 = ℓ, . . . , 2

𝑧 (𝑝, 𝑖, 𝑡) − 𝑢 (𝑝, 𝑖, 𝑡) + 𝑢 (𝑝, 𝑖, 𝑡 − 1) ≥ 0 ∀𝑝, 𝑡, 𝑖 = 1, . . . , ℓ

𝑧 (𝑝, 𝑖, 𝑡), 𝑢 (𝑝, 𝑖, 𝑡) ≥ 0 ∀𝑝, 𝑡, 𝑖 = 1, . . . , ℓ

As in weighted paging, the first set of constraints ensures that the

cache has at most 𝑘 pages. The term 𝑢 (𝑝𝑡 , 𝑖𝑡 , 𝑡) · ∞ in the objective

function ensures that any finite cost solution must set 𝑢 (𝑝𝑡 , 𝑖𝑡 , 𝑡) =
0, and hence satisfies (𝑝𝑡 , 𝑖𝑡 ) at time 𝑡 . Note that while the box

constraints 𝑢 (𝑝, ℓ, 𝑡) ≤ 1 are implied by the first set of constraints

(see e.g. [7]), it is not immediately clear why 𝑢 (𝑝, 𝑖, 𝑡) ≤ 1 for 𝑖 < ℓ .

The following claims shows why this holds, and hence that this LP

is a valid formulation.

Claim 2.2. In any feasible solution to the LP above, we can assume
that 𝑢 (𝑝, 𝑖, 𝑡) ≤ 1 for every 𝑝, 𝑖, 𝑡 .

Proof. Given any feasible solution (𝑢, 𝑧), consider the solution
(𝑢̃, 𝑧), where 𝑢̃ (𝑝, 𝑖, 𝑡) = min{𝑢 (𝑝𝑡 , 𝑖, 𝑡), 1}. We claim that (𝑢̃, 𝑧) is
feasible. Indeed, the first set of constraints only involves 𝑢 (𝑝, ℓ, 𝑡)
variables which are already ≤ 1, the second set of constraints are

still satisfied, and finally the third set of constraints are satisfied as

𝑥−𝑦 ≥ min(𝑥, 1)−min(𝑦, 1) for any 𝑥 ≥ 𝑦. Moreover, replacing𝑢 by

(𝑢̃) and choosing the optimum 𝑧 can only reduce the objective. □

Finally, we note that for ℓ = 1, our LP coincides with the one for

weighted paging.

3 LOWER BOUNDS
We now prove Theorem 1.3. As mentioned previously, we give a

reduction from the online set cover problem, defined below, and

use the hardness result of Feige and Korman [24].
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Definition 3.1 (Online Set Cover). There is a universe of elements
𝑈 = {1, . . . , 𝑛} and a family 𝐹 = {𝑆1, . . . , 𝑆𝑚} of subsets of 𝑈 . Both
𝑈 and 𝐹 are known upfront to the online algorithm. At each step, an
element 𝑒 ∈ 𝑈 appears, and the algorithm must choose a set 𝑆 ∈ 𝐹

containing it, unless 𝑒 is already covered by some previously chosen
set. The goal is to minimize the total number of sets chosen.

Consider the following reduction from Online Set Cover to On-

line RW paging.

Reduction. Let (𝑈 , 𝐹 ) be the set system, with𝑛 = |𝑈 | and𝑚 = |𝐹 |,
and let 𝑒1, . . . , 𝑒𝑡 be the elements requested in an online set cover

instance. We define an RW-paging instance as follows.

The cache has size 𝑘 =𝑚, the number of sets in 𝐹 . For each set

𝑆 ∈ 𝐹 , there are two pages (𝑝𝑆 , 1) and (𝑝𝑆 , 2), corresponding to the

write and read copies for 𝑆 . Similarly, for each element 𝑒 ∈ 𝑈 , there

are two pages (𝑒, 1) and (𝑒, 2), corresponding to the write and read

copies for 𝑒 .

Let ℓ be a parameter (≫𝑚𝑛) that we specify later. Consider the

following request sequence.

(1) Initialization: For each set 𝑆 in 𝐹 , there is a write request

for 𝑆 .

(2) Sequence for element 𝑒: For each element 𝑒 , let 𝐹𝑒 := {𝑆 :

𝑆 ∈ 𝐹, 𝑒 ∉ 𝑆} be the collection of sets that do not contain 𝑒 .

Let 𝜌 (𝑒) denote the request sequence consisting of a read

request for 𝑒 , followed by a read request for each set in 𝐹𝑒 .

When element 𝑒 is requested in the online set cover instance,

do the following:

(a) Give the request sequence 𝜌 (𝑒) for ℓ times.

(b) Give a read request for each 𝑆 ∈ 𝐹 .

(3) Terminate: For each set 𝑆 in 𝐹 , there is a write request for

𝑆 .

Let 𝑇 = {𝑒1, . . . , 𝑒𝑡 } denote the set of elements requested in the

online set cover instance. We now show that this request sequence

has low cost if and only if there is a small set cover for 𝑇 . For

convenience, we only consider eviction cost. Let the cost of evicting

a write page and a read page be𝑤 and 1, respectively.

Lemma 3.2. (Completeness) If 𝐶 is a set cover for 𝑇 of size |𝐶 | = 𝑐 ,
the RW-instance has a solution with cost at most 𝑐 (𝑤 + 1) + 2𝑡 , where
𝑡 = |𝑇 |. Moreover, at the start and at the end of this solution, the cache
consists of the write pages (𝑝𝑆 , 1) for each set 𝑆 ∈ 𝐹 .

Proof. Consider the following solution. Initially, the cache con-

tains all the pages (𝑝𝑆 , 1) for each 𝑆 ∈ 𝐹 . Then in Step 1, all requests

are served for free. After Step 1, evict pages (𝑝𝑆 , 1) for 𝑆 ∈ 𝐶 , and

replace them by (𝑝𝑆 , 2) for each 𝑆 ∈ 𝐶 . Evicting these 𝑐 write pages,

incurs a cost of 𝑐𝑤 .

For each element 𝑒 in 𝑇 , and before Step 2𝑎 begins, evict some

page (𝑝𝑆 , 2) where 𝑆 is some set containing 𝑒 . Such a set 𝑆 always

exists as 𝐶 is a valid set cover for the elements in 𝑇 . Evicting the

single page (𝑝𝑆 , 2) incurs cost 1. In Step 2a, as the sequence 𝜌 (𝑒)
consists only of read requests to 𝑒 and to sets 𝑆 ′ that do not contain
𝑒 . As one of (𝑝 ′

𝑆
, 1) or (𝑝 ′

𝑆
, 2) is present for each such 𝑆 ′, these

requests can be served for free, and hence all the ℓ copies of 𝜌 (𝑒)
can be served at no cost.

After Step 2a, evict the page (𝑝𝑒 , 2) and load the page (𝑝𝑆 , 2)
back. This incurs a cost of 1. Now, the cache contains either (𝑝𝑆 , 1)
or (𝑝𝑆 , 2) for each set 𝑆 ∈ 𝐹 , and hence the Step 2b incurs 0 cost.

As Step 2 occurs 𝑡 times, once for element 𝑒 ∈ 𝑇 , the overall cost

in this step is at most 2𝑡 .

Finally, before Step 3, evict pages (𝑝𝑆 , 2) for 𝑆 ∈ 𝐶 and replace

them by (𝑝𝑆 , 1). This incurs cost 𝑐 . The requests in Step 3 can now

be served for free, and moreover the cache consists of the same

pages as when it started. □
Let us set ℓ :=𝑚𝑛𝑤 to be a large parameter. The following shows

that in any solution with reasonable cost, the sets 𝑆 corresponding

to the evicted pages (𝑝𝑆 , 1) must form a valid set cover of 𝑇 .

Lemma 3.3. (Soundness) Let 𝐷 be the write pages (𝑝𝑆 , 1) evicted
by the algorithm. If 𝐷 is not a valid set cover for 𝑇 , then the cost for
serving the instance is at least ℓ .

Proof. In Step 1 and Step 3, for each set 𝑆 ∈ 𝐹 , there is a write

request for 𝑆 , and hence the page (𝑝𝑆 , 1) must be present in the

cache at both these times.

Let 𝐷 denote the sets 𝑆 for which the page (𝑝𝑆 , 1) was evicted
sometime between the two write requests for 𝑆 . If 𝐷 is not a valid

set cover for 𝑇 , consider some element 𝑒 ∈ 𝑇 that is not covered by

sets in 𝐷 , and hence in particular, 𝐷 ⊂ 𝐹𝑒 .

Consider Step 2a for element 𝑒 . As 𝜌 (𝑒) consists of read requests
to 𝑒 and all the pages in 𝐹𝑒 (and hence in𝐷), when the read requests

for 𝑒 ∪ 𝐷 arrive, there is only |𝐷 | space in the cache available for

these |𝐷 | + 1 pages, and hence there must be at least one eviction,

leading to an overall cost of at least ℓ . □

Lower bound instance. Feige and Korman [24] gave the following

reduction from offline set cover to online set cover.

Theorem 3.4 (Corollary 2.3.2 [24], slightly restated). Let
𝐴 be any randomized algorithm for online set cover. There exists a
polynomial-time reduction from (offline) Set Cover to Online Set Cover
such that given an offline Set Cover instance 𝐼 = (𝑋, 𝐹 ), consisting of
|𝑋 | = 𝑁 elements and |𝐹 | = 𝑀 sets and whose optimal cover size is 𝑐 ,
produces an online set cover instance 𝐼 ′ on 𝑛 = 𝑁 (𝑁 − 1) elements,
𝑚 = 𝑁𝑀/2 sets with 𝑞 different online request sequences 𝜌1, . . . , 𝜌𝑞
such that:

(1) The optimal offline cover size of each sequence 𝜌 𝑗 for 𝑗 ∈ [𝑞]
is 𝑐 . The length of each 𝜌 𝑗 is 𝑁 log𝑁 .

(2) The expected number of sets used by 𝐴 is at least (𝑐 log𝑁 )/2,
where the expectation is over the randomness is 𝐴, and the
uniform distribution over the sequences 𝜌1, . . . , 𝜌𝑞 .

Combined with the Ω(ln𝑁 ) approximation hardness for (offline)

set-cover [23] (details in Section 2.3.2 of [24]) yields the following:

Theorem 3.5 ([24], Theorem 2.3.4). If there is an 𝑜 (log𝑛 log𝑚)-
competitive randomized polynomial-time algorithm for online set
cover, then NP ⊂ BPP.

Moreover, in these instances 𝑛 and𝑚 are polynomially related.

Together with the reduction from online set cover to RW-paging

we get:

Theorem 3.6. Unless NP ⊂ BPP, there is no𝑜 (log2 𝑘)-competitive
polynomial-time randomized algorithm for RW-paging.
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Proof. Consider the online set cover instance in Theorem 3.4.

We apply the reduction from the set system 𝐼 ′ to RW-paging. The

cache size is 𝑘 =𝑚. The overall request sequence for RW-paging

consists of ℎ = 𝑘 phases, where at each phase, we randomly choose

an online set cover request sequence 𝜌𝑖 , and give the paging re-

quests specified by Steps 1-3 corresponding to 𝜌𝑖 .

We claim that the offline cost is at most 2ℎ𝑐𝑤 . Suppose that

the initial cache consists of pages 𝑝𝑆,𝑤 for each of the 𝑚 sets 𝑆 .

Otherwise, we pay an initial cost of at most 𝑘𝑤 to get to this state,

which is at most ℎ𝑐𝑤 . Let 𝐶𝑖 denote some optimum set cover for

𝜌𝑖 , consider the solution given by Lemma 3.2. As and the solution

starts and ends at the same cache state in each phase, the total cost

incurred over the ℎ phases is at most ℎ((𝑤 + 1)𝑐 + 2𝑛), as 𝜌𝑖 ≪ 𝑛

for each 𝑖 . Choosing𝑤 = 𝑛, this is at most 2ℎ𝑤𝑐 .

Now consider the online solution. First, by Lemma 3.3, if during

any phase 𝑖 the evicted write pages do not form a valid set cover

for 𝜌𝑖 , then the cost is at least ℓ = 𝑚2𝑛𝑤 = 𝑘2𝑛𝑤 ≥ 𝑘 (𝑘𝑤𝑐) as
trivially 𝑐 ≤ |𝜌𝑖 | ≪ 𝑛. So, we can assume that in each phase 𝑖 , a

valid set cover for 𝜌𝑖 is computed online. But, then, by Theorem

3.5, this cover has expected size Ω(𝑐 log2 𝑛), resulting in expected

eviction cost Ω(log2 𝑛)𝑐𝑤 for the pages 𝑝𝑆,𝑊 per phase. This gives

the claimed lower bound of Ω(log2 𝑘) on the competitive ratio. □

Integrality Gap. We now prove Theorem 1.4.

Given a set system (𝑈 , 𝐹 ), and a set of requested elements 𝑇 , a

valid fractional set cover solution satisfies 𝑥𝑆 ≥ 0 for all 𝑆 ∈ 𝐹 and∑
𝑆 :𝑒∈𝑆 𝑥𝑆 ≥ 1 for all 𝑒 ∈ 𝑇 .

In the fractional version of RW-paging, to serve (𝑝, 1), one unit
of (𝑝, 1) must be in the cache, and to serve (𝑝, 2), the sum of the

fractions (𝑝, 1) and (𝑝, 2) must be 1. We claim that a simple modi-

fication of Lemma 3.2 gives a fractional solution to RW-paging of

cost at most |𝑥 |1𝑤 + 2𝑡 , i.e. the size |𝐶 | of the set cover is replaced
by the size of the fractional set cover |𝑥 |1.

Let 𝑥 be a fractional set cover for 𝑇 , consider the solution in

Lemma 3.2, where instead of evicting the copies (𝑝𝑆 , 1) for 𝑆 ∈
𝐶 integrally and replacing them by (𝑝𝑆 , 2), we evict each (𝑝𝑆 , 1)
fractionally by 𝑥𝑆 , and load (𝑝𝑆 , 2) to extent 𝑥𝑆 . When request 𝜌 (𝑒)
arrives, we evict fractions adding up to 1 from pages (𝑝𝑆 , 2), where
𝑒 ∈ 𝑆 , and fetch (𝑝𝑒 , 2) to extent 1. The above is possible as 𝑥 is a

valid fractional set cover for elements in 𝑇 . The bounds on the cost

now follow directly by the arguments in Lemma 3.2.

Now, consider any set of elements 𝑇 for which the integral

set cover is Ω(log𝑛) times larger than the fractional set cover,

i.e. |𝐶 | = Ω(log𝑛) |𝑥 |1. Consider any randomized algorithm that

takes fractional solution 𝑥 , and maintains a distribution over inte-

gral cache states. By Lemma 3.3, at least half of these cache states

must evict write copies (𝑝𝑆 , 1) corresponding to sets 𝑆 in a valid

integral cover for𝑇 , otherwise the expected cost is already too high.

But then, these cache states must evict Ω(log𝑛 · ∥𝑥 ∥1) write copies,
incurring cost Ω(log𝑛) times the fractional cost.

4 MULTI-LEVEL PAGING
We now consider the weighted multi-level paging problem. We first

give an 𝑂 (𝑘)-deterministic algorithm in Section 4.1. In Section 4.2

we give a deterministic fractional 𝑂 (log𝑘)-competitive algorithm,

and in Section 4.3 we give the online rounding procedure. Together,

this gives the randomized 𝑂 (log2 𝑘)-competitive algorithm.

Recall that in the multi-level paging problem, requests corre-

spond to both a page and a level: for each page 𝑝 there are ℓ copies

(𝑝, 1), (𝑝, 2), . . . , (𝑝, ℓ), representing the levels. A request (𝑝, 𝑖) can
be served by any copy (𝑝, 𝑗) such that 𝑗 ≤ 𝑖 . We assume with loss of

generality that the eviction costs satisfy𝑤 (𝑝, 1) ≥ . . . ≥ 𝑤 (𝑝, ℓ) ≥
1, and moreover that𝑤 (𝑝, 𝑖)/𝑤 (𝑝, 𝑖 + 1) ≥ 2, for all 𝑖 = 1, . . . , ℓ − 1.

This loses a factor of at most 2, otherwise we can simply merge

two levels for 𝑝 . For every page 𝑝 , the cache can contain at most

one of its copies (𝑝, 1), (𝑝, 2), . . . , (𝑝, ℓ) at any time.

4.1 Deterministic 𝑂 (𝑘)-Competitive Algorithm
We now give a deterministic online 𝑂 (𝑘)-competitive algorithm.

We first give a water-filling based algorithm with a simple potential

function proof. In the full version of the paper, we give a primal-dual

proof of the same result.

Algorithm. For each copy (𝑝, 𝑖), wemaintain awater-level 𝑓 (𝑝, 𝑖, 𝑡) ∈
[0,𝑤 (𝑝, 𝑖)]. Let us assume that initially at 𝑡 = 0, the cache is empty,

and the water-level 𝑓 (𝑝, 𝑖, 0) = 𝑤 (𝑝, 𝑖) for all 𝑝 ∈ [𝑛], 𝑖 ∈ [ℓ].
At time 𝑡 , upon arrival of request (𝑝𝑡 , 𝑖𝑡 ) do the following:

(1) If the request is already satisfied, i.e., there is some (𝑝𝑡 , 𝑗)
for 𝑗 ≤ 𝑖𝑡 in the cache, do nothing.

(2) Otherwise, fetch (𝑝𝑡 , 𝑖𝑡 ) and set 𝑓 (𝑝𝑡 , 𝑖𝑡 ) = 0.

(a) If there is another copy (𝑝𝑡 , 𝑗) for 𝑗 > 𝑖𝑡 of page 𝑝𝑡 , evict

this copy.

(b) Otherwise, let 𝑆 = {𝑞 : 𝑞 ∈ ON \ {𝑝𝑡 }}, and let (𝑞, 𝑖𝑞)
denote the copy of 𝑞 ∈ 𝑆 . If |𝑆 | = 𝑘 , raise 𝑓 (𝑞, 𝑖𝑞) at rate 1
for each 𝑞 ∈ 𝑆 , until 𝑓 (𝑞, 𝑖𝑞) = 𝑤 (𝑞, 𝑖𝑞) for some 𝑞, evict

this (𝑞, 𝑖𝑞).

Analysis. We show the following result, which implies a 4𝑘 com-

petitive ratio for arbitrary weights.

Theorem 4.1. Assuming that 𝑤 (𝑞, 𝑖) ≥ 2𝑤 (𝑞, 𝑖 + 1) for all 𝑞, 𝑖 ,
the algorithm above is 2𝑘 competitive.

Proof. Let OFF denote some optimal offline solution, and ON de-

note the online solution. Without loss of generality, we assume that

OFF is integral. Let 𝑣 (𝑝, 𝑖, 𝑡) denote variables 𝑢 (𝑝, 𝑖) corresponding
to OFF, i.e. for any page 𝑝 , if OFF has (𝑝, 𝑖) in the cache at time 𝑡 ,

then 𝑣 (𝑝, 1, 𝑡) = · · · = 𝑣 (𝑝, 𝑖 − 1) = 1 and 𝑣 (𝑝, 𝑖) = · · · = 𝑣 (𝑝, ℓ) = 0.

If no copy of 𝑝 is in OFF, then 𝑣 (𝑝, 𝑖, 𝑡) = 1 for all 𝑖 ∈ [ℓ]. In
particular, it means that 𝑣 (𝑝, ℓ) = 0 for at most 𝑘 different pages 𝑝 .

We give a potential function analysis. Define

Φ =
∑

𝑝∈ON
𝑘 · 𝑣 (𝑝, 𝑖𝑝 , 𝑡) (𝑤 (𝑝, 𝑖𝑝 ) − 𝑓 (𝑝, 𝑖𝑝 , 𝑡)) +

∑
𝑝∈ON

𝑓 (𝑝, 𝑖𝑝 , 𝑡).

We use the convention that for online evicting (𝑝, 𝑖) incurs cost
𝑤 (𝑝, 𝑖), but fetching it gives𝑤 (𝑝, 𝑖)/2 profit (i.e. incurs cost−𝑤 (𝑝, 𝑖)/2).
For offline, we incur cost𝑤 (𝑝, 𝑖) to evict (𝑝, 𝑖) and fetching has no

cost. Now, fetching and evicting some (𝑝, 𝑖) incurs a total online
cost of 𝑤 (𝑝, 𝑖)/2, so this affects online cost by factor at most 2.

Under this convention, we show that for all possible events at time

𝑡 ,

Δ(ON) + ΔΦ ≤ 𝑘 · Δ(OFF), (1)

where ΔΦ is change in potential at time 𝑡 , and Δ(ON) and Δ(OFF)
denote the online and offline cost at 𝑡 . Clearly, this gives the claimed

2𝑘 competitive ratio. We defer the details to the full version. □
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4.2 Fractional 𝑂 (log𝑘)-Competitive Algorithm
We now give a deterministic online fractional𝑂 (log𝑘)-competitive

algorithm and analyze it using a potential function. We use the

same notation as in Section 4.1.

The fractional Algorithm. Upon the arrival of request (𝑝𝑡 , 𝑖𝑡 ) do
the following. We drop 𝑡 from the variables 𝑢 and 𝑦 for notational

convenience.

(1) Set 𝑢 (𝑝𝑡 , 𝑗) = 0 for 𝑗 ≥ 𝑖𝑡 , and keep 𝑢 (𝑝𝑡 , 𝑗) unchanged for

𝑗 < 𝑖𝑡 .

This is equivalent to setting,𝑦 (𝑝𝑡 , 𝑖𝑡 ) = 1−∑
𝑗<𝑖 𝑦 (𝑝𝑡 , 𝑗) and

𝑦 (𝑝𝑡 , 𝑗) = 0 for 𝑗 > 𝑖𝑡 , i.e., we evict pages of level 𝑗 > 𝑖𝑡 , and

fetch enough (𝑝𝑡 , 𝑖𝑡 ) so that there is one unit of page 𝑝𝑡 in
levels 1, . . . , 𝑖𝑡 .

(2) For each 𝑞 ≠ 𝑝𝑡 , let 𝑖𝑞 be the largest index with 𝑦 (𝑞, 𝑖𝑞) > 0.

For each such 𝑞 ≠ 𝑝𝑡 for which such an index 𝑖𝑞 exists do

the following: Decrease, 𝑦 (𝑞, 𝑖𝑞, 𝑡) at rate
1

𝑤 (𝑞, 𝑖𝑞)
(𝑢 (𝑞, 𝑖𝑞) + 𝜂) (2)

until

∑
𝑞∈[𝑛] 𝑢 (𝑞, ℓ) ≥ 𝑛 − 𝑘 , where we set 𝜂 = 1/𝑘 .

Analysis. We will do a potential function analysis, and show that

at each step

Δ(On) + Δ(Φ) ≤ 𝑐Δ(Off) (3)

for 𝑐 = 4(log𝑘). As previously, we assume that the weights satisfy

𝑤 (𝑞, 𝑗)/𝑤 (𝑞, 𝑗 + 1) ≥ 2.

Consider the potential

Φ = 2

∑
𝑞∈[𝑛]

∑
𝑗 ∈[ℓ ]

𝑤 (𝑞, 𝑗)𝑣 (𝑞, 𝑗) ln 1 + 𝜂
𝑢 (𝑞, 𝑗) + 𝜂 .

We first consider the offline move. Without loss of generality, we

assume that OFF is integral.

Lemma 4.2. If OFF evicts some (𝑞, 𝑗), then ΔΦ ≤ 4𝑤 (𝑞, 𝑗) ln(1 +
1/𝜂). If OFF fetches any page, the potential can only decrease.

Proof. When OFF evicts (𝑞, 𝑗), the quantities 𝑣 (𝑞, 𝑗), 𝑣 (𝑞, 𝑗 +
1), . . . , 𝑣 (𝑞, ℓ) go up from 0 to 1. So

Δ(Φ) ≤ 2

ℓ∑
ℎ=𝑗

𝑤 (𝑞, ℎ) ln(1 + 1/𝜂) ≤ 4 ·𝑤 (𝑞, 𝑗) ln(1 + 1/𝜂)

If OFF fetches some (𝑞, 𝑗), the quantities 𝑣 (𝑞, 𝑗), 𝑣 (𝑞, 𝑗+1), . . . , 𝑣 ( 𝑗, ℓ)
go down from 1 to 0. So the potential can only decrease due to this

change (as ln((1 + 𝜂)/(𝑢 (𝑞, 𝑗) + 𝜂)) is always non-negative). □

We now analyze the online move. We can assume that offline

has already served the request (𝑝𝑡 , 𝑖𝑡 ). We first consider step 1 of

the algorithm.

Lemma 4.3. Φ = 0 in step 1, and as the online fetching cost is 0,
this implies that (3) holds.

Proof. As OFF already has (𝑝𝑡 , ℎ) in its cache for some ℎ ≤ 𝑖𝑡 ,

we have 𝑣 (𝑝𝑡 , 𝑖𝑡 ) = . . . = 𝑣 (𝑝𝑡 , ℓ) = 0. The only update that online

does in step 1 is to set 𝑢 (𝑝𝑡 , 𝑗) = 0 for 𝑗 ≥ 𝑖𝑡 . So, ΔΦ = 0. □

Now consider the rule when pages are evicted. We do a continu-

ous analysis.

Lemma 4.4. Δ(ON) +Δ(Φ) ≤ 0, as pages other than 𝑝𝑡 are evicted.

Proof. Let 𝑆 be the set of pages 𝑞 such that 𝑞 ≠ 𝑝𝑡 and 𝑢 (𝑝, ℓ) <
1. Recall that the pages in 𝑆 are precisely those for which we evict

some fraction of (𝑞, 𝑖𝑞). Also, by the definition of 𝑖𝑞 , we have that

𝑢 (𝑞, 𝑖𝑞) = 𝑢 (𝑞, ℓ). Moreover, when 𝑦 (𝑞, 𝑖𝑞) is decreased by 𝜖 , then

by definition of 𝑢 (𝑞, 𝑗), all 𝑢 (𝑞, 𝑗) for 𝑗 ≥ 𝑖𝑞 rise by exactly 𝜖 .

Now, the movement cost is∑
𝑞∈𝑆

𝑤 (𝑞, 𝑖𝑞) |𝑑𝑦 (𝑞, 𝑖𝑞) | =
∑
𝑞∈𝑆

𝑤 (𝑞, 𝑖𝑞)
(𝑢 (𝑞, 𝑖𝑞) + 𝜂)𝑑𝑦

𝑤 (𝑞, 𝑖𝑞)

=
∑
𝑞∈𝑆

(𝑢 (𝑞, 𝑖𝑞) + 𝜂)𝑑𝑦

≤ (|𝑆 | − (𝑘 − 1) + 𝜂 |𝑆 |)𝑑𝑦
≤ 2( |𝑆 | − (𝑘 − 1))𝑑𝑦.

The first step uses that the update rule is (2), and the last step uses

that 𝜂 |𝑆 | = |𝑆 |/𝑘 ≤ |𝑆 | − (𝑘 − 1) for |𝑆 | ≥ 𝑘 , which is the case as

otherwise the cache was feasible. The first inequality follows as

𝑢 (𝑞, 𝑖𝑞) = 𝑢 (𝑞, ℓ), and since

∑
𝑢 (𝑞, ℓ) < 𝑛 − 𝑘 ,∑

𝑞∈𝑆
𝑢 (𝑞, ℓ) =

∑
𝑞∈[𝑛]

𝑢 (𝑞, ℓ) −
∑

𝑞:𝑢 (𝑞,ℓ)=1
𝑢 (𝑞, ℓ)

< 𝑛 − 𝑘 − (𝑛 − 1 − |𝑆 |) = |𝑆 | − (𝑘 − 1)
To show that (3) holds, it suffices to show that the potential de-

creases by at least 2( |𝑆 | − (𝑘 − 1))𝑑𝑦.
For every page 𝑞 ≠ 𝑝𝑡 , as 𝑥𝑞,𝑖 can only increase, 𝑢 (𝑞, 𝑖) can only

increase and hence the potential can only decrease. So let us simply

consider the contribution to the decrease from the |𝑆 | − (𝑘 − 1)
pages 𝑞 for which 𝑣 (𝑞, ℓ) = 1 (recall that 𝑣 (𝑞, ℓ) can be 0 for at most

𝑘 pages, and 𝑝𝑡 is one of them), but 𝑢 (𝑞, ℓ) < 1. Call this set of

pages 𝑇 . For each such page in 𝑇 , the potential decreases by∑
𝑗≥𝑖𝑞

𝑤 (𝑞, 𝑗)𝑣 (𝑞, 𝑗) 𝑑𝑢 (𝑞, 𝑗)
𝑢 (𝑞, 𝑗) + 𝜂 =

∑
𝑗≥𝑖𝑞

𝑤 (𝑞, 𝑗) 1

𝑤 (𝑞, 𝑖𝑞)
𝑑𝑦 ≥ 𝑑𝑦,

as for 𝑗 ≥ 𝑖𝑞 , we have 𝑢 (𝑞, 𝑗) = 𝑢 (𝑞, 𝑖𝑞) and hence 𝑑𝑢 (𝑞, 𝑗) =

𝑑𝑢 (𝑞, 𝑖𝑞) = (𝑢 (𝑞, 𝑖𝑞) + 𝜂)𝑑𝑦/𝑤 (𝑞, 𝑖𝑞), and 𝑣 (𝑞, 𝑗) = 1 for 𝑞 ∈ 𝑇 . □

4.3 Online Rounding
We now describe online rounding for multi-level paging. Our round-

ing algorithm has a simple form and is local in the following sense.

Let 𝑥 (𝑡 − 1) denote the fractional solution at the end of time 𝑡 . The

algorithm maintains a feasible cache state𝐶 (𝑡 −1) based on 𝑥 (𝑡 −1)
and its own internal randomness until time 𝑡 − 1. When a request

arrives at time 𝑡 and the fractional solution changes to 𝑥 (𝑡), the
new cache state 𝐶 (𝑡) only depends on the state 𝐶 (𝑡 − 1), fractional
solutions 𝑥 (𝑡 − 1) and 𝑥 (𝑡), and the random choices at time 𝑡 . We

emphasize that the rounding is independent of the way the frac-

tional solution is generated. We say that the rounding algorithm is

𝛽-competitive, if its expected cost is at most 𝛽 times the fractional

cost of the solution 𝑥 . For our rounding, 𝛽 = 𝑂 (log𝑘).
While the rounding algorithm itself is simple to describe and

implement, the analysis is a bit subtle and uses a coupling argument.

To illustrate the main idea we first describe the rounding for ℓ = 1,

which corresponds to weighted paging. In fact, this is interesting by

itself, as previous rounding algorithms for weighted paging [2, 5],

while 𝑂 (1)-competitive, are much more complicated, and maintain
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a distribution over several integral cache states, thus making them

very unnatural and hard to implement.

4.3.1 Rounding for weighted paging. We assume that for each page

𝑝 , 𝑤𝑝 ≥ 1, and for 𝑖 = 1, 2, . . . , let 𝑃𝑖 = {𝑝 : 𝑤𝑝 ∈ (2𝑖−1, 2𝑖 ]}. We

refer to 𝑃𝑖 as weight class 𝑖 . Let 𝑃≥𝑖 = {𝑝 : 𝑤𝑝 ≥ 2
𝑖−1)} denote the

set of pages with weight at least 2
𝑖−1

. For each class 𝑖 , we denote

the fractional space used by pages in 𝑃≥𝑖 as

𝑘≥𝑖 (𝑡) =
∑

𝑝∈𝑃≥𝑖
(1 − 𝑥𝑝 (𝑡)) .

Without loss of generality, we assume that at time 𝑡 , for any page

𝑝 ≠ 𝑝𝑡 , 𝑥𝑝 (𝑡) −𝑥𝑝 (𝑡 −1) ≥ 0, and the total fraction of pages evicted

upon any request is at most 1. Let 𝛽 = 4 log𝑘 , and let

𝑦𝑝 (𝑡) = min(𝛽𝑥𝑝 (𝑡), 1) .
At time 𝑡 , let us define Δ(𝑦𝑝 (𝑡)) = 𝑦𝑝 (𝑡) − 𝑦𝑝 (𝑡 − 1).

We also need the following simple claim, the proof of which

appears in the full version of the paper.

Lemma 4.5. Any feasible fractional 𝑥 can be assumed to satisfy,
while losing at most a factor of two in the objective, that for each 𝑝

and 𝑡 , the value 𝑥𝑝 (𝑡) is an integer multiple of 𝛿 = 1/(4𝑘).
The rounding algorithm. Consider Algorithm 1. Intuitively, it is

Algorithm 1: Randomized Rounding Step

1 At time 𝑡 , when the request for page 𝑝𝑡 arrives:
2 if 𝑝𝑡 ∉ 𝐶 (𝑡 − 1) then
3 add 𝑝𝑡 to 𝐶 (𝑡 − 1)
4

5 For each page 𝑝 ≠ 𝑝𝑡 :
6 if 𝑝 ∈ 𝐶 (𝑡 − 1) then
7 evict 𝑝 independently with probability

Δ𝑦𝑝 (𝑡)/(1 − 𝑦𝑝 (𝑡 − 1))
8

9 end
10 For 𝑖 in decreasing order
11 if |𝑃≥𝑖 ∩𝐶 (𝑡 − 1) | > ⌈𝑘≥𝑖 (𝑡)⌉ then
12 Type-𝑖 Reset: Evict an arbitrary page 𝑝 ≠ 𝑝𝑡

from 𝑃𝑖 ∩𝐶 (𝑡 − 1)
13 end
14 Set 𝐶 (𝑡) = 𝐶 (𝑡 − 1)
15 end

trying to mimic the fractional algorithm, by evicting pages𝑂 (log𝑘)
times more aggressively, and as it can only evict pages that are

currently in the cache, it uses the change in conditional probabilities
Δ𝑦𝑝 (𝑡)/(1 − 𝑦𝑝 (𝑡 − 1)). Since the choices are random, there is a

possibility that the cache still has too many pages. To fix this, it

considers prefixes of weight class from heaviest to lightest, and

ensures that the cumulative page count in the cache does not exceed

that in the fractional solution.

We show that the algorithm is feasible in the sense that whenever

the condition

|𝑃≥𝑖 ∩𝐶 (𝑡 − 1) | > ⌈𝑘≥𝑖 (𝑡)⌉ (4)

occurs, there is always a page 𝑝 ≠ 𝑝𝑡 in class 𝑃𝑖 that can be evicted.

We call (4) the type-𝑖 reset condition.

4.3.2 Analysis of rounding for weighted paging. We first note that

𝑝𝑡 ∈ 𝐶 (𝑡) as the algorithm adds 𝑝𝑡 if 𝑝𝑡 ∉ 𝐶 (𝑡 − 1), and does not

evict it in any step at time 𝑡 . Moreover, the following lemma (that

we prove later) will imply that |𝐶 (𝑡) | ≤ 𝑘 at all times.

Lemma 4.6. For any class 𝑖 , the number of pages in 𝑃≥𝑖 ∩𝐶 (𝑡) is
at most ⌈𝑘≥𝑖 (𝑡)⌉.

Setting 𝑖 = 1 and noting that 𝑃≥1 = [𝑛], and using that

∑
𝑝 𝑥𝑝 (𝑡) ≥

𝑛 − 𝑘 as 𝑥 (𝑡) is feasible, gives that,

𝑘1 (𝑡) =
∑
𝑝

(1 − 𝑥𝑝 (𝑡)) = 𝑛 −
∑
𝑝

𝑥𝑝 (𝑡) ≤ 𝑛 − (𝑛 − 𝑘) = 𝑘.

The following lemma bounds the cost.

Lemma 4.7. The expected cost of the solution produced is𝑂 (log𝑘)
times that of the fractional solution 𝑥 .

Note that as the adversary is oblivious, the request sequence

𝜌 can be assumed to be fixed in advance, and as the fractional

algorithm is deterministic, the solution 𝑥 (𝑡) (and hence 𝑦 (𝑡)) can
also be assumed to be fixed in advance. In particular it does not

depend on the random choices made in the rounding algorithm.

The idea behind the analysis is the following. There are two types

of costs: eviction costs due to the change Δ𝑦 (𝑡) in the fractional

solution, and evictions due to the reset steps. The first type of

cost clearly is at most 𝑂 (log𝑘) times the fractional cost. For the

second type of cost, as the algorithm evicts 𝑂 (log𝑘) times more

aggressively in comparison to 𝑥 , if the fractional solution has 1

unit of space for the incoming page 𝑝𝑡 , we expect our algorithm to

have 𝑂 (log𝑘) space in expectation (for simplicity we are ignoring

weights in this heuristic argument, handling which requires some

care). So, the probability that we need to evict some page to make

room for 𝑝𝑡 should be exp(−Ω(log𝑘)) = 1/poly(𝑘). Using Lemma

4.5, we can amortize this and charge it to the total optimum cost.

As the distribution on cache state 𝐶 (𝑡) defined by the algorithm

is quite non-explicit (due to the reset steps), to make these ideas

above precise, we will work with a suitable coupling between the

distribution on 𝐶 (𝑡) and the product distribution with marginals

𝑦𝑝 (𝑡). We now give the details.

Product distribution and Coupling. Fix a time 𝑡 , and the solution

𝑦 (𝑡). Consider the product distribution 𝐷 (𝑡) on subsets𝑈 of pages

with marginals (1 − 𝑦𝑝 (𝑡)), i.e. for𝑈 ⊆ [𝑛],

Pr

𝐷 (𝑡 )
[𝑈 ] =

∏
𝑝∈𝑈

(1 − 𝑦𝑝 (𝑡))
∏
𝑝∉𝑈

𝑦𝑝 (𝑡) .

Note that the the support of 𝐷 (𝑡) consists of all possible subsets 𝑈
of [𝑛], including those of size more than 𝑘 . Moreover, if 𝑦𝑝 (𝑡) = 1,

then 𝑝 is not contained in any set in the support of 𝐷 (𝑡). Let 𝐸 (𝑡)
denote the (implicit) distribution produced by our algorithm on the

cache states 𝐶 (𝑡). Note that the support of 𝐸 (𝑡) consists of subsets
of [𝑛] of size at most 𝑘 .

Given two probability distributions 𝜋1 and 𝜋2 on discrete sets

𝑆1 and 𝑆2, recall that a coupling between 𝜋1 and 𝜋2 is a probability

distribution 𝛾 over 𝑆1 × 𝑆2 such that for all 𝑠1 ∈ 𝑆1 and 𝑠2 ∈ 𝑆2, it

holds that∑
𝑠2∈𝑆2

𝛾 (𝑠1, 𝑠2) = 𝜋1 (𝑠1) and

∑
𝑠1∈𝑆1

𝛾 (𝑠1, 𝑠2) = 𝜋2 (𝑠2) .
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Given a coupling 𝛾 and 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2, we say that 𝑠1 is coupled to

𝑠2 whenever 𝛾 (𝑠1, 𝑠2) > 0.

Local rule for product distributions. Let 𝑦 (𝑡) be some fractional

solution at time 𝑡 , and 𝐷 (𝑡) be the product distribution correspond-

ing to 𝑦 (𝑡) as defined above. When 𝑦 (𝑡) changes to 𝑦 (𝑡 + 1), con-
sider the following local rule for updating a set 𝑈 . For each page

𝑝 ∈ [𝑛], if𝑦𝑝 (𝑡 +1) > 𝑦𝑝 (𝑡), then if 𝑝 ∈ 𝑈 , delete 𝑝 with probability

(𝑦𝑝 (𝑡 + 1) −𝑦𝑝 (𝑡))/(1−𝑦𝑝 (𝑡)). Otherwise, if 𝑦𝑝 (𝑡 + 1) < 𝑦𝑝 (𝑡), and
𝑝 ∉ 𝑈 , then add 𝑝 to𝑈 with probability (𝑦𝑝 (𝑡) − 𝑦𝑝 (𝑡 + 1))/𝑦𝑝 (𝑡).
The following lemma is direct.

Lemma 4.8. Let𝑈 be a random set distributed according to 𝐷 (𝑡).
The random set 𝑈 ′ produced by applying the local rule to 𝑈 is dis-
tributed according to 𝐷 (𝑡 + 1), the product distribution corresponding
to 𝑦 (𝑡 + 1).

The coupling. Note that Steps 4-8 in the Algorithm exactly corre-

spond to the local rule above (but applied to 𝐶 (𝑡)), as for 𝑝 ≠ 𝑝𝑡 ,

we have 𝑦𝑝 (𝑡 + 1) ≥ 𝑦𝑝 (𝑡) and for 𝑝 = 𝑝𝑡 , Δ𝑦𝑝 (𝑡) = −𝑦𝑝 (𝑡 − 1),
and so the local rule will load 𝑝𝑡 to 𝐶 whenever 𝑝𝑡 is not in 𝐶 . We

now exhibit a suitable coupling between 𝐸 (𝑡) and 𝐷 (𝑡) by giving

an inductive construction over time, which satisfies a crucial subset

condition stated below.

Lemma 4.9. At any time 𝑡 , and given any 𝑦 (𝑡), there is a coupling
𝛾 (𝑡) between the distribution on caches 𝐸 (𝑡) and the product distribu-
tion 𝐷 (𝑡), such that if 𝐶 ∈ 𝐸 (𝑡) is coupled with a set 𝑈 ∈ 𝐷 (𝑡), then
𝐶 ⊆ 𝑈 .

Proof. We construct the coupling inductively over time. In the

base case, at 𝑡 = 0, we can assume that 𝑦𝑝 (0) = 1, so that both 𝐸 (0)
and 𝐷 (0) are fully supported on the empty set and the coupling

trivially exists.

Let 𝛾 (𝑡 − 1) be a coupling at time 𝑡 − 1 satisfying the claimed

property. Consider a set𝐶 distributed according to 𝐸 (𝑡 − 1), and let
𝑈 be some set to which𝐶 is coupled according to𝛾 (𝑡−1). Let𝐶 ′

and

𝑈 ′
denote the random sets obtained by applying the local rule to 𝐶

and𝑈 respectively, as 𝑦 (𝑡 − 1) changes to 𝑦 (𝑡), but using the same

random choices for a page while applying the local rule to 𝐶 and

𝑈 ′
. We claim that 𝐶 ′ ⊂ 𝑈 ′

, which would give the desired coupling

𝛾 (𝑡). To see this, consider a page 𝑝 and suppose 𝑦𝑝 (𝑡) ≥ 𝑦𝑝 (𝑡 − 1).
As 𝐶 ⊂ 𝑈 , by the coupling of the random choices, if 𝑝 is removed

from𝑈 , then either it is also removed from𝐶 , unless it was already

absent from 𝐶 . Either way, if 𝑝 is not present in𝑈 ′
, then it is also

not present in𝐶 ′
. Similarly, suppose 𝑦𝑝 (𝑡) ≤ 𝑦𝑝 (𝑡 −1). If 𝑝 is added

to 𝐶 , by the coupling of the random choices, it will also be added

to 𝑈 , unless it is already present in 𝑈 . In either case, if 𝑝 ∈ 𝐶 ′
then

𝑝 ∈ 𝑈 ′
. As this holds for each 𝑝 , we have that 𝐶 ′ ⊂ 𝑈 ′

.

Finally, when the reset rule for each class 𝑖 is applied in step 12,

the set 𝐶 ′
can only get smaller, and hence the property 𝐶 ′ ⊂ 𝑈 ′

is

still maintained. □

Feasibility. We now prove Lemma 4.6. We will apply induction

over time 𝑡 . The conditions of Lemma 4.6 clearly hold at time 𝑡 = 0,

when the cache is empty. It suffices to show the following.

Lemma 4.10. If the conditions of Lemma 4.6 hold at time 𝑡 − 1,
then at time 𝑡 , there is at most one index 𝑖 for which type-𝑖 reset occur.
Moreover, in this case the condition for the type-𝑖 reset can be violated

by at most 1, i.e. |𝑃≥𝑖 ∩𝐶 (𝑡 − 1) | = ⌈𝑘≥𝑖 (𝑡)⌉ + 1, and the cache has
at least one page 𝑝 of class 𝑖 , where 𝑝 ≠ 𝑝𝑡 .

Proof. Fix an index 𝑖 , and suppose |𝑃≥𝑖∩𝐶 (𝑡−1) | ≤ ⌈𝑘≥𝑖 (𝑡−1)⌉
holds at the end of time 𝑡 − 1. Suppose the requested page 𝑝𝑡 lies in

some class < 𝑖 . Then, as the fractions 𝑥𝑝 (𝑡) for pages in classes ≥ 𝑖

can only be increased, and their cumulative increase is at most 1 (to

satisfy the request for 𝑝𝑡 ). So, 𝑘≥𝑖 (𝑡 − 1) − 1 ≤ 𝑘≥𝑖 (𝑡) ≤ 𝑘≥𝑖 (𝑡 − 1),
and hence ⌈𝑘≥𝑖 (𝑡)⌉ ≥ ⌈𝑘≥𝑖 (𝑡 − 1)⌉ − 1, and as the condition for

class 𝑖 was satisfied at the end of 𝑡 − 1, the condition for type-𝑖 reset

can be violated by at most 1.

Now, if there already is type-𝑖 ′ reset for some class 𝑖 ′ > 𝑖 , by the

above, the condition will also hold for class 𝑖 at time 𝑡 and there

will be no type-𝑖 reset. On the other hand, if 𝑖 is the largest index

for which type-𝑖 reset happens, and there was no class 𝑖 page in

𝐶 (𝑡 − 1), then
|𝑃≥𝑖 ∩𝐶 (𝑡 − 1) | = |𝑃≥𝑖+1 ∩𝐶 (𝑡 − 1) | ≤ ⌈𝑘≥𝑖+1 (𝑡)⌉ ≤ ⌈𝑘≥𝑖 (𝑡)⌉,

contradicting the assumption that there was a type-𝑖 reset.

Now, suppose that 𝑝𝑡 lies in some class ≥ 𝑖 . Then as 𝑝𝑡 is fetched,

𝑘≥𝑖 (𝑡 −1) ≤ 𝑘≥𝑖 (𝑡) ≤ 𝑘≥𝑖 (𝑡 −1) +1. As the condition for class 𝑖 was

satisfied at the end of 𝑡 − 1, and pages other 𝑝𝑡 can only possibly

be deleted from 𝐶 (𝑡 − 1), the type-𝑖 reset will occur iff 𝑝𝑡 was not

in the cache at time 𝑡 − 1, no pages from 𝑃≥𝑖 ∩𝐶 (𝑡 − 1) are evicted,
no type-𝑖 ′ reset occurs for 𝑖 ′ > 𝑖 and 𝑘≥𝑖 (𝑡) = 𝑘≥𝑖 (𝑡 − 1). This also
implies that the condition can be violated by at most 1. We consider

two sub-cases depending on whether 𝑝𝑡 lies in class 𝑖 or > 𝑖 .

If 𝑝𝑡 lies in class 𝑖 , and 𝑝𝑡 is the only class 𝑖 page, we claim that

there cannot be a type-𝑖 reset. Indeed, as 1 − 𝑥𝑝𝑡 (𝑡) = 1, 𝑘≥𝑖+1 (𝑡) =
𝑘≥𝑖 (𝑡) − 1, then if the condition was violated for class 𝑖 , then it was

also violated for the class 𝑖 + 1, resulting in a type-𝑖 ′ reset for 𝑖 ′ > 𝑖 .

Finally, if 𝑝𝑡 lies in class > 𝑖 , and there is no class 𝑖 page in

𝐶 (𝑡 − 1), and there is a type-𝑖 reset, then

|𝑃≥𝑖+1∩𝐶 (𝑡 −1) | = |𝑃≥𝑖 ∩𝐶 (𝑡 −1) | = ⌈𝑘≥𝑖 (𝑡)⌉ +1 = ⌈𝑘≥𝑖+1 (𝑡)⌉ +1
resulting in a type-𝑖 ′ reset for some 𝑖 ′ > 𝑖 , contradicting the as-

sumption that there was a type-𝑖 reset. □

Cost analysis. We now analyze the online eviction cost. We first

bound the cost due to applying the local rules, and then the cost

due to the reset steps.

Lemma 4.11. The eviction cost due to applying the local rules is at
most 𝛽 times the fractional cost of 𝑥 .

Proof. By the coupling in Lemma 4.9, and the local rules for

deletion, if a page 𝑝 in some 𝐶 is evicted, then it is also evicted

from any state 𝑈 that 𝐶 is coupled with. As each page 𝑝 under the

product distribution 𝐷 (𝑡) has probability exactly 𝑦𝑝 (𝑡) of being
missing from a random state𝑈 , The total expected eviction cost for

the product distribution𝐷 is exactly

∑
𝑡

∑
𝑝 𝑤𝑝 (𝑦𝑝 (𝑡)−𝑦𝑝 (𝑡−1))+ ≤∑

𝑡

∑
𝑝 𝑤𝑝𝛽 (𝑥𝑝 (𝑡) − 𝑥𝑝 (𝑡 − 1))+ . □

Lemma 4.12. The expected cost of resets is at most 16𝑘 exp(−𝛽/4)
times the cost of the fractional solution 𝑥 . In particular, for 𝛽 = 4 log𝑘 ,
this is 𝑂 (1) times the fractional cost.

Proof. Let us fix a time 𝑡 , and class 𝑖 . If 𝑥𝑝 (𝑡) = 𝑥𝑝 (𝑡 − 1) for
all pages 𝑝 ∈ 𝑃≥𝑖 , then 𝑘≥𝑖 (𝑡) = 𝑘≥𝑖 (𝑡 − 1) and no type-𝑖 reset

can occur. By Lemma 4.5, as 𝑥𝑝 (𝑡 ′) for any 𝑡 ′ is a multiple of 1/4𝑘 ,
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|𝑘≥𝑖 (𝑡) − 𝑘≥𝑖 (𝑡 − 1) | ≥ 1/4𝑘 whenever 𝑘≥𝑖 (𝑡) ≠ 𝑘≥𝑖 (𝑡 − 1). We

will show that whenever 𝑘≥𝑖 (𝑡) ≠ 𝑘≥𝑖 (𝑡 − 1), the probability of a

type-𝑖 reset at time 𝑡 is at most exp(−𝛽/4).
Then the total expected cost over all time and over all types of

resets can be bounded by∑
𝑡

∑
𝑖

2
𝑖
Pr[ Type-𝑖 reset at 𝑡 |1𝑘≥𝑖 (𝑡 )≠𝑘≥𝑖 (𝑡−1) ] · 1𝑘≥𝑖 (𝑡−1)≠𝑘≥𝑖 (𝑡 )

≤
∑
𝑡

∑
𝑖

2
𝑖
exp(−𝛽/4) · ©­«

∑
𝑗≥𝑖

∑
𝑝∈𝑃 𝑗

1𝑥𝑝 (𝑡−1)≠𝑥𝑝 (𝑡 )
ª®¬

≤ exp(−𝛽/4)
∑
𝑡

∑
𝑗

∑
𝑝∈𝑃 𝑗

∑
𝑖≤ 𝑗

2
𝑖 · 1𝑥𝑝 (𝑡−1)≠𝑥𝑝 (𝑡 )

≤ exp(−𝛽/4)
∑
𝑡

∑
𝑗

∑
𝑝∈𝑃 𝑗

2
𝑗+1 ·

(
4𝑘 · |𝑘≥𝑝 (𝑡 − 1) − 𝑘≥𝑝 (𝑡) |

)
.

As

∑
𝑡 𝑤𝑝 |𝑥𝑝 (𝑡 − 1) − 𝑥𝑝 (𝑡) | is at most twice the total eviction cost

of 𝑝 (assuming 𝑥𝑝 (0) = 1, and𝑤𝑝 ≥ 2
𝑗−1

for 𝑝 ∈ 𝑃 𝑗 ), the expected

cost is at most 32𝑘 exp(−𝛽/4) times the fractional cost of 𝑥 .

To bound the probability of type-𝑖 reset, by the coupling property,

whenever cache 𝐶 is coupled with some 𝑈 , it suffices to bound the

probability that the condition is violated for𝑈 under the distribution

𝐷 (𝑡). Let 𝑆 = {𝑝 : 𝑦𝑝 (𝑡) < 1, 𝑝 ∈ 𝑃≥𝑖 }. Let 𝑈 denote the random

set under 𝐷 (𝑡) restricted to pages in 𝑃≥𝑖 . Note that 𝑈 ⊂ 𝑆 , as

page 𝑝 ∈ 𝑃≥𝑖 does not lie in 𝑈 if 𝑦𝑝 (𝑡) = 1. We are interested in

upper bounding Pr [|𝑈 | ≥ ⌈𝑘≥𝑖 ⌉ + 1]. As 𝑘≥𝑖 =
∑
𝑝∈𝑃𝑖 (1 − 𝑥𝑝 ) ≥∑

𝑝∈𝑆 (1−𝑥𝑝 ) = |𝑆 | −∑
𝑝∈𝑆 𝑥𝑝 , it suffices to upper bound Pr

[
|𝑈 | ≥

(|𝑆 | −∑
𝑝∈𝑆 𝑥𝑝 ) + 1

]
, or equivalently, Pr

[
|𝑆 \𝑈 | ≤ (∑𝑝∈𝑆 𝑥𝑝 ) − 1

]
.

So we can assume that

∑
𝑝∈𝑆 𝑥𝑝 ≥ 1. For 𝑝 ∈ 𝑆 , let 𝑌𝑝 be

the random variable which is 1 if 𝑝 ∉ 𝑈 and 0 otherwise. Then,∑
𝑝∈𝑆 𝑌𝑝 = |𝑆 \𝑈 |, and as E[𝑌𝑝 ] = 𝑦𝑝 = 𝛽𝑥𝑝 (as 𝑦𝑝 < 1). Denoting

𝜇 =
∑
𝑝∈𝑆 E[𝑌𝑝 ], we wish to bound Pr

[ ∑
𝑝 𝑌𝑝 ≤ 𝜇/𝛽 − 1

]
. For

𝜇 ∈ [𝛽, 2𝛽), as the 𝑌𝑝 -s are integral, this is the same as

Pr

[∑
𝑝

𝑌𝑝 = 0

]
≤
∏
𝑝∈𝑆

(1 − 𝑦𝑝 ) ≤ exp

(
−
∑
𝑝∈𝑆

𝑦𝑝
)
≤ exp(−𝛽).

For 𝜇 ≥ 2𝛽 , and as 𝛽 = Ω(log𝑘) ≥ 2,

Pr

[∑
𝑝

𝑌𝑝 ≤ 𝜇/𝛽 − 1

]
≤ Pr

[∑
𝑝

𝑌𝑝 ≤ 𝜇/2
]

≤ exp(−𝜇/8) ≤ exp(−𝛽/4). □

4.3.3 Rounding for Multi-level paging. Our approach is similar

to that of weighted paging. However the rounding rule is a bit

more involved, as the variables 𝑦 correspond to differences of 𝑢

variables (recall that 𝑢 (𝑝, 𝑖, 𝑡) = 1 −∑𝑖
𝑗=1 𝑦 (𝑝, 𝑗, 𝑡), where 𝑦 (𝑝, 𝑗, 𝑡)

is the fraction of the 𝑗-th copy of the page 𝑝 in the cache), so it can

happen that some 𝑦 (𝑝, 𝑖, 𝑡) increases (i.e. it is fetched), even when

all 𝑢 (𝑝, 𝑖, 𝑡) are increased. As before, we can assume that the values

of 𝑢 (𝑝, 𝑗, 𝑡) and 𝑦 (𝑝, 𝑗, 𝑡) are integer multiples of 𝛿 = 1/(4𝑘).

The rounding algorithm. Without loss of generality, we assume

that at time 𝑡 , solution 𝑢 never increases the fraction of a copy of a

page 𝑝 ≠ 𝑝𝑡 . Algorithm 2 describes the local rounding step.

Analysis. The analysis follows similar steps as the analysis given

for weighted paging. First, consider the current request (𝑝𝑡 , 𝑖𝑡 ). The
algorithm loads (𝑝𝑡 , 𝑖𝑡 ) to the cache whenever there is no other

Algorithm 2: Randomized Rounding Step

1 At time 𝑡 , when the request for page (𝑝𝑡 , 𝑖𝑡 ) arrives:
2 if (𝑝𝑡 , 𝑗) ∈ 𝐶 (𝑡 − 1) for 𝑗 > 𝑖𝑡 then
3 evict (𝑝𝑡 , 𝑗).
4

5 if (𝑝𝑡 , 𝑗) ∉ 𝐶 (𝑡 − 1) for 𝑗 ≤ 𝑖𝑡 then
6 add (𝑝𝑡 , 𝑖𝑡 ) to 𝐶 (𝑡 − 1).
7

8 Foreach 𝑝 ≠ 𝑝𝑡 :
9 For 𝑖 = 1, 2, . . . , ℓ in increasing order
10 if (𝑝, 𝑖) ∈ 𝐶 (𝑡) then
11 replace (𝑝, 𝑖) with (𝑝, 𝑖 + 1) with probability

Δ𝑣 (𝑝, 𝑖, 𝑡)/[𝑣 (𝑝, 𝑖 − 1, 𝑡) − 𝑣 (𝑝, 𝑖, 𝑡 − 1)]. (for
𝑖 = ℓ we evict)

12 end
13 end
14 For 𝑖 in decreasing order
15 if |𝑃≥𝑖 ∩𝐶 (𝑡 − 1) | > ⌈𝑘≥𝑖 (𝑡)⌉ then
16 Type-𝑖 Reset: Evict an arbitrary page (𝑝, 𝑗) with

𝑝 ≠ 𝑝𝑡 from 𝑃𝑖 ∩𝐶 (𝑡 − 1)
17 end
18 Set 𝐶 (𝑡) = 𝐶 (𝑡 − 1)
19 end

copy (𝑝𝑡 , 𝑖), 𝑖 ≤ 𝑖𝑡 that can serve the request, and hence the current

request (𝑝𝑡 , 𝑖𝑡 ) is served by 𝐶 (𝑡).

Lemma 4.13. For every page 𝑝 and time 𝑡 , 𝐶 (𝑡) contains at most
one copy of 𝑝 .

We now define an “almost” product distribution 𝐷 (𝑡) that will
be coupled with the distribution 𝐶 (𝑡) over the random cache states

generated by our rounding algorithm, similarly to the analysis of

weighted paging. In the distribution 𝐷 (𝑡), independently for each

page 𝑝 , we pick a copy of page 𝑝 such that: (i) copy (𝑝, 𝑖) is picked
with probability 𝑣 (𝑝, 𝑖 − 1, 𝑡) − 𝑣 (𝑝, 𝑖, 𝑡); (ii) none of the copies is
picked with probability 𝑣 (𝑝, ℓ, 𝑡); (iii) at most one copy is picked.

(This can be easily achieved by picking a random threshold 𝜃𝑝
uniformly at random from [0, 1].) We note that the way we define

the distribution 𝐷 (𝑡) guarantees that any set𝑈 (𝑡) sampled by 𝐷 (𝑡)
contains at most one copy of each page. The following lemma shows

that this is indeed the “right" distribution for our coupling. The

proof is given in the full version of the paper.

Lemma 4.14. Applying the local rules of the loop at line 9 of Al-
gorithm 2 on a cache 𝑈 (𝑡) distributed according to 𝐷 (𝑡) produces a
cache𝑈 (𝑡 + 1) distributed according to 𝐷 (𝑡 + 1).

From here on, the proof follows along the same lines as the

proof for weighted paging. The distribution 𝐸 (𝑡) on caches 𝐶 (𝑡)
is coupled with 𝐷 (𝑡), such that the coupling satisfies the subset

property for each prefix, i.e. for every prefix (𝑝, 1), . . . , (𝑝, 𝑖) for
1 ≤ 𝑖 ≤ ℓ if some copy (𝑝, 𝑗) : 𝑗 ≤ 𝑖 is in the cache , then it is

also in the coupled state under 𝐷 (𝑡). As the marginals for prefixes

are 1 − 𝑣 (𝑝, 𝑖, 𝑡) during 𝐷 (𝑡), each prefix has 𝛽 times more space of

missing pages in expectation than 𝑢, and the expected reset cost

can be bounded in an identical way to Lemma 4.12.
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