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a b s t r a c t 

In intermodal transportation, it is essential to balance the trade-off between the cost and duration of a 

route. The duration of a path is inherently stochastic because of delays and the possibility of overbooking. 

We study a problem faced by a company that supports shippers with advice for the route selection. The 

challenge is to find Pareto-optimal solutions regarding the route’s costs and the probability of arriving 

before a specific deadline. We show how this probability can be calculated in a network with scheduled 

departure times and the possibility of overbookings. To solve this problem, we give an optimal algorithm, 

but as its running time becomes too long for larger networks, we also develop a heuristic. The idea of 

this heuristic is to replace the stochastic variables by deterministic risk measures and solve the result- 

ing deterministic optimization problem. The heuristic produces, in a fraction of the optimal algorithm’s 

running time, solutions of which the costs are only a few percent higher than the optimal costs. 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

In intermodal transport, at least two modes of transportation 

re used to ship goods from the origin to the destination ( Macharis 

 Bontekoning, 2004 ). Two main factors influencing the route 

hoice of a shipment in intermodal transport are the costs and du- 

ation . Usually, one is looking for the cheapest option to transport 

reight such that the arrival at the destination is on time. However, 

he travel time is to a large extent stochastic. A vehicle might be 

elayed or a leg of the trip could be overbooked. Therefore, it is 

mpossible to guarantee that a shipment will arrive on time. Pos- 

ible options to deal with the travel time’s stochasticity are to en- 

orce the expected arrival time of the shipment to be before its 

eadline, or to put a penalty on late arrival and minimize the ex- 

ected costs. These methods might work fine if a shipper trans- 

orts many loads, but they are troublesome if only incidentally 

oods are transported. 

In this paper, we study a problem faced by a company that 

s offering a tool to shippers that ship specialized cargo on a 

lobal scale. These specialized types of cargo could, for instance, 

e pharmaceuticals. Medicines need to be transported in a specific 

emperature range because otherwise they might get ruined. The 
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pecialized goods are often shipped in cooling containers to con- 

rol the temperature, but these containers only cool for a limited 

mount of time. When the shipment arrives after this period, it 

ight not be at the right temperature. In these types of problems, 

t is more suitable to consider the probability of on-time arrival . Al- 

hough this study originated from a collaboration with a company 

pecialized in the shipment of pharmaceuticals, the mathematical 

odel in this paper is so general that it can be applied by count- 

ess companies that use an intermodal network to ship their goods. 

In intermodal logistics, the shipper does not operate its own 

eet and uses carriers to transport the package or container. Con- 

equently, the shipper has to obey the predefined schedule of the 

arrier. This schedule results in large variation in the duration of 

 shipment ( Ziliaskopoulos & Wardell, 20 0 0 ). If there is a delay in

ne point of the transportation chain and a departure is missed, 

hen the arrival at the destination is often much later because 

here is usually some time between consecutive departures. As a 

esult, the planned departure of the next leg might also be missed, 

n which the delay could further propagate through the network. 

n practice, it could also happen that a leg is overbooked in which 

he shipment can at best be transported in the next departure. 

he overbooking probability usually increases if one is behind its 

lanned schedule, in which case the delay only gets worse. 

In this freight network, we are interested in constructing 

areto-optimal solutions in which the probability of arrival before 

he deadline is compared with the costs of a route. With such a 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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areto-front, the shipper can choose how much risk he or she is 

illing to accept to transport goods at a specific price. The num- 

er of routes grows exponentially with the number of nodes in a 

etwork and there do not exist efficient optimal algorithms. Hence, 

or larger-sized networks, we need to consider heuristics to find 

he most cost-efficient route given a certain acceptance probability 

or risk . 

The contribution of this paper is three-fold. First, we model a 

roblem faced by a company delivering an online tool for ship- 

ers as a shortest path problem with stochastic travel times and 

verbooking probabilities. The goal of this problem is to find the 

heapest path for which the probability of arrival before a dead- 

ine is above a certain threshold. Second, we give an optimal al- 

orithm based on dynamic programming. For this dynamic pro- 

ramming formulation we derive explicit formulas for the proba- 

ility functions of the arrival and departure time at every node. We 

how that for finding dominating paths, we only need to consider 

 limited number of time epochs. Finally, we propose a heuristic in 

hich the stochastic travel times are replaced by deterministic val- 

es that are a function of the risk one is willing to take. To the best

f our knowledge, we are the first to use these deterministic risk 

eassures in a heuristic to solve a routing problem with stochas- 

ic travel times. After the random variables are replaced with de- 

erministic values, an Integer Linear Program (ILP) formulation is 

sed to solve the problem. 

The remainder of this paper is organized as follows. In 

ection 2 , a description of the relevant literature is given. After 

hat, we describe in Section 3 in detail the problem that we are 

olving. This problem formulation is translated into a mathemat- 

cal model in Section 4 . In Section 5 , the optimal algorithm and

euristic are presented to solve the model described in Section 4 . 

he quality of this heuristic is investigated in Section 6 , and finally, 

e conclude this paper in Section 7 . 

. Literature review 

In this section, we focus first on routing problems in mul- 

imodal networks. These problems are mainly deterministic and 

ince our problem is stochastic, we also discuss the relevant litera- 

ure concerning stochastic shortest paths. Finally, we review some 

orks regarding risk measures that will be used in our heuristic. 

.1. Routing in intermodal networks 

According to Chang (2008) , routing problems in intermodal 

ransport networks have three important characteristics. First, they 

eal with multiple objectives, such as travel time and costs. Sec- 

nd, the schedules and delivery times must be included to avoid 

 mismatch in practice. Finally, the calculation of costs is com- 

licated because it might be dependent of the weight or volume 

ransported. In this work, we only focus on the first two points. 

s in our problem setting we are concerned with transporting of 

 single shipment, its costs can be easily computed beforehand. 

iliaskopoulos and Wardell (20 0 0) add that one should also ac- 

ount for delays at switching locations. We implicitly do that by 

ncluding overbookings. 

The multiple objectives can be included as a weighted sum in 

he objective function, or it can be decided to put one or more of 

he targets in the constraint. The latter can be done by construct- 

ng Pareto-optimal solutions, which is done in Cho, Kim, and Choi 

2012) . In this paper, Pareto-optimal solutions regarding the travel 

ime and transportation costs are given for an international inter- 

odal routing problem. They solve a weighted constrained short- 

st path problem using a dynamic programming formulation. In 

romicho, Oudshoorn, and Post (2011) , a problem faced by a lo- 

istic service provider is studied in which the goal is to find the k -
2 
heapest routes given time restrictions. This problem is also mod- 

led as a resource constraint shortest path and is solved using a 

wo-stage variant of Dijkstra’s algorithm. 

A weighted sum of the travel time and the transportation costs 

s minimized in Chang (2008) . He enforces time-windows for the 

oment a path should arrive in a node and solves the result- 

ng problem using a Lagrangean relaxation. In Yang, Low, and 

ang (2011) , a goal programming approach is used to minimize 

he weighted sum of transportation cost, transit time, and tran- 

it variability of an intermodal route. This problem is entirely 

eterministic because the transit variability is assumed to be a 

iven constant. In multi-objective problems, the travel time is also 

ometimes assumed to be time-dependent. A multi-criteria time- 

ependent shortest path problem is studied in Androutsopoulos 

nd Zografos (2009) . In this problem, the scheduled departure time 

f an arc is fixed, and for every node, there is a strict time win-

ow for which the route should visit that node. In Ziliaskopoulos 

nd Wardell (20 0 0) , a deterministic time-dependent shortest path 

roblem is studied with a delay at the nodes. In Chang, Floros, and 

iliaskopoulos (2007) , this problem is extended and is not only the 

ravel time but also the costs that are associated with that path are 

inimized. 

.2. Stochastic shortest paths 

Most classical shortest path problems with stochastic travel 

imes deal with finding the path with the shortest expected du- 

ation (see, e.g., ( Fu & Rilett, 1998; Hall, 1986; Miller-Hooks & 

ahmassani, 20 0 0 )), but our problem is different in two ways. 

irst of all, our objective is to find the cheapest path that has the 

argest probability of arriving on time at the destination. Second, 

he planned departures and the possibility of overbooking make 

hat the arrival moment at a node is not necessarily the same as 

he departure time. To the best of our knowledge, we are the first 

o combine the two aspects described above. Nevertheless, the two 

roblems have been studied separately, which will be discussed 

elow. 

Firstly, there is some literature on stochastic shortest path prob- 

ems in which there is an arrival deadline. One concept that is ap- 

lied in this context is stochastic dominance . A distribution stochas- 

ically dominates another distribution if, for every possible value in 

ts domain, its cumulative distribution function is at least as large 

s that of the other distribution. Zhang and de Mello (2017) and 

ie, Wu, and de Mello (2012) study a problem in which the goal is 

o find a path that minimizes the earliness and lateness and that 

tochastically dominates a benchmark path. In Nie et al. (2012) , 

his problem is solved using a dynamic programming formula- 

ion, and in Zhang and de Mello (2017) a Sample Average Ap- 

roximation method is proposed that can solve larger instances. In 

hang, Nozick, and Turnquist (2005) , an algorithm is presented to 

nd non-dominated paths with multiple time-dependent stochas- 

ic attributes. In Cheng and Lisser (2015) , a problem is studied in 

hich the goal is to find the path for which the probability that 

he resource constraints are sastified is maximized, given that the 

osts of the route should not exceed a given threshold. Finally, in 

armentier (2019) , improved bounds are presented for computing 

hortest paths with general non-linear and stochastic recourse con- 

traint. These bounds can be used to speed-up an enumeration al- 

orithm. 

A shortest path problem can be modelled as a linear program- 

ing formulation. In the literature, efficient solution methods for 

eneral linear programming formulations with specific stochas- 

ic constratins have also been studied. For instance, Cheng and 

isser (2012) consider a linear program with multiple stochas- 

ic constraints in which all random variables are normally dis- 

ributed. Under this assumption, the problem can be approximated 
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y a second-order conic program. Another example is the work of 

uedtke, Ahmed, and Nemhauser (2010) in which an integer linear 

rogram formulation is proposed for the situation in which only 

he right-hand side of the inequality is random and has a finite 

istribution. Unfortunately, these techniques cannot be applied to 

ur problem. 

A branch of literature in which the stochastic travel times are 

ombined with planned departures is the literature about multi- 

odal itinerary planning . In this problem, the goal is to find a route 

hrough a public transit network for which the probability of an on 

ime arrival is maximized ( Häme & Hakula, 2013; Redmond, Camp- 

ell, & Ehmke, 2019; 2020; Zhang, Liu, Yang, & Gao, 2015 ). The 

ain difference between the multimodal itinerary problem and 

ur problem is that in the former the route can be dynamically 

djusted. In a situation where a person is traveling, this assump- 

ion is realistic. However, for freight transportation it is not always 

pplicable because a parcel cannot decide for itself that another 

oute might be better in the new situation. Only when a planner 

s actively following a package and has the flexibility to change the 

oute, the problem described in Häme and Hakula (2013) applies. 

n Häme and Hakula (2013) , the multimodal itinerary problem is 

olved to optimality using a Markov decision process. In Redmond 

t al. (2019) , a problem is studied in which the goal is to find the

ight itinerary that has the largest probability of arriving on-time. 

n this problem, every flight has a fixed departure and if that is 

issed, there is no option to arrive the destination. This model 

s extended to a multimodal network in Redmond, Campbell, and 

hmke (2020) . In Zhang et al. (2015) , the different modes in the

ultimodal network do not have a given departure moment, but 

witching a mode costs extra time. The objective of their problem 

s to find a path for which both the total costs and the travel time

re minimized but need to meet a chance constraint. 

.3. Risk measures 

By a risk measure , we mean a function that maps a stochastic 

ariable to a real value. A risk measure can be used to compare 

ultiple stochastic variables. In Cominetti and Torrico (2016) , mul- 

iple risk measures for shortest paths are considered. As they point 

ut, most risk measures do not meet the additive consistency prop- 

rty . This property states that if, under a particular risk measure, 

ne stochastic variable is preferred to another stochastic variable, 

hen if to both these variables the same independent random vari- 

ble is added, the preference relation should not change. They state 

hat the only risk measure that has this property is the entropic risk 

easure . 

An entropic risk measure that has been used before in shortest 

ath problems is the certainty equivalent under exponential disutility 

 Jaillet, Qi, & Sim, 2016; Zhang & Tang, 2018 ). In Zhang and Tang

2018) , this measure is applied in the context of a public transit 

etwork; their goal is to find a route that minimizes the certainty 

quivalent under exponential disutility, given that the arrival is be- 

ore a deadline. Jaillet et al. (2016) study general routing problems 

or which they put constraints on the certainty equivalent under 

xponential disutility. They show how this framework can be ap- 

lied in the case of distributionally robust optimization. As a spe- 

ial case, they solve a shortest path in which the least risky route 

ith respect to the certainty equivalent under exponentially disu- 

ility has to be found such that the arrival is before the deadline. 

Markowitz (1952) proposes the expectation-variance (EV) risk 

easure. In this risk measure, the weighted sum of the expectation 

nd variance of a random variable is taken. The more weight that 

s given to variance, the more risk-averse the outcome is. A disad- 

antage of this method is that it is not monotone, which means 

hat it could be the case that one stochastic variable is almost 

urely dominated by another, but that the EV risk measure prefers 
3 
he latter ( Cominetti & Torrico, 2016 ). In Hutson and Shier (2009) ,

 more general function of the expectation and the variance is ap- 

lied to a shortest path problem. The function they minimize is a 

um of a convex function of the mean and a concave function of 

he variance. 

In our heuristic, we replace a stochastic variable by a deter- 

inistic approximation, which is closely related to Approximate Dy- 

amic Programming (ADP) introduced by Powell (2011) . In ADP, the 

ey idea is to use an approximation for the objective function of a 

ynamic program to reduce the dimensions of this problem. This 

echnique has successfully been applied to many logistics prob- 

ems, for instance see the overview papers of Powell, Simao, and 

ouzaiene-Ayari (2012) and Ulmer (2017) . There are two aspects 

hat are closely related to ADP but do not apply to our problem 

etting. First, the stochasticity in this paper’s problem only lies in 

he travel time which is incorporated in a constraint. In most appli- 

ations of ADP, the objective function contains the uncertainty and 

he constraints are deterministic. Second, successful ADP applica- 

ions share the flexibility to adapt the planning repeatedly during 

he planning process and in our problem the route is fixed before 

ny realization of the stochastic variable is revealed. 

. Problem formulation 

In our problem, two types of logistics parties are involved: the 

hipper and the carrier . The shipper is a company that is the sup- 

lier of the goods that need to be transported and the carrier is 

he company that actually transports the goods. We study a prob- 

em of a shipper who needs to ship goods through an intermodal 

etwork. The shipper is a small company that does not have its 

wn fleet and needs to use the scheduled transport of carriers. The 

ossible transportation modes could be airplanes, ships, trains, and 

rucks. The shipper has a given deadline at which the shipment 

hould be at its destination. This deadline could be imposed by the 

ustomer that requires its shipment to arrive before a certain mo- 

ent, but it could also be caused by the packaging material that 

s used. For instance, some packaging that is used to cool temper- 

ture sensitive material stops working after a certain amount of 

ime. A complete route is booked at the carrier, so there is no op- 

ion to change it during the transshipment. The shipper is looking 

or the route of the shipment that has minimal costs but also sat- 

sfies that the shipment arrives on time with a certain probability. 

t could be possible to allow for changes in the modalities that are 

sed or the route of a parcel. This scenario is often referred to as 

ynchromodality , but this concept is usually applied to small scaled 

etworks and not to a global scaled networks. Moreover, a route in 

ur problem does not only reflect the hubs through which a parcel 

s transshipped, but also the shipping material that is used. This 

hipping material is not easy to change during the transshipment. 

We assume that for each leg of the transportation network the 

osts are known. The total costs of a route are simply the sum over 

ll the legs it contains. The costs of a route are determined by the 

arrier and since only a single parcel is shipped these costs can be 

asily requested. Additionally, we assume that we know for each 

eg the distribution of its duration. It might be hard to determine 

he distribution of a single leg. Nonetheless, if one has data on the 

ransportation times of an entire route then it is possible to de- 

ompose that into a distribution for a specific leg. On top of that, 

e assume for sake of simplicity that these stochastic variables are 

ndependent of each other. In practice, one would expect that there 

s a certain dependency between the transportation times. If for in- 

tance, bad weather conditions make that the shipment is delayed 

n one leg, it is reasonable to assume that this also influences the 

ravel time on the subsequent leg. Although we do not have ex- 

licit dependency in our model, there is some implicit dependency 

ithin a route. Each leg has a planned departure time associated 
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Table 1 

Overview of the notation used in this paper. 

n Destination node 

c i j Costs for arc (i, j) 

d i j Scheduled departure for arc (i, j) 

f i j Frequency of departures on arc (i, j) 

T Deadline for arrival at node n 

P Path going from node 1 to node n 

F P (·) Cumulative distribution function of the arrival time at node n 

φ0 
i j 

Stochastic variable for the travel time on arc (i, j) 

φ1 
i j 

Stochastic variable for the number of departures missed before arc (i, j) is traversed 

if arrival at node i is before d i j 

φk +1 
i j 

Stochastic variable for the number of departures missed before arc (i, j) is traversed 

if arrival at node i is between d i j + (k − 1) f i j and d i j + k f i j 

φ Lower limit of domain of stochastic variable φ

φ̄ Upper limit of domain of stochastic variable φ

β Risk acceptance parameter 

V Set of all nodes 

A Set of all arcs 

P Set of all paths from node 1 to node n 
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ith it, which is the first transportation possibility for that leg. 

dditionally, the next possible departure moments are also given. 

onsequently, if a shipment arrives only just after its planned de- 

arture at a hub, it can only leave that hub at the next departure

ime at the earliest. This later departure could have the effect that 

he shipment also has to wait for a more extended period at the 

ext hub. 

As the shipper is only shipping a single or a few containers 

hrough the network, we are not concerned with the capacity of a 

ransportation link. The carrier decides if there is enough capacity 

eft in each leg of the transportation chain to transport the ship- 

ent. However, as no-shows occur frequently, air carriers tend to 

verbook a flight. So it might be the case that a shipment cannot 

e transported on the planned time but that it will be shipped at 

 later moment. We assume that for each leg in the transporta- 

ion network, we know the probability of how many departures 

re missed by a shipment. This probability depends on the planned 

eparture. If the shipment arrives before its scheduled departure 

t a hub, the expected number of missed departures is less than if 

he shipment arrives after its planned departure. Similarly, to the 

istribution of the transportation time, this probability could be 

etermined by decomposing the total transportation time for an 

ntire path. Carriers sometimes offer different booking classes for 

argo. Standard booking classes are the cheapest option, but pre- 

ium booking classes have the advantage of having a higher pri- 

rity when the leg is overbooked. So for the same physical route, 

here could be a more expensive option that has a larger probabil- 

ty of arriving on time. 

In general, a shipper does not have a fixed value for the on-time 

rrival probability of the shipment. Consider a situation in which 

ne route has a slightly larger chance of arriving too late at the 

estination than another route, but the costs of the former path 

re only a fraction of the latter. In this situation, most shippers will 

e inclined to take the riskier but cheaper route, but the shipper 

hould make that decision. Therefore, the goal of this problem is to 

resent a Pareto-front in which the probability of on-time arrival 

s compared with the costs of a route. 

. Mathematical model 

In this section, we present a mathematical model for the prob- 

em described in Section 3 . The notation that is used in this model

s summarized in Table 1 . We model the intermodal transporta- 

ion network as a directed acyclic graph G := (V, A ) with node set

and arc set A . Let n denote the number of nodes in a graph.

here is one source node s ∈ V and a destination node t ∈ V . We
4 
ill number the nodes in such a way that node s gets number 1 

nd node t gets number n . Since the graph is acyclic it is possible 

o number the nodes such that there are no arcs between (i, j) if 

j < i . It could be possible that there are multiple nodes that corre-

pond to a single hub. For instance, if the overbooking probability 

epends on the bookings class, one needs to make a node for ev- 

ry combination of hub and bookings class. 

Let P be the set of all possible paths between node 1 and node 

 and we denote a single path by P ∈ P . An arc (i, j) has associated

osts of c i j , and the total costs of all arcs in path P is denoted by

(P ) . Additionally, an arc (i, j) has a stochastic variable φ0 
i j 

for the

ime needed to traverse that edge and a scheduled departure time 

 i j . For the sake of simplicity, we assume that there is a fixed time

nterval between the departures after d i j . We call that interval be- 

ween consecutive departure the frequency of an edge and denote 

t by f i j . Note that our approach would also work if the departure 

imes do not follow a specific pattern but are given beforehand. We 

ssume that all departure times and frequencies are integers. This 

s realistic from a practical perspective because these times usu- 

lly have a certain precision, for instance, the planned departure 

f a flight is usually only given with a precision of five minutes. 

oreover, this assumption will be useful in computing the on-time 

rrival probability, as we will see in Section 5.1 . 

If the shipment arrives at node i before the scheduled departure 

ime d i j of arc (i, j) , then the number of departures on which it

annot be shipped because there is no capacity left is the stochas- 

ic variable φ1 
i j 

. On the other hand, if the shipment arrives at node 

 between d i j + (k − 1) f i j and d i j + k f i j , then random variable φk +1 
i j 

enotes the number of departures that is missed. In practice the 

xpectation of φk +1 
i j 

is larger than the expectation of φk 
i j 

. The cu- 

ulative distribution function for the arrival time at node n using 

ath P is given by F P (·) . On top of that, we are given a deadline

 > 0 and a risk acceptance threshold β ∈ [0 , 1] . The risk acceptance

hreshold is the probability for which we accept a late arrival. The 

arger the value of β the more risk one is willing to accept. The 

oal is to find a path with minimal cost such that the probability 

hat the arrival at node n is after T is less than or equal to β . In

ther words, the problem we need to solve is the following: 

in 

P∈P 
c(P ) (1) 

ubject to: 1 − F P (T ) ≤ β β ∈ [0 , 1] . (2) 

onstraint (2) is an individual chance constraint , and thus the prob- 

em (1) - (2) is a variation of a chance constraint problem. For a fur-
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her discussion about these types of problems we refer to Birge 

nd Louveaux (2011) . 

.1. Running example 

In this paper, we use a simple network to illustrate the problem 

nd solution methods. This network consists of four nodes and is 

iven in Fig. 1 . On each arc, two sets of three numbers are given.

he first set consists of the parameters for the departure. The first 

alue represents the planned departure time, and the second one 

s the frequency of the departures on that arc. Finally, the third 

umber, p i j , is the overbooking probability on that arc. For sim- 

licity, we assume that this is the same whether the shipment ar- 

ives before or after the planned deadline. Moreover, it also does 

ot change if more departures have already been missed. Hence, 

he number of missed departures φ1 
i j 

is geometrically distributed 

ith parameter 1 − p i j and 0 is in the domain of this random vari-

ble. In other words, for every arc (i, j) the probability of missing 

 departures is given by: 

 

(
φ1 

i j = k 
)

= p k i j (1 − p i j ) k = 0 , 1 , . . . 

ll departures from node 1 leave at time 0 and have no possibil- 

ty of overbooking, thus the shipment will always leave that node 

t time 0. The second set of three parameters are concerned with 

he actual transportation on that arc. The first parameter repre- 

ents the costs of that leg, the second the expected travel time, 

nd the third value corresponds with the variation of the trans- 

ortation time. We assume that the travel times follow the gamma 

istribution for two reasons. First, it is a right-skewed distribution, 

hich reflects the situation that delays cause the mean of the dis- 

ribution to be larger than its median. Second, for the gamma dis- 

ribution the moment generating function and thus the certainty 

quivalent is well-defined. Finally, the deadline of arrival at node 4 

s 20. 

. Solution method 

In this section, we discuss solution methods to solve the prob- 

em presented in Section 4 . We need to find a Pareto-front for 

he problem given in (1) - (2) . A Pareto-front can be constructed by

arying the values of β . The larger the value of β , the cheaper the 

ath will be. So if we start with a value for β equal to 1, the cheap-

st feasible route is found. Let us denote that path by P ∗. After that,

e calculate for path P ∗ the probability that it will arrive at node 

 after time T . In other words, we find the value for β for which

onstraint (2) holds with equality for path P ∗. If that value of β
s found, we update the value of β in constraint (2) such that it 

s just slightly lower. Consequently, P ∗ is not longer feasible and a 

ew path is found with higher costs and lower probability of ar- 

iving too late. We repeat the entire procedure until there is no 

easible solution anymore. This technique is also known as the ε- 

onstraint method (see, e.g. Ehrgott (2005) ). 

In the remainder of this section, we first explain how we com- 

ute the arrival distribution at the destination in the intermodal 

etwork. This method can be used in an optimal algorithm which 

s described in Section 5.2 . However, the running time of this 

ethod grows, in the worst case, exponentially in the number of 

odes in a network. Therefore, also a heuristic method is described 

n Section 5.3 . The high level idea of this heuristic is to replace the

tochastic variable by deterministic risk measures. 

.1. Computing arrival and departure distributions 

Consider a path in which l nodes are visited, and denote this 

ath by P = (p 1 , p 2 , . . . , p l ) . The first step in solving the problem

1) - (2) is to compute F (T ) . Although evaluating whether a sum
P 

5 
f random variables is less than a certain value is in general in- 

ractable ( Khachiyan, 1989 ), we can exploit the fact that we made 

he assumption that all departures are integral values. Hence, the 

istribution of the departures can be seen as a discrete distribu- 

ion. Nonetheless, as the travel time is continuous, the arrival dis- 

ribution at the next node will also be continuous. Nonetheless, 

his continuous distribution can be assumed to be discrete as well 

ecause as the departures only occur at discrete moments we can 

ound up all fractional arrivals to the nearest integer. 

Let us denote the probability mass function of the arrival time 

nd the departure at node p j by, respectively g A 
j 
(·) and g D 

j 
(·) . We

ssume that the shipment is available at time 0 at node 1, so 

 

A 
1 (0) = 1 . Then the arrival and departure distributions for the oth- 

rs nodes can be computed by the following three equations: 

 

D 
j 

(
d j, j+1 

)
= 

d j, j+1 ∑ 

x =0 

g A j (x ) P 
(
φ1 

j, j+1 = 0 
)

j = 1 , . . . , l − 1 

 

D 
j 

(
d j, j+1 + k f j, j+1 

)
= 

d j, j+1 ∑ 

x =0 

g A j (x ) P 
(
φ1 

j, j+1 = k 
)

+ 

k −1 ∑ 

i =0 

d j, j+1 +(i +1) f j, j+1 ∑ 

x = d j, j+1 + i f j, j+1 +1 

g A j (x ) P 
(
φ i +1 

j, j+1 
= k − (i + 1) 

)
j = 1 , . . . , l − 1 

 = 1 , 2 , . . . 

 

A 
j+1 (x ) = 

∞ ∑ 

k =0 

g D (d j, j+1 + k f j, j+1 ) 

× P 

(
x − d j, j+1 + k f j, j+1 − 1 < φ0 

j, j+1 ≤ x − d j, j+1 + k f j, j+1 

)
j = 1 , . . . , l − 1 x = 0 , 1 , . . . . 

n the first equation, the probability of departing at the planned 

eparture from a node is calculated. For this to happen, the ar- 

ival at that node should be before the planned departure and 

here should be no overbooking. The probability of a departure at 

ome other time epoch is calculated in the second equation. This 

robability consist of two summations. The first summation is the 

um of the probability of arriving before the deadline but having 

o miss a departure. The second summation represents the proba- 

ility of arriving after the deadline times the probability of missing 

he correct number of departures. In the third equation, the prob- 

bility of arriving at time x in node j + 1 is calculated. This is a

onvolution of all possible departures at node j and the time it 

akes to traverse arc ( j, j + 1) such that the arrival at node j + 1 is

etween x − 1 and x . All the convolutions required in these three 

quations can be efficiently computed by standard Fast Fourier 

ransform algorithms,see Davis (2016) for an overview. The prob- 

bility mass function g A n (x ) can be used to compute the desired 

umulative distribution function F P (T ) . 

.2. Optimal algorithm 

The problem (1) - (2) is a variant of the Resource Constrained 

hortest Path Problem (RCSPP), (see e.g. ( Pugliese & Guerriero, 

013 )). For this problem, two types of exact algorithms have been 

eveloped: Dynamic Programming (DP) and Lagrangian Relaxation 

 Lozano & Medaglia, 2013 ). As the Lagrangian subproblem is still 

ard to solve for our problem, we have to decide to develop a DP 

lgorithm. 

In the DP algorithm, we iteratively go through all the nodes and 

eep track of all paths entering a node. In node i , we can discard a

ath P 1 if there exists a path P 2 with lower costs and that stochas- 

ically dominates P 1 . By the latter we mean that the probability of 

rriving at node i before a given time is for path P 2 always greater 

han or equal to the probability for path P 1 . To formalize this con- 

ept, let G 

A 
P,i 

(·) be the cumulative distribution function of the ar- 



B.G. Zweers and R.D. van der Mei European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; August 16, 2021;12:54 ] 

Fig. 1. Toy example of a network to illustrate the model and the solution methods. 
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Fig. 2. Probability density function of the arrival time at node 4 for the three dif- 

ferent paths in the network from Fig. 1 . 

e

w

a

t

5

s

r

i

v

t  

t

I

b

m

ρ
t

b

r

i

c

c

I

w  

c

ival time in node i in path P . So path P 2 stochastically dominates

 1 in node i if: 

 

A 
P 2 ,i 

(x ) ≥ G 

A 
P 1 ,i 

(x ) ∀ x ≥ 0 . (3) 

he specifications of our problem make that it is not necessary 

o consider all values of x in Eq. (3) . It is only possible to leave

ode i at a specific number of departure times, namely D (i ) :=
 j :(i, j ) ∈A ∪ 

∞ 

k =0 
{ d i j + k f i j } . Every arrival in node i between two con-

ecutive departure times can be treated as the same. Hence, we 

an replace the condition of Eq. (3) by: 

 

A 
P 2 ,i 

(x ) ≥ G 

A 
P 1 ,i 

(x ) ∀ x ∈ D (i ) . 

f path P 1 is more expensive than P 2 and is stochastically domi- 

ated by P 2 , then we know that path P 1 will never be an opti-

al path for any acceptance threshold β . Hence, we can discard 

ath P 1 . Still, the number of paths that need to be stored can be

arge, especially if the set D (i ) is large. Therefore, we also propose

 heuristic in the next section. 

.2.1. Running example (continued) 

The network given in Fig. 1 has three possible routes from node 

 to node 4, namely a direct path, a route via node 2, and one via

ode 3. The direct path is the cheapest option with costs 15, the 

oute via node 3 has costs 20, and the most expensive option is 

o ship via node 2 which has costs 25. In this example, the routes 

ith lower costs have also a lower probability of arriving on time. 

he probability that the direct route arrives before 20 at node 4 

s about 0.16, for the route via node 3 this probability is approxi- 

ately 0.91, and finally, for the route via node 2 it is about 0.99. 

In Fig. 2 , the distributions of the arrival time at node 4 for the

ifferent paths are plotted. The path 1-3-4 clearly has three differ- 

nt peaks, corresponding to different planned departures. The first 

eak corresponds with the departure from node 3 at time 8, this 

eak is small because the probability of arriving before 8 at node 

 is not so large. The second peak resembles all departures from 

ode 3 at time 14 and this is peak is the largest because the prob-

bility that the shipment arrives between time 8 and 14 at node 

 is large and the probability of overbooking is only 0.1. The third 

nd smallest peak correspond with the situation of an overbook- 

ng. 

Similarly, one might have expected to see also three peaks in 

he distribution of path 1-2-4, but in Fig. 2 there is only a single

eak for this path. The reason behind this single peak is two-fold. 

irst, the time between two departures is for edge (2,4) only 3, 

hich is much smaller than the six time steps difference between 

epartures for edge (3,4). Second, the variance of the travel time 

f edge (2,4) is also much larger than that for edge (3,4). Com- 

ining these two aspects make that the actual departure moment 

t node 2 has not got a big influence on the arrival moment at 

ode 4. Hence, we do not seek three peaks for the path path 1-2-4

n Fig. 2 . 
6 
If the three paths in this network would have been subpaths 

ntering node 4 and there would have been an arc leaving node 4 

ith departure time 20, then it would not be possible to discard 

ny of the three paths because the cheaper the path, the smaller 

he probability of arriving before 20 at node 4. 

.3. Risk measure heuristic 

In this section, we develop a heuristic for the problem pre- 

ented in Section 4 . In this heuristic, all stochastic variables are 

eplaced by a deterministic risk measure. The resulting determin- 

stic problem is solved using an ILP. The risk measure for stochastic 

ariable φ is denoted by ρα(φ) , in which α is the risk tolerance fac- 

or . The risk tolerance factor reflects the level of risk one is willing

o take. The larger the value of α, the more risk one is accepting. 

f more risk is accepted than the stochastic variable φ is replaced 

y a smaller risk measure. Since if the risk measure is small than 

ore paths result in a feasible solution. Hence, the risk measure 

α(φ) has to be a decreasing function of α. The risk tolerance fac- 

or α can be seen as a proxy for the risk acceptance threshold β , 

ut there is no formal relationship between the two. Moreover, the 

isk tolerance factor has no clear interpretation. Therefore, we start 

n our heuristic with small values of α, for which we will find a 

onservative but expensive path. If the value of α is gradually in- 

reased then all possible paths for that risk measure can be found. 

t is important to note that we are not interested in a Pareto-front 

ith respect to the costs and α, but only in such a front for the

osts and β . The paths constructed by this heuristic do not nec- 
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ssarily form a set of Pareto-optimal solutions with respect to β
ecause it could be that a path is perceived less riskier by the risk 

easure but that the actual probability of arriving too late is larger. 

We will use two different risk measure functions: the 

xpectation-variance (EV) function and the certainty equivalent 

nder exponentially disutility. In the remainder of this paper, we 

ill refer to the latter as the certainty equivalent (CE). We have 

hosen these two risk measures because they represent different 

evels of risk averseness. Another advantage of the EV function is 

hat it has a clear interpretation, as we will see below, and the 

E method has the benefit that it satisfies the additive consistency 

roperty, as we have seen in Section 2 . 

.3.1. Expectation-variance method 

The expectation-variance function for stochastic variable φ on 

he domain [ φ, φ̄] and risk tolerance factor α is defined as 

 Markowitz, 1952 ): 

 α(φ) = max 
{
φ, min { E ( φ) − αVar ( φ) , φ̄} } α ∈ (−∞ , ∞ ) . 

he idea behind the EV method is that for positive values of α a 

raction of the variance is subtracted from the expectation, and a 

raction of the variance is added to the expectation for positive val- 

es of α. As we replace φ by E α(φ) , the value E α(φ) is restricted

o values that are between the lower and upper limit of φ. The 

enefit of E α(φ) is that it is easy to compute and has a relatively

lear interpretation. Moreover, it can take any value in the support 

f φ and thus it can also be used for a risk-tolerant shipper. 

.3.2. Certainty equivalent method 

For a random variable φ and risk tolerance factor α the cer- 

ainty equivalent is given as follows ( Jaillet et al., 2016 ): 

 α(φ) = 

{ 

α ln E 

(
e 

φ
α

)
α > 0 

lim γ → 0 C γ (φ) α = 0 . 

sing moment generating functions, C α(φ) can be easily com- 

uted for a given distribution. For instance, C α(φ) = μ + 

σ 2 

2 α if φ
s normally distributed with mean μ and standard deviation σ or 

 α(φ) = α ln 

((
1 − θ

α

)−k 
)

for α > θ if φ is gamma distributed with 

ean kθ and standard deviation 

√ 

k θ . The function C α(φ) con- 

erges to the mean of φ if α goes to infinity, and it converges to 

he upper limit of its domain if α goes to zero ( Jaillet et al., 2016 ).

 possible downside of this approach is that the value for C α(φ) 

an thus never be below its mean, so it does not work very well

or a risk-tolerant shipper. An advantage of the certainty equivalent 

s that it grows exponentially for decreasing α and that is thus it 

onverges fast to the upper limit of the stochastic variable. There- 

ore, it is a suitable risk measure for a risk-averse shipper. 

.3.3. Integer linear program formulation 

If each stochastic variable φ is replaced by a risk measure 

α(φ) , the problem becomes a deterministic optimization prob- 

em. For the moment, let us assume that the value of α is fixed, 

hen the resulting problem can be formulated by the following ILP: 

in 

∑ 

(i, j) ∈A 
c i j x i j (4) 

ubject to: ∑ 

j:(x 1 j ) ∈A 
x 1 j = 1 (5) 

∑ 

 :(i, j) ∈A 
x i j = 

∑ 

k :( j,k ) ∈A 
x jk j = 2 , . . . n − 1 (6) 
b

7 
∑ 

i :(i,n ) ∈A 
x in = 1 (7) 

 i ≤ d i j + k f i j z i jk (i, j) ∈ A k = 0 , 1 , . . . , K (8) 

 i j + ρα

(
φ0 

i j 

)
+ 

K ∑ 

k =0 

(
k f i j 

+ ρα

(
φk +1 

i j 

))
z i jk ≤ a j + (1 − x i j ) M (i, j) ∈ A (9) 

K 
 

k =0 

z i jk = 1 (i, j) ∈ A (10) 

 1 = 0 (11) 

 n ≤ T (12) 

 i ≥ 0 i = 1 , . . . , n (13) 

 i j ∈ { 0 , 1 } (i, j) ∈ A (14) 

 i jk ∈ { 0 , 1 } (i, j) ∈ A k = 0 , 1 , . . . , K. (15) 

In this ILP, there are three types of decision variables. For each 

rc (i, j) we have a binary variable x i j indicating whether that arc 

s traversed or not. Second, for every node i the decision variable a i 
orresponds with the arrival moment at node i . If a path does not 

isit node i , the value a i can take any value. Finally, the binary de-

ision variable z i jk is 1 if the arrival at node i is between d i j + k f i j 

nd d i j + (k + 1) f i j for every arc (i, j) and k = 1 , . . . , K. The vari-

ble z i j0 indicates whether the arrival at node i was before d i j . The

alue K corresponds with the maximum number of departures that 

an be missed at a node and that the path still arrives before T at

ode n . Although, the value K is potentially different for every arc, 

e assume for simplicity that the maximum value over every arc 

s applied to all arcs. 

The objective function in Eq. (4) minimizes the costs of the se- 

ected path. Constraint (5) enforces that the path leaves node 1 and 

onstraint (7) that it arrives in node n . In constraint (6) , it is en-

ured that if a path enters a node other than 1 or n , it also has

o leave that node. The constraint (8) makes sure that the depar- 

ure time d i j + k f i j z i jk from node i is after a i , the arrival at node

 . In constraint (9) , it is enforced that if arc (i, j) is traversed in

he path, then the arrival at node j is at least a j . For this con-

traint to be valid, we need that M is a sufficiently large con- 

tant. Furthermore, the number of missed departures is given by 
 K 
k =0 

(
k f i j + ρα

(
φk +1 

i j 

))
z i jk . Finally, the term ρα

(
φ0 

i j 

)
represents 

he travel time on arc (i, j) , which is independent of the actual 

eparture time of that arc. In constraint (10) , every arc (i, j) is en-

orced to have exactly one z i jk that is equal to one. The constraints 

11) and (12) ensure, respectively that the arrival at node 1 equals 

 and the arrival at node n is before the deadline T . 

In practice, one might need multiple stochastic constraints. For 

nstance, in a situation in which the freight has to be temperature 

egulated, the time the freight spends in a port without the right 

quipment to control the temperature of the shipment could also 

e subject to a probabilistic constraint. These types of constraints 



B.G. Zweers and R.D. van der Mei European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; August 16, 2021;12:54 ] 

c

s

t

a

e

t

a

s

f

a

5

 

v

t

t

t

i

S  

i

P  

m

o  

o

 

i  

t  

t  

p

α  

u

d

t  

t  

i

s  

i  

n

a

(

5

r

t

d

v

t  

t

b

T  

t

t

T  

t  

r

2

g

v

i

E

a

H

t

t

w

p

o

c

d

b

P

6

t

i

S

d

6

g

r

a  

w{
b  

m

w

h

i

d

i

h

o

a

an easily be added to the ILP above. In such a situation, one 

hould consider carefully if also multiple values for α are needed 

o differentiate between the risk tolerance for different constraints. 

We solve the ILP (4) - (15) using a standard ILP solver. However, 

s this problem is a special case of the resource constrained short- 

st path problem, it is NP-hard. Hence, for larger-sized instances, 

he computation time might be too long. Nevertheless, many ex- 

ct approaches have been developed for the recourse constraint 

hortest path problem and they can be applied if needed. We re- 

er to Pugliese and Guerriero (2013) for a survey on these exact 

lgorithms. 

.3.4. Iterative procedure 

In the ILP (4) - (15) , it was assumed that α was fixed. As the

alue α has no clear interpretation, it is impossible for a practi- 

ioner to set a value of α beforehand. Nonetheless, we know that 

he larger the value of α the more risk is taken and the cheaper 

he solution will be. Therefore, the Pareto-front can be constructed 

n the following way: initialize α = M sufficiently large and P = ∅ . 
olve for that value of α the ILP (4) - (15) . Assume the path result-

ng path consists of l visited nodes, and let us denote this path by 

 = (p 1 , p 2 , . . . , p l ) . Add this path to the set P . After that, find the

inimum value of α for which the sum of all certainty equivalents 

f path P is less than T . In other words, find the minimum value

f α for which the solution is feasible. 

A procedure to find this value for α is given in Algorithm 1 . The

dea of Algorithm 1 is simple, for a given value of α, the arrival

Algorithm 1: Procedure to find the minimum α for which a 

given path P is feasible for ILP (4) - (15) . 

Input: Path P = (p 1 , p 2 , . . . , d l ) 

Initialize s = 0 , α = 0 if ρα(φ) = C α(φ) and α = −M if 

ρα(φ) = E α(φ) , and ᾱ = M with M being a sufficiently large 

number. while ᾱ − α > 0 . 0 0 01 or s < T − 1 do 

α = 

ᾱ−α
2 

s = ρα

(
φ0 

p 1 p 2 

)
for i = 2 , . . . , l do 

if s ≤ d p i p i +1 
then 

s = d p i p i +1 
+ ρα

(
φ0 

p i p i +1 

)
+ ρα

(
φ1 

p i p i +1 

)
else 

k = 

⌈ 

s −d p i p i +1 

f p i p i +1 

⌉ 

s = d p i p i +1 
+ k f p i p i +1 

+ ρα

(
φ0 

p i p i +1 

)
+ ρα

(
φk +1 

p i p i +1 

)
end 

end 

if s ≤ T then 

ᾱ = α
else 

α = α
end 

end 

Output: α

ime of path P at the final node n ( s ) is calculated. If this arrival

ime is lower than T , it means that the value of α for which the

ath arrives exactly at time T is larger. Hence, the lower bound for 

, denoted by α needs to be updated. If s is larger than T , then the

pper bound for ᾱ is updated. The function of the arrival time is 

iscontinuous in α because if a path arrives just after d i j at node i 

hen the departure time at node i will be d i j + f i j . That is why in

he while-statement in Algorithm 1 , also the condition s < T − 1 is

ncluded. By this we ensure that in these situations we return the 

maller value of α. If the value of α is found in the way described

n Algorithm 1 , we subtract a small value ε from it to obtain a
8 
ew value for α for which the solution P is not longer feasible. We 

gain solve the ILP (4) - (15) and repeat the procedure until the ILP 

4) - (15) is infeasible. 

.3.5. Running example (continued) 

We now solve our running example given in Fig. 1 with the 

isk measure heuristic. For this example, the solutions produced by 

he expectation-variance and the certainty equivalent approach are 

ifferent. Recall that for α sufficiently large, the CE of a random 

ariable is arbitrary close to its expectation. As the expectation of 

he travel time on the arc from node 1 to node 4 is larger than

he deadline, the direct route is infeasible for the CE method. The 

ottom route, via node 3, is feasible for the certainty equivalent. 

he travel time on the first leg is 9, so the shipment is too late for

he planned departure time of 8. The first departure is at 14 and 

hen the expected number of flights being missed is the 
p i j 

1 −p i j 
= 

1 
9 . 

he expected travel time from node 3 to node 4 is 3, so the arrival

ime at node 4 equals 17 1 9 . This route is feasible as long as α is

oughly larger than 3.10. If α is larger than 1.44 the route via node 

 is feasible, so the heuristic using the certain equivalent will also 

ive that route as an option. 

The expectation-variance measure of a random variable takes a 

alue smaller than its expectation as long as α is positive. Hence, 

f this measure is used, the direct route is found as long as α > 

22 −20 
4 = 

1 
2 . If α is just smaller than a 1 

2 , the values taken by the 

V method are close to the expectation, so the route via node 3 is 

lso found in a similar way as for the certainty equivalent method. 

owever, for the lowest value of α for which this route is feasible, 

he route via node 2 is infeasible. The EV method underestimates 

he risk of the path via node 3. So the risk tolerance factor for 

hich it is still feasible is rather low. 

Concluding, both the certainty equivalent method and the ex- 

ectation variance method only find two of the three Pareto- 

ptimal routes. The most risk-tolerant route is not found by the 

ertainty equivalent method and the expectation-variance method 

oes not return the most risk-averse route. Hence, if we com- 

ine the solutions from these two methods we do find the entire 

areto-front. 

. Numerical results 

In this section, we use numerical experiments to investigate 

he quality of the different solution methods. We first describe 

n Section 6.1 how we generate random instances. Afterwards, in 

ection 6.2 , these instances are solved using the solution methods 

escribed in Section 5 and the results are presented. 

.1. Instance generation 

The different solution methods will be compared on randomly 

enerated networks. These networks consist of n nodes with 

andom arcs. To ensure that the graph is connected, we cre- 

te an arc between every node i and i + 1 . For the other arcs,

e assume that there is arc between node i and all nodes in 

i + 1 , . . . , min 

{
n, i + 

n 
2 

}}
with probability 1 

2 . This way, there could 

e a path from 1 to n with only one stop, but most routes will visit

ultiple hubs. This represents the dynamics of a intermodal net- 

ork in which there is usually at least one long-haul trip from one 

ub to another. 

Not every node in the graph corresponds with a unique phys- 

cal hub. For instance, in case a shipment can be shipped using 

ifferent booking classes, then every combination of hub and book- 

ng class results in a node. A higher booking class could potentially 

ave a lower overbooking probalility, but in this paper, for the sake 

f simplicity, we just consider nodes and do not make a differenti- 

tion between booking classes. 
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Table 2 

Number of instances for which for different solution methods and acceptance 

thresholds feasible paths are found. 

T f Method β

0.5 0.25 0.1 0.05 0.025 0.01 

2 Opt 87 45 1 0 0 0 

EV 49 26 1 0 0 0 

CE 9 30 1 0 0 0 

EV + CE 67 35 1 0 0 0 

3 Opt 100 100 87 71 57 21 

EV 85 76 49 31 20 6 

CE 96 94 73 57 46 19 

EV + CE 97 96 77 60 48 19 

4 Opt 100 100 100 100 100 85 

EV 92 87 79 68 60 33 

CE 95 93 90 86 84 66 

EV + CE 96 95 92 86 86 69 

5 Opt 100 100 100 100 100 100 

EV 93 90 84 78 68 51 

CE 96 93 91 91 89 86 

EV + CE 97 95 93 93 91 87 

Table 3 

Average percentage difference in costs for a method with the optimal solution if 

method has found a solution for that instance. 

T f Method β

0.5 0.25 0.1 0.05 0.025 0.01 

2 EV 4.4% 3.4% 0.0% 0.0% 0.0% 0.0% 

CE 15.6% 5.3% 0.0% 0.0% 0.0% 0.0% 

EV + CE 5.4% 2.5% 0.0% 0.0% 0.0% 0.0% 

3 EV 2.1% 2.7% 5.6% 3.7% 1.4% 0.0% 

CE 10.0% 5.0% 2.7% 2.7% 2.2% 0.0% 

EV + CE 3.1% 2.1% 1.5% 2.2% 2.1% 0.0% 

4 EV 1.0% 5.2% 9.6% 12.1% 11.7% 5.9% 

CE 4.2% 2.4% 1.6% 3.7% 3.5% 3.7% 

EV + CE 1.5% 0.7% 1.0% 1.8% 2.5% 3.3% 

5 EV 0.8% 2.2% 4.3% 8.0% 9.4% 6.6% 

CE 2.5% 2.5% 2.4% 1.9% 0.9% 1.1% 

EV + CE 0.5% 2.0% 1.5% 1.2% 0.8% 0.7% 
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The costs of an arc (i, j) are randomly generated as follows: 

 i j = ( j − i ) ∗ Uniform (1 , 4) . This ensures that the expected costs of

n outgoing arc of i are larger if j the length of an arc is also larger.

he duration of an arc is gamma distributed and the mean dura- 

ion of an arc (i, j) is randomly uniform between 3 and 10, and

hus, it is independent of i and j. The standard deviation is ran- 

omly uniform between 0.2 and 3. 

We assume that the number of departures missed because of 

verbooking is geometrically distributed. The parameter of this dis- 

ribution is 0.9 if the shipment arrives before its planned departure 

t a node and 0.75 if it arrives after its planned departure. Hence, 

e assume that all 
k 
i j 

are the same for every k ≥ 2 , and thus we

ill use 
2 
i j 

for every 
k 
i j 

for k ≥ 2 . The value 0 is included in the

omain of the geometric distribution to make sure that is possible 

o miss no departures. We include the fact that a shipment is al- 

ays shipped with the fifth departure, so it cannot miss more than 

our departures. Hence, the probability distributions for φ1 
i j 

and φ2 
i j 

re as follows for every arc (i, j) : 

 

(
φ1 

i j = k 
)

= 

{
0 . 1 

k 0 . 9 k = 0 , 1 , 2 , 3 

0 . 1 

4 k = 4 

 

(
φ2 

i j = k 
)

= 

{
0 . 25 

k 0 . 75 k = 0 , 1 , 2 , 3 

0 . 25 

4 k = 4 . 

For the scheduled departure on an arc (i, j) , we calculate the 

hortest path with respect to the mean duration to node i and add 

 discrete random uniform number between 3 and 13 to it. The fre- 

uency of an arc is also a discrete number that is randomly gener- 

ted from the uniform distribution between 4 and 20. We assume 

hat every arc leaving node 1 has planned departure time 0 and is 

ever overbooked, so it is always possible to leave this node at that 

ime. For the final deadline, the shortest path to the destination 

ith respect to the mean duration of the arcs is calculated. It is 

ery unlikely that for a reasonable risk acceptance threshold, there 

xists a feasible solution for this deadline. Hence, we generate mul- 

iple instances with different deadline factors (T f ) . We multiply the 

nal deadline with this deadline factor to obtain deadlines that are 

ess restrictive. In our instances, we have chosen 2, 3, 4, and 5 as 

eadline factor. The deadline factor reflects the behavior of a ship- 

er that if there does not exist a route that gives a desired on-time

rrival probability that then the deadline is set later. 

.2. Comparison solution methods 

In this section, we compare the optimal solution with the 

euristic method using 100 instances of 50 nodes that are ran- 

omly generated as described in Section 6.1 . We have chosen for 

his network size because its a realistic size especially if there are 

wo to four different bookings classes. Moreover, the optimal algo- 

ithm can still solve it in a few minutes, but for larger instances 

he running time of the optimal algorithm becomes problematic. 

or example, for a network consisting of 250 nodes, the average 

unning is about an hour. The heuristic can still solve the problem 

or this size of networks in a few seconds. 

To compare the quality of the heuristic paths with the optimal, 

e compute the actual probability of arriving late at the destina- 

ion for every heuristic path. If it turns out that a path that was

onceived as less risky by the heuristic is actually riskier and more 

xpensive than another heuristic path, then it is removed from the 

et of heuristic paths. As the running time of the heuristic is rela- 

ively short, it is also possible to compute the solution of both the 

ertainty equivalent and expected variance heuristic and take the 

est solution of the two. So in this section we will compare the 

V heuristic, the CE heuristic, and the combination of these two 

EV+CE) with the optimal solution. We assess the quality of the 
9 
euristic at two levels. First, we check if for a certain value of β
 feasible solution is found. A good heuristic should have a high 

robability of finding a path if there exists a solution. The second 

evel is the cost of a route produced by the heuristic. If the solu- 

ion heuristic returns a path, then its costs should ideally be close 

o the optimal costs. 

In Table 2 , for different values of β and T f it is shown for how

any instances a solution is found by the different solution meth- 

ds. By increasing the value of β or T f , we see that the number

f feasible solutions increases. Moreover, it can be concluded that 

he number of instances for which a feasible path is found by the 

V and CE heuristic on their own is for certain combinations of β
nd T f much lower than the instances for which the optimal solu- 

ion gives a solution. However, by combining the two heuristics the 

umber of feasible paths is much higher. Hence, we can conclude 

hat the two different risk measures produce sufficiently different 

olutions. It should also be noted that the CE heuristic returns for 

ore instances a feasible path, which confirms the idea that it is 

ore risk-averse than the EV heuristic. 

In Table 3 , the costs of the solutions returned by the three 

euristics is compared with the optimal costs. To make a fair com- 

arison, we condition the costs for the optimal solution for all 

hree methods only on the instances for which that heuristic finds 

 feasible solution. Hence, the number of instances for which we 

ompute the optimality gap is the number given in Table 2 . This 

ould lead to outcomes that at first sight might be unexpected. 

or instance, for T f = 2 and β = 0 . 5 the optimality gap for the EV

euristic is smaller than optimality gap for the combination of the 
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Table 4 

Average hypervolume indicator over all instances for the different solution methods 

and deadline factors. 

T f 

2 3 4 5 

OPT 0.35 0.59 0.67 0.69 

EV 0.22 0.47 0.59 0.63 

CE 0.17 0.52 0.61 0.65 

EV + CE 0.28 0.56 0.64 0.67 
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Table 5 

Total number of paths found by the different methods. 

T f Opt EV CE EV + CE 

Mean Std Mean Std Mean Std Mean Std 

2 2.0 1.2 0.9 0.9 0.2 0.4 0.9 0.9 

3 4.5 2.1 2.4 1.5 2.6 1.4 2.9 1.5 

4 6.2 2.4 3.1 1.4 2.6 1.2 4.1 1.7 

5 6.1 2.5 3.0 1.3 2.9 1.3 3.9 1.6 
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V and CE heuristic. The solution returned by the combination of 

he EV and CE heuristic is at least as good as the solution from the

V heuristic. However, the combination heuristic finds solutions to 

ore instances and these instances are likely to be harder. Hence, 

t is correct that the optimality gap for the combination heuristic 

s larger than for the EV heuristic. Nevertheless, in general the so- 

utions that are obtained by combining are much better than those 

f the single heuristics and have an optimality gap of about 2%. 

As we concluded before, the solutions from the CE heuristic are 

ore conservative than those of the EV heuristic and this effect 

an also be seen in Table 3 . For β = 0 . 5 , the solutions produced

y the CE heuristic have a much larger gap with the optimal so- 

utions than the solutions from the EV heuristic. This is caused by 

he fact that the CE heuristic often only produces solutions that 

ave a much lower acceptance threshold than 0.5. For instance, if 

here is a cheap route for which the probability of arriving too late 

s 0.4 it is more likely to be found by the EV heuristic than by

he CE heuristic. Nonetheless, if β decreases, the relative quality of 

he solutions by the CE method improves compared with the EV 

euristic. 

In Table 2 , it is shown how many feasible paths were found, 

nd the costs of these solutions are investigated in Table 3 . By 

ooking at the hypervolume indicator , we can simultaneously look at 

he feasibility and solution quality of paths. For a detailed descrip- 

ion how to compute the hypervolume indicator we refer to Lacour, 

lamroth, and Fonseca (2017) and Jaszkiewicz (2018) . The idea be- 

ind the hypervolume indicator is to compute the area above the 

areto front of a set of solutions produced by a method. The larger 

his area, the lower the objective function, and thus, the better the 

olution method. The area above the Pareto curve is unbounded so 

e need to derive an upper bound for the costs of the solution. 

t is not trivial to compute such an upper bound but for all in-

tances that we solve and all solution methods we can check that 

he costs never exceed 200, so we use that as an upper bound. 

or every value of β ∈ { 0 . 01 , 0 . 02 , . . . , 0 . 99 } we solve all instances

ith all solution methods. If a solution method produces a feasi- 

le solution for a value of β , we subtract the cost of that solution 

rom 200. If this value is compute for all β ∈ { 0 . 01 , 0 . 02 , . . . , 0 . 99 }
nd we sum over these values, then an approximation for the area 

bove the Pareto-front is obtained. To give a more intuitive mean- 

ng to this area, we normalize it such that it is always between 

 and 1. To do so, it is important to realize that the costs of a

ath is always positive, so the area above the Pareto-front is at 

ost 200 times the number of values of β that are considered, i.e., 

00 · 99 = 19 , 800 . Hence, if the area above the curve Pareto front

s divided by 19,800, the hypervolume indicator is obtained which 

s always a value between 0 and 1. 

In Table 4 , the average hypervolume indicator for the differ- 

nt solution methods and deadline factors over all 100 instances 

s shown. We see that the EV heuristic outperforms the CE heuris- 

ic if T f equals 2, but that for larger values of T f the CE heuristic

s better. This observation supports the claim that the EV heuristic 

s more suitable for conservative planners. If the deadline is tight 

ts performance is better than the CE heuristic but if more trans- 

ortation time is allowed than the CE heuristic produces better so- 
10 
utions. Moreover, the combination of the two heuristic is much 

loser to the optimal solution than the two heuristic independent. 

inally, the larger the deadline factor, the closer the costs of the 

euristic’s solutions are to the optimal costs. An explanation for 

his observation is that the larger the deadline factor, the more 

aths are feasible and thus, finding a feasible solution that is close 

o the optimal solution is easier. 

Finally, we look at the number of solutions produced by the dif- 

erent methods. The objectives of finding a path that arrives on 

ime with sufficient probability and that has minimal costs are not 

onflicting if only a single solution is returned. We again solved 

he hundred instances for every β ∈ { 0 . 01 , 0 . 02 , . . . , 0 . 98 , 0 . 99 } . In

able 5 , we give the average number of paths found for an instance 

nd its standard deviation. We see that the average number of op- 

imal paths for an instance is about 4 to 6. The number of paths 

eturned by the two heuristics is lower with a value between 2 

nd 3, but, again by combining these two heuristics, the number of 

aths that is found is increased to an average value between 3 and 

. For T f equals two, the number of average paths that is found 

s lower because there are fewer feasible paths. Furthermore, as 

e noted before the CE heuristic is more conservative than the EV 

euristic and thus, the number of paths returned by the CE heuris- 

ic is also lower than for the EV heuristic. 

. Conclusion 

In this paper, we studied an intermodal routing problem in- 

pired by a company that is offering shippers a tool to find the 

est route for their shipment. In deciding what the best route is, 

 trade-off has to be made between the shipment costs and the 

robability of arriving before a deadline at the destination. A dis- 

inct feature of our model is that it includes two types of stochas- 

icity. First of all, the travel times between two nodes are stochas- 

ic. Moreover, we also added the possibility of overbooking as this 

appens on a regular basis in practice and has a major influence on 

he arrival time of a shipment. All legs in our transportation net- 

ork have a planned departure time and if the shipment arrives 

fter the planned departure time at the origin of this leg, then the 

robability of overbooking gets even larger. 

We have shown how to calculate, for a given path, the proba- 

ility of arriving on time at the destination. As it could be hard to 

nd dominating paths in our model, an optimal algorithm might 

eed too much computation time for practical use. Therefore, we 

ave proposed a heuristic in which the stochastic variables are re- 

laced by two different deterministic risk-measures. The resulting 

roblem is a RCSPP that we solve using an ILP-formulation. This 

euristic produces solutions that are close to the optimal solution 

nd its running time is significantly smaller than the optimal algo- 

ithm. 

The heuristic can solve networks with 250 nodes in a few sec- 

nds and the optimal algorithm needs for these networks an hour. 

or even larger networks, also the running time of the heuristic 

ight become too long to use in practice because multiple ILPs 

eed to be solved. So an interesting direction for further research 

ould be to find a heuristic that can solve larger instances. One 

ay to do this could be the use of exact algorithms tailored for 
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he resource constraint shortest path problem, instead of using the 

tandard ILP implementation. Another way to improve the running 

ime of our heuristic could be to use a heuristic to solve the RCSPP. 

he solution quality of the heuristic could potentially be improved 

y another risk measure. It would be interesting to investigate risk 

easures that are more risk averse than the EV heuristic but less 

isk averse that the CE heuristic. 

The current problem formulation assumes that the complete 

ath is booked in advance. If one would allow for adjustments in 

he path after a missed departure, the described solution methods 

ould still be used but their quality might be worse. At every node 

f the path we could recalculate the best path for the remaining 

raph. However, the flexibility of re-optimizing might result in a 

ifferent path from the beginning than the proposed path if the 

ntire trip is booked in advance. For instance, it could be that from 

 specific node there is one path to the destination that is good if 

he shipment arrives relatively early but bad if the arrival at that 

ode is relatively late. If there is another path for which it is the 

ther way around, then the performance of both paths might be 

ub-optimal if the path needs to be booked in advance. Neverthe- 

ess, if we allow for re-optimizing these paths might have a good 

uality. Hence, finding good solutions for a synchromodal scenario 

n which the route can be changed after a disruption needs to be 

nvestigated in further research. 

In our current model, the planned departure time for a leg is 

ssumed to be given. An extension to this model would be to de- 

ide on the first possible departure. This departure should then be 

n a set of possible departure times. This model would better re- 

ect reality but it also adds extra complexity to the problem. If 

ne decides to plan the first departure later, then the probability 

f arriving before that time increases and thus the probability of 

verbooking decreases. On the other hand, there is no option to 

eave earlier than the first departure, so the probability of arriving 

n time at the destination could also decrease. 
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