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a b s t r a c t 

Background and Objectives: Deep learning is being increasingly used for deformable image registration 

and unsupervised approaches, in particular, have shown great potential. However, the registration of ab- 

dominopelvic Computed Tomography (CT) images remains challenging due to the larger displacements 

compared to those in brain or prostate Magnetic Resonance Imaging datasets that are typically consid- 

ered as benchmarks. In this study, we investigate the use of the commonly used unsupervised deep learn- 

ing framework VoxelMorph for the registration of a longitudinal abdominopelvic CT dataset acquired in 

patients with bone metastases from breast cancer. 

Methods: As a pre-processing step, the abdominopelvic CT images were refined by automatically remov- 

ing the CT table and all other extra-corporeal components. To improve the learning capabilities of the 

VoxelMorph framework when only a limited amount of training data is available, a novel incremental 

training strategy is proposed based on simulated deformations of consecutive CT images in the longitu- 

dinal dataset. This devised training strategy was compared against training on simulated deformations 

of a single CT volume. A widely used software toolbox for deformable image registration called NiftyReg 

was used as a benchmark. The evaluations were performed by calculating the Dice Similarity Coefficient 

(DSC) between manual vertebrae segmentations and the Structural Similarity Index (SSIM). 

Results: The CT table removal procedure allowed both VoxelMorph and NiftyReg to achieve significantly 

better registration performance. In a 4-fold cross-validation scheme, the incremental training strategy 

resulted in better registration performance compared to training on a single volume, with a mean 

DSC of 0 . 929 ± 0 . 037 and 0 . 883 ± 0 . 033 , and a mean SSIM of 0 . 984 ± 0 . 009 and 0 . 969 ± 0 . 007 , respec- 

tively. Although our deformable image registration method did not outperform NiftyReg in terms of DSC 

( 0 . 988 ± 0 . 003 ) or SSIM ( 0 . 995 ± 0 . 002 ), the registrations were approximately 300 times faster. 
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Conclusions: This study showed  

dinal abdominopelvic CT image  
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. Introduction 

Deformable medical image registration problems can be solved 

y optimizing an objective function defined on the space of trans- 

ormation parameters [1] . Traditional optimization-based methods 

ypically achieve accurate registration results but suffer from be- 

ng computationally expensive, especially in the case of deformable 

ransformations of high-resolution, three-dimensional (3D) images. 

eep learning based registration methods, however, can perform 

egistration in a single-shot, which is considerably faster than us- 

ng iterative methods [2] . Due to the recent successes of deep 

earning for a wide variety of medical image analysis tasks [3] , and 

he advances in Graphics Processing Unit (GPU) computing that 

ave enabled the training of increasingly large three-dimensional 

3D) networks [4] , the number of studies using deep learning for 

edical image registration has increased considerably since 2016 

5] . 

Although deep learning could have a major impact on the field 

f medical image registration, there is still a gap between proof- 

f-concept technical feasibility studies and the application of these 

ethods to “real-world” medical imaging scenarios. It remains un- 

lear to which extent deep learning is suited for challenging co- 

egistration tasks with large inter- and intra-patient variations and 

otential outliers or foreign objects in the Volume of Interest (VOI). 

oreover, deep learning based methods typically require large 

mounts—i.e., thousands—of well prepared, annotated 3D training 

mages that are rarely available in clinical settings [6] . 

The present study focuses on the registration of abdominopelvic 

T images since these are widely acknowledged to be difficult to 

egister [7] . In abdominopelvic imaging, the conservation-of-mass 

ssumption is typically not valid and, although local-affine dif- 

eomorphic demons have been used in abdominal CT images [8] , 

he transformation is typically not a diffeomorphism. For instance, 

ladder-filling or bowel peristalsis in the abdomen may vary be- 

ween images. More specifically, we consider a longitudinal ab- 

ominopelvic CT dataset that comprises several images of each 

atient acquired at distinct time-points. From a clinical perspec- 

ive, accurate and real-time ( < 1 second) deformable registration 

f longitudinal datasets is a necessary step; for instance, in on- 

ological imaging to provide the reporting radiologist with regis- 

ered images and in radiation therapy for treatment planning. For 

adiologists reporting on the most recent of a series of oncologic 

ollow-up CT scans, real-time registration during the reporting ses- 

ion would facilitate comparing scans for changes in disease extent 

r tumor size, and response assessment. In addition, any add-on of 

urther processing, like automated lesion detection and segmenta- 

ion for disease follow-up and response assessment, might benefit 

rom fast registration prior to their execution [9–11] . 

This study proposes a novel incremental training strategy based 

n simulated deformations to enable training of one of the most 

sed unsupervised single-shot deep learning frameworks (Vox- 

lMorph [12] ) for deformable registration of longitudinal ab- 

ominopelvic CT images of patients with bone metastases from 

rimary breast cancer. In addition, we assessed the maximum dis- 

lacements that can be learned by the VoxelMorph framework 

nd the impact of extra-corporeal structures, such as the CT table, 

lothing and prostheses on the registration performance. The in- 
2 
 the feasibility of deep learning based deformable registration of longitu-

s via a novel incremental training strategy based on simulated deforma-

© 2021 The Author(s). Published by Elsevier B.V. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

rementally trained VoxelMorph framework was compared against 

terative registration using the NiftyReg [13] toolbox that was se- 

ected because of its excellent performance on abdominal CT im- 

ges in a comparative study [14] . 

The contributions of this work are: 

• demonstrating the impact of removing extracorporeal struc- 

tures before deformable image registration; 
• using simulated deformations to partially overcome the limita- 

tions of the VoxelMorph framework for the deformable regis- 

tration of abdominopelvic CT images; 
• introducing a novel incremental training strategy tailored to 

longitudinal datasets that enables deep learning based de- 

formable image registration when dealing with large displace- 

ments and limited amounts of training data. 

This paper is structured as follows. Section 2 outlines the back- 

round of medical image registration, with a particular focus on 

eep learning based methods. Section 3 presents the character- 

stics of our longitudinal abdominopelvic CT dataset, as well as 

he deformable registration framework, the proposed incremental 

raining strategy, and the evaluation metrics used in this study. 

ection 4 describes the experimental results. Finally, Sections 5 and 

 provide a discussion and concluding remarks, respectively. 

. Related work 

This section introduces the basic concepts of medical image 

egistration and provides a comprehensive overview about the 

tate-of-the-art of deformable registration using deep learning. 

.1. Medical image registration 

Medical image registration methods aim to estimate the best 

olution in the parameter space � ⊂ R 

N which corresponds to the 

et of potential transformations used to align the images, where 

is the number of dimensions. Typically, N ∈ { 2 , 3 } in biomedi- 

al imaging. Each point in � corresponds to a different estimate 

f the transformation that maps a moving image to a fixed image 

target). This transformation can be either parametric, i.e., can be 

arameterized by a small number of variables (e.g., six in case of 

 3D rigid-body transformation or twelve for an 3D affine trans- 

ormation), or non-parametric, i.e., in the case that we seek the 

isplacement of every image element. For most organs in the hu- 

an body, particularly in the abdomen, many degrees of freedom 

re necessary to deal with non-linear or local soft-tissue deforma- 

ions. In global deformable transformation, the number of param- 

ters encoded in a Displacement Vector Field (DVF) φ is typically 

arge, e.g., several thousands. Therefore, two-step intensity-based 

egistration approaches are commonly employed in which the first 

tep is a global affine registration and the second step is a local 

eformable registration using for example B-splines [15] . 

Traditional medical image registration methods often use iter- 

tive optimization techniques based on gradient descent to find 

he optimal transformation [1,15,16] . Deformable registration can 

e performed using demons [17] , typically based on diffeomorphic 

ransformations parameterized by stationary velocity fields [18] . In 

ddition, global optimization techniques that leverage evolutionary 

http://creativecommons.org/licenses/by/4.0/
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lgorithms [15] and swarm intelligence meta-heuristics can be use- 

ul to avoid local minima [19] . Several off-the-shelf, open-source 

oolboxes are available for both parametric and non-parametric im- 

ge registration in biomedical research, such as: elastix [20] , 

iftyReg [13] , Advanced Normalization Tools (ANTs) [21] , and Flex- 

ble Algorithms for Image Registration (FAIR) [22] . 

.2. Deep learning based registration 

Since 2013, the scientific community has shown an increasing 

nterest in medical image registration based on deep learning [5] . 

arly unsupervised deep learning based registration approaches 

everaged stacked convolutional neural networks (CNNs) or autoen- 

oders to learn the hierarchical representations for patches [23,24] . 

Fully-supervised methods, such as in [25] , have focused on 

earning a similarity metric for multi-modal CT-MRI brain regis- 

ration according to the patch-based correspondence. Another su- 

ervised method based on the Large Deformation Diffeomorphic 

etric Mapping (LDDMM) model called Quicksilver was proposed 

n [26] and tested on brain MRI scans. In this context, Eppen- 

of and Pluim [27] introduced the simulation of ground truth de- 

ormable transformations to be employed during training to over- 

ome the need for manual annotations in the case of a pulmonary 

T dataset. Very recently, in [28] , a graph CNN was used to esti-

ate global key-point locations and regress the relative displace- 

ent vectors for sparse correspondences. 

Alternatively, several studies have focused on weakly- 

upervised learning. For example, Hu et al. [29] proposed a 

eakly-supervised framework for 3D multimodal registration. 

his end-to-end CNN approach aimed to predict displacement 

elds to align multiple labeled corresponding structures for in- 

ividual image pairs during the training, while only unlabeled 

mage pairs were used as network input for inference. Recently, 

enerative deep models have also been applied to unsupervised 

eformable registration. Generative Adversarial Networks (GANs) 

an be exploited as an adversarial learning approach to con- 

train CNN training for deformable image registration, such as in 

30] and [31] . In [32] , spatial correspondence problems due to 

he different acquisition conditions (e.g., inhale-exhale states) in 

RI-CT deformable registration, led to changes synthesized by 

he adversarial learning, which were addressed by reducing the 

ize of the discriminator’s receptive fields. In addition, Krebs et al. 

33] proposed a probabilistic model for diffeomorphic registration 

hat leverages Conditional Variational Autoencoders. 

The current trend in deep learning based medical image regis- 

ration is moving towards unsupervised learning [5] . The CNN ar- 

hitecture proposed in [2] , called RegNet—different from existing 

ork—directly estimates the displacement vector field from a pair 

f input images; it integrates image content at multiple scales by 

eans of a dual path, allowing for contextual information. Tradi- 

ional registration methods optimize an objective function inde- 

endently for each pair of images, which is time-consuming for 

arge-scale datasets. To this end, the differentiable Spatial Trans- 

ormer Layer (STL) has been introduced that enables CNNs to per- 

orm global parametric image alignment without requiring super- 

ised labels [34] . 

Recently, de Vos et al. [35] proposed a Deep Learning Im- 

ge Registration (DLIR) framework for unsupervised affine and de- 

ormable image registration. This framework consists of a multi- 

tage CNN architecture for the coarse-to-fine registration consid- 

ring multiple levels and image resolutions and achieved com- 

arable performance with respect to conventional image registra- 

ion while being several orders of magnitude faster. A progres- 

ive training method for end-to-end image registration based on 

 U-Net [36] was devised in [37] , which gradually processed from 

oarse-grained to fine-grained resolution data. The network was 
3 
rogressively expanded during training by adding higher resolution 

ayers that allowed the network to learn fine-grained deformations 

rom higher-resolution data. 

The starting point of the present work was the VoxelMorph 

ramework that was recently introduced for deformable registra- 

ion of brain Magnetic Resonance Imaging (MRI) images and is 

onsidered state-of-the-art [12] . The VoxelMorph framework is 

ully unsupervised and allows for a clinically feasible real-time 

olution by registering full 3D volumes in a single-shot. From a 

esearch perspective, the framework is flexible to modifications 

nd extensions of the network architecture. VoxelMorph formu- 

ates the registration as a parameterized function g θ (·, ·) learned 

rom a collection of volumes in order to estimate the DVF φ. 

his parameterization θ is based on a CNN architecture similar to 

-Net [36] which allows for the combination of low- and high- 

esolution features, and is estimated by minimizing a loss func- 

ion using a training set. The initial VoxelMorph model was eval- 

ated on a dataset of 7829 T1-weighted brain MRI images ac- 

uired from eight different public datasets. As extensions of this 

odel, Kim et al. [38] integrated cycle-consistency [39] into Vox- 

lMorph, showing that even image pairs with severe deformations 

an be registered by improving topology preservation. In addition, 

he combination of VoxelMorph with FlowNet [40] for motion cor- 

ection of respiratory-gated Positron Emission Tomography (PET) 

cans was proposed in [41] . 

. Materials and methods 

.1. Dataset description 

The dataset used in this study comprised consecutive CT im- 

ges of patients with bone metastases originating from primary 

reast cancer. Breast cancer frequently presents with a mixture of 

ytic and sclerotic bone metastases, where lytic metastases appear 

imilar to areas of low Hounsfield Unit (HU) attenuation in the 

ones and sclerotic metastases are more densely calcified than nor- 

al bone and have higher HU attenation. Treatment response often 

auses increasing sclerosis, especially in lytic metastases. However, 

ncreasing sclerosis can also be a sign of disease progression, es- 

ecially in patients with mixed or purely sclerotic metastases at 

iagnosis, thus causing a diagnostic dilemma [42] . Quantitative as- 

essment of bone metastases and the associated changes in atten- 

ation and bone texture over time thus holds the potential to im- 

rove treatment response assessment [9–11] . To enable such as- 

essments, accurate and preferably real-time deformable registra- 

ion of the consecutive CT images is an important prerequisite. 

After informed consent, patients with metastatic breast cancer 

ere recruited into a study designed to characterize the disease 

t the molecular level, using tissue samples and serial samples of 

irculating tumor DNA (ctDNA) [43,44] . CT imaging of the chest, 

bdomen, and pelvis was acquired according to clinical request ev- 

ry 3 − 12 months to assess response to standard-of-care treat- 

ent. A subset of 12 patients with bone metastases only were se- 

ected, resulting in 88 axial CT images of the abdomen and pelvis. 

he CT images were acquired using either of two different clini- 

al CT scanner models—the SOMATOM Emotion 16, the SOMATOM 

efinition AS(+), and the SOMATOM Sensation 16—manufactured 

y Siemens Healthineers (Erlangen, Germany). The original image 

ize was 512 × 512 pixels with a variable number of slices (me- 

ian: 302; interquartile range: 35). 

On axial images reconstructed with a slice thickness of 2 mm 

nd a pixel spacing ranging from 0 . 57 − 0 . 97 mm using bone win-

ow settings, all vertebral bodies of the thoracic and lumbar spine 

hat were depicted completely were segmented semi-automatically 

y a board certified radiologist with ten years of experience in 
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Fig. 1. Two example pairs of input axial and sagittal CT slices from the analyzed 

dataset: (a) original images; (b) refined images where the CT table and other extra- 

corporeal parts were removed. The CT table and the breast prosthesis are indicated 

by solid gray and empty white arrows, respectively. Window level and width are 

set to 400 and 1800 HU, respectively, optimized for spine bone visualization. 

C

f

3

l

l

l

t

p

b

s

a

e

i

b

p  

a

I

d  

t

t

d

m

i

e

w

t

m

r

v

m

i

p

linical imaging, using Microsoft Radiomics (project InnerEye 3 , Mi- 

rosoft, Redmond, WA, USA). Thus, a series of closely neighboring 

OIs was created that spanned the majority of the superior-inferior 

xtent of each scanning volume and was used subsequently to as- 

ess the performance of the registration approach. The total num- 

er of VOIs delineated for the analyzed dataset was 805 (mean 

OIs per scan: 9.15). 

.2. Dataset preparation and training set construction 

.2.1. Abdominopelvic CT image pre-processing 

CT table removal 

In a manner similar to that of the commonly used data prepa- 

ation procedure for brain MR images called “skull-stripping” [45] , 

e refined our abdominopelvic CT images to facilitate deformable 

egistration. The CT table could bias the learning process and lead 

he registration to overfit on the patient table region. Therefore, 

e developed a fully automatic approach based on region-growing 

46] to remove the CT table from the CT images, as well as all

xtra-corporeal components, such as breast prostheses, clothes and 

etal objects. Our slice-by-slice approach automatically initialized 

he growing region, R G , with a 50 × 50 -pixel squared seed-region 

t the center of each slice by assuming that the body was posi- 

ioned at the center of the CT scanner. 

Considering an image I , Eq. (1) defines the homogeneity crite- 

ion, P , in terms of the mean value of the region μR G 
[46] : 

 = 

{
True , if p B / ∈ R G ∧ | I (p B ) − μR G 

| < T G 
False , otherwise 

, (1) 

here p B ∈ B denotes a pixel belonging to the candidate list B
f the boundary pixels in the growing region R G , while T G is 

he inclusion threshold. In particular, during the iterations, the 8- 

eighbors of the current pixel p B , which do not yet belong to R G ,

re included into the candidate list B. The similarity criterion, P , 

as based on the absolute difference between the value of the 

andidate pixels I (p ) and the mean intensity of the pixels included 

n R G (i.e., μR G 
= 

∑ 

q ∈R G 
I (q ) / |R G | . If this difference is lower than

 G , the current pixel p under consideration is added to R G . The

rocedure ends when the list B is empty. To account for the vari- 

bility of the different CT scans, the inclusion threshold, T G , is in- 

rementally increased until |R G | reaches a minimum area of 60 0 0 

ixels. In more details, the input CT pixel values (expressed in HU) 

re transformed into the range [0,1] ( via a linear mapping) and the 

alue of T G varies in [0.08,0.4] at 0.02 incremental steps at each it- 

ration. Finally, all automated refinements were carefully verified. 

Figure 1 shows two examples of CT table removal. In particu- 

ar, the sagittal view shows how the CT table was removed along 

he whole scan ( Fig. 1 b). In addition, the extra-corporeal parts (i.e., 

reast prostheses) are discarded in the second example (bottom 

ow). 

CT image pre-processing After CT table removal, the following 

dditional data pre-processing steps were performed: 

1. Affine registration using the NiftyReg toolbox [13] to account 

for global rotations and translations, as well as differences in 

the Field-of-View (FOV) between consecutive scans; 

2. Normalization per scan in [0,1] by means of linear stretch- 

ing to the 99th percentile: ˜ x i = 

x i −x min 
x max −x min 

for i ∈ { x min , x min +
1 , . . . , x max } ; 

3. Downsampling by a factor of 2 with isotropic voxels of 1 mm 

3 , 

and cropping all volumes to achieve a uniform dimension of 

160 × 160 × 256 voxels. Similar to VoxelMorph [12] , isotropic 

voxel sizes are important to enable accurate deformable regis- 

tration, which is why most studies resample the volumes. 
3 https://www.microsoft.com/en-us/research/project/medical-image-analysis/ 

p

i

4 
With more details, the desired image dimension to which the 

T scans were resampled (according to step 3) was determined as 

ollows: 

• The resizing factor is computed as: f resize = 

VoxelSize original / VoxelSize desired , where VoxelSize desired = 

1 × 1 × 1 mm 

3 for isotropic voxels. 
• The image dimension is determined accordingly: 

ImageDimension desired = 0 . 5 · ImageDimension original · f resize . 

.2.2. Generation of simulated DVFs 

It was not possible to directly train a network to register the 

ongitudinal abdominopelvic CT images in our dataset due to the 

imited amount of available transformation pairs (see Section 3.1 ), 

arge inter-patient variations, and the often non-diffeomorphic na- 

ure of the transformations, e.g., due to the changes in the ap- 

earances of normal structures in consecutive CT images caused 

y bowel peristalsis or bladder filling. Therefore, we developed a 

imulator that generated random synthetic DVFs and transforms 

bdominopelvic CT images in a manner similar to that of Sokooti 

t al. [2] and Eppenhof and Pluim [27] . The resulting deformed CT 

mages can subsequently be used to train or evaluate deep learning 

ased image registration methods. 

The synthetic DVF generator randomly selects P initialization 

oints, d i (with i = 1 , 2 , . . . , P ), from within the patient volume of

 CT image with a minimum distance, d P , between these points. 

n the present study, all DVFs were generated using P = 100 and 

 P = 40 . Each point, d i , is composed of three random values be-

ween −δ and δ that correspond to the x , y , and z components of 

he displacement vector in that point. To ensure that the simulated 

isplacement fields were as realistic as possible, we set δ = 6 to 

imic the typical displacements found between the pre-registered 

mages in our abdominopelvic CT dataset. From clinical radiological 

xperience, displacements in the range between 0 and 50 mm are 

hat would be reasonably expected when a patient is placed on 

he CT scanner in a consistent way, with identical breathing com- 

ands, and with similar FOVs. While −25 mm and +25 mm likely 

epresent the extreme of what might be observed, more conser- 

ative displacements in the range of −6 mm and +6 mm are the 

ost common [47] . In addition, we generated a series of DVFs with 

ncreasingly large displacements ( δ = [0 , 1 , . . . , 25] ) for evaluation 

urposes (see Section 4.2.2 ). 

The resulting vectors were subsequently used to initialize a dis- 

lacement field, φs , with the same dimensions as the original CT 

mage. To ensure that the DVF moved neighboring voxels into the 

https://www.microsoft.com/en-us/research/project/medical-image-analysis/
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Fig. 2. Randomly selected examples of simulated DVFs (same patient; first three 

time-points). The displacements—distributed across the whole CT scan in the x , y , 

and z spatial directions—are encoded by the Red, Green, and Blue (RGB) color chan- 

nels of an RGB image superimposed on the corresponding sagittal CT image via 

alpha blending. 
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ame direction, the displacement field was smoothed with a Gaus- 

ian kernel with a standard deviation of σs = 0 . 005 . Three exam- 

les of resulting synthetic DVFs are shown in Fig. 2 . Finally, the 

T image was transformed using the generated DVF and Gaussian 

oise with a standard deviation of σn = 0 . 001 , which was added

o make the transformed CT image more realistic. The resulting 

eformed CT images had a mean Dice Similarity Coefficient (DSC) 

f 0 . 725 ± 0 . 059 , which corresponded to the initial differences be-

ween the real scan pairs in our longitudinal abdominopelvic CT 

ataset (see Fig. 10 ). A detailed explanation of DSC can be found 

n Section 3.4 . 

.3. Deep learning based deformable image registration 

.3.1. The VoxelMorph framework 

The VoxelMorph model consists of a CNN that takes a fixed 

nd a moving volume as input, followed by an STL that warps 

he moving volume using the deformation that is yielded by the 

NN ( Fig. 3 ). The model can be trained with any differentiable loss 

unction. Let F and M be two image volumes defined over an N- 

imensional spatial domain, � ⊂ R 

N . We consider CT images, thus 

 = 3 in our study. More specifically, F and M were the fixed and

oving images, respectively. 

Let φ be a transformation operator defined by a DVF u that 

enotes the offset vector from F to M for each voxel: φ = Id + u ,

here Id is the identity transform. We used the following unsu- 

ervised loss function: 

 (F , M ;φ) = L sim 

(F , M ◦ φ) + λL smooth (φ) , (2)

here L sim 

aims to minimize differences in appearance and 

 smooth penalizes the local spatial variations in φ, acting as a reg- 

larizer weighted by the parameter λ. The employed L sim 

is the 

ocal cross-correlation between F and M ◦ φ, which is more robust 

o intensity variations found across scans and datasets [48] . Let 
ˆ 
 (p ) and [ ̂  M ◦ φ](p ) denote local mean intensity images: ˆ F (p ) =
1 
ω 3 

∑ 

p i ∈N (p ) F (p i ) , where p i iterates over a local neighborhood, 

 (p ) , defining an ω 

3 volume centered on p , with ω = 9 in our ex-

eriments. The local normalized cross-correlation (NCC) of F and 

 M ◦ φ] is defined as: 

CC (F , M ◦ φ) 

= 

∑ 

p ∈ �

( ∑ 

p i ∈N (p ) 

(F ( p i ) − ˆ F (p ))([ M ◦ φ]( p i ) − [ ̂  M ◦ φ](F )) 

)2 

( ∑ 

p i ∈N (p ) 

(F ( p i ) − ˆ F (p )) 2 

)( ∑ 

p i ∈N (p ) 

([ M ◦ φ]( p i ) − [ ̂  M ◦ φ](p )) 2 

) . 

(3) 
d

5 
 higher NCC indicates a better alignment, yielding the loss func- 

ion: 

 sim 

(F , M ;φ) = −NCC (F , M ◦ φ) . (4) 

Minimizing L sim 

encourages M ◦ φ to approximate F , but might 

ield a non-smooth φ that is not physically realistic. Thus, a 

moother displacement field φ is achieved by using a diffusion reg- 

larization term on the spatial gradients of displacement u : 

 smooth (φ) = 

∑ 

p ∈ �
||∇ u (p ) || 2 , (5) 

nd approximate spatial gradients via the differences among neigh- 

oring voxels. 

Figure 3 depicts the CNN used in VoxelMorph, which takes 

 single input formed by concatenating F and M into a two- 

hannel 3D image. Taking inspiration from U-Net [36] , the de- 

oder uses several 32-filter convolutions, each followed by an up- 

ampling layer, to bring the volume back to full-resolution. The 

ray lines denote the skip connections, which concatenate coarse- 

rained and fine-grained features. The full-resolution volume is 

uccessively refined via several convolutions and the estimated de- 

ormation field, φ, is applied to the moving image, M , via the 

TL [34] . In our experiments, the input was 160 × 160 × 256 × 2 in 

ize. 3D convolutions were applied in both the encoder and de- 

oder paths using a kernel size of 3, and a stride of 2. Each convo-

ution was followed by a Leaky Rectified Linear Unit (ReLU) layer 

ith parameter α. The convolutional layers captured hierarchical 

eatures of the input image pair, used to estimate φ. In the en- 

oder, strided convolutions were exploited to halve the spatial di- 

ensions at each layer. Thus, the successive layers of the encoder 

perated over coarser representations of the input, similar to the 

mage pyramid used in hierarchical image registration approaches. 

.3.2. Parameter settings and implementation details 

In the present study, the optimized hyperparameter settings 

uggested by Balakrishnan et al. [12] served as a starting point. We 

nvestigated the effect of the LeakyReLU α parameter on the stabil- 

ty of the training process and found that an α of 0.5 was optimal 

or registering abdominopelvic CT images. In all experiments, the 

egularization parameter, λ, was set to 1.0. One training epoch con- 

isted of 100 steps and took approximately five minutes. The mod- 

ls described in Section 4.1 were trained until convergence (10 0 0 

pochs) using a learning rate of 10 × 10 −4 , whereas the models de- 

cribed in Section 4.2 were trained using the early stopping moni- 

oring function implemented in the Python programming language 

sing Keras (with a TensorFlow backend) based on 50 validation 

teps and a patience of 20 epochs. Training was parallelized on 

our Nvidia GeForce GPX 1080 Ti (Nvidia Corporation, Santa Clara, 

A, USA) GPUs (batch size = 4) and evaluation of the trained net- 

orks was performed using an Nvidia GeForce GPX 1070 Ti GPU. 

.3.3. Incremental training strategy 

The VoxelMorph network did not converge when it was naïvely 

rained on the limited number of abdominopelvic CT scans in the 

vailable dataset D (only 76 × 2 = 152 possible intra-patient com- 

inations). To overcome this limitation, we developed a novel ap- 

roach to enforce learning based on simulated deformations (see 

ection 3.2.2 ) and incremental learning, rather than basic data aug- 

entation. In our incremental training strategy ( Fig. 4 ), deformed 

T images are sequentially presented to the network in chrono- 

ogical mini-batches per patient. Incremental training, compared to 

aïve data augmentation, enables the network to benefit from the 

esemblance between consecutive images of a single patient and 

ransfer this knowledge to the next patient by means of physically- 

riven deformations. 
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Fig. 3. CNN architecture implementing g θ (F , M ) based on VoxelMorph [12] . The spatial resolution of the input 3D volume of each 3D convolutional layer is shown vertically, 

while the number of feature maps is reported below each layer. The black solid lines denote the operations that involve the input fixed F and moving M volumes, while the 

black dashed lines represent the arguments of the loss function components L sim and L smooth . 

Fig. 4. Workflow of the proposed incremental training strategy: T and V represent the training and validation sets, respectively. The parameters θ , employed in the parame- 

terized registration functions g θ (·, ·) , are incrementally learned for each deformed volume included in the training set T and tested on the unseen volumes of the validation 

set V . All deformed volumes in T and V are synthesized using a random DVF simulator. The notation V i, j denotes the jth 3D volume for a patient, P i (with i ∈ { 1 , 2 , . . . D } 
and D = T + V ). 
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Let D = { P 1 , P 2 , . . . , P D } contain all abdominopelvic CT images 

or each patient P i = 

{
V i, 1 , V i, 2 , . . . , V i, |P i | 

}
, where i = 1 , 2 , . . . , D

nd |P i | denotes the patient index and the corresponding num- 

er of CT volumes, respectively. The whole dataset, D, was split 

nto two disjoint training, T = { P 1 , P 2 , . . . , P T } , and validation, V = 

 

P T +1 , P T +2 , . . . , P T + V , } sets with T + V = D . In our case, D = 12

ith T = 9 and V = 3 . Each volume, V i, j (with j = 1 , 2 , . . . , |P i | ),
as subsequently deformed using K randomly generated DVFs, φk 

see Section 3.2.2 ), resulting in S i, j = 

{ 

V 

(k ) 
i, j 

} 

k =1 , ... ,K 
deformed vol- 

mes for the i th patient, with i = 1 , 2 , . . . , D . 

The set T ∗ = 

{
P 

∗
1 
, P 

∗
2 
, . . . , P 

∗
T 

}
, with P 

∗
i 

= 

{
S i, 1 , S i, 2 , . . . . S i, |P i | 

}
, 

as used to incrementally train the network such that in each 

raining iteration the network was trained on a mini-batch con- 

i

6 
aining all deformed volumes, S i, j . The deformed volumes in the 

et V ∗ = 

{
P 

∗
T +1 , P 

∗
T +2 , . . . , P 

∗
T + V 

}
were randomly divided into two 

qual, independent parts. One part was kept aside for evalua- 

ion, and the other part was used to monitor the training pro- 

ess to avoid concept drift (i.e., changes in the data distribution) 

etween the mini-batches over time. After each training itera- 

ion, the network weights that resulted in the best performance 

n this second part of V ∗ were reloaded to initiate the next it- 

ration. If the network did not converge during a certain itera- 

ion, the network weights of the previous iteration were reloaded, 

hereby ensuring that the overall training process could continue 

nd remain stable. To reduce forgetting, the learning rate was 

ecreased linearly from from 10 −4 (first iteration) to 10 −6 (last 

teration) [49] . 
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Fig. 5. Sagittal view of two CT images of the same patient: (a) baseline; (b) sec- 

ond time-point. The vertebrae VOIs are displayed using different colors (legend is 

shown at the bottom-left). Window level and width are set to 400 and 1800 HU, 

respectively. 
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The incremental training strategy was evaluated using a 4-fold 

ross-validation scheme in which all patients in dataset D were 

andomly shuffled while the order of the distinct time-points was 

reserved in order to account for the longitudinal nature of our 

ataset. Since D = 12 , 
∑ 

i =1 , 2 , ... ,D 

|P i | = 88 , and K = 30 , a total of 2640

eformed volumes, D 

∗, were generated in this study, of which 2014 

ere used for training, 323 for monitoring the training process, 

nd 323 for evaluation in each cross-validation round. It should be 

oted that patients included in the training set were not included 

n the corresponding validation and test set, i.e., data of one pa- 

ient cannot belong to both partitions. Cross-validation allows for a 

etter estimation of the generalization ability of our training strat- 

gy compared to a hold-out method in which the dataset is parti- 

ioned into only one training and evaluation set. 

.4. Evaluation methodology 

This section describes the evaluation metrics used to quantify 

he registration performance of the incrementally trained Voxel- 

orph framework and the NiftyReg toolbox [13] that served as a 

enchmark in this study. 

.4.1. NiftyReg 

All deformed abdominopelvic CT images were also registered 

sing the Fast Free-Form Deformation (F3D) algorithm for non- 

igid registration in the NiftyReg toolbox (version 1.5.58) [13] . All 

ptions were set to default: the image similarity metric used was 

ormalized Mutual Information (NMI) with 64 bins and the opti- 

ization was performed using a three-level multi-resolution strat- 

gy with a maximum number of iterations in the final level of 150. 

ote that the F3D algorithm in the NiftyReg toolbox does not sup- 

ort GPU acceleration, in contrast to the Block Matching algorithm 

or global (affine) registration in the NiftyReg toolbox that was 

sed to pre-align the CT images in this study (see Section 3.2.1 ). 

.4.2. Evaluation metrics 

To quantify image registration performance, we relied on highly 

ccurate delineations of all vertebral bodies of the thoracic and 

umbar spine performed by a board-certified radiologist. The ra- 

ionale for considering these VOIs to determine registration perfor- 

ance was that they spanned the majority of the scanning volume 

n the superior-inferior direction and were of clinical relevance be- 

ause of the underlying study on bone metastases. 

As an evaluation metric, we used the DSC, which is often 

sed in medical image registration [12] . DSC values were calcu- 

ated using the gold standard regions delineated on the fixed scans 

 R F ) and the corresponding transformed regions on the moving 

cans ( R M 

) after application of the estimated DVF φ: R D = R M 

◦ φ
 Eq. (6) ): 

SC = 

2 · |R D ∩ R F | 
|R D | + |R F | . (6) 

ince DSC is an overlap-based metric, the higher the value, the bet- 

er the segmentation results. 

For completeness, we also calculated the Structural Similarity 

ndex (SSIM). This metric is commonly used to quantify image 

uality perceived as variations in structural information [50] . Let 

 and Y be two images (in our case, F was compared with either

 or D for the evaluation), and SSIM combines three relatively in- 

ependent terms: 

• the luminance comparison l(X , Y ) = 

2 μX μY + κ1 

μ2 
X 

+ μ2 
Y 
+ κ1 

; 

• the contrast comparison c(X , Y ) = 

2 σX σY + κ2 

σ 2 
X 

+ σ 2 
Y 

+ κ2 
; 

• σXY + κ3 
the structural comparison s (X , Y ) = σX σY + κ3 
; t

7 
here μX , μY , σX , σY , and σXY are the local means, standard 

eviations, and cross-covariance for the images X and Y , while 

1 , κ2 , κ3 ∈ R 

+ are regularization constants for luminance, contrast, 

nd structural terms, respectively, exploited to avoid instability in 

he case of image regions characterized by local mean or standard 

eviation close to zero. Typically, small non-zero values are em- 

loyed for these constants; according to Wang et al. [50] , an appro- 

riate setting is κ1 = (0 . 01 · L ) 2 , κ2 = (0 . 03 · L ) 2 , κ3 = κ2 / 2 , where

 is the dynamic range of the pixel values in F . SSIM is then com-

uted by combining the components described above: 

SIM = l(X , Y ) α · c(X , Y ) β · s (X , Y ) γ , (7)

here α, β , γ > 0 are weighting exponents. As reported in [50] , if

= β = γ = 1 and κ3 = κ2 / 2 , the SSIM becomes: 

SIM = 

( 2 μX μY + κ1 ) ( 2 σXY + κ2 ) (
μ2 

X 
+ μ2 

Y 
+ κ1 

)(
σ 2 

X 
+ σ 2 

Y 
+ κ2 

) . (8) 

ote that the higher the SSIM value, the higher the structural sim- 

larity, implying that the co-registered image, D , and the original 

mage F are quantitatively similar. 

. Experimental results 

Figure 5 shows a typical example of two CT images (baseline 

nd second time-point) and VOIs from the same patient from the 

bdominopelvic CT dataset D. Figure 6 a shows an example of de- 

ormable registrations achieved using VoxelMorph and NiftyReg in 

hich the moving image was a simulated deformed image (see 

ection 3.2.2 ). Similarly, Fig. 6 b shows an example of a real reg- 

stration pair from the longitudinal abdominopelvic CT dataset in 

hich the fixed image was the first time-point ( Fig. 5 a) and the

oving image was the second time-point ( Fig. 5 b). Interestingly, 

he improvement achieved by the proposed incremental training 

rocedure with respect to single-volume training can be appreci- 

ted in the VoxelMorph registrations in both Fig. 6 a and b. 

.1. Impact of CT table removal 

The effect of the removal of the CT table and extracorporeal 

tructures described in Section 3.2.1 on the image registration per- 

ormance is shown in Fig. 7 . This figure shows the registration per- 

ormance of a VoxelMorph network trained and tested on original 

mages compared to one trained and tested on refined images in 

hich the CT table and extracorporeal structures were removed. To 

his end, 250 DVFs with a maximum displacement of 5 mm were 
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Fig. 6. Registration results for the images shown in Fig. 5 for all investigated methods and corresponding DSC for the entire volume. (a) Example slice of the fixed image 

at the level of the third lumbar vertebra (L3) is shown in the top row on the left and the moving image is a simulated deformation of the same volume as used during 

our incremental training procedure; the right edge of the VOI outlining vertebra L3 shows gradual improvement using different registration methods from left to right 

(arrowheads) when compared to the fixed image (arrow) corresponding to increasing DSC for the entire volume. (b) A second example slice of a fixed image is shown at 

the level of the fifth lumbar vertebra (L5) together with a real moving image of the same patient, respectively. Again, the right edge of the VOI outlining vertebra L3 shows 

gradual improvement using different registration methods from left to right (arrowheads) when compared to the fixed image (arrow). Window level and width were set to 

400 and 1800 HU, respectively. 

Fig. 7. DSC and SSIM of original and refined CT images registered using: (a) VoxelMorph and (b) NiftyReg. 

8 



M. van Eijnatten, L. Rundo, K.J. Batenburg et al. Computer Methods and Programs in Biomedicine 208 (2021) 106261 

r

p

n

(  

c

w

b

y  

p

V

d

i

A

a

f

p

e  

n

c

0  

o

w

(  

i

u

r

t  

t

Table 1 

Computational performance of the deformable registration methods in terms 

of processing times (mean ± standard deviation). 

Method Configuration Processing time [s] 

VoxelMorph all registrations 0 . 33 ± 0 . 015 

NiftyReg Local deformations 109 ± 12 

(original CT scans) 

NiftyReg Local deformations 105 ± 14 

(refined CT scans) 

NiftyReg Local deformations + patient shift 106 ± 12 

(original CT scans) 

NiftyReg Local deformations + patient shift 105 ± 5 

(refined CT scans) 

v

p

m

a

s

4

i

C

t

p

s

p

F

t

w

andomly simulated such that the initialization points were sam- 

led only from within the patient volume, i.e., the CT table was 

ot deformed. These DVFs were used to deform an original CT scan 

 V 9 , 1 from P 9 ) and corresponding refined CT scan, i.e., the CT table,

lothing, and prosthesis were removed. An additional test dataset 

as created by deforming the original and refined CT scan using 

oth local deformations and a random global translation in the x , 

 , and z directions between −2 mm and 2 mm to simulate a small

atient shift with respect to the CT table. Two instances of the 

oxelMorph framework were trained on the original and refined 

atasets, respectively, and tested using 50 held-out deformed CT 

mages without and with additional global patient shift ( Fig. 7 a). 

s a benchmark, all original and refined testing CT images were 

lso registered using NiftyReg ( Fig. 7 b). Statistical analysis was per- 

ormed using a paired Wilcoxon signed-rank test, with the null hy- 

othesis that the samples came from continuous distributions with 

qual medians. In all tests, a significance level of 0.05 was set [51] .

Figure 7 a shows that the VoxelMorph framework achieved sig- 

ificantly higher DSC values when registering refined CT images 

ompared to original CT images for both local deformations ( p < 

 . 005 ) and global patient shifts ( p < 0 . 0 0 05 ). Similarly, the SSIM

f the refined images registered using the VoxelMorph framework 

as higher for both local deformations and global patient shifts 

both p < 0 . 0 0 05 ). No difference between original and refined CT

mages was observed in the DSC values of registrations performed 

sing NiftyReg ( Fig. 7 b), although the SSIM of the refined images 

egistered using NiftyReg showed significant improvements over 

he original images (both p < 0 . 0 0 05 ). Therefore, we can argue

hat the experiments introducing ±2 mm global displacements re- 
ig. 8. Incremental training process: monitoring the best training and validation image si

he randomly initialized order in which the simulated deformed volumes S i, j = 

{
V (k ) 

i, j 

}
k =1 ,

ere used during incremental training in each round. 

9 
ealed the limitations of VoxelMorph in such a setting. These ex- 

eriments showed the sensitivity of VoxelMorph to small global 

isalignments that are not well represented in the training data, 

nd shows that removing the CT table and other extracorporeal 

tructures aids in improving the final outcome in such cases. 

.1.1. Computational performance 

Table 1 shows the computational times required to register one 

mage pair using the VoxelMorph framework and NiftyReg. The 

T table removal procedure resulted in slightly shorter registration 

imes when using the NiftyReg toolbox (on average 105 s) com- 

ared to registering original images with and without a patient 

hift (on average 106 s and 109 s, respectively). The image pre- 

rocessing, including CT table removal, was not taken into account 
milarity errors (NCC) achieved in each training iteration. The patient IDs represent 

 ... ,K 
(for the jth scan from the i th patient, with j = 1 , 2 , . . . , |P i | and i = 1 , 2 , . . . , D ) 
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Fig. 9. Registration performance on simulated deformations. 
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n the computation time since it is independent of the used image 

egistration approach. 

.2. Quantitative evaluation of the incremental training strategy 

In the proposed incremental training strategy, a network was 

rained on all deformed volumes included in a mini-batch S i, j 

ntil its performance on the validation set V ∗ no longer improved, 

fter which the best performing network weights were reloaded 

o initiate the next training iteration. Figure 8 shows the resulting 

est training and validation errors achieved during each training 

teration of the different cross-validation rounds. Although the 

raining errors sometimes varied greatly between iterations, the 

etwork performance on the validation set, V ∗, gradually improved 

uring incremental training. 

Another interesting phenomenon that can be observed in 

ig. 8 is that the best training errors achievable when training on 

 specific mini-batch tended to differ between patients. For exam- 

le, training errors increased when training on simulated deformed 

cans of patients P 5 or P 9 . Since both of these patients were, by

hance, included in the validation and test sets of round 2, this 

lso explains why the validation errors in round 2 were generally 
10 
igher ( Fig. 8 ) and the registration performance was lower (see 

igs. 9 and 10 ). 

.2.1. Deformable registration performance 

Since the VoxelMorph network did not converge when train- 

ng on either the whole dataset D or on the simulated dataset T ∗, 

he effectiveness of the proposed incremental training strategy in 

earning features from multiple patients was compared to train- 

ng a network on 10 0 0 simulated deformed scans derived from a 

ingle volume ( V 9 , 1 from P 9 ). All trained networks were subse- 

uently used to register simulated deformed scans from the in- 

ependent test set back onto their original volumes ( Fig. 9 ). In 

ll cross-validation rounds, the incremental training strategy re- 

ulted in better registration performance compared to training 

n a single volume, with mean DSC values of 0 . 929 ± 0 . 037 and

 . 883 ± 0 . 033 , and mean SSIM values of 0 . 984 ± 0 . 009 and 0 . 969 ±
 . 007 , respectively. The deformable registrations performed using 

iftyReg resulted in the best registration results, with a mean DSC 

f 0 . 988 ± 0 . 003 and a mean SSIM of 0 . 995 ± 0 . 002 , although it

hould be noted that this registration method was about 300 times 

lower than one forward pass through the VoxelMorph framework 

 Table 1 ). 
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Fig. 10. Registration performance on real longitudinal CT images per patient. The incremental training strategy combined all cross-validation rounds. 
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To evaluate the impact of the inter- and intra-patient variations 

n the longitudinal abdominopelvic CT dataset, D, on the regis- 

ration performance, all trained networks were also used to reg- 

ster real scan pairs, i.e., mapping sequential time-points back onto 

he reference scan (time-point 0). Figure 10 shows the DSC and 

SIM values between the real scan pairs before registration, af- 

er registration using the VoxelMorph framework trained on single 

olume or incrementally, and NiftyReg. The differences between 

he scan pairs before registration greatly varied between patients, 

ith DSC and SSIM values ranging from 0.567 to 0.920 and from 

.693 and 0.918, respectively. Although the VoxelMorph networks 

ere trained using only simulated deformations, the incremen- 

ally trained networks improved the DSC between the real scan 

airs for 6 out of the 12 patients, whereas the network trained 

n a single volume improved the DSC for 4 out of the 12 pa-

ients ( Fig. 10 ). Furthermore, all VoxelMorph-based models im- 

roved the SSIM between the real scan pairs for all patients except 

atient P 6 . However, it should be noted that none of the networks 

rained in this study achieved registration results comparable to 

iftyReg. 
f

11 
.2.2. Large displacements 

In addition to variations between patients, mapping large 

isplacements may also form a challenge for deep learning based 

eformable registration methods. In order to evaluate the effect 

f the size of the displacements on the registration performance 

f the networks trained in this study, an additional test set was 

reated by simulating K DVFs φk ( k = 1 , . . . , K) with maximum 

isplacements ranging from 0 mm (i.e., no deformation) to 25 mm 

i.e., structures moving across the entire abdominal and pelvic 

egions) in steps of 1 mm, with K = 30 in each step. These DVFs

ere used to deform the same volume that was used to generate 

he training data to train the single-volume network ( V 9 , 1 from 

 9 ), after which the deformed images were mapped back onto 

he original volume using the trained VoxelMorph networks and 

iftyReg. 

Figure 11 shows the mean NCC (see Eq. (3) ), DSC, and SSIM 

alues for the full range of maximum displacements. The network 

rained on a single-volume ideally represents the “best possible”

although clinically unrealistic) scenario in which the network was 

rained and tested on the same volume. This network thus per- 

ormed better on larger displacements, whereas the incrementally 
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Fig. 11. Registration performance on increasingly large displacements in terms of 

NCC, DSC, and SSIM. 
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rained networks performed better for small deformations up to 5 

m. 

. Discussion 

In recent years, an increasing number of studies have focused 

n using deep neural networks for deformable image registra- 

ion because such methods offer fast or nearly real-time reg- 

stration [2,12,26,27,29,35,37] . However, their application to ab- 

ominopelvic CT images remains limited because of the large 

ntra- and inter-patient variations, the not fully diffeomorphic na- 

ure of the deformations, and the limited availability of large num- 

ers of well-annotated images for training. 

In the present study, we demonstrated that removing extracor- 

oreal structures aids deformable registration of abdominopelvic 

T images when using both traditional and deep learning ap- 

roaches. Along with the registration of multiple CT scans over 

ime, in which the table design and shape may differ and af- 

ect the registration process, the devised method based on region- 

rowing [46] could also be valuable for multimodal image regis- 

ration tasks because the scanner table is not visible on MRI and 

ET [52] . Another practical use case could be radiation treatment- 

lanning, in which the CT table influences the dose distribution 
12 
ince the table used during imaging typically has different beam 

ttenuation characteristics compared to the treatment table [53] . 

To address the remaining challenges of our abdominopelvic CT 

ataset, we generated training data for our network by synthet- 

cally deforming the CT images. Such synthetically deformed im- 

ges can be employed for different purposes: ( i ) training a neu- 

al network for deformable image registration on a relatively small 

linical dataset; and ( ii ) evaluation, e.g., testing the ability of a net- 

ork to register increasingly large displacements. Synthetic DVFs 

ave already been successfully used for supervised learning of de- 

ormable image registration [2,27] . Therefore, a promising direction 

s to develop more advanced DVF generation strategies and/or syn- 

hesize label maps and gray-scale images that expose a network 

o different anatomical structures and contrasts during training, 

uch as in [54] . As a future development, we plan to introduce 

n additional penalty term into the loss function of our registra- 

ion method to exploit the known simulated DVFs during train- 

ng, which would allow the training process to gradually transi- 

ion from semi-supervised to unsupervised learning. In addition, 

e aim to investigate multi- or mixed-scale network architec- 

ures [55] for unsupervised medical image registration. 

To exploit the longitudinal nature of our abdominal CT dataset 

nd enable training on small amounts of training data, we pro- 

ose a novel incremental strategy based on simulated deforma- 

ions. With this incremental training strategy, we managed to over- 

ome the limitations of a well-known unsupervised deep learning 

ramework for deformable image registration (VoxelMorph [12] ). 

ithout our novel training strategy it was simply not possible to 

rain any network for deformable registration of our original clini- 

al dataset. However, the performance of our deep learning-based 

pproach was not as good as the non-deep learning-based method 

NiftyReg [13] ) that was used as a benchmark. Such performance 

ssues that arise when applying deep learning based registration 

ethods to clinically realistic image datasets is a well-established 

roblem in the research community, but remains relatively unad- 

ressed in the scientific literature. We feel that it is very important 

o highlight the remaining challenges in the field. These advances 

ill facilitate further improvement of deep learning-based image 

egistration algorithms and will eventually enable them to be used 

or registering more challenging, real clinical datasets with large 

eformations and variations between patients. 

Our results are in agreement with recent literature that sug- 

ests that iterative and discrete registration methods are still out- 

erforming deep learning based registration methods in challeng- 

ng registration tasks in the abdominal area. An example is the re- 

ent work by Heinrich [56] , who trained a state-of-the-art weakly- 

upervised deep learning approach called Label-Reg [29] on ab- 

ominal CT for inter-patient alignment and achieved an average 

SC of only 0.427, which is still substantially worse than NiftyReg 

ith a DSC of 0.561, thus suggesting further research. Importantly, 

he number of training samples available in our study was indeed 

mall, but we managed to overcome this problem by using simu- 

ated deformations, which also has the important advantage of not 

eeding any ground truth displacement fields to train the network 

n a supervised manner. 

In other domains, incremental learning strategies have already 

hown potential for image classification [57] and medical image 

egmentation [58] , although the so-called catastrophic forgetting 

59] still remains a challenge. The incremental training of neural 

etworks for longitudinal image registration could, therefore, ben- 

fit from introducing a penalty term into the loss function to bal- 

nce the registration performance on new images while minimiz- 

ng forgetting of previous images. 

In the long term, parameter-efficient, single-shot deep learning 

olutions for deformable image registration would enable the de- 

elopment of novel end-to-end approaches, such as task-adapted 
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mage reconstruction [60] . From a clinical perspective, automated 

egistration of longitudinal imaging data is a prerequisite for ex- 

loiting the full potential of standard-of-care CT images for treat- 

ent response assessment in patients with bone metastases. A 

uccessful approach might find potential applications in the most 

requently occurring malignancies that have a tendency to metas- 

asize to bone, i.e., prostate, lung, and breast cancer [61] . 

. Conclusions 

In this work, we proposed a novel incremental training strat- 

gy based on simulated deformations to overcome the limitations 

f a well-known unsupervised deep learning framework for de- 

ormable image registration (VoxelMorph), in which we exploited 

he longitudinal properties of our abdominal CT dataset. Although 

ur deformable image registration method did not outperform the 

on-deep learning based NiftyReg toolbox in terms of DSC or SSIM, 

he registrations were approximately 300 times faster. In addition, 

e demonstrated that removing the CT table and additional extra- 

orporal components allows for better deformable image registra- 

ion performance using both deep learning and non-deep learning 

ased methods. Future research should focus on developing more 

dvanced DVF simulation, label map or image synthesis techniques, 

s well as exploring different (semi-supervised) training strategies 

nd investigating multi- or mixed-scale network architectures that 

re well-suited for registration purposes. 
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