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ABSTRACT

Multiparty session types constitute a method to automatically de-
tect violations of protocol implementations relative to specifica-
tions. But, when a violation is detected, does it symptomise a bug
in the implementation or in the specification? This paper presents
dcj-lint: an analysis tool to detect bugs in protocol specifications,
based on multiparty session types. By leveraging a custom-built
temporal logic model checker, dcj-lint can be used to efficiently
perform: (1) generic sanity checks, and (2) protocol-specific prop-
erty analyses. In our benchmarks, dcj-1int outperforms an existing
state-of-the-art model checker (up to 61X faster).
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1 INTRODUCTION
1.1 Background

To take advantage of modern multi-core processors, concurrent
programming—a notoriously complex enterprise—is becoming in-
creasingly important. To alleviate some of the complexities, besides
“low-level” synchronisation, several programming languages have
started to offer core support for “higher-level” communication as
well, in the guise of message passing through channels (e.g., Go,
Rust, Clojure). The idea is that, beyond usage in distributed com-
puting, channels can also serve as a programming abstraction for
shared memory, supposedly less prone to concurrency bugs.
However, evidence suggests that channels have issues, too: after
studying 171 concurrency bugs in popular Go programs [35], Tu
et al. find that “message passing does not necessarily make multi-
threaded programs less error-prone than shared memory.”
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From the programmer’s perspective, a major challenge is this:
given a specification S of the roles (threads) and the protocols (ses-
sions of communications between threads) that an implementation
I should fulfill, how to guarantee that I is indeed safe relative to S?
Safety means that “bad” channel actions never happen: if a channel
action happens in I, then it is allowed to happen by S.

Multiparty session types (MPST) [18] constitute a method to auto-
matically prove safety of implementations relative to specifications.
The idea is to specify protocols as behavioural types [1, 22] against
which threads are type-checked; the method ensures that well-
typedness implies safety. Over the past decade, substantial progress
in both MPST theory (e.g., extensions with time [3, 26], security [5—
8], parametrisation [9, 13, 29]) and practice (e.g., tools for Clojure,
Erlang, F#, Go, Java, Scala [9, 15, 20, 27, 28, 30]) has been made.

1.2 This Paper

When implementation I violates specification S, there are two cases:
(A) S is right, while I is wrong. In this case, existing debugging/anal-
ysis tools for the implementation language can readily be used. (B)
Alternatively, I could actually be right, while S is wrong. In this case,
debugging/analysis tools for the specification language are needed.
However, such tools do not yet exist for MPST; this is problematic,
as MPST-based specifications get increasingly complex. Therefore:

Contribution 1: We present dcj-1lint: an analysis
tool to detect bugs in MPST-based specifications.

Technically, dcj-1int is based on a custom-built temporal logic
model checker. The advantage of “building our own” is twofold: on
our side, it enables us to add/tailor features to our specific needs;
on the programmer’s side, it enables them to effortlessly deploy
dcj-lint, without the need to install third-party model checkers or
other external dependencies. However, a disadvantage of “building
our own”—instead of reusing an existing model checker—is missing
out on previously optimised code and algorithms. To study the mag-
nitude of this disadvantage, we evaluated dcj-lint in quantitative
performance experiments. Intriguingly, our benchmarks show:

Contribution 2: dcj-lint outperforms the state-
of-the-art model checker mCRL2 [4, 12].

In Section 2, we present an overview of dcj-lint, by example.
In Section 3, we present design and implementation details. In Sec-
tion 4, we present our evaluation. As part of the Discourje project,
dcj-lint is now available at https://github.com/discourje.

2 OVERVIEW

2.1 Preliminaries & Workflow

dcj-lint can analyse specifications written in Discourje (pronunci-
ation: “discourse”) [15], of implementations written in Clojure [16].
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—safe A
cause = ?

write I
—safe A cause =1

Figure 1: Workflow of debugging with dcj-lint.

4 (defsession :two-buyer [] 1 (defrole :buyerl)

5 (cat (==> String :buyerl :seller) 2 (defrole :buyer2)
6 (==> Integer :seller :buyerl) 3 (defrole :seller)
7 (==> Integer :seller :buyer2)

8 (==> Integer :buyerl :buyer2)

9 (-=> Boolean :buyer2 :seller)

10 (par (close :buyerl :buyer2) (close :buyerl :seller)

(close :buyer2 :buyerl) (close :buyer2 :seller)
(close :seller :buyerl) (close :seller :buyer2))))

Figure 2: Discourje specification of the Two-Buyer protocol.

In a nutshell, Discourje is an MPST-based specification language
that offers dynamic behavioural type checking (of channel actions),
while Clojure is a Lisp-based implementation language that offers
dynamic data type checking. Taken together, the unique aspect is
that all type checking to ensure safety happens at run-time, of
both behavioural types and data types, seamlessly. An advantage
of developing dcj-lint in this context is that Discourje subsumes
other MPST-based specification languages in expressiveness [9, 20,
27, 28, 30], so dcj-lint can easily be upgraded to support them.

Figure 1 summarises the envisaged workflow, including dcj-1lint:

o First, the programmer writes an initial specification S in
Discourje and an implementation I in Clojure.

Next, the programmer “runs I with S”. This means that Dis-
courje’s dynamic type checker validates every attempt of I
to perform a channel action against S: if the channel action is
unsafe, then it is not performed, but an exception is thrown.
In case of an exception, the programmer diagnoses the prob-
lem: if it is “clearly” a bug in I, then they can fix I; else, they
can analyse S using dcj-lint. The aim of such analyses is to
rule out bugs in S, so the programmer can more confidently
focus their attention on diagnosing and fixing I (even if the
problem is not “clearly” a bug in I, it can still be one, es-
pecially with concurrency). dcj-lint supports both generic
sanity checks and protocol-specific property analyses.

2.2

To illustrate the workflow, we consider MPST’s classical Two-Buyer
protocol [18]: “Buyerl and Buyer2 wish to buy an expensive book
from Seller by combining their money. Buyer1 sends the title of the
book to Seller, Seller sends to both Buyerl and Buyer?2 its quote,
Buyerl tells Buyer2 how much she can pay, and Buyer2 either
accepts the quote or rejects the quote by notifying Seller” [19].
Below, O and < indicate “actions” and “decisions” in Figure 1:

Example: The Two-Buyer Protocol [18]

O First, we write the Discourje specification in Figure 2. Lines 1-
3 specify the roles, while lines 4-12 specify the protocol. In general,
(==>t p q) prescribes synchronous communication of a message that
satisfies t through the channel from p to ¢, by p and g; (close p ¢)
prescribes closing of the channel from p to g, by p; (cat S; ... Sn)
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1 (def c1 (chan)) (def c2 (chan)) ;; from Buyerl to Buyer2 and Seller
2 (def c3 (chan)) (def c4 (chan)) ;; from Buyer2 to Buyerl and Seller
3 (def c5 (chan)) (def c6 (chan)) ;; from Seller to Buyerl and Buyer2

4 (thread ;; Buyerl 11 (thread ;; Buyer2 18 (thread ;; Seller

5 (> ¢l "book") 12 (let [x (<!! c6) 19 (<! c1)

6 (let [x (<!! c5) 13 y (<11 c2) 20 (! c5 (int 20))
7 y (/ x2)] u z (=xy)]l 22 (!! c6 (int 20))
8 1! c2 (int y)))is ! c4 2)) 22 (println (<!! c4))
9 (close! c1) 16 (close! c3) 23 (close! c5)

10 (close! c2)) 17 (close! c4)) (close! c6))

Figure 3: Clojure implementation of the Two-Buyer protocol.

and (par S; ... Sp) prescribe sequencing and interleaving. We note
that Discourje has more features, including asynchronous commu-
nication, choices, and loops; dcj-1int supports those too. We also
note that Discourje is built on top of Clojure/Java, so we can use
some Clojure/Java features in specifications (e.g., data types).
Thus, in this specification: lines 5-9 prescribe communications
of a String (book) from Buyer1 to Seller, an Integer (quote) from
Seller to Buyer1 and Buyer2, an Integer (contribution) from Buyer1
to Buyer2, and a Boolean (accept/reject) from Buyer2 to Seller; lines
10-12 prescribe closings of all channels, in no particular order.

O Next, we write the Clojure implementation in Figure 3. Lines 1-
3 implement the channels, while lines 4-24 implement the threads.
In general, (>!! ¢ m) sends m through ¢, (<!! ¢) receives a message
through ¢, and (close! ¢) closes c; the other keywords are as usual.

Thus, in this implementation: the quote of Seller is 20 (variable x
at Buyer1 and Buyer2); the contribution of Buyerl is 10 (variable y
at Buyer2), and the decision of Buyer?2 is to reject (variable z).

O Next, we run the implementation with the specification. To
do this, we first need to enable dynamic behavioural type checking,
by adding the following lines between lines 3 and 4 in Figure 3:

35a (def m (monitor (session :two-buyer)))

3sb (1ink c1 :buyerl :buyer2 m) (link c2 :buyerl :seller m)

3s5c (link c¢3 :buyer2 :buyerl m) (link c4 :buyer2 :seller m)

35d (link c5 :seller :buyerl m) (link c6 :seller :buyer2 m)

Thus, we create a monitor for a session of the Two-Buyer protocol
(responsible for dynamic behavioural type checking), and link it to
every channel, along with the intended sender and receiver.

< Next, we observe an exception:

[SESSION FAILURE] Action C(buyerl,buyer2) is not enabled in
current state(s): [4]. LTS in Aldebaran format:

des (0,5,6)

(0,"?(String,buyeri,seller)",1)
(1,"?(Integer,seller,buyer1)",2)
(2,"?(Integer,seller,buyer2)",3)
(3,"?(Integer,buyerl,buyer2)",4)
(4,"?(Boolean,buyer2,seller)",5)

*%x* state 5 not yet expanded ***

The first two lines mean that the implementation of Buyer1 attempts
to close its channel to Buyer2, indicated as C(buyer1,buyer2), but
that this is not allowed in the specification’s current state, identified
as 4. Additionally, the last six lines show the relevant part of the
state space of the specification (i.e., its formal semantics, computed
on-the-fly), as a list of transitions of the form (s, "a",s’), from state s
to state s” with action a. Notably, in current state 4, the specification
allows only a communication from Buyer2 to Seller, indicated by
?(Boolean,buyer2,seller); not the attempted closing by Buyerl.
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?(String,buyer1,seller)
?(Integer,seller,buyerl)
?(Integer,seller,buyer2)
?(Integer,buyeri,buyer2)
?(Boolean,buyer2,seller)
C(buyer2,buyer1)

?(String,buyer1,seller)
?(Integer,seller,buyerl)
?(Integer,seller,buyer2)
?(Integer,buyerl,buyer2)
?(Boolean,buyer2,seller)
C(buyer1,buyer2)

Figure 4: A channel is closed,
but never used.

Figure 5: Causally unrelated
actions are strictly ordered.

Thus, apparently, there is a timing issue with Buyer1’s closing.
However, this is not “clearly” a bug in the implementation: the
specification prescribes all closings to happen at the end (Figure 2,
lines 10-12), and indeed, every thread closes its channels at the end
of its run (Figure 3, lines 9-10, 16-17, 23-24), so what goes wrong?

O Next, we analyse the specification using dcj-1lint, by having
it automatically perform seven generic sanity checks: three checks
pertain to termination (the protocol must always terminate; it may
always terminate; it can never terminate), three checks pertain to
closings (if a channel is used, it must be closed; if a channel is closed,
it must have been used; if a channel is closed, it cannot be used
again), and one check pertains to causality (clarified below).

<& Next, dcj-lint reports three issues. The first issue is that the
specification cannot never terminate. This is intended, so we can
immediately ignore it (and disable the check). The second issue is
that, apparently, one of the channels can be closed before it is used.

To help debugging, dcj-1lint provides the witness in Figure 4 (i.e.,
a violating sequence of actions). It clarifies that after five commu-
nications, the specification allows Buyer2 to close its channel to
Buyerl, but actually, that channel is never used. While this is not a
bug per se, it “smells” (cf. dead code and unused variables).

O Next, we remove (close :buyer?2 :buyer1) from line 11 in Fig-
ure 2, and also (close! ¢3) from line 9 in Figure 3.

O Next, we re-analyse the specification using dcj-lint.

<& Next, only the third issue remains reported: at some point,
apparently, two causally unrelated actions are allowed to happen in
one order, but not in the other order. This is problematic, because in
the absence of a causal relation between the actions, it is impossible
to write an implementation that fulfils one order but not the other.

To help debugging, dcj-lint provides the witness in Figure 5.
It clarifies that after five communications, the specification allows
Buyerl to close its channel to Buyer2, but it forbids Buyerl to
do so before Buyer2 and Seller have communicated (penultimate
action of the witness). However, as a non-participant in the com-
munication, Buyer1 cannot know when Buyer2 and Seller are done
(i-e., no causality), so the specification cannot be fulfilled; this is a
specification bug.

O Next, we fix the bug by observing that the specification is too
restrictive: it requires all channels to be closed at the end, but since
Buyerl’s part in the protocol is already done at line 8 in Figure 2,
the specification should allow Buyer1 to close its channels from that
point onwards. We therefore replace lines 9-12 with the following:

9 (par (——> Boolean :buyer2 :seller)

10 (close :buyerl :buyer2) (close :buyerl :seller))
11 (par {elose—buyer2—buyert> (close :buyer2 :seller)

12 (close :seller :buyerl) (close :seller :buyer2))))
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(The closing of the unused channel from Buyer2 to Buyerl was
removed in a previous step.) Thus, by judiciously introducing a new
par-block, the specification now allows Buyer1 to close its channels
in parallel to the communication from Buyer2 to Seller.

O Next, we re-analyse the specification using dcj-lint.

< Next, another causality issue is reported. The last two actions
of the witness are C(buyer1,seller) and C(buyer2,seller). Thus,
the specification allows Buyer1 and Buyer2 to close their channels
to Seller in that order, but not in the reverse order; since Buyer2
cannot know when Buyerl is done, this is a specification bug.

O Next, we fix the bug by observing that the updated specifi-
cation is still too restrictive: it unnecessarily requires Buyer1 to
close its channels before Buyer2 and Seller2 can close theirs. We
therefore refine lines 9-12 with another par-block, as follows:

9 (par (cat (-=> Boolean :buyer2 :seller)

10 (par <elese—buyer2—buyert) (close :buyer2 :seller)
11 (close :seller :buyerl) (close :seller :buyer2)))
12 (close :buyerl :buyer2) (close :buyerl :seller))

O Next, we re-analyse the specification using dcj-lint.
<& Next, no more issues are reported.
O Next, we re-run the implementation with the specification.

< At last, no more exceptions are reported. Thus, by iteratively
using dcj-lint, we detected and fixed bugs in the specification that
previously caused an exception; also, we alleviated a code smell.

3 DESIGN & IMPLEMENTATION

The core of dcj-1lint is a custom-built model checker for computa-
tion tree logic (CTL) [14]; it is implemented in Java 11 (data struc-
tures and algorithms) and Clojure 1.10 (front-end, integrated with
Discourje), without additional libraries, and runs on the JVM. There
are no additional requirements on operating system or hardware
(although, as usual, model checking is memory-intensive).

The idea is to: (1) define properties of a specification S as CTL
formulas; (2) compute the state space of S; (3) invoke a classical CTL
model checking algorithm [11]. Regarding point 1, example propo-
sitions are send(buyer1,seller) and close(buyerl,seller); these
can be used, for instance, to write AG(send(buyer1,seller) =
AF(close(buyerl,seller))). It states that on every path (A), always
(G), if Buyer1 sends to Seller, then on every path, eventually (F),
Buyerl closes its channel to Seller. Regarding point 2, a state is a
pair (@, S), where « is the most recently performed action, and S’
is the “remainder”; it has a transition to (5, S”’) if S”” “remains” after
performing f§ of S”. States contain enough information to evaluate
propositions (e.g., close(p,q) is true in (a, S’) iff @ = close(p,q)).

Besides performing generic sanity checks, dcj-1lint also enables
the programmer to write and check custom formulas for protocol-
specific properties in full CTL (witness generation works only for
CTL’s universal fragment, though). Other features:

e Batch mode: When asked to batch-check multiple formulas,
the model checker reuses the state space and bookkeeping
information between runs, to avoid double work. Notably,
the seven generic sanity checks are performed in batch mode.

e Past-time operators: CTL allows one to express properties
of the future. However, in our experience, many require-
ments are more naturally expressed in terms of properties
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Figure 6: Speed-up of dcj-lint relative to mCRL2 (y-axis; log scale), as the number of processes increases (x-axis).

of the past. For instance: “if a channel is closed, then it must
have been used” (i.e., one of the generic sanity checks). There-
fore, dcj-lint also supports Past CTL (branching past) [23].

e API: Using an APJ, custom atomic propositions and temporal
patterns can be written in Clojure to extend CTL’s core. We
used this feature to write the generic causality check.

4 EVALUATION

The main advantage of building our own model checker is that
we can tailor our version of CTL to our needs (e.g., Past CTL and
the API; see Section 3). However, the main disadvantage is missing
out on previously optimised code and algorithms in existing model
checkers. To study the magnitude of this disadvantage, we evaluated
dcj-lint in quantitative performance experiments.

First, we wrote specifications of two distributed depth-first search
algorithms, parametrised in the network topology: Cheung’s algo-
rithm [10] and Awerbuch’s algorithm [2]; the latter has more par-
allelism than the former. We instantiated the specifications with
various topologies (ordered by state space size: ring, tree, 2d-mesh,
star, and full mesh) and various process numbers (up to twelve).

Next, we used dcj-1int and the state-of-the-art model checker
mCRL2 [4, 12] to perform five of the seven generic sanity checks on
instantiated specifications; we omitted the remaining two generic
sanity checks, as they could not straightforwardly be translated into
mCRL2’s format for formulas (they involve Past CTL and API-based
temporal patterns). The input of dcj-lint consisted of instantiated
specifications, while the input of mCRL2 consisted of their state
spaces (generated by dcj-lint; i.e., instead of translating syntax
from Discourje to mCRL2, we translate semantics). For each run,
we measured the time it took dcj-lint or mCRL2 to perform all
five checks, minus the common work that both tools needed (no-
tably, generating state spaces). For every tool, for every instantiated
specification, we performed 30 runs to smooth out variability, on a
machine with an Intel E5-2690 v3 processor, Linux (kernel 3.10.0;
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Red Hat Enterprise Linux Server 7.9), default JVM settings (Oracle
JDK 16.0.1), and the latest version of mCRL2 (202006.0).

Figure 6 shows our results; speed-ups are computed as ratios of
means (30 measurements). Most standard deviations were less than
5% of the means, so the trends are useful. Missing bars indicate that
at least mCRL2 did not finish 30 runs in one hour (time out).

The main finding is that dcj-1int outperforms mCRL2. Moreover,
mCRL2 performs progressively worse relative to dcj-lint, as the
number of processes increases; this effect is especially prominent
for Awerbuch (more parallelism than Cheung) and for 2d-mesh/
star/full mesh (more parallelism than ring/tree). Thus, dcj-1lint is
not only faster in absolute terms, but it also scales better.

Our main hypothesis regarding why mCRL2 is slower, is that it is
actually too general: whereas dcj-1lint supports (Past) CTL to write
properties, mCRL2 supports the p-calculus, for which the model
checking problem has a higher computational complexity.

5 CONCLUSION

Regarding related work, recently, interest in using model checking
to verify properties of MPST has been growing [21, 24, 31-34];
notably, most of these works employ mCRL2, which is why we
used mCRL2 in our experiments. However, none of these works
use model checking to debug global MPST-based specifications;
this is a novel aspect of dcj-lint. More generally, channel-based
protocol verification has been an early use case of model checking; a
main difference with existing tools (e.g., Spin [17], Uppaal [25], and
mCRL2) is that Discourje specifications are written from the global
“system perspective” instead of the local “processes perspective”;
this makes source-to-source translations to existing tools difficult.
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