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Lay summary 
Sphingolipids (SLs) are essential small molecules found in the membrane walls 

of every human cell and are made from common building blocks such as amino acids 

and fatty acids. Research has shown that SLs are structural components and potent 

signal molecules that are involved in cell-to-cell communication, growth regulation and 

cell death in complex species. The biosynthesis of SLs in mammals, yeast and plants 

has been well-examined through studying the enzymes that make these molecules, 

detailed chemical analysis and understanding the genes/genetics involved. Moreover, 

mammalian SL biosynthesis has been suggested to be associated with many 

diseases, such as Alzheimer’s disease, sensory neuropathies, cancer and skin 

disorders, all due to unbalanced SL regulation within cells. Recent research has 

identified that SLs also exist in many bacteria that co-exist or are symbiotic with 

human hosts. These bacteria are found throughout the body such as the gut and oral 

cavity. 

SL biosynthetic enzymes and SLs are related to cell growth and survival ability in 

the bacteria. The human bacteria have an impact on host metabolism and the human 

immune system and have been linked to human diseases, including diabetes, obesity, 

allergies, autism, cancer and inflammatory. Furthermore, many novel bioactive SL 

species (for example, iso-branched SLs) have also been found in those human 

bacteria and a hypotheticed pathway is defined that requires a suite of essential 

enzymes that catalyse the conversion of those SL intermediates.  

In this work, three different types of enzymes, serine palmitoyltransferase (SPT), 

iso-branched amino acid transferase (IlvE) and 3-ketosphingosine reductase (3-KDS),  

all involved in the essential steps of SL biosynthesis, will be examined to provide 

kinetic, mechanistic and structural information for SL biosynthetic pathways in the 

human microbiota. 
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Abstract 

Sphingolipids (SLs) are a diverse class of lipid molecules derived from the amino 

acid L-serine and long chain fatty acids (e.g. carbon chain lengths C14-C26). When 

combined together these building blocks form a so-called “sphingoid”, also known as 

a long-chain base (LCB). Decades of research into these enigmatic molecules has 

revealed that SLs are essential components of eukaryotic cell membranes and control 

many critical cellular functions. The SL biosynthetic pathway begins in all organisms 

with the Claisen-like, decarboxylative condensation of L-Ser and long-chain fatty acid 

acyl-CoA thioester (CoASH) substrates (most commonly C16/palmitoyl) to form the 

intermediate 3-ketodihydrosphingosine (3-KDS). This first key irreversible reaction is 

catalysed by the pyridoxal 5’-phosphate (PLP)-dependent serine palmitoyltransferase 

(SPT). The 3-KDS product is then reduced by a NAD(P)H-dependent enzyme (KDS 

reductase, KDSR) to generate dihydrosphingosine (DHS). Acylation of this molecule 

with a long-chain fatty acid by a ceramide synthase (CerS) leads to the formation of 

ceramide (Cer). Downstream, phosphorylation with a phosphate group can occur on 

the serine-derived head group and lead to the formation of sphingosine-1-phosphate 

(S-1-P). The balance between Cer and S-1-P concentrations has been proposed to 

control the cell survival rate in the host system. Alternatively, sugars such as glucose 

can be added to give the family of glycosphingolipids (GSLs). 

In contrast to higher order species, research into SL biosynthesis in bacteria has 

lagged much further behind. However recent studies have revealed a number of 

important microbes that produce a range of SLs and Cers. Interestingly, SLs from the 

human microbiota including those from Bacteroides fragilis, a Gram-negative 

commensal bacterium from the human gut, and from the oral pathogen 

Porphyromonas gingivalis have recently been shown to play an essential role in 

host/microbe communication. Of note is that these bacterial SLs and Cers display 

many similar structural features to their mammalian homologues. However, there 

appears to be “chemical signatures” distinct to those of bacterial origin. For example, 

B. fragilis SLs have iso-Me branched acyl chains which are also similar to those found 

in the round-worm Caenorhabditis elegans. This suggests a PLP-dependent 

branched-chain amino acid transferase (BCAT/IlvE) transfers iso-Me chains from 

amino acid precursors such as L-Leu to branched-chain keto acids. To fully 

understand the role of bacterial SLs and their metabolism detailed investigations of 

the enzymes, pathways and metabolism are required. 
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In this thesis, studies of different types of the three key enzymes (SPT, IlvE/BCAT 

and KDSR) involved in the core microbial SL biosynthetic pathway have been 

presented. Firstly, both recombinant B. fragilis SPT (BfSPT, encoded by gene BF2461) 

and P. gingivalis (PgSPT, gene PG1780) were expressed in E. coli, purified and 

studied with protein UV-vis spectrometry, enzyme kinetics, inhibition assays, mass 

spectrometry and protein crystallization screening. 3-KDS products were detected 

derived from a range of straight-chain CoA substrates (C14-C18) and amino acids 

(Gly, L-Ala and L-Ser) produced by BfSPT and PgSPT. Mutagenesis of a conserved 

loop (PAVAP) in SPT homologues was found to be associated with the catalytic 

efficiency of PgSPT. Also the presence of a Val353 residue in BfSPT was shown to 

be essential to allow the enzyme to interact with the C16-CoA substrate. Moreover, 

data suggested that the position (N- or C- terminus) of the 6His-affinity tag used to 

purify SPT influenced substrate inhibition by C16-CoA. A hypothetical 3D structural 

model of the PgSPT PLP:L-Ser external aldimine complex was built in order to explore 

the active site and residues involved in substrate binding and catalysis. In 

collaboration with Prof. Mary-Ellen Davey (Florida), the role on SL biosynthesis in P. 

gingivalis was also explored and found that SLs impact on the way this pathogen 

interacts with human cells. 

Secondly, a branched acid transaminase P. gingivalis IlvE (PgIlvE, gene PG1290) 

was expressed, purified and studied using UV-vis spectrometry to investigate 

substrate binding and enzyme activity. A multi-enzyme coupled assay for PgIlvE was 

developed in both the ‘forward’ and ‘reverse’ direction, studied with inhibitors such as 

L- and D- cycloserine (LCS/DCS), as well as x-ray crystallography. In collaboration 

with Dr. Jon Marles-Wright (University of Newcastle) the crystal structures of four 

different forms of PgIlvE; the PLP-bound, internal aldimine form, LCS ring-opened 

ring-closed form and the PMP form, were obtained. Two residues (F56 and Y188) 

were identified which played a role in substrate binding and activity.  

In the final chapter, recombinant KDSR from the yeast Saccharomyces 

cerevisiae (ScKDSR) was isolated from E. coli. Kinetic parameters for a soluble, 

truncated form of the enzyme were determined using the substrates KDS and NADPH. 

The product C18 DHS derived from C18 KDS was detected with MALDI-ToF-MS. 

Recent studies of human KDSR revealed that patients with point mutations in this 

enzyme suffered from skin disorders (erythrokeratoderma). To investigate the impact 

of these mutations, a series of ScKDSR mutant mimics (G176S, Y180F and G263E) 

were prepared. To date there has been no crystal structure of a KDSR determined but 
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it is a member of the short-chain dehydrogenases/reductases (SDR) superfamily. A 

homology model of the 3D structure of ScKDSR with three possible NADPH docking 

positions were constructed, and residues involved in substrate binding and catalysis 

were suggested. 

The results in this thesis shed light on the key enzymes involved in the core 

biosynthetic pathway of microbial SLs and lay down a blueprint for future studies. 
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Chapter 1 Introduction 

1.1 Sphingolipids 

 

Sphingolipids (SLs) were first characterized by Johann Ludwig Wilhelm 

Thudichum near the end of the 19th century. In 1874, Thudichum, a German physician 

and biochemist, isolated numerous substances of the brain by fractional crystallization 

of ethanolic extracts including sphingomyelin (SM), sulphatides and cerebrosides – 

these were all reported in his treatise ‘The Chemistry of the Brain’ [1, 2]. In the 20th 

century, the biochemistry giant Prof. Herbert E. Carter identified the chemical structure 

and synthesis of sphingosine, based on his interest in the amino acid threonine [3-6]. 

Further study led Carter to identify more structures of the SLs family and the discovery 

of the branched-chain sphingolipid from the parasite Crithidia fasciculata and the 

mammalian kidney [7-13]. The common structural feature of SLs is the sphingosine 

(2S,3R,4E-2-aminooctadec-4-ene) backbone, also known as the long-chain base 

(LCB) or sphingoid base in mammals, represented in red in Figure 1.1.1 [14]. The long-

chain fatty acid is linked to the sphingoid base through an amide bond, which gives 

rise to the ceramide (Cer) family of lipids – the fundamental molecules in SL 

biosynthesis [15]. Further modification on the C1 head group with phosphate, sugar, 

and phosphocholine groups leads to different constructs including SMs, 

glucosylceramides (GCs), glycosphingolipids (GSLs), and over 1000 structurally 

specific SLs [14, 16]. 

 

Figure.1.1.1 The basic sphingolipid/ceramide structure. The sphingoid base is coloured red, 

the acyl chain attached to the amide part is black, and the variable head group is purple, R=H, C16 

ceramide. 

 

Even with research spanning over 100 years, the mysterious role of the SL family 

is still being investigated. SLs were discovered to be essential molecules in cell 

compartments involved in the regulation of cell growth, differentiation senescence, 

and apoptosis [17, 18]. Cers (also named as N-acylsphingosines) are acylated on the 

amino group of sphingoid bases with C14 to C36 fatty acids [19]. As central 

intermediates of the SLs family, the bioactive Cers control a plethora of cellular 
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processes such as signal transduction and cell death [20-22]. Ceramides are thought to 

diffuse through the membrane bilayer and interact directly with specific lipid-binding 

domains known as cysteine-rich domains (CRDs), also known as cathepsin D, in 

order to increase cellular response and stress signaling [23-25]. In medicinal 

applications, C2-Cer has an anti-proliferative effect on lung cancer cells and other 

age-related diseases [26, 27].  

SMs are derivatives from the C16 Cer through replacement of a phosphocholine 

group on the C1 head group. In the mammalian system, SMs mostly exist in the Golgi 

apparatus and have a close relationship with Cers in the propagation of inflammatory 

signaling [28, 29]. In most conditions, over-production of C16 Cer is considered to be 

responsible for programmed cell death and pharmacological inhibition of SM 

hydrolysis. It reduces the toll-like receptor 4 (TLR4) association with lipid rafts in order 

to lessen the progress of steatohepatitis and hepatic reactive oxygen species 

generation [30-33]. According to recent pathophysiologic studies, the breakdown of SMs 

would impact the T-cell activation and function on tissue homing, cell differentiation 

and effector function [34]. On the other hand, hindering SM synthesis would decrease 

the lipopolysaccharide (LPS) response and nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-B) by macrophages, which acts against Inflammatory Bowel 

Disease – dextran sulfate sodium (DSS)-induced colitis and artery disease [35-37]. 

GSLs are a further metabolic lipid family derived from Cers found in the plasma 

membranes of organisms from bacteria to humans. The glycans of GSLs range with 

up to more than 20 sugar residues within 11 different monosaccharide types (Figure 

1.1.3) [38]. Essentially, the expression and organization of their specific enzymes 

controls the elongation of glycans in GSLs. The different GSL glycans have been 

shown to interact with different receptors located in the plasma membranes to 

modulate their activity [39, 40]. The initial characterized GSLs are galactosylceramides 

(GalCer), which are the simplest, and one of the most abundant monosaccharides in 

the mammalian brain. The dysfunction of GalCer leads to an unusual and dreadful 

disorder of the nervous system – Krabbe’s disease in humans [41]. The sugar residue 

epimer of GalCer and glucosylceramide (GlcCer) is also associated with the cause of 

Gaucher’s disease, an inherited disorder that disturbs the human organ and tissue 

function [40, 42]. There is also a growing link between mammals and microbes. 

Research has shown that GSLs from the bacteria Sphingomonas wittichii could 

activate human and murine Natural Killer T (NKT) cells and stimulate the mammalian 

immune response. Those GSLs extracted from the bacteria Sphingomonas 

paucimobilis could also activate production of chemokines in various cells [43, 44]. 
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Figure 1.1.2 GSLs complexity of sugar residues involved in the structure and 

hierarchical tree of GSL chain elongation (taken from Angelo et al.’s paper [38]). 
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1.2 The de novo sphingolipid biosynthetic and catabolic 

pathway 

 

The de novo SL biosynthetic pathway (Figure 1.2.1) provides an essential 

blueprint or map of the abundance, diversity, and network relationship of SLs among 

cell types and tissues in mammals [45]. It is interesting that SLs in this pathway cause 

opposite cell behavior such as growth arrest (Cer and sphingosine) or growth 

stimulation (sphingosine-1-phosphate, S-1-P) [46]. Recent studies have shown that the 

neurodegenerative disorder Huntington’s disease is caused by a defective pathway 

[47]. This biosynthetic pathway can be split into three main sections: the biosynthesis 

of sphingoid bases (LCBs), Cers, and complex SLs.  

 

 

Figure 1.2.1 General overview of the de novo SL biosynthetic and metabolic pathway 

in the mammalian system (taken from Harrison et al.’s review paper [45]). 
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In the first step, the initial reaction is the decarboxylative Claisen-like 

condensation of an amino acid with the long-chain fatty acid acyl-CoA thioester 

substrates. Usually, the building blocks are L-serine (L-Ser) and palmitoyl-CoA (C16-

CoA) to form the intermediate 3-ketodihydrosphingosine (3-KDS) and the reaction is 

catalyzed by the the pyridoxal 5’-phosphate (PLP) dependent enzyme serine 

palmitoyltransferase (SPT) [48]. This is followed by the nicotinamide adenine 

dinucleotide phosphate (NADPH) dependent, stereospecific reduction of the 3-KDS 

ketone into a hydroxyl group by the 3-KDS reductase (KDSR) to give DHS, which to 

date, has only been characterised within mammals, yeast and fungi [49].  

Moving onto the biosynthesis of Cers; the direct product of KDSR, 

dihydrosphingosine (DHS), is rapidly converted to dihydroceramide (DHCer) by 

acylation with a long-chain fatty acid catalysed by a (dihydro)ceramide synthase 

(CerS). In mammals, six unique CerS isozymes have been identified; different CerSs 

display distinct functions and acyl-chain specificity e.g. both CerS5 and CerS6 prefer 

the C16-KDS substrate forming C16-Cers derivatives [49, 50]. This is followed by a 

dehydration reaction on the C4 position of the DHS backbone, catalyzed by a 

dihydroceramide desaturase (DES) producing an oxidised ceramide with a carbon-

carbon double bond. As the enzyme reaction requires NADPH and oxygen, the 

cellular redox balance may cooperatively influence the DES activity. Therefore, the 

attention on redox-sensitive DES inhibitors has risen for the potential treatment of 

cancer, diabetes, reperfusion injury and other diseases [51]. 

The early steps of the SL and Cers pathways occur in the endoplasmic reticulum 

(ER), but after this the ceramide intermediate is transported from the ER to the Golgi 

either through vesicular transport or through a ceramide transfer protein (CERT) 

(Figure 1.2.2) [52]. Several enzymes, such as glucosylceramide synthase (GCS), 

ceramide galactosyltransferase (CGT) and SM synthase (SMS) then execute the 

formation of complex downstream SLs and Cers. A small amount of the acyl chain 

Cers that contain more than 12 carbons can be phosphorylated to ceramide-1-

phosphate (Cer1P) by ceramide kinase (CERK) [53]. Those products, Cer1P, SM, and 

GSLs, are thought to stay in the plasma membrane and become significant 

contributors to the hydrophobic barrier of many cells. 
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Figure 1.2.2 Subcellular compartmentalization of SLs biosynthesis. For each enzymatic 

reaction or transport event, the names of the corresponding protein (in boxes) and genes are indicated. 

(taken from Colacio et al.’s book [52]) 

 

Only a few SL precursors are required to produce hundreds of complex SLs. Most 

SLs break down into Cer, sphingosine and S-1-P. This occurs through a number of 

steps. Firstly, the pH-dependent ceramidases catabolize the ceramide species into 

the sphingosine species resulting in the lipid storage disease in humans known as 

Farber disease [54, 55]. Then, two membrane-associated sphingosine kinases (SKs, 

SKI and SKII) use adenosine triphosphate (ATP) to phosphorylate the sphingosine 

species to give S-1-P, which prevent inflammation [56]. In the last step of SL 

metabolism, the S-1-P is broken down irreversibly by another PLP-dependent 



 

7 | P a g e  
 

sphingosine-1-phosphate lyase (S1PL) exclusively in the ER to generate 

phosphoethanolamine (PEA) and hexadecenal (HEX) or 2E-hexadecenal (2E-HEX) 

[57, 58]. Research suggests that S1PL is critical for normal lipid homeostasis and that 

the regulation of SPL is related to atopic dermatitis and Alzheimer’s disease. 

Therefore, S1PL seems to be a target of physiological progress and pharmacological 

modulation of human disease [18, 57, 59]. It is worth noting that the SL biosynthetic 

pathway is effectively book-ended by two PLP-dependent enzymes; SPT at the 

beginning and S1PL at the end. 

The yeast, Saccharomyces cerevisiae, displays numerous conserved genes and 

SL metabolites when compared to mammals and plants. Therefore, it has proved to 

be the most straightforward and useful eukaryotic model system for SL research due 

to the excellent tools and resources which have generated detailed yeast genomics, 

proteomics and metabolomics databases [60]. In fact many of the mammalian genes, 

such as the six mammalian CerSs, were discovered based on their homology to their 

yeast counterparts (Lag1p and Lac1p) [61, 62]. It is highly likely that the discoveries of 

SL biosynthesis, regulation, and function in yeast may also apply to mammals, 

including humans.  

As in the mammalian SL pathway, the yeast SL biosynthesis starts with the same 

enzymes (SPT and KDSR) in the ER to form LCBs of different carbon chain length. 

After LCB synthesis, the pathway (Figure 1.2.3) divides into two different arms – the 

dihydro-(non-hydroxylated) branch and the phyto-(hydroxylated) branch, producing 

dihydrosphingolipids (DHSLs) or phytosphingolipids (PSLs) [63]. The essential enzyme 

balancing the SL levels between the two branches is the C4-hydroxylase (Sur2) [64]. 

Sur2 hydroxylates DHS at the C4 position to form 4-OH dihydrosphingosine, which is 

also known as phytosphingosine (PHS) [64]. In the individual pathway, the critical 

intermediate DHS and PHS are transformed into more complex SLs using the same 

enzymes, such as CerS, SK, GCS and other enzymes. Over 90% of SLs in the yeast 

system are originally from phytoceramide (PHCer) and those PSLs can regulate the 

diffusion barrier in the ER, as well as the aging and stress response in the cell process 

[63, 65, 66]. Interestingly in recent research, the PHSs are metabolized to odd-numbered 

FAs rather than even-numbered FAs, suggesting that the clearance and deregulation 

of those metabolites may be essential for the maintenance of cellular PSL levels in 

the cells [67]. 
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Figure 1.2.3 The SL pathway in the yeast system. The lipids are in black; the enzymes are in 

blue, regulators in brown, and inhibitors in red. The dihydro branch pathway is in the blue background, 

and the phyto-branch pathway is in the red background (taken from Megyeri et al.’s paper [63]). 

 

The chemical inventory of SLs is very diverse, nearly 10% of lipids exist in higher 

plants and novel plant SLs are still being investigated [68]. The SL classes in plant 

tissues appear to differ in a species and a tissue-dependent manner, in which the 

ruling classes are Cers, GlcCers, glycosyl inositolphosphoceramides (GIPCs) and 

free LCBs [69]. Compared to the mammalian SLs, the SMs or phosphorylceramides 

have not been discovered in plants. However, PSLs and IPCs, which are dominant in 

the yeast system do exist [70, 71]. The unique 8-unsaturated LCBs are only broadly 

found in plants, not in the animals nor the yeast S. cerevisiae. This lipid species may 

impact the subcellular location of the other SLs and relate to the freezing tolerance of 

plants [72, 73]. 

The SL biosynthetic pathway in the plant kingdom begins with the same LCB 

synthetic pathway as illustrated in mammals. The LCB modification then happens 

either through C4 hydroxylation or C4/C8 desaturation on an 18 carbon atom chain 

moiety to generate essential SL intermediates [71]. The enzyme 4-desaturase found 

in pollen alters the specific C16 acyl chain SLs in order to provide structural 

information for the relative ceramide synthase. The 8-desaturase in plants catalyses 
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formation of both cis and trans isomers of LCBs in a distinct ratio and contributes to 

the formation of GlcCers [74]. In the next step, three different ceramide synthases 

(LOH1-3), which require fatty acid chains 16 – 26 carbons long forming the Cers that 

are associated with sterols in the membrane microdomains. LOH2 preferably acts on 

the C16 dihydroxy LCB that would impair growth and result in the dwarf plant, whereas 

LOH1 and LOH3 are more likely to react with the trihydroxy 20~26 LCBs that increase 

the cell division to produce larger plants in Arabidosis [75-77]. Meanwhile, it has been 

proven that Cer and hydroxyCer levels play a vital role in the biotic or abiotic stress 

response of plants in different environmental changes [78]. In the end, complicated SLs 

such as GlcCer and GIPCs are synthesized by GCS, at least three functional IPC 

synthases and several sugar transferases [79]. Plants defective in these enzymes 

would become dis-functional in cell proliferation and differentiation and would not be 

able to grow callus tissue or transmit pollen [80, 81]. Additionally, phosphorylated SLs, 

such as phytosphingosine-1-phosphate, have been suggested to associate with cold 

tolerance and stomata sensitivity in the plant [82, 83]. 

In contrast to studies on mammals, plants, yeast and fungi, there are surprisingly 

relatively few detailed studies on SLs in bacteria, however this area is gaining in 

interest. The chemical structure of sphingoid bases in SLs is different for bacteria and 

eukaryotes. As mentioned earlier, it is mostly even-chained, linear sphingoid 

backbones that exist in mammals. However, the bacteria usually contain odd-chained, 

methylated or hydroxylated SLs. There are over 100 bacterial phyla that have been 

proposed to produce SLs, including the majority of the Bacteroidetes phylum, Chlorobi 

phylum, along with Alpha-Proteobacteria such as Novosphingobium and 

Sphingomonas and Delta-Proteobacteria [84, 85]. Interestingly, the occurrence of SLs in 

bacteria is mainly limited to anaerobes. The glycosphingolipids (GSLs) were first 

isolated and characterized from the Gram-negative bacterium Sphingomonas 

paucimobilis in 1991, bringing attention to SLs in bacterial systems. However, 

Bacteroidetes, which are dominant in the mammalian gut, are the most commonly 

known to produce SLs in recent research [86]. Within the Bacteroidetes phylum, the 

three main genera containing SLs are the Gram-negative anaerobic Bacteroides, 

Porphyromonas, and Prevotella. The SLs in the Bacteroides species occupy 

approximately 40 – 70% of the total lipids and share a striking taxonomic feature [87]. 

Additionally, there are also noteable changes in the head groups of SLs. For instance, 

the incorporation of phosphorylethanolamine groups instead of human 

sphingomyelins, the phosphorylglycerol glycans instead of the phosphoinositol 

glycans and sulfonyl group instead of the hydroxyl group (Figure 1.2.4) [45, 85, 88, 89].  
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Figure 1.2.4 Structural comparisons of select mammalian and bacterial sphingolipids. 

(inspired by Heaver et al.’s paper [85]). 

 

There is growing evidence to suggest that SLs from the human microbiome 

(Bacteroides, Porphyromonas, etc.) regulate a delicate balance between the host and 

the microbes in order to prevent virulence of a pathogen or maintain the bacterium if 

it is defined as a symbiotic species with beneficial properties. It has been suggested 

that the human body hosts >10-100 trillion symbiotic microbes, which is ten times as 

many as actual human cells, therefore the “power” of these microbes should not be 

underestimated [90]. Evidence is growing that dysbiosis in the microbiome is related to 

numerous diseases, such as type 1 and 2 diabetes, allergies, asthma, autism, cancer, 

and inflammatory bowel disease [91]. Furthermore, the relationship between the host 

and microbial SLs explains the signs and symptoms of the immune system. In 

bacterial systems, GSLs, often involved in signaling receptors, and Cers frequently 

support the lipid rafts resulting in the phagocytosis and eventually lysis of bacteria [92, 

93]. To be specific, the exceptional Bacteroides fragilis (B.fragilis) in the human gut and 

α-GalCer are capable of modifying the homeostasis of natural killer T (iNKT) cells by 

supporting the endogenous lipid antigen milieu, especially in the mouse and human 

cells [94, 95]. 

Moreover, the deletion of SL biosynthesis in Bacteroides has recently been 

shown to lead to intestinal inflammation and damage to the host immunity [96]. This is 

in contrast to Porphyromonas gingivalis, which is dependent on SL production for its 

virulence to survive in the human mouth and also causes gingival/gum disease [97]. It 

appears that bacteria produce SLs to improve their ability to survive environmental 

stress/attack. However, the host can indirectly absorb a small amount of SLs from 
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these microbes to maintain health. Overall SLs, either from microbes or the host itself,  

have the ability to trigger biological behaviours and responses that may initiate 

damage, advance the pathological process, or inhibit the damage from each other to 

prevent disease [98]. The exact molecular details of this host/microbe balancing act are 

currently unclear but it certainly appears to rely on a complex series of interactions. 

Unfortunately, lots of questions still remain about the biological and chemical 

roles of SLs in the bacterial system due to many of the genes responsible for SL 

biosynthesis still being unidentified [87, 99]. Luckily, based on the conserved gene 

sequences from eukaryotes, several bacterial SPTs have been biochemically and 

structurally characterized in the genera of Sphingomonas, Bacteroides, 

Porphyromonas and so on. It is assumed that the SPT-catalysed, decarboxylative 

Claisen-like condensation is still involved in the initial step of bacterial SL biosynthesis. 

Also, the terminal enzyme, S1PL, in the sphingolipid metabolic pathway has been 

identified in several bacterial species, such as Burkholderia pseudomallei, 

Symbiobacterium thermophilum and Legionella pneumophila [45]. This small number 

of S1PL-metabolising bacterial enzymes suggests other novel mechanisms may be 

involved. However, the other enzymes in the bacterial SL metabolic pathway are still 

unknown or have proved to be too difficult to isolate and characterise using current 

research methods. 

Interestingly, the bacterial SLs appear to have unique chemical fingerprints such 

as an odd-chain LCB with an iso-Me group. Moreover, those particular iso- and 

anteiso-branched SLs are generated from the species that make up part of the human 

microbiome, instead of the host itself. It has been showed that with the lack of straight-

chained SLs in S. cerevisiae, the iso-branched SLs would not support the growth of 

mutant cells and was toxic to wild type yeast cells by complementation experiments 

[100]. The branched-chain sphingoid base, 19-methyl-C20-phytosphingosine, firstly 

appeared in Crithidia fasciculate, a species of parasitic excavates discovered by 

Carter and co-workers [12]. Since the presence of the iso-branched SLs has been 

confirmed for five human bacterial genera including Bacteroides, Porphyromonas, 

Prevotella, Tannerella and Parabacteroides [89, 101, 102]. Prevotella melaninogenica 

mainly forms iso-C19 sphingoid bases where as Bacteroides thetaiotaomicron 

predominantly produce iso-C17 sphingoid bases [103, 104]. As shown in Figure 1.2.4 

above, B.fragilis SLs are composed of iso-branched sphingoid bases as well [94]. It 

has been found that there are also iso-branched SLs and fatty acids in the 

Caenorhabditis elegans (C. elegans), a free-living and transparent roundworm found 

in soil environments [105]. These SLs influence the postembryonic development, which 

limits developmental rates of the organisms but elongates the lifespan. 
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Supplementing the iso-branched SL-deficient C. elegans with the straight-chained 

SLs would also disturb the metabolism of the worm [100, 106]. These findings provide 

evidence that the chemical differences between these straight-chained and iso-

branched SLs are critical for the cells in the pathological mechanism of the species. 

Recently, by using labellled isotopes of carbon and nitrogen in the three iso-

branched amino acids (L-Leu, L-Ile and L-Val) the incorporation of these precursors 

into C. elegans SLs has been monitored. Only the labeled isotope of L-Leu was 

converted into the relevant branched-chain acyl-CoA and finally into iso-C17-

sphinganine and iso-C17-deoxysphinganine. This research shows that L-Leu may be 

involved in the biosynthetic route of producing branched-chain SLs in the worm [100]. 

Furthermore, a possible SL metabolic pathway has been suggested (Figure 1.2.5) 

and a branched-chain amino acid transaminase (IlvE or BCAT) may catalyse those 

branched-chain amino acids (BCAA) into individually branched-chain acyl-CoA 

substrates. After fatty acid chain elongation, one of the vital substrates of the SPT 

reaction, isomyristol-CoA, is generated. This leads to the hypothesis that are similar 

pathway is in operation in iso-Me branched SL-producing microbes, which is one of 

the targets of this thesis. 

 

 

Figure 1.2.5 A proposed route to the formation of iso-branched SLs in the microbiome. 
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1.3 Pyridoxal 5’-phosphate (PLP) dependent enzymes 

 

Pyridoxal 5’-phosphate (PLP) plays a vital role in SL biosynthesis as it is an 

essential cofactor in the activation of the SPT, IlvE and S1PL reactions as illustrated 

above. It is also one of the metabolically active forms of vitamin B6 identified in the 

early 1940s by the Hungarian physician Paul Gyorgy (Figure.1.4.1) [107]. In 

biochemistry, PLP had been shown to catalyse more than 160 distinct enzymatic 

reactions that regulate primary cellular metabolism and higher organism progress. 

According to the Enzyme Commission, these PLP-dependent enzymes can be 

classified into five catalogs, which are oxidoreductases, transferases, hydrolases, 

lyases and isomerases [108].  

 

Figure.1.3.1 The natural derivatives of vitamin B6. 

 

The mechanism of PLP-dependent enzymes has been studied over the last 

60 years. The catalytic cycle starts and ends with the same PLP cofactor form (the 

internal aldimine), which is derived from transamination and heterolytic cleavage to 

maintain the carbanionic intermediates (Figure 1.3.2). The internal aldimine structure 

consists of an imine linkage between the amino group of a lysine residue from the 

enzyme and the aldehyde carbon of free PLP. Then, within the interaction of amino 

acids (L-Ser as an example in Figure 1.3.2) or other similar amino-containing 

compounds, a geminal diamine intermediate is formed which finally leads to the 

PLP:external aldimine allowing substrate binding and product release [109, 110]. 

Additionally, the proton in the external aldimine can transfer (or is shared) between 

oxygen in the pyridine ring and imine nitrogen forming two tautomeric isoforms – 

enolimine and ketoenamine separately. This transformation shows specific maximal 

absorbance values at 335 nm for enolimine and 425 nm for ketoenamine when 

analysed by ultraviolet-visible (UV-vis) spectroscopy [111]. 
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Figure 1.3.2 The reversible reaction between PLP and L-Ser from internal aldimine to 

external aldimine. (taken from Salvo, M. L. et al.’s paper [110]). 

 

The PLP:external aldimine is the crucial intermediate for all the PLP-

dependent enzymes during the catalysis of various reactions. Meanwhile, the 

efficiency of the PLP enzymatic reaction is predominately dependent on the 

heteroaromatic pyridine ring. The electrophilicity of the C4 of the external aldimine is 

enhanced because of the protonated pyridinium nitrogen, the resonance and 

hydrogen bonding of the hydroxyl group, leading to an ‘electron sink.’ Therefore, the 

protonated imine nitrogen can withdraw electrons from -carbon of the substrate. The 

-conjugation of the pyridine ring delocalizes and stabilizes the net negative charge 

of external aldimine. Due to the electronic delocalization energy, the stereo-chemical 

rearrangement of  bonds is activated by a  system, forming the Dunathan 

intermediate (Figure 1.3.3). The imine nitrogen cleaves the bond in order to control 
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the reaction specificity. It promotes the bond-breaking process of the perpendicular 

bond of the pyridine ring. As a consequence, the heterolytic cleavage happens and 

the C hybridization changes generate the resonance-stabilized quinonoid 

intermediate [112]. However, the quinonoid intermediate has not always been observed 

by UV-vis spectroscopy in many the PLP-dependent reactions suggesting that they 

maybe extremely short lived or transient [113]. 

 

 

Figure 1.3.3 The schematic representation of Dunathan intermediate (Left) and 

quinonoid intermediate (Right). (taken from Salvo, M. L. et al.’s paper [110]). 

 

PLP-dependent enzymes can catalyse a wide range of enzymatic reactions 

including transamination, elimination, decarboxylation, and racemization. With many 

x-ray structures of PLP enzymes in the Protein Data Bank (PDB) it has been able to 

sub-classify PLP-dependent enzyme 3D-folds and split them into five original fold-

types (I to V) by Grishin et al. and two novel fold-types (VI and VII) (Figure 1.3.4) [114, 

115]. Fold type I enzymes are the aspartate aminotransferase (AT) family. These are 

homodimers or homotetramers with each subunit composed of a small domain, a vast 

domain and a PLP molecule. The active site of fold type I enzymes lies at the interface 

between these subunits [116]. Fold type II enzymes are the tryptophan synthase -

family with all active site residues provided by one subunit. Most of the fold type II 

enzymes are dimers, tetramers or oligomers and under allosteric control during the 

binding [117]. Alanine racemase and the eukaryotic ornithine decarboxylase family are 

the fold type III enzymes. Each monomer of fold type III enzymes contains / barrel 

and -strand domains within the PLP cofactor in a gap of those two domains. As there 

is only one PLP molecule bound at the interface of the enzymes, most of these 

enzymes are homodimers [118]. The BCAT family and D-Ala AT family are members of 

the fold type IV enzymes. Similar to fold type I or II enzymes, fold type IV function as 

homodimers or homohexamers with two domains in each subunit. However, the PLP 

cofactor of the fold type IV enzymes undergoes re-face hydrogen transfer rather than 

si-face hydrogen transfer in the chemical mechanism [119]. Fold type V enzymes are 

the glycogen phosphorylase family and use the phosphate group of PLP to catalyze 

the reaction differently to the others. The two forms of glycogen phosphorylase (and 
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) generate the tetramer or dimer individually in the quaternary level and transform 

between the two by phosphorylase kinase and phosphorylase phosphatase. There 

are three distinctive domains (C-terminal domain, N-terminal domain and glycogen-

binding domain) in fold type V enzymes [120, 121].  

The two novel fold types VI and VII include the lysine 5,6 aminomutase family 

and lysine 2,3 aminomutase family respectively [115]. The quaternary structure of fold 

type VI enzymes is a 22 tetramer, in which the PLP and adenosylcobalamin 

(coenzyme B12) bind a triosephosphate domain in the a subunit and the  subunit in 

the N-terminal and Rossmann domain [122]. Moreover, the cofactor adenosylcobalamin 

binds away from the active site to avoid radical generation. The lysine 2,3 

aminomutase is a homotetramer containing a dimer of domain-swapped dimers. Each 

subunit is composed of three domains including an N-terminal domain, central 

globular domain and a C-terminal domain. Apart from for the fold type VI enzymes, 

the [4Fe-4S] cluster, S-adenosyl-L-methionine and PLP cofactors in the subunit are 

surrounded by a channel formed by a six /fold [123]. 
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Figure 1.3.4 Structural examples of PLP-dependent enzyme fold types. (taken from 

PDB database website). Fold-type I example from Bacillus subsidies (PDB:5T4L) [124]; Fold-type II 

example from Salmonella typhimurium (PDB:5CGQ) [125]; Fold-type III example from Bacillus anthracis 

(PDB:2VD8) [126]; Fold-type IV example from Bacillus sp. strain YM-1 (PDB:3LQS) [127]; Fold-type V 

example from Oryctolagus cuniculus (PDB:5OWY) [128]; Fold-type VI example from Acetoanaerobium 

sticklandii (PDB:1XRS) [121]; Fold-type VII example from Clostridium subterminale (PDB:2A5H) [129].  
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1.3.1 Serine palmitoyltransferase (SPT) 

 

In all organisms studied to date SPT catalyses the first step of the de novo 

sphingolipid biosynthesis – the Claisen-like condensation of the amino acid (mainly L-

Ser) with long-chain thioester (palmitoyl-CoA, C16-CoA) to form the product 3-KDS 

(Figure 1.3.5) [48]. SPT is commonly localised to the ER in mammals, yeast and plants; 

in contrast, the enzyme has been found in the cytoplasm of the bacteria [130].  

 

 

Figure 1.3.5 The decarboxylative condensation reaction of palmitoyl-CoA with L-Ser 

catalysed by SPT. 

 

In the 1970s, Snell’s group and Stoffel’s group identified and isolated the first 

SPT from yeast Hansenula ciferrii, which has now merged into the species Pichia 

anomala. Using C14-labeled L-Ser, SPT activity was successfully monitored by 

determining the production of carbon dioxide (CO2) [131, 132]. After a few decades, the 

yeast S. cerevisiae SPT was found as a complex of membrane-associated 

heterodimeric catalytic subunits named LCB1 and LCB2 which display 51% similarity 

between each other [133, 134]. Additionally, LCB1 expression is crucial to maintain the 

expression and stability of LCB2 and together they support an active SPT complex in 

mammalian cells [135]. Apart from these two catalytic subunits, several regulatory 

subunits, such as Tsc3p, Orm 1/2 and Sac1, are proven to affect the higher order SPT 

activity in different ways [136-138]. Dunn’s group discovered a small 80-amino acid 

protein (Tsc3p) in yeast which was associated with SPT and increased the reaction 

activity >10 fold. Moreover, the Tsc3p-deficient mutant lost growth ability at elevated 

temperatures [136]. On the other hand, Orm 1 and Orm 2 found by Weissman’s group 

and Chang’s group respectively was also linked to the SPT complex and can 

somehow negatively regulate the activity of the SPT complex [137, 139, 140]. Recently, it 

was suggested that the first transmembrane domain of LCB1 is necessary for Orm 
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subunit binding to the SPT complex to regulate oligomerization, activity and 

localization [141]. In the last subunit, a phosphatidylinositol phosphatase (Sac1) 

copurified from the SPOTS complex (SPT, Orm 1/2, Tsc3p and Sac1) also modulates 

SPT activity and affects the phosphorylation in the SL pathway [138]. 

 

 

Figure 1.3.6 Schematic of deoxysphingolipids pathway from substrate L-Ala (Left) 

and glycine (Right) (taken from Harrison et al.’s paper [45]). 

 

Once the yeast SPT genes had been discovered, Braun and Kanfer’s group 

discovered the first mammalian SPT in microsomal fractions of rat and mouse brains 

and also provided kinetic analysis, substrate specificity and the pH influence of the 

enzyme. Based on the homologues of yeast LCB1 and LCB2, the corresponding 

genes, SPT1 and SPT2, were found in humans [133, 142, 143]. Meanwhile, the human 

SPT1/2 complex showed a strong preference for L-Ser and narrow acyl-CoA substrate 

scope within the C15-C17 carbon acyl chain [144]. Biochemical and gene expression 

analysis of different tissues (e.g. in placenta) identified another subunit – named SPT3 

that showed 68% homology to SPT2 [145]. The sequencing of the human genome and 

the ability to complement yeast SL biosynthesis with human SPT subunits led to the 

discovery of new mammalian subunits. Inspired from finding Tsc3p, two equivalent 

proteins (ssSPTa and ssSPTb) in human cells were identified by Dunn and colleagues, 

which were about 71 and 76 amino acids long respectively and shared a conserved 
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hydrophobic central domain. The co-expression of either of the ssSPT enzymes in the 

presence of human SPT can increase SPT activity over 100-fold [146]. These small 

subunits have been found to alter the SPT substrate specificity and control the acyl-

CoA preference, even for C14 or C20 carbon chain length [147, 148]. Pathology study 

proposed that the rare disease hereditary sensory and autonomic neuropathy type 1 

(HSAN1) is related to mutations in the SPT genes, leading patients with distal sensory 

loss and venous leg ulcers. The direct link of the HSAN1 disease with human SPT 

hypothesizes that a specific class of deoxysphingolipids is generated from the 

substrate of glycine and L-Ala through SLs pathway (Figure 1.3.6) [149-152]. 

 

 

Figure 1.3.7 The phylogenetic tree of the SPT gene and homologs encoded by 

eukaryotes and bacteria. (taken from Heaver et al’s paper [85]). 

 

The SPTs were not only encoded by higher order cells, Heaver et al. found out 

lots of bacteria were also able to generate SPTs to produce SLs and they suggested 

a lateral transfer event happened in nature (Figure 1.3.7) [85]. As well as the multi-

subunit, membrane-bound eukaryotic SPTs, a homodimeric and soluble SPT was 

isolated from the Gram-negative bacterium S. paucimobilis by Ikushiro’s group in 

2001. The SpSPT displayed high sequence similarity to mammalian SPT1 and SPT2, 

but without membrane-associated domains [153]. After that, bacterial SPTs were also 

found in Sphingomonas wittichii, Sphingomonas multivorum, Sphingomonas 

spiritivorum and Bdellovibrio stolpii [71, 154]. Additionally, bacterial SPTs have brought 

attention to the phylum of Bacteroides, since SLs play an important role between host 

and microbiomes [155]. The gene BF2461 in B.fragilis has been suggested as putative 

SPT, with 35% sequence identity to SpSPT, the gene generates SL-deficient 

organisms [94, 156]. The gene BF2461 has also been previously characterized and 
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confirmed as an SPT in the Campopiano group. Thus one of the main aims of this 

PhD thesis is to explore the enzyme through further mutagenesis and to study the 

difference with other SPT isoforms. Recently, in a similar manner, a putative gene 

product (PG1780) in the chromosome of the P.gingivalis strain W83 was suggested 

by Davey’s group as an SPT. The deletion of this gene from the strain leads to 

weakening of the cell surface properties and bacterial survival ability [97, 157]. Therefore, 

the other aim of this project is to examine this putative SPT. 

 

 

Figure 1.3.8 The first crystal structure of bacterial SPT homodimer in the internal 

aldimine (PDB:2JG2) and the external aldimine (PDB:2W8J) forms. The active sites and 

key residues are highlighted in left, one monomer is highlighted as ribbon form and the other is shown 

as surface (taken from Harrison et al.’s paper [45, 158, 159]). 

 

The first published crystal structure (PDB: 2JG2) of bacterial SPT was from S. 

paucimobilis and was determined by Yard et al. – a collaboration of the Campopiano 

group with Prof. Jim Naismith’s group in 2007 (Figure 1.3.8). It is a PLP-bound 

homodimer, with each monomer consisting of an N-terminal domain, a central 

catalytic domain and a C-terminal domain. The PLP cofactor is attached to the active 

site lysine 265, which is referred to as the internal aldimine [158]. Followed by the 

previous work, the crystal structure of PLP: L-Ser SPT complex (PDB: 2W8J), also 

known as external aldimine forms of the enzyme, was characterised by Raman et al. 

in 2009 [159]. Furthermore, the other protein structures of bacterial SPT from S. wittichii 

(PDB: 2X8U) and S. multivorium (PDB: 3A2B) have been determined and published 

[160, 161]. The internal aldimine and external aldimine forms of SPT support an excellent 

prospect about the link between the PLP cofactor and active residues in the enzyme. 
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For example, histidine 159 provides a -stacking interaction with the PLP pyridine ring 

in the internal aldimine. This residue also supports L-Ser by forming a hydrogen bond 

with the carboxylate of the L-Ser during the formation of the external aldimine [162, 163]. 

Meanwhile, the arginine 378 residue performs a conformational switch into L-Ser 

binding in order to interact with the carboxylate group [159, 161]. Arginine 390 has been 

confirmed to stabilise the reactions transition state and aid the decarboxylation [160, 

164]. Overall, these findings provide effective models for studying the SPT mechanism. 

In the early 1960s, a proposed catalytic mechanism of the reaction was initially 

proposed using other established PLP-dependent enzymes and their models with 

cofactors [109]. As mentioned in Section 1.3, the external aldimine is a crucial 

intermediate for all PLP-dependent enzymes during the catalysis of various reactions. 

Ikushiro’s group utilized elegant NMR experiments to observe the movement of the 

-carbon in L-Ser during the reaction process, which observed deprotonation 

occurring before decarboxylation [165]. Because of the delocalization of negative 

charge, the stereo-chemical rearrangement of the  bonds is activated by a  system 

forming a Dunathan intermediate [166]. Consequently, the heterolytic cleavage on C-

H bond of the amino acid takes place and the resonance-stabilized quinonoid 

intermediate is generated. The C16-CoA is presumed to react with the quinonoid 

through a Claisen-like condensation to produce a β-keto acid external aldimine 

intermediate. After that, the decarboxylation and deprotonation occur either through 

the non-quinonoid mechanism or the quinonoid mechanism and proceeds to generate 

the external aldimine product. Finally, the active site lysine regenerates the internal 

aldimine and releases 3-KDS through transaldimination [167]. The involvement of C16-

CoA in the course of the reaction was proposed by using the analogue S-(2-

oxoheptadecyl)-CoA. This mimic can reduce the rate of breaking the thioester bond 

and unleashing free CoA under physiological conditions, leading to both substrates 

remaining bound to the enzyme[165]. This detailed reaction mechanism for SPT has 

now been accepted (Figure 1.3.9). Recently, the Campopiano and Dunn groups 

showed that SpSPT displays a clear kinetic isotope effect (KIE) with [2,3,3-D] L-Ser 

compared to the human SPT isoform. This suggests there may still be subtle kinetic 

differences between different species and each isoform binds each substrate in a 

slightly different way – not surprising due to the nature of the regulatory subunits found 

in complex with the eukaryotic complex [168]. 
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Figure 1.3.9 Proposed catalytic mechanism of SPT (based on Raman et al. [159]). 

 

Based on the enzyme reaction mechanism, several natural product inhibitors 

(Figure 1.3.10) of SPT have been probed up to date for the role of SLs in vivo or in 

vitro [137]. For instance, sphingofungin B from Aspergillus fumigatus showed specific 

inhibition of SPT through a radiolabelled substrate assay, for which the half-maximal 

inhibitory concentration (IC50) is 20 nM [169]. Myriocin shares a similar core structure to 

sphingofungin B and is the best-known SPT inhibitor. It was first found in two different 

fungi and isolated from Myriococcum albomyces by Kluepfel’s group in the 1970s [170, 

171]. However, the mechanism of inhibition was unknown until 2013, when it was solved 

by Wadsworth et al. They observed a novel stable PLP adduct (PLP-myriocin aldimine) 

by mass spectrometry and obtained structural data (PDB:4BMK). Myriocin would start 

with the retro-aldol type reaction to cleave the C2-C3 bond to produce C18 aldehyde. 

Finally, the active site lysine 265 interacts with the aldehyde to form a second 

irreversible inhibitory complex and cause the enzyme to inactivate [172]. 

As a PLP-dependent enzyme, some molecules which inhibit the PLP cofactor 

also have inhibitory effects on SPT enzymes. L- and D-cycloserine (LCS and DCS) 

were reported as inhibitors by Lowther et al. in 2010. It is suggested that SPT would 

react with both enantiomers of cycloserine (CS) to form pyridoxamine 
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monophosphate (PMP) and an amino aldehyde product. This irreversible inhibition of 

SPT involves ring-opening, decarboxylation and amide bond hydrolysis. A published 

crystal structure of SpSPT (PDB: 2XBN) with CS provides a clear perspective about 

the inhibitory mechanism of the enzyme [173]. Other inhibitors like L-penicillamine and 

-chloro-alanine also display the same inhibition and form different PLP inhibitor 

complexes (Figure 1.3.10). Medlock’s study showed that the concentration of -

chloro-alanine required for the inhibition of SPT was much lower than the one required 

for inhibiting other PLP-dependent enzymes [174]. Moreover, L-penicillamine was 

transformed into a thiazolidine complex in the active site to render PLP inactive, which 

was elucidated by Lowther et al. [175]. 

 

 

Figure 1.3.10 Structures of the various known inhibitors of SPT. 
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1.3.2 Iso-branched chain aminotransferase (IlvE or BCAT) 

 

The branched-chain amino acids (BCAAs), such as natural leucine, isoleucine, 

and valine, are essential and are related to numerous diseases and disorders in the 

human system [176]. Research has shown there are eight enzymes required for the 

biosynthesis of these three BCAAs in nature. The iso-branched chain 

aminotransferase (IlvE or BCAT) catalyses the final step of BCAA biosynthesis [177]. 

IlvE or BCAT transfer the amino group from the iso-branched chain amino acids into 

keto-acids forming new amino acids. The catalytic mechanism is similar to common 

aminotransferases (ATs) and is split into two half-reactions with PLP cofactor recycling 

between the internal aldimine and PMP forms (Figure 1.3.11) [178]. 

 

 

Figure 1.3.11 Schematic diagram of the IlvE reaction. R1 represents a branched chain 

amino acid (BCAA) such as L-Leu, L-Ile or L-Val. 

 

The first mammalian BCAT enzyme appeared in 1966 when Ichihara and 

Koyama isolated the enzyme named 2-oxoglutarate AT from a hog heart [179]. In the 

same year, Taylor and co-workers successfully purified leucine transaminase from pig 

heart muscle [180]. Until the 1990s, Hutson’s group reported that there are two BCATs 

in the mammalian system – cytosolic BCAT1 (BCATc) and mitochondrial BCAT2 

(BCATm) [181]. These enzymes have a specific order of substrate preference. From 

most active to weakest are isoleucine, leucine, valine, and glutamic acid [182]. The 

BCAT2 usually distributes in the kidney, colon, skeletal muscle and liver; however, the 
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BCAT1 only expresses in the brain [183]. BCAT1 and BCAT2 share 58% similarity in 

sequence homology and are both homodimers, with the monomer comprising a small 

and large domain, where the active site close to the interface [184, 185]. Nevertheless, 

BCAT1 showed double the catalytic ability compared to BCAT2 under the same 

substrate conditions [182]. In physiology, studies showed that BCAT2 tended to form a 

metabolon protein complex with the branched-chain -keto acid dehydrogenase 

(BCKD) in order to channel substrates or products through the body [186]. Alzheimer’s 

disease has been reported to have a relationship with increased levels of BCAT2 in 

the frontal and temporal lobe [187]. Deletion of BCAT2 results in an impressive increase 

in BCAAs which is not used for energy consumption and can reduce the growth speed 

of lymphoma cancers in mammals [188]. On the other hand, BCAT1 has been reported 

to affect T cell receptors as well as the mammalian target of rapamycin (mTOR) 

signaling and eventually promoting cell proliferation [189]. 

In bacteria, two aminotransferases were initially discovered in Escherichia coli in 

1953. One of them showed higher activity with BCAA substrates, named as 

transaminase B. The other enzyme had a preference for aromatic amino acids [190]. 

After that, more and more bacterial BCATs were discovered in Pseudomonas 

aeruginosa, Mycobacterium tuberculosis, Lactococcus lactis, Helicobacter pylori and 

so on [191-194]. Meanwhile, the unique name of IlvE was assigned to the genes from 

bacterial BCATs [195]. The deficiency or upregulation of IlvE would cause the changes 

in BCAA levels in the cell. The same as in the human system, IlvE undoubtedly 

influences BCKD production for generating different acyl-CoAs, which affects not only 

protein synthesis but also protection against host defenses. For instance, studies 

showed an impaired Staphylococcus aureus strain, a bacterium causing pneumonia 

(lung infection) in humans, lost adherence to host cells and infection was debilitated 

in vivo [196-198]. 

The x-ray crystal structure of human BCAT2 has been solved in several forms, 

such as the PLP internal aldimine form (PDB: 1EKF, 1EKP), the ketimine form with 

bound isoleucine (PDB: 1KT8) and the PMP form (PDB: 1KTA) [184, 185]. In the PLP 

form, the active site Lys202 uses a Schiff-base linkage to the cofactor. Also, mainly 

hydrophobic residues surround the substrate-binding pocket for controlling substrate 

specificity [184, 185, 199]. The hypothesis suggests that these thiol groups formed a redox-

linkage with BCAT proteins. Meanwhile, Cys315 in the BCAT2 was proven to be key 

for the orientation of the substrate in the active site, while the other three residues of 

this motif stabilized the carboxylate binding site [200]. However, human BCAT1 has only 

been successfully co-crystallized with different inhibitors [201, 202]. The PLP active site 

and substrate-binding pocket of BCAT1 showed similar structural alignment with 
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BCAT2. Tyr193 has been found to facilitate a strong interaction with inhibitor 

molecules [202]. 

The holo form of the bacterial IlvE crystal structure from E. coli was determined 

in 1997 with a resolution of 2.5 Å (PDB: 1A3G). The structure displayed a unique 

homotrimer [203]. After that, crystal structures of IlvEs have been solved in other 

bacterial species such as Mycolicibacterium smegmatis (PDB: 3JZ6), Mycobacterium 

tuberculosis (PDB: 3HT5), and so on [195, 204, 205]. However, the quaternary structures 

of IlvE are different in different species. For example, M. tuberculosis IlvE (Figure 

1.3.12) presents as a homodimer with two domains connected by an interdomain loop. 

The Cys196 residue is absent from other orthologues and appears only in the M. 

tuberculosis IlvE structure. The proximity and position between cysteine in each 

monomer suggests the formation of a disulfide bond; however, the electron density 

does not agree with the bond formation [204]. Comparison between IlvE holo-form and 

IlvE substrate complex indicated the direction of PLP rotation and the existence of a 

hydrogen bond between the imine nitrogen and the phenol group of PLP. This is due 

to a change in the torsion angle (C3-C4-C4’-N) during the transition from the internal 

aldimine to the external aldimine [206].  

 

   

Figure 1.3.12 The crystal structure of MtIlvE homodimer coloured like a rainbow (Left), 

and cysteine residues reside at the interface with no disulfide formation (Right) (taken 

from Blanchard et al. paper [204]). 

 

As a classic PLP-dependent AT, the IlvE performs a two-step mechanism, which 

is also known as ping-pong reaction. In the first ping half-reaction, the internal 

aldimine reacts with the donor amino acid, generating the external aldimine and 

culminating the PMP form of the enzyme as suggested by Blanchard’s group. Then, 

in the second pong half-reaction, the amine group in the PMP form of the enzyme is 

transferred to a different -keto acid to form the new amino acid. The internal aldimine 

of enzyme is regenerated and the catalytic cycle is completed [178, 207]. Studies 

proposed that the deprotonation of the external aldimine or ketimine hydrolysis is the 
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rate-limiting step of the transaminase reaction [208, 209]. Interestingly, a unique 1,3-

prototropic shift mechanism is found in the M.tuberculosis ilvE, where the protonation 

of C4’ of the PLP happens at the same time as -C-H bond cleavage from L-glutamic 

acid (L-Glu) (Figure 1.3.13) [178, 210]. 

 

Figure 1.3.13 Proposed catalytic mechanism of IlvE with a single transition state in 

ping reaction (taken from Blanchard et al. paper) [178]. 

 

The BCAT or IlvE has been studied as a drug target for several years since it is 

crucial in BCAA and BCKA biosynthesis in the human system [211]. For example, 

gabapentin is a selective inhibitor for BCAT1 but not BCAT2. As described before, the 

crystal structure of the BCAT1-gabapentin complex was determined (PDB: 2COI and 

2COJ) to understand the inhibitory mechanism by affecting the binding [202]. Recently, 

a novel leucine analogue inhibitor (ERG240) was reported to inhibit the BCAT1 

leading to a series of inflammatory diseases [212]. However, it is suggested that the 

BCAT1 inhibitors may not be deadly to the host and that BCAT2 can actually repair 

the BCAA biosynthesis since the depletion of BCAT1 in mice has no apparent 

implication [213]. For bacteria, researches have shown that O-benzylhydroxylamine 

and LCS and DCS have different inhibitory effects on both M. tuberculosis ilvE and M. 

smegmatis IlvE. Furthermore, the protein structure of the enzyme with O-

benzylhydroxylamine and DCS has already been published (Table 3.1.1) [205, 214]. Both 

kinetic and structural analysis of these cases illustrated a distinctive aspect of the 

proposed inhibitory mechanism, which was a stable PLP-inhibitor adduct forming 

during reaction [214]. Since the IlvE has a possible involvement in the iso-branched SL 

biosynthesis as stated in section 1.2, one of the aims of this project is to isolate the 

gene encoding IlvE from the P. gingivalis strain, then characterize the enzyme and 

study the chemical and biological role in the bacterial system. 
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1.4 3-Ketodihydrosphingosine reductase (KDSR) 

 

In the second step of the SLs biosynthetic pathway, the 3-KDS derived from the 

SPT reaction was reduced by KDSR to generate DHS (Figure 1.4.1). In 1998, the first 

KDSR (Tsc10p) was identified in the yeast bacterium S. cerevisiae through a 

temperature/calcium sensitivity screen assay [215]. After six years, the first human 

KDSR and mouse KDSR were found by Igarashi and Kihara. Named follicular 

lymphoma variant translocation-1 (FVT-1), this KDSR had a 41% sequence similarity 

with Tsc10p [216]. Therefore, through gene-based analysis other microbial strains such 

as Aspergillus fumigatus and Candida albicans were also shown to encode KDSR 

enzymes [217, 218]. The immunoprecipitation experiments illustrated both FVT-1 and 

Tsc10p were multimeric enzymes, obtaining different transmembrane regions in the 

ER membrane. However, the membrane domain of Tsc10p has been proven not to 

affect the enzyme activity [219]. In addition, KDSR was reported as a member of the 

short-chain dehydrogenases/reductases (SDR) family and catalyzes the NADPH 

dependent reduction [45, 219]. Fornarotto et al. also proposed a homology model of 

KDSR from A. fumigatus dependent on one of the SDR enzymes. The homology 

model showed that the active site is close to the C-terminus of the enzyme, which is 

close to the membrane. Meanwhile, most of the 3-KDS substrates are in the solvent, 

not in the binding site. This suggests that in vivo the hydrophobic substrates stay 

within the membrane to easily interact with downstream SL enzymes [217]. 

 

 

Figure 1.4.1 The NADPH-dependent, KDSR-cataysed reduction of 3-KDS. 

 

Recently, some diseases have been found to be related to mutations in the KDSR 

gene. For example, the neurodegenerative disease spinal muscular atrophy (SMA) 

which results in the loss of motor neurons was caused by a missense G-to-A mutation 
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altering Ala 175 to Thr in the KDSR enzyme. Interestingly, both FVT-1 and FVT-1 

A175T mutants complement the growth of the yeast S. cerevisiae Tsc10pΔ knockout 

strain [220]. Patients with the new genetic determinants inherit skin mendelian disorders 

and have been investigated as exon skipping in the KDSR gene [221, 222]. This recessive 

mendelian disorder leads to thick red scaly skin on the face, hands and feet [223, 224]. 

Additionally, Park et al. reported that a mutation in zebrafish also causes 

hepatomegaly to steatosis, finally a hepatic injury phenotype. SL analysis between 

the control and mutants suggested KDSR mutant I105R increased the accumulation 

of SLs and activated the SL salvage pathway (Figure 1.4.2) [220]. However, without a 

crystal structure of the human KDSR, it is hard to explain the changes in the catalytic 

mechanisms by mutagenesis. These mutations raise interests as to whether the same 

impact happens for the yeast KDSR. One of the aims of the project is to characterize 

the yeast KDSR and understand its catalytic mechanism.  

 

 

Figure 1.4.2 The comparison of SLs concentration in zebrafish between control and 

KDSR I105R mutant (taken from Park et al. paper [220]).  
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1.5 Aims 

The aims of this thesis: 

Chapter 2:  

(1) To express, purify and characterise recombinant forms of B. fragilis SPT 

(BfSPT) and P. gingivalis SPT (PgSPT). 

(2) To study the inhibition of PgSPT by L- and D-cycloserine (LCS/DCS). 

(3) To generate SPT mutants to understand the effect of the C16-CoA substrate. 

(4) To understand how the position of the 6His affinity tag influences SPT activity. 

(5) To determine the crystal structure of bacterial SPT homologues. 

 

Chapter 3: 

(1) To express, purify and characterise recombinant transaminase P. gingivalis 

IlvE (PgIlvE). 

(2) To study the inhibition of PgIlvE by inhibitors such as LCS and DCS. 

(3) To determine the crystal structure of PgIlvE to understand residues involved 

in substrate binding and the catalytic mechanism 

(4) To generate site directed mutants that may affect the enzyme activity. 

 

Chapter 4: 

(1) To express, purify and characterise a soluble S. cerevisiae KDSR (ScKDSR) 

isolated from E. coli host. 

(2) To observe enzyme activity of ScKDSR mutants based on the human KDSR 

mutants from the skin pathologic patient. 

(3) To determine the crystal structure of ScKDSR or build a hypothetic model 

using homologues from the SDR superfamily. 
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Chapter 2 Serine palmitoyltransferase (SPT) 

2.1 Expression, purification, and characterization of B. fragilis 

SPT (BfSPT) 

 

The Bacteroidetes, one of the dominant microbial species in the human gut, 

are a source of bacterial SLs that has evolved a complicated relationship with our host 

systems (immunity, metabolism etc.). Johnson et al. recently showed that bacterial 

SLs are linked with mammalian SL pathways by introducing B. thetaiotaomicron into 

mice. This resulted in the reduction of de novo SLs production and the increase of 

liver ceramides (Cers) [225]. Brown et al. provided evidence for intestinal inflammation 

and alternation of Cer levels caused by the deficiency of bacterial SLs through the 

deletion of the SPT in B. thetaiotaomicron [96]. In 2011, Wieland Brown et al. 

discovered three unique iso-branched SLs that simulate mammalian iNKT cells. They 

also proposed a putative SPT (BF2461) homologue from the B. fragilis found in the 

human gut which showed high homology to other well-characterised bacterial SPTs 

studied in the Campopiano group and proposed that this SPT catalysed the first step 

in the SL biosynthetic pathway [94]. The gene BF2461 had previously been studied and 

confirmed as BfSPT by group members Edward Bower and Bohdan Mykhaylyk in 

preliminary studies [226, 227]. 

 

Figure 2.1.1 Plasmid map of B.fragilis SPT in pET-28a 

In order to obtain a better understanding of the SPT mechanism and 

biochemistry, the initial work of my PhD was a re-investigation on BfSPT. The gene 

had been cloned into a C-terminal His6-tag pET-28a (Figure 2.1.1). The protein was 

expressed in BL21 (DE3) for 4~5 hours at 30 °C after induction with 0.1 mM IPTG. 

The purification methods consisted of HisTrap HP (1 ml column) with buffer A and B 
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(buffer details in Section 6.1), followed by a HiLoad 16/60 Superdex 200 prep grade 

column with buffer C or D for further clean-up (Figure 2.1.2). Typical yields of 

recombinant, pure BfSPT were ~ 9.0 mg per litre of E. coli culture. 

 

Figure 2.1.2 BfSPT purification and analysis. (A) Chromatogram from SEC column. (B) 15% 

SDS-PAGE gel after SEC. LMW: Low molecular weight marker, Lane 1-8: elution fractions from 68-91 

mL. (C) 

The positive ion mass spectrum of recombinant BfSPT (10 M) with a deconvoluted mass of 44614.14 

± 1.37 Da. 

The protein purity was confirmed by SDS-PAGE analysis and LC-ESI-MS. A 

denatured mass of 44614.14 ± 1.37 Da was measured (Figure 2.1.2), which matched 

the theoretical mass with the loss of the initial methionine (44614.30 Da) calculated 

from the recombinant protein sequence using ExPaSy ProtParam tool website 

(https://web.expasy.org/compute_pi/). It is common that the initial methionine is lost 

during post-translational modification, and that gluconoylation of the histidine tag of 

the protein during E.coli expression would also cause an additional peak (+178 Da) 

to appear in the mass spectrum [228, 229].  

In addition, the elution peak from SEC column was around 76 mL 

corresponding to a mass of ~90 kDa calculated from a calibration curve (Appendix 

7.1). This also predicted that the protein was a homodimer which is similar to other 
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bacterial SPT isoforms that had been published in the past such as SpSPT and 

SwSPT.[111, 158, 161, 230].  

 

Figure 2.1.3 Monitoring and characterization of BfSPT binding with L-Ser. (A) UV-vis 

spectrum of BfSPT. (B) The determination of dissociation constant (𝐾ௗ). The assay contained 20 M 

BfSPT and variable concentrations of L-Ser (0-60 mM). The data were plotted as mean readings ±2-SD 

error bars.  

The binding of ligands such as L-Ser to PLP-dependent enzymes can be 

monitored by UV-vis spectroscopy with maxima wavelengths of ~330-335 nm and 

~415-425 nm, respectively for SpSPT. This represents the equilibrium between the 

enolimine and ketoenamine forms or the PLP-bound (internal aldimine) and PLP:L-

serine (external aldimine) forms of PLP enzymes [159]. In contrast to other SPTs, for 

BfSPT (Figure 2.1.3), there was no obvious peak around 335 nm, and only an 

increasing absorbance at 420 nm with binding different concentration of the substrate, 

which meant the PLP cofactor only remained as ketoenamine form in this enzyme. 

Meanwhile, an estimated 𝐾ௗ  value could be determined by the difference in 

absorbance at 425 nm against a range of L-Ser concentrations (0.1 - 60 mM), which 

was measured as 1.45 ± 0.22 mM, and these findings agreed with the previously 

reported value of 1.48 mM (Mykhaylyk) and 1.34 mM (Bower). Compared to SpSPT 

(1.1 mM) and SwSPT (0.8 mM), BfSPT was still characterised with the ligand bound 

[159, 160]. 

As with other SPTs described in the introduction, BfSPT activity was measured 

using the coupled DTNB assay to obtain the kinetic parameters for both L-Ser and 

C16-CoA substrates (Figure 2.1.4). However, substrate inhibition was found with high 

concentrations of C16-CoA with the reaction rate decreasing when a concentration 

above 80 M was used and significant inhibition occurring when it was over 400 M. 

By using substrate inhibition analysis (the high substrate inhibition from Origin), an 

estimated inhibition constant (𝐾௜) could be calculated as 165.74 ± 72.58 M. It is noted 

that the 3-KDS product could still be detected by MALDI-ToF-MS analysis during the 
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inhibition stages, so the enzyme was still active but incredibly slow to produce 3-KDS. 

This phenomenon was also observed in the previous study [227], with the straight-chain 

acyl-CoA substrate (C16-CoA) causing reaction inhibition – C17-CoA and C15-CoA 

also showed similar patterns. The reason behind acyl-CoA substrate inhibition will be 

discussed more in a later section 2.6 with another human microbial SPT (PgSPT). 

 

 

Figure 2.1.4 Substrate inhibition analysis of BfSPT reactions for substrates C16-CoA. 

Each assay contained 0.1 M BfSPT, 20 mM L-Ser and variable con centration of C16-CoA (0-1.0 mM). 

The data were plotted as mean readings ±2-SD error bars. 

 

 

Figure 2.1.5. Kinetic analysis of BfSPT reactions for optimized substrate L-Ser (A) and 

C16-CoA (B). Each assay contained 0.35 M BfSPT, variable concentration of L-Ser or C16-CoA. All 

data were plotted as mean readings ±2-SD error bars. 
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Assay conditions for substrate L-Ser and C16-CoA were optimized by 

increasing the BfSPT concentration from 100 nM to 350 nM and lowering the 

concentration of the substrate, in order to gain kinetic parameters for BfSPT WT 

(Figure 2.1.5). This allowed measurements for both substrates; for L-Ser, the 𝐾ெ 

value was 2.02 ± 0.17 mM, 𝑉௠௔௫ value was 0.08 ± 0.01 M/s, 𝑘௖௔௧ value was 0.22 

± 0.01 s-1 and 𝑘௖௔௧ /𝐾ெ  value was 0.11 mM-1s-1. There is no large difference in 

substrate affinity (𝐾ெ) compared to S. paucimobilis SPT (SpSPT) and S. witichii SPT 

(SwSPT), which were 1.40 mM and 0.78 mM respectively. However, the turnover 

number (𝑘௖௔௧) is more than 5 times slower than for SpSPT (1.15 s-1) and almost 1.5 

times faster than SwSPT (0.15 s-1) [159, 160]. For substrate C16-CoA, the 𝐾ெ value was 

18.15 ± 2.26 M, 𝑉௠௔௫ value was 18.84 ± 1.06 nM/s, 𝑘௖௔௧ value was 0.05 ± 0.01 s-1 

and 𝑘௖௔௧/𝐾ெ value was 2.98 mM-1s-1. Compared to the substrate affinity with SpSPT 

(35.4 M) and SwSPT (23.4 M), BfSPT showed a higher affinity with P-CoA than L-

Ser. Considering the low turnover number, the catalytic efficiency ( 𝑘௖௔௧ / 𝐾ெሻ  is 

approximately 10 times lower than SpSPT (32.47 mM-1s-1), but nearly the same as 

SwSPT (2.94 mM-1s-1). There has been a discussion as to whether 𝑘௖௔௧ /𝐾ெ  is a 

useful comparator to compare two enzymes [231]. More details of these data will be 

discussed along with the analysis of the P. gingivalis (PgSPT) in a later section 2.5 

and 2.6.  
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2.2 Exploring the mutant BfSPT V353R 

 

 

Figure 2.2.1 Comparison of PLP: L-Ser external aldimine SPT structures and relevant 

residues. (A) Structural overlay of SpSPT and BfSPT. (B) The SpSPT:PLP: L-Ser complex (PDB: 2W8J) 

[159]. (C) The BfSPT: PLP: L-ser complex, PDB:unpublished.  

The x-ray structures of BfSPT with both PLP and other bound ligands are 

currently undergoing final refinement (Mykhaylyk, Naismith and Campopiano), but a 

working structure is used for comparison. By analysing the structures and residues 

around the PLP: L-Ser external aldimine (Figure 2.2.1), Arg378 in SpSPT appears to 

flip inside to interact with the PLP: L-Ser ligand. It has been discussed by Raman et 

al [159] that, during the binding process, that the conformation and position of Arg378 

are altered to retain the hydrogen-bonds with the conserved His159 and also bind the 

carboxylate group of L-Ser. It is suggested that this residue plays an important, but 

not essential, role by affecting the stabilization of an intermediate of both substrates. 

Rather than an Arg residue at the position, there is a Val residue (V353) near to the 

PLP: L-Ser external aldimine in the BfSPT structure, so it is time to explore the impact 

on the catalytic activity and substrate binding by replacing the Val with Arg (V353R).  
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Figure 2.2.2 BfSPT V353R purification and analysis. (A) Chromatogram from SES column. 

(B) 12% SDS-PAGE gel after SEC. LMW: Low molecular weight marker, Lane 1-8: elution fractions from 

68-89 mL. (C) The +ve ion mass spectrum of recombinant BfSPT (10 μM) with a deconvoluted mass of 

44664.88 ± 1.81 Da. 

The mutant BfSPT V353R was successfully cloned by PCR and confirmed by 

commercial DNA sequencing. The soluble mutant enzyme was well-expressed and 

isolated by using the same buffers and purification method as BfSPT WT (Figure 

2.2.2), which showed similar data compared to the WT enzyme. The pure protein was 

analysed by LC-ESI-MS, with a mass of 44664.88 ± 1.81 Da, which was slightly lower 

than the theoretical mass minus the initial methionine (44671.35 Da). To ensure the 

correct protein was obtained, it was also subjected to FT-ICR-MS/MS analysis of the 

tryptic digest, as well as confirmation of the protein sequence using the Protein 

Prospector online tool. 
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Figure 2.2.3 Monitoring and characterization of BfSPT V353R binding with L-Ser. (A) 

Absorption UV-vis spectrum of BfSPT V353R. (B) The determination of dissociation constant (𝐾ௗ). The 

assay contained 20 μM BfSPT and variable concentrations of L-Ser (0-100 mM). The data were plotted 

as mean readings ±2-SD error bars. 

 

Figure 2.2.4 Enzyme assays of BfSPT WT, BfSPT V353R and negative controls. The 

BfSPT WT and V353R assay contained 20 mM L-Ser and different concentrations of C16-CoA and 

enzyme as labelled. 

The enzyme was analysed by UV spectroscopy to examine the binding of 

PLP-L-Ser, and a 𝐾ௗ value of 1.70 ± 0.23 mM for BfSPT V353R was obtained (Figure 

2.2.3). Compared to the WT enzyme ( 𝐾ௗ =1.45 mM), there was no significant 

difference in the dissociation of the L-Ser from the PLP-bound complex, where one 

might have predicted the introduction of the Arg residue in place of Val would lead to 

tighter binding. Surprisingly (Figure 2.2.4), when the mutant was first tested through 

the enzyme assay with positive and negative controls, then MALDI-ToF-MS to 

examine the 3-KDS products, it seemed that the mutant could not catalyse the 

reaction normally and no relevant products were determined from MS. Since L-Ser 

binding appeared to be unaffected by this mutation this observation suggested that 

the Val at position 353 was essential to control the second, C-C bond-forming catalytic 

step of the reaction mechanism i.e. when C16-CoA binds to the PLP: L-Ser external 

aldimine form and leads to the formation of the reactive carbanion (Fig. 1.3.8).
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2.3 Cloning, expression, purification and characterization of P. 

gingivalis C-terminal pETHis10SPT  

An et al. suggested SLs were able to form SL-dependent membrane 

microdomains, like eukaryotic lipid rafts, to support long-term survival in B. fragilis [156]. 

As mentioned in the introduction, the group of Prof. Mary Davey (University of Florida) 

discovered a similar phenomenon that SLs were essential to the existence of surface 

polysaccharides in oral bacterial P. gingivalis [97]. Recently, they also found out the 

synthesis of SLs controlled the inflammatory response and homeostasis with the host 

[232]. They suggested a potential SPT homologue (PG1780, UniProt code: Q7MTZ6)  

as the PgSPT in the P. gingivalis W83 strain [97]. As discussed in the introduction, all 

the bacterial SPTs belong to AONS catalogues, and the average amino acid sequence 

similarity is ~30% to 35% depending on different functions. The sequence analysis of 

PgSPT is carried out with other bacterial SPT isoforms (Table 2.3.1 and Figure 2.3.1). 

The PgSPT showed high sequence homology, with the conservation of key active 

sites residues involved in PLP binding and catalysis (Table 2.3.2). Furthermore, the 

PgSPT shared the highest amino acid sequence identity (76%) with the B. fragilis 

BfSPT found by both Wieland Brown et al and An et al. The data in this section were 

summaried and published in a paper (F.G. Rocha, P. Tang, et al., Journal of Dental 

Research, 2020, 99, 568-576) [232] 

 
Table 2.3.1 Percentage sequence of identity and similarity of SPT isoforms. 

SPT 
(% Identity/ 

% Similarity)

S. paucimobilis S. wittichii S. multivorum B. fragilis P. gingivalis

S. paucimobilis 100/100 75/86 38/60 35/58 34/56 

S. wittichii 75/86 100/100 36/59 39/61 37/58 

S. multivorum 38/60 36/59 100/100 58/79 59/77 

B. fragilis 35/58 39/61 58/79 100/100 76/89 

P. gingivalis 34/56 37/58 59/77 76/89 100/100 
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Figure 2.3.1 A sequence alignment of five main bacterial SPTs numbered according 

to SpSPT. (Conserved residues are highlighted red, the key functional residues are in yellow, PACSP 

loop is highlighted blue. Uniprot codes are: S. paucimobilis: Q93UV0, S. wittichi: A5VD79, B. fragilis, 

BF2461, S. multivorum: A7BFV6, P. gingivalis: Q7MTZ6.). 

 

Table 2.3.2. Potential roles of conserved residues [151, 158, 159, 162, 165] 

Residue in SpSPT) Proposed role 

His159 Stacks with pyridinium ring of PLP 

Asp231 Polar contact with protonated nitrogen of the PLP ring 

His234 Hydrogen bond with pyridinium ring 

Lys265 Forms internal aldimine with PLP 

Arg378 Involved in binding L-Ser and quinonoid formation 

Arg390 Involved in binding L-Ser and quinonoid formation 
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Figure 2.3.2 Plasmid map of P. gingivalis SPT in pEBSRCTEVC10HIS 

The PgSPT gene was cloned into a pEBSRCTEVC10HIS expression plasmid 

modified from the pET-23 plasmid (Figure 2.3.2), which was a C-terminal 10xhistidine 

tag expression plasmid to isolate the PgSPT. After the gene sequence was confirmed 

by DNA sequencing, the soluble protein was well-expressed in BL21 (DE3) cell for 

4~5 hours at 30°C after being induced with 0.1 mM IPTG. The protein was 

successfully isolated by HisTrap HP 1 ml column with buffer A and B for activity 

analysis or buffer E and F for crystallography trails. Then the protein was loaded on a 

calibrated Superdex 200 SEC for further purification with buffer C or H and the typical 

protein yields were ~ 6.0 mg/L of E. coli culture. 
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Figure 2.3.3 C’PgSPT purification and analysis. (A) Chromatogram from SES column. (B) 12% 

SDS-PAGE gel after SEC. LMW: Low molecular weight marker, Lane 1-8: elution fractions from 65-87 

mL. (C) The +ve ion mass spectrum of recombinant C’PgSPT (10 M) with a deconvoluted mass of 

46199.18 ± 1.15 Da. 

The protein was eluted at 76 mL, as shown on the S200 SEC chromatogram 

(Figure 2.3.3), which was the same as BfSPT, suggesting C’PgSPT also formed a 

homo-dimer in solution. The purity of C’PgSPT was confirmed by both SDS-PAGE 

and LC-ESI-MS analysis obtaining a mass of 46199.18 ± 1.15 Da, which was the 

same theoretical mass with the loss of initial methionine (46199.62 Da) (Figure 2.3.3). 

The purified PgSPT was then studied using substrate binding and enzyme assay 

analysis. 

 

 

Figure 2.3.4 Monitoring and characterization of C’PgSPT binding with L-Ser. (A) UV-vis 

spectrum of purified C’PgSPT. (B) The determination of dissociation rate constant. The assay contained 

20 M C’PgSPT and variable concentration of L-Ser. The data were plotted as mean readings ±2-SD 

error bars. 
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Table 2.3.3 The dissociation constants for bacterial SPTs in different species [151, 159, 

160, 230, 232]. 

Species 𝑲𝒅
𝑺𝒆𝒓 (mM) 

S. paucimobilis 151 1.10 ± 0.10 

S. multivorum 230 0.47 ± 0.10 

S. wittichii 159 0.80 ± 0.10 

S. spiritivorum 230 1.20 ± 0.03 

B. stolpii 230 2.55 ± 0.12 

B. fragilis 1.45 ± 0.22 

P. gingivalis 232 5.46 ± 0.60 
151 Beattie’s paper; 230 Ikushiro’s paper; 159 Raman’s paper; 232 Rocha’s paper 

 

The purified C’PgSPT was firstly analysed by UV-vis spectrometry with an 

increasing concentration of the substrate L-Ser for ligand-binding. A similar pattern for 

BfSPT, showing only ketoenamine forms at 420 nm (Figure 2.3.4) was observed. The 

dissociation constant (𝐾ௗ) was determined as 5.46 ± 0.60 mM. Compared to other 

bacterial SPT isoforms (Table 2.3.3), C’PgSPT showed the weakest L-Ser binding, 

which was almost 5 times and 11 times weaker than the SpSPT and SwSPT 

respectively and ~4 times weaker than the BfSPT. However, it was noted that during 

the experiment, C’PgSPT seemed to precipitate when it was exposed to room 

temperature for over 4 hours without the addition of PLP. As each scan had to be 

equilibrated for 20~25 minutes for substrate binding before measurement, the 

instability of C’PgSPT could influence the measurements taken and the 𝐾ௗ  value 

determined. The reason for protein precipitation is still under investigation. 

The C’PgSPT activity was then tested with different pH values from 6.0 to 8.0 

using the DTNB assay before characterizing the kinetic parameters. These pH values 

were chosen since the distribution of oral mucosal pH values ranges from 6.5~7.5 [233]. 

The study (Figure 2.3.5) showed C’PgSPT had the best activity at 7.0 and still 

obtained 90% activity at 7.5 (assumed 100% activity at pH 7.0). For pH 6.0 and 8.0, 

only 56% and 60% activity remained. In further enzyme kinetic studies, all enzyme 

assays were carried out at pH 7.0.  

After optimising the assay conditions, the kinetic parameters of C’PgSPT were 

successfully obtained (Figure 2.3.4). For L-Ser, the 𝐾ெ value was 0.52 ± 0.06 mM, 

the 𝑉௠௔௫ value was 0.04 ± 0.01 M/s, the 𝑘௖௔௧ value was 37.9 ± 0.6 ൈ 10-3 s-1 and 

the 𝑘௖௔௧/𝐾ெ value was 72.9 M-1s-1. For C16-CoA, the 𝐾ெ value was 84.0 ± 8.71 μM, 

the 𝑉௠௔௫ value was 0.05 ± 0.01 M/s, the 𝑘௖௔௧ value was 49.1 ± 1.46 ൈ 10-3 s-1 and 

the 𝑘௖௔௧/𝐾ெ value was 584.5 M-1s-1.  
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Figure 2.3.5 pH dependence and kinetic analysis of recombinant C’PgSPT by DTNB 

coupled assay. (A) The absorbance against time in different pH. (B) Comparison of initial rate in 

different pH. Each assay contained 0.1 M enzyme. (C-D) Kinetic analysis for substrate L-serine and 

C16-CoA. Each assay contained 1 M enzyme and variable concentration of L-Ser or C16-CoA. All data 

were plotted as mean readings ±2-SD error bars. 

 

Table 2.3.4 Kinetic parameters for bacterial SPTs in different species [151, 159, 160, 230, 

232] 

SPT species 𝒌𝒄𝒂𝒕 ൈ 𝟏𝟎ି𝟑 

(s-1) 

𝑲𝑴
𝑺𝒆𝒓  

(mM) 

𝒌𝒄𝒂𝒕/

𝑲𝑴
𝑺𝒆𝒓  

(M-1s-1)

𝑲𝑴
𝑪𝟏𝟔_𝑪𝒐𝑨 

(M) 

𝒌𝒄𝒂𝒕/

𝑲𝑴
𝑪𝟏𝟔_𝑪𝒐𝑨 

(M-1s-1) 

S.paucimobilis151 1150.0 ± 30.0 1.40 ± 0.10 821.4 35.4 ± 2.0 32,468 

S.multivorum230 120.0 ± 10.0 4.80 ± 0.60 25.0 100 ± 10.0 1,200 

S.wittichii159 68.7 ± 1.5 0.78 ± 0.10 88.1 23.4 ± 4.5 2,936 

S.spiritivorum230 150.0 ± 10.0 5.00 ± 0.80 30.0 390 ± 40.0 385 

B.stolpii230 30.0 ± 2.0 3.70 ± 0.40 8.1 ND ND 

B.fragilis 218.0 ± 4.0 2.02 ± 0.17 108.0 18.2 ± 2.3 2975 

P.gingivalis232 43.5 ± 1.03 0.52 ± 0.06 72.9 84.0 ± 8.7 584 
151 Beattie’s paper; 230 Ikushiro’s paper; 159 Raman’s paper; 232 Rocha’s paper; ND, not determined 
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Compared to the other SPT isoforms (Table 2.3.4) [151, 159, 160, 230], PgSPT had the 

highest affinity for L-Ser, which was approximately 10 times higher than SsSPT and 

SmSPT, but had a smaller affinity with C16-CoA. The reaction speed of PgSPT was 

possibly limited by association with C16-CoA, as shown by observing the 𝐾ெ values 

and 𝑘௖௔௧/𝐾ெ
஼ଵ଺_஼௢஺ values of C16-CoA. To date, SpSPT is still the SPT isozyme that 

displays the highest catalytic activity with both substrates — L-Ser and C16-CoA. 

 

 

Figure 2.3.6 MALDI-ToF-MS analysis of C’PgSPT reaction product 3-KDS formed 

from L-Ser and C16-CoA. (A) Observation of the product 3-KDS at m/z = 300 amu. (B-D) negative 

controls (E) Full assay of C’PgSPT reaction (F) Theoretical mass. Each assay contained with 1 M 

enzyme, 0.2 mM DTNB and 20 mM L-Ser or 250 M C16-CoA was added dependent on samples. The 

data were analysed on the positive mode in triplicates. 

 

The 3-KDS products produced by the SPT reaction could be successfully 

detected by MALDI-ToF-MS analysis (Figure 2.3.6), a C18 3-KDS product ion was 

shown as the main peak with an m/z = 300.290 and the relevant isotope peaks, which 

matched the theoretical mass [M+H]. A series of controls verified that only in the 

presence of both substrates and the enzyme, the 3-KDS was formed. 

Recent studies showed that human SPT had been reported to be able to use L-

Ala as well as forming deoxy-sphingolipids that caused the HSAN1 as described in 

the Introduction 1.3.1. Meanwhile, the Bacteroides SPT had also been found to act 

with a similar “promiscuous” catalytic activity with L-Ala and Gly in cells [96, 234, 235]. 

Thus, 3-KDS product screening proceeded for PgSPT and BfSPT with a variable 

range of amino acid substrates (Gly/L-Ala/L-Ser) and straight-chained acyl CoA 

substrates (C14-C18 CoAs) using the MALDI-ToF-MS method (Table 2.3.5). The data 

agreed with those studies that bacterial SPTs were able to catalyse the reaction with 

a wide range of amino acid and acyl-CoA substrates. 
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Table 2.3.5 Screening of 3-KDS products catalysed by PgSPT, BfSPT and BtSPT 

through MALDI-ToF-MS. 

CoAs Amino acids KDSs MW PgSPT BfSPT 

 
 

C14-CoA 

Gly C15H31NO 243.247 ✓ ✓ 

L-Ala C16H33NO 256.263 ✓ ✓ 

L-Ser C16H33NO2 272.258 ✓ ✓ 

 
 

C15-CoA 

Gly C16H33NO 256.263 ✓ ✓ 

L-Ala C17H35NO 270.279 ✓ ✓ 

L-Ser C17H35NO2 286.274 ✓ ✓ 

 
 

C16-CoA 

Gly C17H35NO 270.279 ✗ ✗ 

L-Ala C18H37NO 284.294 ✗ ✓ 

L-Ser C18H37NO2 300.289 ✓ ✓ 

 
 

C17-CoA 

Gly C18H37NO 284.294 ✓ ✓ 

L-Ala C19H39NO 298.310 ✗ ✓ 

L-Ser C19H39NO2 314.305 ✓ ✓ 

 
 

C18-CoA 

Gly C19H39NO 298.310 ✗ ✗ 

L-Ala C20H41NO 312.326 ✓ ✓ 

L-Ser C20H41NO2 328.321 ✓ ✓ 

 
The study from Wieland Brown et al. [94] had suggested iso-branched SLs exist 

in B. fragilis. Iso-branched C17 3-KDS was detected through a PgSPT reaction with 

L-Ser and a small sample of iso-branched C15 CoA provided by Prof. Teresa Dunn’s 

group (Uniformed Services University). It assumed that bacterial SPT could also 

produce iso-branched 3-KDS products. Unfortunately, there was commercially 

available iso-branched C15 CoA substrates to obtain kinetic data. 
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2.4 Inhibition studies with L- and D-cycloserine (LCS and DCS) 

 

Figure 2.4.1 Proposed mechanisms of SPT inactivation by LCS and DCS inspired by 

studies by Lowther et al. and Ikushiro et al [173, 236]. 

 

Cycloserine (both enantiomers LCS and DCS) is a cyclic amino acid mimic which 

inhibits many PLP-dependent enzymes by forming an external PLP-bound isoxazole 

by removal of the C- proton. However, as reported in Lowther’s paper, a proposed 

novel decarboxylative mechanism of CS inhibition of SpSPT is shown in Figure 2.4.1 

[173]. A key finding was the identification of a LCS-derived -aminoacetaldehyde 

product by MS and x-ray crystallography. This suggested that SpSPT initially forms 

complexes of 3-hydroxyisoxazole-PMP adducts, with both LCS and DCS. The CS ring 

is hydrolysed and opened to form a PLP:carboxylated intermediate. This undergoes 
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decarboxylation (as the -keto acid intermediate would do) in a normal SPT reaction, 

to give an imine. This is further hydrolysed to PMP and the β-aminoaldehyde product 

was observed. Alternatively, Ikushiro proposed the external aldimine of CS is opened 

to the transient accumulation of the oxime form of PLP [173, 236]. Lowther also noted 

that LCS is ~14 times more effective than DCS at inhibiting SpSPT. So, since different 

SPTs display different kinetic characteristics with respect to their L-Ser and acyl-CoA 

substrates, it was decided to examine the interaction of C’PgSPT with these 

interesting inhibitors. 

 

 

Figure 2.4.2 Absorption spectra of C’PgSPT upon the addition of (A) LCS and (B) 

DCS overtime period. Each assay contained 20 M PgSPT with 0.5 mM LCS or DCS.  

 

Analysis of the UV-vis spectrum of C’PgSPT incubated with both enantiomers of 

CS (Figure 2.4.2) confirms CS binds to the enzyme to form the external aldimine of 

the inhibitors. With LCS, the peak at 425 nm decreased with time and the 330 nm 

peak increased (0-120 mins). The 330 nm peak has been proposed as the PMP form. 

In contrast, the changes in the PLP absorbance of PgSPT incubated with DCS were 

different compared to LCS and they took place over 360 mins. The increased peak 

ranged from 320 nm to 390 nm suggesting a number of PLP-derived species were 

present. Moreover, it took ~2 hours for LCS to equilibrate but ~6 hours for the DCS to 

progress to the same extent.  
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Figure 2.4.3 Irreversible inhibition analysis of C’PgSPT by (A) LCS and (B) DCS by 

DTNB assay. Each assay contained 0.5 M enzyme, 20 mM L-serine, 250 M P-CoA, and variable 

concentration of LCS or DCS. All data were plotted as mean readings ±2-SD error bars. 

 

CS was reported as an irreversible inhibitor to SpSPT by Lowther et al. due to 

the weak formation of enzyme CS complex, which decomposed into PMP and β-

aminoaldehyde adducts [173]. Therefore, the inhibition potency was analysed using 

equation (2), instead of the Kitz-Wilson plot for an irreversible inhibitor, illustrated in 

Figure 2.4.3 [237, 238]. This analysis was applied to any irreversible inhibitors that use 

the data of the proportion of enzyme activity/control that belongs to nonlinear 

regression. Both LCS and DCS showed inhibition of the enzyme to some extent. The 

maximum potential enzyme inactivation rate (𝑘௜௡௔௖௧) and the inhibition potency (𝐾௜) of 

both inhibitors could be successfully estimated. For LCS, the 𝑘௜௡௔௖௧ value was 0.002 

± 0.001 s-1, the 𝐾௜ value was 117.79 ± 13.23 M and the 𝑘௜௡௔௖௧/𝐾௜ value was 22.92 

± 6.04 M-1s-1. For DCS, the 𝑘௜௡௔௖௧ value was 0.004 ± 0.001 s-1, the 𝐾௜ value was 3.52 

± 0.36 mM and the 𝑘௜௡௔௖௧/𝐾௜ value was 1.22 ± 0.28 M-1s-1. In biochemical assays, 

the 𝑘௜௡௔௖௧/𝐾௜ is used to describe the efficiency of covalent bond formation between 

enzyme and inhibitors, which is an essential kinetic parameter to identify the covalent 

inhibitors [239]. Comparing the kinetic data of both CS enantiomers, LCS was found to 

be ~20-fold more effective at inactivating C’PgSPT than DCS, whereas the LCS 

inhibitor potency was shown as ~30-fold stronger than the DCS inhibitor potency. This 

agreed with the evidence shown by UV-vis spectroscopy and the data obtained for 

SpSPT in Lowther’s paper, with a 𝑘௜௡௔௖௧/𝐾௜ value of LCS was 0.83 ± 0.50 M-1s-1 and  

𝑘௜௡௔௖௧/𝐾௜ value of DCS was 0.06 ± 0.01 M-1s-1 [173]. It would be interesting to further 

explore the PgSPT:CS inhibitor complexes by MS and crystallography to try to trap 

these proposed intermediates. 
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2.5 Exploring the PAVAP loop of C’PgSPT by site-directed 

mutagenesis 

 

Since the AOS family of enzymes share a common mechanism with similar 

amino acid and acyl-CoA (or ACP) thioester substrates, a goal has been to understand 

the origin of the substrate specificity and explore how the complex, multi-step catalytic 

mechanism is controlled [111]. It appears a key step is also release of the oxoamine 

product in each enzyme. A highly conserved motif was identified by sequence analysis 

of a number of SPTs and then, once the x-ray structure of the first SpSPT had been 

determined by Yard et al in the Campopiano/Naismith groups, a structural and 

mechanistic role for this stretch of amino acids could be assigned. Within the 

sequence 379-PPATPAGTFLLR-390 of SpSPT is a “PPATP” loop that was shown to 

undergo conformational change during the catalytic cycle [158, 159]. It has been 

proposed that the Thr382 residue plays a similar role to the Thr352 residue in the 

dynamic “350-PPTVP-354” motif found in the crystal structure of the related AOS 

enzyme E. coli AONS whose structure was determined with the PLP:AON external 

aldimine bound [240]. The –OH from the side-chain of Thr352 is hydrogen-bonded to 

the carboxylate of AON in this product bound form. It is thought that dynamic nature 

of the loop could play a role in substrate binding and product release. 

In recent research on the related AONS enzyme 5-aminolevulinate synthase 

(ALAS), Lendrihas et al. found a conserved loop increased the catalytic efficiency for 

the two substrates (L-Ala and succinyl-CoA) and controlled ALA product production 

and release [241]. By studying the loop variants with a clever mutagenesis and high 

throughput assay, they found out that both basicity and hydrophilicity of the enzyme 

were increased, which presumably stabilized the loop in the closed conformation. 

Having observed acyl-CoA substrate inhibition with some SPT isoforms it was a goal 

to explore any possible link between this conserved loop and ligand binding and 

product release. Interestingly, there was no substrate inhibition observed with C16-

CoA in C’PgSPT in contrast to BfSPT. Based on the sequence alignment (Figure 

2.3.1), we highlighted the similar loops (PAXXP or PAXP) across the bacterial SPTs. 

In PgSPT there is a “356-PAVAP-360” loop, therefore several loop mutants, V358C, 

V358A, A359S and double mutant (DM, V358C A359S) of C’PgSPT would be 

prepared and studied. Each enzyme was expressed and purified in a similar manner 

to the wild-type C’PgSPT. 
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Figure 2.5.1 C’PgSPT V358C (1), V358A (2), A359S (3) and DM (4) purification and 

analysis. (A) Chromatogram from SES column. (B) 12% SDS-PAGE gel after SEC. LMW: Low 

molecular weight marker, Lane 1-8: elution fractions from main peak. (C) The mass spectrum of 

recombinant C’PgSPT V358C (1) with a mass of 46205.66 ± 2.85 Da, V358A (2) with a mass of 46171.06 

± 0.60 Da, A359S (3) with a mass of 46216.09 ± 1.63 Da and DM (4) with a mass of 46219.24 ± 5.74 Da. 

All the enzyme concentrations were 10 M. 

To further explore the function of the loop, several mutants (V385C, V358A, 

A359S and DM) of C’PgSPT were engineered successfully and confirmed by DNA 

sequencing. As shown in Figure 2.5.1, all the mutants were well expressed using the 

same protocol as C’PgSPT WT. This consisted of isolation using HisTrap with same 

buffer system and elution occurred at a similar volume ~78 mL in a calibrated SEC 

column. Following the purification, the integrity of all the proteins was confirmed by 

LC-ESI-MS, giving 46205.66 ± 2.85 Da for mutant V358C matching the theoretical 

mass with loss of initial methionine (46203.62 Da); 46171.06 ± 0.60 Da for mutant 

V358A as same as theoretical mass minus methionine (46171.56 Da); 46216.09 ± 

1.63 Da for mutant A359S equalling to the theoretical mass without methionine 

(46215.61 Da); 46219.24 ± 5.74 Da for DM as similar to the theoretical mass missing 

methionine (46219.62 Da). 
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Figure 2.5.2 Kinetic analysis of C’PgSPT mutants for substrate L-Ser (A) and C16-

CoA (B) by DTNB coupled assay. (1) V358C (2) V358A (3) A359S (4) DM. Each assay contained 

with 0.5 - 1 M enzyme and the variable concentration of L-Ser or C16-CoA. All data were plotted as 

mean readings ±2-SD error bars. 

After the proteins had been confirmed, a kinetic analysis carried out on each 

C’PgSPT mutants with both substrate L-Ser and C16-CoA (Figure 2.5.2). No substrate 

inhibition was observed with high concentrations of C16-CoA in all the C’PgSPT 

mutants. Firstly, for mutant V358C, investigating the kinetic parameters of L-Ser, the 

𝐾ெ value was 0.25 ± 0.05 mM, the 𝑉௠௔௫ value was 4.91 ± 0.15 nM/s, the 𝑘௖௔௧ value 

was 4.91 ± 0.14 ൈ 10-3 s-1 and the 𝑘௖௔௧/𝐾ெ value was 19.47 M-1s-1. For C16-CoA, the 

𝐾ெ value was 6.70 ± 0.80 M, the 𝑉௠௔௫ value was 3.84 ± 0.08 nM/s, the 𝑘௖௔௧ value 

was 3.84 ± 0.08 ൈ 10-3 s-1 and the 𝑘௖௔௧/𝐾ெ value was 0.573 mM-1s-1.  

Secondly, mutant V358A showed similar activity with both substrates as mutant 

V358C. For L-Ser, the 𝐾ெ value was 0.11 ± 0.02 mM, the 𝑉௠௔௫ value was 6.70 ± 

0.15 nM/s, the 𝑘௖௔௧ value was 6.70 ± 0.16 ൈ 10-3  s-1 and the 𝑘௖௔௧/𝐾ெ value was 

59.80 ± 8.72 M-1s-1. For C16-CoA, the 𝐾ெ value was 5.65 ± 1.02 M, the 𝑉௠௔௫ value 

was 4.74 ± 0.14 nM/s, the 𝑘௖௔௧ value was 4.74 ± 0.14 ൈ 10-3 s-1 and the 𝑘௖௔௧/𝐾ெ 

value was 0.840 mM-1s-1. 

Thirdly, for mutant A359S, the mutation still had an impact on the reaction activity 

and substrate affinity, observed via kinetics. For L-Ser, the 𝐾ெ value was 1.48 ± 0.14 

mM, the 𝑉௠௔௫ value was 0.04 ± 0.01 M/s, the 𝑘௖௔௧ value was 78.76 ± 1.35 ൈ 10-3  

s-1 and the 𝑘௖௔௧/𝐾ெ value was 53.3 ± 9.75 M-1s-1. For C16-CoA, the 𝐾ெ value was 

39.48 ± 2.00 M, the 𝑉௠௔௫ value was 0.03 ± 0.01 nM/s, the 𝑘௖௔௧ value was 65.50 ± 

0.80 ൈ 10-3 s-1 and the 𝑘௖௔௧/𝐾ெ value was 0.166 mM-1s-1.  

Finally, the kinetic parameters of DM were determined as, for L-Ser, the 𝐾ெ 

value was 0.72 ± 0.09 mM, the 𝑉௠௔௫ value was 6.61 ± 0.18 nM/s, the 𝑘௖௔௧ value was 

6.61 ± 0.18 ൈ 10-3  s-1 and the 𝑘௖௔௧/𝐾ெ value was 9.16 M-1s-1. For C16-CoA, the 𝐾ெ 

value was 10.41 ± 0.90 M, the 𝑉௠௔௫ value was 5.63 ± 0.10 nM/s, the 𝑘௖௔௧ value 

was 5.63 ± 0.10 ൈ 10-3 s-1 and the 𝑘௖௔௧/𝐾ெ value was 0.540 mM-1s-1. 
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Table 2.5.1 Kinetic parameters for PgSPT WT and different mutants. 

Enzyme 𝒌𝒄𝒂𝒕 ൈ 𝟏𝟎ି𝟑  

(s-1) 

𝑲𝑴
𝑺𝒆𝒓  

(mM) 

𝒌𝒄𝒂𝒕/𝑲𝑴
𝑺𝒆𝒓 

(M-1s-1) 

𝑲𝑴
𝑷𝑪𝒐𝑨  

(M) 

𝒌𝒄𝒂𝒕/𝑲𝑴
𝑷𝑪𝒐𝑨 

(M-1s-1) 

WT 43.5 ± 1.03 0.52 ± 0.06 72.9 84.0 ± 8.7 584 

V358C 4.38 ± 0.11 0.25 ± 0.05 19.47 6.70 ± 0.80 573 

V358A 5.72 ± 0.15 0.11 ± 0.02 59.80 5.65 ± 1.02 840 

A359S 72.13 ± 1.08 1.48 ± 0.14 53.29 39.48 ± 2.00 1659 

DM  6.12 ± 0.14 0.72 ± 0.09 9.159 10.41 ± 0.90 541 

As shown in Table 2.5.1, the affinity of mutant V358C and V358A for both 

substrates was significantly higher, with the values 2~5-fold smaller than the 𝐾ெ
ௌ௘௥ 

value of C’PgSPT WT and 12~15-fold times smaller than the 𝐾ெ
௉஼௢஺ value of C’PgSPT 

WT. On the contrary, the reaction turnover rate was dramatically decreased were ~9-

fold weaker than the WT enzyme. Therefore, it is assumed that Val358 could be an 

important residue but may be not essential residue. However, compared to the WT 

enzyme, mutant A359S showed a smaller affinity with L-Ser but a higher affinity with 

C16-CoA. Moreover, the reaction turnover rate was twice as fast than the WT enzyme. 

Finally, the DM showed a higher affinity with L-Ser but a smaller affinity with C16-CoA, 

and the reaction turnover rate was ~7-fold weaker than the WT enzyme. Additionally, 

the catalytic efficiency (𝑘௖௔௧/𝐾ெ) for both substrates were the worst compared to the 

WT enzymes and mutant, suggesting the DM had the worst catalytic ability. 

Table 2.5.2 The conserved noncatalytic loop residue in SPT isoforms. 

Enzyme Conserved loop residues 

SpSPT PATP 

SwSPT PATP 

SmSPT PAVP 

BfSPT PACSP 

PgSPT PAVAP 

By analysing all 𝑘௖௔௧/𝐾ெ values, it agreed with Lendrihas et al.’s paper [241] that 

both basicity and hydrophilicity of the enzyme could affect KDS release or production. 

Since increasing the hydrophilicity and acidity in site 358 would decrease the SPT 

catalytic ability, however, the changes in site 359 would increase the enzyme catalytic 

ability. And the undiscovered allosteric regulation could happen in the conserved loop 

residues (Table 2.5.2). Unfortunately, because of the high dissociation constant 

obtained from the WT enzyme and fragile enzyme stability without excess PLP, there 

was no data collected about PLP-L-Ser binding for those mutants. 
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2.6 The activity of SPT is influenced by the histidine affinity tag  

 

It has been several years since people use polyhistidine affinity tags began to be 

used for better expression and more straightforward protein purification process. 

However, their potential effects on the activity and structure of the protein have been 

overlooked sometimes. Recent studies suggested that not only substrate specificity 

but also enzyme properties including structure and thermal stability had been affected 

by the histidine position [242, 243]. Esen et al. found out the C-terminal his-tagged 

formate dehydrogenase from Chaetomium thermophilum had higher catalytic 

efficiency, turnover number and specific activity for both substrates than N-terminal 

his-tagged enzyme, which C-terminus is a suitable region for tag engineering [244]. 

Majorek et al. discovered that the histidine tag could be a weak competitive inhibitor 

of peptide substrate for N-acetyltransferase from Pseudomonas aeruginosa [245]. 

Furthermore, Meng et al. showed that, in a PLP-dependent 4-aminobutyrate-2-

oxoglutarate transaminase, the His-tag in both positions decreased the catalytic 

activity to different extents but did not influence the enantioselectivity. This 

phenomenon also appeared in other type I or type IV transaminase, such as E. coli 

IlvE, etc. [246, 247]. Thus, the N-terminal His-tag, no-tag and cleaved His-tag SPT were 

cloned and studied individually to understand their effects on the catalytic ability.  

 

 

Figure 2.6.1 Plasmid map of PgSPT in N-terminal His-tag pETHISTEV (A) and no 

tag PgSPT in pEBSRCTEVC10HIS (B). 

 

The PgSPT was also cloned into a N-terminal 6 x histidine expression plasmid 

for the crystallography trails as there had been trouble with crystallizing C’PgSPT with 

a 10-histidine tail in the end of the sequence. Furthermore, no tag PgSPT was 

designed in pEBSRCTEVC10HIS (University of St. Andrews) by putting the stop 

codon in the C-terminal of sequence (Figure 2.6.1). 

A B
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Figure 2.6.2 N’PgSPT (1) and no tag SPT (2) purification and analysis. (A) Chromatogram 

from SES column. (B) 12% SDS-PAGE gel after SEC. LMW: Low molecular weight marker, S200 

fractions: elution fractions from the main peak. (C) The mass spectrum of recombinant N’PgSPT (1) with 

a mass of 46758.76 ± 0.71 Da; no tag SPT (2) with a mass of 43659.02 ± 5.67 Da. All the enzyme 

concentrations were 10 M. 

 

The N-terminal SPT (N’PgSPT) was expressed using the same conditions in 

E.coli BL21 (DE3) cells for 4~5 hours at 30°C after induction with 0.1 mM IPTG. The 

protein was purified using the same columns and buffer as C’PgSPT, and elution 

occurred at a similar volume of around 78 mL in the SEC column (Figure 2.6.2), 

suggesting a dimeric enzyme. The LC-ESI-MS obtained a mass at 46758.76 ± 0.71 

Da, which was similar to theoretical mass without the initial methionine (46759.24 Da) 

calculated from protein sequence by using ExPaSy ProtParam tool website. Further 
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investigation was carried out to comprehend the influence of the tag on the SPT 

protein. However, the no tag PgSPT was expressed at 16°C overnight after 0.1 mM 

IPTG induction and purified using HiTrap Q 1 ml anion exchange chromatography 

column with buffer 0 and 1 considering the theoretical pI of the protein was 6.14. 

Unfortunately, the anion exchange chromatography did not separate the protein as 

well as HisTrap purification. Therefore, there were still impurities present in the extract 

after the first purification step in the main peak between 76-104 mL (Figure 3.6.6). 

From the SDS-PAGE analysis, there was still a strong band at ~45 kDa, which was 

the main no tag PgSPT, and other bands was considered as E.coli background 

proteins, which were negligible. The no tag PgSPT was also analysed by LC-ESI-MS 

analysis providing the protein mass of 43659.02 ± 5.67 Da, which was close to 

theoretical mass without the initial methionine of the no tag PgSPT (43662.94 Da). 

 

 

Figure 2.6.3 Substrate inhibition analysis of N’PgSPT (A) and no tag PgSPT (B) 

reactions for substrates C16-CoA. Each assay contained 0.5 M enzyme, 20 mM L-Ser and 

variable concentration of C16-CoA. The data were plotted as mean readings ±2-SD error bars. 

 

The purified enzyme was tested using the DTNB coupled assay to examine 

whether the activity had been influenced by the position of the his-tag. As shown in 

Figure 2.6.3, the C16-CoA substrate inhibition appeared in both N’PgSPT and no tag 

PgSPT, which was similar to BfSPT as discussed in section 2.1. Through substrate 

inhibition analysis of N’PgSPT, the estimated 𝐾௜  for C16-CoA was measured as 

41.42 ± 6.69 M. Moreover, the 𝐾ெ value was calculated as 20.20 ± 5.89 M, the 

𝑉௠௔௫ value was 19.07 ± 2.87 nM/s, the 𝑘௖௔௧ value was 0.038 ± 0.006 s-1 and the 

𝑘௖௔௧/𝐾ெ value was 1.88 ± 1.02 mM-1s-1. For the no tag PgSPT version, the estimated 

𝐾௜ for C16-CoA was measured as 561.97 ± 96.32 M. Additionally, the 𝐾ெ value was 

measured as 21.01 ± 3.42 M, the 𝑉௠௔௫ value was 21.21 ± 1.40 nM/s, the 𝑘௖௔௧ value 

was 0.042 ± 0.003 s-1 and the 𝑘௖௔௧/𝐾ெ value was 2.02 ± 0.41 mM-1s-1. 
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Figure 2.6.4 Sequence alignment between N’PgSPT, C’PgSPT and no tag PgSPT. 

The residues in blue can be cleaved by TEV protease. 

 

Further investigation of C’PgSPT, the polyhistidine-tag could be cleaved by TEV 

protease, a 27kDa cysteine protease encoded by the Tobacco Etch Virus (TEV) 

(Figure 2.6.4) [248]. Therefore, it would be interesting to observe the enzymatic 

behaviour of tag-cleaved PgSPT with the substrate C16-CoA.  

 

 

Figure 2.6.5 Characterization of tag-cleaved PgSPT. (A) The mass spectrum of recombinant 

tag-cleaved PgSPT with a mass of 44699.84 ± 0.61 Da. (B) Kinetic analysis of tag-cleaved PgSPT for 

substrate C16-CoA by DTNB coupled assay. Each assay contained with 0.5 M enzyme, 20 mM L-Ser 

and variable concentration of C16-CoA. All data were plotted as mean readings ±2-SD error bars. 

 

The tag-cleaved PgSPT was expressed and purified with HisTrap column firstly 

as same as C’PgSPT. The eluted protein was then dialysis with TEV protease for at 

least 2 hours before loading onto a HisTrap column to collect the flow-through protein. 

Finally, the tag-cleaved PgSPT was purified by SEC column. The tag-cleaved PgSPT 

was confirmed by LC-ESI-MS analysis (Figure 2.6.5) showing a mass of 44699.84 ± 

0.61 Da, which corresponded to the theoretical mass without initial methionine 
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(44700.07 Da) calculated from recombinant protein sequence by using ExPaSy 

ProtParam tool website. 

The pure tag-cleaved PgSPT was tested with the substrate C16-CoA by DTNB 

coupled assay (Figure 2.6.5). Surprisingly, the C16-CoA substrate inhibition did not 

appear in tag-cleaved PgSPT. The 𝐾ெ value was measured as 132.0 ± 14.47 M, 

the 𝑉௠௔௫ value was 167.6 ± 6.02 nM/s, the 𝑘௖௔௧ value was 0.34 ± 0.01 s-1 and the 

𝑘௖௔௧/𝐾ெ value was 2.54 ± 0.42 mM-1s-1.  

 

Table 2.6.1 Comparison of enzymatic activity with PgSPT in different tag form. 

Enzyme 𝒌𝒄𝒂𝒕 ൈ 𝟏𝟎ି𝟑 

(s-1) 

𝑲𝑴
𝑪𝟏𝟔_𝑪𝒐𝑨  

(M) 

𝒌𝒄𝒂𝒕/𝑲𝑴
𝑪𝟏𝟔_𝑪𝒐𝑨  

(M-1s-1) 

𝑲𝒊
𝑪𝟏𝟔_𝑪𝒐𝑨  

(M) 

C’PgSPT 43.5 ± 1.03 84.0 ± 8.7  584 None 

Tag-cleaved  

PgSPT 

335.2 ± 10.0 132.0 ± 14.47 2539 None 

N’PgSPT 38.0 ± 6.0 20.20 ± 5.89 1881 41.42 ± 6.69 

No Tag  

PgSPT 

42.4 ± 3.0 21.01 ± 3.42 2018 561.97 ± 96.32

 

In a summary table Table 2.6.1, the N’PgSPT had approximately a 4-fold higher 

affinity with the C16-CoA substrate than the C’PgSPT version. Surprisingly, the 

catalytic efficiency was nearly triple stronger than the WT enzyme because of the tight 

substrate affinity. As the no tag PgSPT, the substrate affinity for substrate C16-CoA 

was similar to N’PgSPT; however, the turnover number and catalytic efficiency were 

both higher. Meanwhile, the substrate inhibition was smaller compared to the 

N’PgSPT. For tag-cleaved PgSPT, the substrate affinity for substrate C16-CoA was 

~1.5-fold smaller than the C’PgSPT, but the turnover number and catalytic efficiency 

was ~5-fold higher. Therefore, it was assumed that the histidine tag position did have 

an ability on PgSPT to affect the enzymatic activity, efficiency and specificity and 

caused the substrate inhibition.  
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2.7 Crystallography study of C-terminal pETHis10 PgSPT 

 

A crystal structure of C’PgSPT would give a good understanding of enzymatic 

activity as discussed above and possibly show the C16-CoA binding with the enzyme. 

Different concentration of PgSPT (7 mg/ml ~ 10 mg/ml) were screened with 

commercial precipitants in PEG/Ion, JCSC-plus, Midas and Structure Screen 1+2 

using sitting drop vapour diffusion method into 96 well plates setting by the Art 

Robbins Gryphon nano-litre pipetting robot machine. Unfortunately, the crystals from 

all the possible conditions were sharp and overlapped even with optimization plate 

trails (Figure 2.7.1 A), which was poor quality for X-ray diffraction analysis in the next 

step. Since the crystallisation of C’PgSPT was difficult to be achieved, the tag-cleaved 

PgSPT version was also prepared for screening trials. Theoretically, without the 

flexibility of the histidine tag, the enzyme would form crystals much more easily [249]. 

As shown in Figure 2.7.1 B, the TEV cleaved PgSPT crystallized with a square shape 

morphology. Unfortunately, until the end of the PhD, the optimized PgSPT structure 

had not been successfully obtained. Therefore, a possible model is designed and will 

be discussed later. 

 

 

Figure 2.7.1 Crystal morphology of C’PgSPT WT (A) from JCSG+ A5 and tag-cleaved 

PgSPT from Midas A11 optimization plates. Precipitation condition: (A) 0.2 M magnesium 

formate dihydrate, 20% w/v polyethylene glycol (PEG) 3350, 8.6 mg/mL C’PgSPT; (B) 35% w/v 

pentaerythritol ethoxylate (15/4 EO/OH); 0.2 M calcium chloride; 0.1 M HEPES-NaOH; pH 6.5, 9.3 

mg/mL tag-cleaved PgSPT. 

 

A hypothetical homology model of PgSPT (Figure 2.7.2) is constructed based on 

the SmSPT (PDB:3a2b) by using Swiss-Model online software [161, 250-254]. The 

structure contains two monomeric chains composing a homodimer and the external 

aldimine (PLP:L-Ser) in the active site. The residue coverage of a monomeric chain 

is from 4 – 390. The interaction between PLP: L-Ser and conversed residues of SPT 

isoforms is shown as Figure 2.7.2 (B). The essential His137 residue holds a pi 
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stacking with the external aldimine. Asp209 and His212 form a hydrogen bond with 

the pyridinium ring. Since the L-Ser is attached to PLP via aldimine linkage, the 

catalytic Lys243 is detached from the PLP. Furthermore, one of the O from the 

carboxylic group of L-Ser make a polar contact to His212 and the hydroxyl group of 

L-Ser forms a polar contact with the phosphate group of PLP. the OH group of Thr240 

had a polar contact with phosphate group to stabilise the PLP. Additionally, there is no 

direct contact with the conversed Arg366 suggesting this residue possibly plays a role 

in the enzyme. 

 

 

Figure 2.7.2 The homology structure model of PgSPT (A) The biological SPT dimer, the 

protein is shown as a cartoon with one subunit coloured blue and white. The PLP is modelled as external 

aldimine with L-Ser. (B) Detailed information of the external aldimine PLP:L-Ser interacted with conserved 

residues. 

A 
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Figure 2.7.3 Comparison of the flexible loop between SPT structures. (A) SpSPT, PDB: 

2W8J [159]. (B) BfSPT, PDB:unpublished. (C) PgSPT, hypothetical model. (D) SmSPT, PDB:3a2b [161]. 

 

As shown in Figure 2.7.3, the flexible loop (PAXXP or PAXP) is conserved in the 

other SPTs and the enzyme activity has already discussed in Section 2.5. Comparing 

these SPTs, it is known that the loop may influence the selection of the second 

substrate, due to the loop has no direct contact with the PLP:L-Ser form. And the 

PACSP or PAVAP (in BfSPT and PgSPT) seems to be more flexible for the second 

substrate compared to PATP and PAVP (in SpSPT and SmSPT), leading to the high 

substrate affinity but low reaction rate for the enzyme, as shown in PgSPT mutants’ 

kinetic data. Meanwhile, the enzyme may control the substrate tighter over the 

reaction flux. However, the evidence for the function of the conserved loop is still 

investigated, a crystal structure of SPT in its quinonoid form or product external 

aldimine would be an excellent target to study. 
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Chapter 3 Iso-branched chain amino transferase (IlvE) 

3.1 Analysis of IlvE/BCAT enzymes 

As discussed in the introduction 1.3.2, the PLP-dependent transaminase 

IlvE/BCAT is a vital enzyme that is involved in branched chain fatty acid synthesis. 

Our hypothesis is that an IlvE is involved in the formation of the iso-Me branch of SLs 

from bacteria found in the microbiome (e.g. Bacteroides) and in the pathogen P. 

gingivalis. This suggests that branched-chain amino acids are precursors of bacterial 

SLs. We did genetic analysis to study the evolutionary history of the IlvE/BCAT 

homologs (Figure 3.1.1). Interestingly, in some specific cases, the putative H. sapiens 

IlvE is closer to the proteobacteria homolog rather than the eukaryotic version, and in 

the same phylum of Deinococcus-Thermus, D. radiodurans IlvE has the same 

ancestry with the Bacteroides IlvE, but T. thermophilus has the same ancestry with 

the proteobacteria IlvE. For most cases, the compatibility of the IlvE gene phylogeny 

displayed a high degree of conservation and similar inheritance to that shown by SPT 

phylogeny analysis. Furthermore, there are numerous crystal structures of IlvE 

isoforms in the PDB (Table 3.1.1). One interesting isoform has been studied most is 

the BCAT2 from H. sapiens, which is 29% identical to PgIlvE. By 2020, approximately 

28 protein crystal structures have been published in various different crystal forms 

with the PLP cofactor bound and, in some cases, with bound substrates or inhibitors 

[185, 200, 202, 255-258]. Of interest, no structures had been published of an IlvE isolated from 

an organism from the human microbiome system, with the most similar being the IlvE 

crystal structure from Deinococcus radiodurans (48% similar to PgIlvE) [259]. Thus, our 

aim was to characterise the structure, mechanism and inhibition of PgIlvE, and begin 

to understand the details of the role of PgIlvE in microbial SL biosynthesis. To achieve 

this we began by cloning the putative PgIlvE gene identified by our bioinfomratic 

analysis and expressing the recombinant PgIlvE in E. coli using standard methods. 
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Figure 3.1.1 The phylogenetic tree of IlvE/BCAT genes. Phylum Classification: Grey line: 

Proteobacteria; Orange line: Eukaryotic; Green line: Actinobacteria; Purple line: Firmicutes; Blue line: 

Bacteroides; Pink line: Archaea; Dark yellow line: Deinococcus-Thermus. The species obtained pdb 

structure were painted in red. 
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Table 3.1.1 Structural information on IlvE/BCATs. 

Species Uniprot 
Code 

PDB Code Identity 
to PgIlvE 

Similarity 
to PgIlvE 

D. radiodurans Q9RTX5 3UYY; 3UZB; 3UZO 48% 65% 

S. mutans serotype c Q8DTW7 4DQN 47% 64% 

M. smegmatis A0R066 3JZ6; 3DTF; 3DTG 39% 57% 

M. tuberculosis P9WQ75 3HT5; 5U3F 37% 53% 

H. sapiens (BCAT1) P54687 2ABJ; 2COG; 2COI; 
2COJ 

33% 50% 

H. sapiens (BCAT2) O15382 1EKF; 1EKP; 1EKV; 
1KT8; 1KTA; 2A1H; 

2HDK; 2HG8; 2HGW; 
2HGX; 2HHF; 5BWR; 
5BWT;5BWU; 5BWV; 
5BWW;5BWX; 5CR5; 

5HNE; 5I5S; 5I5T; 
5I5U; 5I5V; 5I5W; 
5I5X; 5I5Y; 5I60; 

5MPR 

29% 47% 

E. coli P0AB80 1A3G; 1I1K; 1I1L; 
1I1M; 1IYD; 1IYE 

28% 47% 

T. terrenum D1CCW1 6GKP; 6GKR 28% 45% 

T. thermophilus Q5SM19 1WRV; 2EIY; 2EJ0; 
2EJ2; 2EJ3 

29% 45% 

A. fulgidus O29329 5MQZ; 5MR0 27% 45% 

G. acetivorans A0A0A7
GJ30 

5CM0; 5E25 27% 45% 

T. uzoniensis F2L0W0 5CE8 27% 45% 

B. pseudomallei Q3JVJ9 3U0G 26% 44% 

P. aeruginosa O86428 6NST 26% 43% 

H. ochraceum D0LR31 6H65 24% 43% 
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3.2 Cloning, expression, purification of P. gingvalis IlvE (PgIlvE) 

 

The IlvE gene (PG1290, Uniprot Code: Q7MV21) was firstly cloned into a pGEM-

T Easy plasmid with NdeI and BamHI restriction sites, then was cut and re-cloned into 

a pET-28a with N-terminal 6xHis-tag with the same restriction enzymes (Figure 3.2.1). 

 

 

Figure 3.2.1 Plasmid map of P.gingvalis IlvE 

 

After confirming the gene sequence, the protein was successfully expressed in 

E. coli BL21 (DE3) at 16 °C overnight after induction with 0.1 mM IPTG. The PgIlvE 

was purified by HisTrap column using buffer Q and R for protein essay or buffer S and 

T for crystallography trails. A further purification step using an S200 SEC was used 

with buffer U or V depending on the purpose (kinetic/crystals) and the pure PgIlvE 

was eluted around ~69mL (Figure 3.2.2). According to the calibration curve, the 

quaternary structure of IlvE was a dimer. The protein was confirmed by SDS-PAGE 

analysis and LC-ESI-MS showing a denatured mass of 39852.70 ± 1.04 Da, which 

matched the theoretical mass without the initial methionine (39853.49 Da) calculated 

from protein sequence by using ExPaSy ProtParam tool website. 

 

 

A B



 

69 | P a g e  
 

 

Figure 3.2.2 PgIlvE purification and analysis. (A) Chromatogram from SES column. (B) 12% 

SDS-PAGE gel after SEC. LMW: Low molecular weight marker, TP: total protein, TSP: total soluble 

protein, Lane 1-8: elution fractions from 65-87 mL. (C) The mass spectrum of recombinant PgIlvE (10 

M) with a mass of 39852.70 ± 1.04 Da. 
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3.3 Spectroscopic analysis of PgIlvE 

 

Figure 3.3.1 Schematic diagram of the IlvE reaction. L-Leu is shown as one of the iso-

branched amino donors, α-KG as amino acceptor, α-KIC as keto product and L-Glu as amino product. 

 

It is known that PgIlvE plays a crucial role at catalysing the metabolism of iso-

branched amino acids using a PLP cofactor and the reversible reaction that the 

enzyme catalyses can be followed by UV-vis spectroscopy both in the forward (L-Leu 

to α-ketoisocaproic acid (α-KIC)) and reverse (L-Glu to α-ketoglutaric acid (α-KG)) 

directions (Figure 3.3.1) [210]. The purified PgIlvE WT displayed two forms, the 

enolimine (410 nm) and ketoenamine (330 nm), when bound as an internal 

aldimine/Schiff base. When the amino donor, L-Leu or L-Glu, was added to the 

enzyme, the peak around 410 nm decreased and the peak around 330 nm increased, 

suggesting that the PLP-bound cofactor has been converted into the PMP form and, 

at the same time, the first keto product was released. When the amino acceptor, α-

KG or α-KIC, was added to the incubation, peaks corresponding to the PLP (410 nm) 

and the PMP (330 nm) forms of the PgIlvE, returned to as they were before suggesting 

the formation of the PLP-bound holo-form of the enzyme. These spectral changes are 

consistent with those observed for other BCAT enzymes and confirm the PgIlvE as 

an active enzyme. 
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Figure 3.3.2 UV-vis spectra of PgIlvE in the ‘forward’ and ‘reverse’ reaction. The 

absorbance changes of PgIlvE with addition of L-Leu (A), L-Leu + -KG (B), L-Glu (C), L-Glu + -KIC (D) 

over time. Each assay contained 20 M PgIlvE. 

 

As shown in Figure 3.3.2, the ‘forward’ direction (A-B) was studied by addition 

of 1 mM L-Leu and monitoring changes between 0-20 mins. This led to a decrease in 

the peak at 410 nm and formation of a broad absorbance with λmax at 405 nm. At the 

same time, the peak at 330 nm was increased and shifted to a new peak at 328 nm. 

Then, after 1 mM of α-KG was added and the absorbance changes were monitored 

for another 20 mins, the PMP peak at 328 nm decreased and the PLP peak at 405 

nm increased. Meanwhile, in the ‘reverse’ direction (C-D) for substrate L-Glu and α-

KIC showed a similar pattern when compared to the spectra in the ‘forward’ direction. 

However, even when the concentrations of L-Glu and α-KIC were doubled compared 

to those of L-Leu and α-KG, it appeared that PgIlvE favours reaction with L-Leu and 

α-KG rather than with L-Glu and α-KIC. The 𝐾ௗ value of each substrate would be one 

of the best parameters for measuring the substrate preference of the enzyme but 

because of the fast substrate turnover the determination of 𝐾ௗ values was challenging.
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3.4 Characterization of PgIlvE 

 

 

Figure 3.4.1 The proposed mechanism of PgIlvE reaction using L-Leu as amino donor 

and α-ketoglutaric acid (α-KG) as amino acceptor [178, 210]. 

 

The mechanism of PgIlvE could be proposed based on the classic PLP-

dependent transaminase enzyme reaction (Figure 3.4.1) [178, 210]. In the first step of the 

reaction, the internal aldimine (PLP-form enzyme, bound to Lys183) undergoes 

transimination from an amino group in the amino donor (L-Leu as example here) to 

form the external aldimine (enzyme-substrate complex). A ketimine intermediate is 

formed is hydrolysed by water to become a carbinolamine [210]. The keto product (α-

KIC) is released from the enzyme-substrate complex and the PLP-form of the enzyme 

is transformed into the PMP-form of the enzyme. Similar to the first step of the reaction, 

the PMP-form of the enzyme would react with the amino acceptor (α-KG) leading to 

the PLP:ketimine intermediate, which is then deprotonated to the quinonoid 

intermediate, which is converted to the quinonoid. This quinonoid is prontated to give 

the PLP:L-Glu external aldimine which releases the amino acid product (L-Glu) and 

returns into internal aldimine, PLP-bound form of the enzyme. 

Four spectrophotometric coupled assays were developed for determining the 

PgIlvE activity in both directions. These assays used (i) glutamate dehydrogenase 

(GDH) from bovine liver (ii) colorimetric detection method via the 

NADH/mediator/tetrazolium route developed by Ward’s group [260], (iii) oxoglutarate 

dehydrogenase/α-ketoglutarate dehydrogenase (OGH/KDH) from porcine heart, and 

(iv) leucine dehydrogenase (LeuDH) from Bacillus cereus [261, 262]. 
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3.4.1 Coupled IlvE-GDH assay 

OH
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Glutamate
Dehydrogenase
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NADH + NH3 + H+ NAD+  + H2O

340nm  

Figure 3.4.2 Schematic reaction of coupled IlvE/GDH assay in the ‘forward’ direction. 

In the presence of L-Glu, the NAD+ is reduced to NADH by GDH to form -KG and ammonia. 

 

The PgIlvE activity in the ‘forward’ direction was tested by coupling with the 

GDH enzyme. GDH is a mitochondrial enzyme that indicates cell damage or necrotic 

hepatocytes caused by liver disease [263]. GDH catalyses conversion of L-Glu to α-KG 

in the presence of NAD+, producing ammonia and NADH which leads to an increased 

absorbance at 340 nm (ε = 6200 M-1cm-1), as shown in Figure 3.4.2.  
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Figure 3.4.3 pH dependence and kinetic analysis of GDH alone and when coupled 

with PgIIvE. (A) The initial rate of GDH at different pH values. Each assay contained 0.2 U/mL GDH. 

(B) Kinetic analysis of GDH for L-Glu. Each assay contained 0.03 U/mL enzyme. (C-F) Kinetic analysis 

of PgIlvE for substrate L-Leu, -KG, L-Val and L-Ile. Each assay contained 0.5 M enzyme and variable 

concentration of substrates. All data were plotted as mean readings ±2-SD error bars. 

 

The GDH reaction was optimized with buffers across a range of pH values and 

different concentrations of L-Glu as shown in the Figure 3.4.3 (A-B). The GDH had 

the best activity at pH 8.5 and 0.03 units/mL of GDH, which provided the 𝐾ெ value of 

3.35 ± 0.27 mM and 𝑉௠௔௫ value of 0.16 ± 0.01 M/s in good agreement with the 

published value (2.6 mM) [264]. The coupled PgIlvE/GDH assay was also carried out 

with different concentrations of GDH to obtain the minimum concentration required for 

the maximum speed of conversion from L-Glu to α-KG. The final optimized GDH 

concentration for the coupled IlvE/GDH assay was 3 units/mL GDH in 100 mM Tris 

buffer and 150 mM NaCl, pH 8.5 (buffer W). 

Since it is a BCAT enzyme which binds iso-branched amino acids, the PgIlvE 

uses L-Leu as a substrate as well as L-Ile and L-Val. Under the optimized conditions 

of the coupled IlvE/GDH assay, the kinetic parameters for substrates in the ‘forward’ 

reaction, L-Leu, L-Val, L-Ile and α-KG, were successfully characterized as illustrated 

in Figure 3.4.3 (C-F). These are summarised in Table 3.4.1. For L-Leu, the 𝐾ெ value 

was 2.48 ± 0.21 mM, the 𝑉௠௔௫ value was 0.44 ± 0.01 M/s, the 𝑘௖௔௧ value was 886 

± 24 ൈ 10-3 s-1 and the 𝑘௖௔௧/𝐾ெ value was 356.7 M-1s-1. For α-KG, the 𝐾ெ value was 

0.14 ± 0.01 mM, the 𝑉௠௔௫ value was 0.21 ± 0.01 M/s, the 𝑘௖௔௧ value was 410 ± 10 

ൈ 10-3 s-1 and the 𝑘௖௔௧/𝐾ெ value was 2907.8 M-1s-1. For L-Val, the 𝐾ெ value was 3.81 

± 0.47 mM, the 𝑉௠௔௫ value was 0.44 ± 0.02 M/s, the 𝑘௖௔௧ value was 439 ± 19 ൈ 

10-3 s-1 and the 𝑘௖௔௧/𝐾ெ value was 110.2 M-1s-1. For L-Ile, the 𝐾ெ value was 1.52 ± 

0.10 mM, the 𝑉௠௔௫ value was 0.41 ± 0.01 M/s, the 𝑘௖௔௧ value was 414 ± 7 ൈ 10-3 

s-1 and the 𝑘௖௔௧/𝐾ெ value was 271.4 M-1s-1. 
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Table 3.4.1 Kinetic parameters of different substrates by coupled IlvE/GDH assay. 

Substrates 𝒌𝒄𝒂𝒕 ൈ 𝟏𝟎ି𝟑 (s-1) 𝑲𝑴 (mM) 𝒌𝒄𝒂𝒕/𝑲𝑴 (M-1s-1) 

L-Leu 886 ± 24 2.48 ± 0.21 356.7 

L-Ile 414 ± 7 1.52 ± 0.10 271.4 

L-Val 439 ± 19 3.81 ± 0.47 110.2 

α-KG 410 ± 10 0.14 ± 0.01 2907.8 

 

Within different amino acid substrates, the enzyme had a different reaction 

activity as illustrated in the Table 3.4.1. There was not a great difference in substrate 

affinity between the three BCAAs tested, even though L-Ile displayed the strongest 

affinity with PgIlvE. Nonetheless, L-Leu presented the best performance on both 

enzyme reaction rate and catalytic efficiency leading to L-Leu being the best BCAA 

substrate for PgIlvE in the ‘forward’ direction. PgIlvE also had a high substrate affinity 

with α-KG (140 M 𝐾ெ), however, the turnover rate of α-KG was approximately twice 

slower than L-Leu. 

 

3.4.2 Colorimetric detection through the NADH/mediator/tetrazolium 

route (the XTT assay) 

 

Figure 3.4.4 Schematic reaction of the assay. The amino group is transferred from L-Leu to 

the amino acceptor α-KG by PgIlvE. The NAD+ is reduced to NADH by using GDH to catalyse conversion 

of the amino product, L-Glu. The NADH is oxidized to NAD+ by 1-methoxy PMS and XTT tetrazolium salt. 
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Another way to assay the ‘forward’ reaction of PgIlvE is using the 

NADH/mediator/tetrazolium salt method suggested by Bommer et al. [260, 262]. This 

assay system is similar to the coupled IlvE/GDH assay, since it uses GDH to convert 

L-Glu into α-KG with the reduction of NAD+ to NADH. A second electron transport 

mediator, 1-methoxy phenazine methosulfate (1-methoxy-PMS), is used to mediate 

conversion of the tetrazolium reagent, 2, 3-bis-(2-methoxy-4-nitro-5-sulfopenyl)-2H-

tetrazolium-5-carboxanile (XTT), to the XTT formazan form via oxidation of NADH. 

The XTT formazan is measured at 470 nm by UV-Vis spectroscopy (Figure 3.3.4). 

The tetrazolium XTT reagent is commonly used to test mammalian cell viability and 

proliferation, and it was first mentioned by Scudiero et al. in 1988 during a study of 

cell growth and drug sensitivity in human and other tumour cell lines [265]. The XTT 

tetrazolium produces a water-soluble formazan whilst the traditional thiazolyl blue 

tetrazolium bromide (MTT) or iodonitrotetrazolium (INT) generates a non-soluble 

formazan that necessitated dissolving the dye in order to measure [266, 267]. Meanwhile, 

the assay has a high sensitivity allowing the minimum enzyme concentration of 0.01 

μg/ml and a broad range of ATs that accept L-Glu [260].  
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Figure 3.4.5 Characterization of recombinant PgIIvE by the XTT assay. (A) The 

calibration curve of NADH vs XTT formazan Abs470nm. (B) The microplate of example reactions with L-

Leu and L-Val. (C-F) Kinetic analysis of PgIlvE for substrate L-Leu, -KG, L-Val and L-Ile. Each assay 

contained 0.5 M enzyme and variable concentration of substrates. All data were plotted as mean 

readings ±2-SD error bars. 

 

A calibration curve of NADH against XTT formazan absorbance at 470nm 

(Figure 3.4.5) was made, Abs470nm=0.02188*[NADH]-0.05451, to compare the 

efficiently with other assays. In contrast to the continuous coupled IlvE/GDH assay, 

the XTT assay was an end point assay and enzyme activity was measured after 60 

mins incubation with all reagents at 37 °C. As shown in the microplate in Figure 3.4.5, 

the vividly coloured XTT formazan could be observed with a gradient of substrate 

concentration (L-Leu or L-Val). After adjusting the reagents, the kinetic parameters of 

the substrates (L-Leu, L-Val, L-IIe and α-KG) were successfully calculated through 

Michaelis-Menten analysis in Figure 3.4.5. 

 

Table 3.4.2 Kinetic parameters of different substrates by XTT assay 

Substrates 𝒌𝒄𝒂𝒕 (min-1) 𝑲𝑴 (mM) 𝒌𝒄𝒂𝒕/𝑲𝑴 (M-1s-1) 

L-Leu 2.96 ± 0.13 2.54 ± 0.42 19.42 

L-Ile 2.26 ± 0.21 6.08 ± 1.41 6.10 

L-Val 3.46 ± 0.23 3.09 ± 0.53 18.66 

α-KG 3.57 ± 0.27 0.08 ± 0.01 741.6 

 

According to Table 3.4.2, there was not a great difference in substrate affinity 

between the amino donors with L-Ile displaying the weakest substrate affinity with 

PgIlvE. Compared to the data from the coupled IlvE/GDH assay, the BCAA substrate 

affinities from the XTT assay were in the 2.54 to ~6.0 mM range. In terms of the 
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reaction rate, they all displayed similar rates 2.3-3.5 min-1 which the fastest reaction 

is with L-Ile. However, the turnover numbers were all lower than the ones from the 

coupled IlvE/GDH assay, which was considerable since the XTT assay only measures 

the end point of absorbance that might a suffer time lag. The 𝑘௖௔௧  value of the 

coupled IlvE/GDH assay could be higher than expected since the PMP (330 nm) 

formed during the enzyme reaction might influence the measured NADH absorbance 

at 340 nm. The divergence between the assays also results in differences in 𝑘௖௔௧/𝐾ெ 

values, even though the α-KG still had the best catalytic efficiency due to the low 

substrate affinity with the PgIlvE. Overall, L-Leu was still the best amino donor 

compared to other BCAAs in both assays. 

Overall, these two methods can readily measure enzyme activity in the ‘forward’ 

direction, and both assays have their own advantages and disadvantages. For the 

coupled IlvE/GDH assay, the experiment is easily carried out and has a low demand 

for GDH and NADH. However, the absorbance at 340 nm may be affected by the PMP 

from the enzyme or the keto substrate, especially when there is a benzene ring 

attached. For the XTT assay, it is a coloured and sensitive detection even during the 

low efficiency reaction and the concentration of NAD+ is maintained because of a self-

recycling system. The UV-vis measurement at around 470 nm also prevented the 

interference from a high background. Nevertheless, for the XTT assay system, further 

optimisation was necessary to determine the initial rate of reaction. Meanwhile, the 

system required a high GDH concentration and other chemicals, notably the XTT 

tetrazolium salt was only slightly soluble in water at room temperature. Considering 

those factors, the XTT assay was more applicable for transaminases to readily test 

their substrate range. 

 

3.4.3 Coupled IlvE/KDH assay 

 

Figure 3.4.6 Schematic reaction of coupled IlvE/KDH assay in the ‘reverse’ direction. 

In the presence of α-KG, the NAD+ is reduced to NADH by KDH to form succinyl-CoA. 



 

79 | P a g e  
 

The PgIlvE enzyme activity could also be monitored in the ‘reverse’ direction 

by using the KDH coupling enzymes, in which the keto product – α-KG was converted 

to succinyl-CoA with NAD+ and CoASH (Figure 3.4.6). Thus, the reduction of NAD+ to 

NADH would be measured at 340 nm to represent the reaction activity. 

 

 

Figure 3.4.7 The kinetic analysis of KDH for substrate -KG (A) and CoASH (B). Each 

assay contained 0.08 U/mL enzyme and variable concentrations of substrates. All data were plotted as 

mean readings ±2-SD error bars. 

 

The KDH assay was characterized with different concentrations of α-KG and 

CoASH (Figure 3.4.7). Using 0.08 units/mL of KDH provided a 𝐾ெ value of 0.28 ± 

0.41 mM and 𝑉௠௔௫ value of 0.03 ± 0.01 M/s for α-KG; 𝐾ெ value of 0.05 ± 0.01 mM 

and 𝑉௠௔௫ value of 0.02 ± 0.01 M/s for CoASH. 
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Figure 3.4.8 Characterization of the coupled IlvE/KDH assay. (A) The KDH concentration 

dependence of PgIlvE enzyme activity. Each assay contained with 1 μM PgIlvE, 0.4-1.0 U/mL GDH, 250 

μM CoASH, 20 mM L-Glu, 1 mM α-KG, 1 mM NAD+. (B-C) Kinetic analysis of PgIlvE for substrate L-Glu 

and -KIC. Each assay contained 0.5 M enzyme and variable concentration of substrates. All data were 

plotted as mean readings ±2-SD error bars. 

 

The coupled IlvE/KDH assay was studied with different concentrations of KDH 

in order to achieve the maximum initial rate of the reaction. However, as displayed in 

Figure 3.4.8 (A), the enzyme showed high background absorbance. When the 

concentration of KDH was over 0.8 U/mL, the initial rate of reaction decreased, and 

there was the possibility that KDH could affect the PgIlvE reaction. Considering all 

these factors, the best concentration of KDH using in the coupled IlvE/KDH assay was 

0.7 U/mL. The assay buffer was 100 mM Tris buffer and 150 mM NaCl, pH 8.0 (buffer 

Y). The kinetic parameters of PgIlvE in the ‘reverse’ direction were determined with 

both substrates, L-Glu and α-KIC (Figure 3.4.8 B-C). Interestingly, we observed 

substrate inhibition with α-KIC when the substrate concentration was over 0.6 mM, 

and the 𝐾௜ value was 4.25 ± 0.81 mM. The 𝐾ெ value was 0.28 ± 0.06 mM, the 𝑘௖௔௧ 

value was 0.63 ± 0.07 s-1 and the 𝑘௖௔௧/𝐾ெ value was 2196.5 M-1s-1. Due to substrate 

inhibition, the concentration of α-KIC was adjusted to 400 M for establishing the 

enzyme activity with L-Glu, which the 𝐾ெ value was 0.50 ± 0.06 mM, the 𝑘௖௔௧ value 

was 0.36 ± 0.01 s-1 and the 𝑘௖௔௧/𝐾ெ value was 723.2 M-1s-1. From the kinetic data, 

the PgIlvE showed good catalytic activity with the both substrates compared to all the 

BCAAs, but the reaction speed was limited. It was possible that the amino product, L-

Leu, would interact with the enzyme to proceed to the first step of the reaction, 

producing α-KIC that might inhibit the assay system and slow down the overall 

enzyme activity. Unfortunately, the mechanism of substrate inhibition is unknown, and 

the hypothesis suggests another ‘reverse’ direction determination assay should be 

used – the coupled IlvE/LeuDH assay in the next section. 
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3.4.4 Coupled IlvE/LeuDH assay 
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Figure 3.4.11 Schematic reaction of coupled IlvE/LeuDH assay in ‘reverse’ direction. 

In the presence of L-Leu, the NAD+ is reduced to NADH by LeuDH to -KIC formation. 

 

There is another published assay [261], similar to the coupled GDH/IlvE assay, to 

measure the enzyme activity in the ‘reverse’ direction using LeuDH from B. cereus to 

react with the amino product L-Leu forming α-KIC (Figure 3.4.11). 

 

 

 

Figure 3.4.12 Kinetic analysis of LeuDH and recombinant PgIIvE using the coupled 

IlvE/LeuDH assay. (A) Kinetic analysis of LeuDH for L-Leu. Each assay contained 0.3 U/mL enzyme. 

(B-C) Kinetic analysis of PgIlvE for substrate L-Glu and -KIC. Each assay contained 0.5 M enzyme 

and variable concentration of substrates. All data were plotted as mean readings ±2-SD error bars. 
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With the same procedure as other three assays, the LeuDH was analysed with 

substrate L-Leu, giving the 𝐾ெ value was 1.89 ± 0.18 mM with only 0.3 U/ml LeuDH 

(Figure 3.4.12). The LeuDH reaction was optimized according to the pH and substrate 

concentrations. It turned out that the LeuDH preferred basic conditions rather than 

neutral or acidic conditions and the best assay buffer condition was 100 mM CAPS, 

150 mM NaCl, pH 11.0 (buffer Z). However, only 2 U/mL LeuDH was required to 

achieve the maximum reaction speed of the assay system.  

Within the optimized condition, the enzyme activity with both substrates was 

calculated as shown in Figure 3.4.12. For L-Glu, the 𝐾ெ value was 2.49 ± 0.23 mM, 

the 𝑉௠௔௫ value was 0.22 ± 0.01 M/s, the 𝑘௖௔௧ value was 0.44 ± 0.01 s-1 and the 

𝑘௖௔௧/𝐾ெ value was 177.6 M-1s-1. For α-KIC, the 𝐾ெ value was 1.09 ± 0.07 mM, the 

𝑉௠௔௫ value was 0.32 ± 0.01 M/s, the 𝑘௖௔௧ value was 0.63 ± 0.01 s-1 and the 𝑘௖௔௧/𝐾ெ 

value was 579.3 M-1s-1. In the coupled IlvE/LeuDH assay, PgIlvE still maintained good 

substrate affinity and turnover rates with both substrates compared to the ‘forward’ 

direction, and there was no substrate inhibition appeared with α-KIC. It was suggested 

that α-KIC might affect with KDH rather than PgIlvE. 

 

Table 3.4.3 Comparison of PgIlvE activity between the coupled IlvE/KDH assay and 

the coupled IlvE/LeuDH assay. 

Substrates IlvE/KDH assay IlvE/LeuDH assay 

L-Glu α-KIC L-Glu α-KIC 

𝑲𝑴 (mM) 0.50 ± 0.06 0.28 ± 0.06 2.49 ± 0.23 1.09 ± 0.07 

𝒌𝒄𝒂𝒕 (s-1) 0.36 ± 0.01 0.63 ± 0.07 0.44 ± 0.01 0.63 ± 0.01 

𝒌𝒄𝒂𝒕/𝑲𝑴 (M-1s-1) 723.2 2196.5 177.6 579.3 

𝑲𝒊 (mM) None 4.25 ± 0.81 None None 

 

In comparing the two assays used for the ‘reverse’ direction of PgIlvE (Table 

3.4.3), the coupled IlvE/KDH assay showed the enzyme had better substrate affinities 

with both substrates, however, the turnover number between them were virtually the 

same. Potentially, the coupling enzyme, KDH or LeuDH, might have an unfavourable 

interaction with both substrates, as it was known that high concentrations of α-KIC 

could inhibit with KDH enzyme. It was unclear which assay would be better, since they 

were both indirect assays and were processed in different buffers and pHs that could 

also affect the enzyme performance. For the coupled IlvE/KDH assay, the high 

background absorbance obtained from the KDH itself provided challenging for 

optimizing the assay condition and measuring the accurate initial rate of the reaction. 
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Concerning the cost of the reagents, the KDH assay has a price of KDH (£7.62 per 

unit) and CoASH (£3.14 per mg), on the other hand, the LeuDH only costs £0.81 per 

unit. In contrast, with the coupled LeuDH/IlvE assay, the LeuDH also favours basic 

conditions, however this impacts the NAD+ stability in the solution [268]. It has a weak 

interaction with high concentrations of L-Glu.  

The PgIlvE was screened with different natural L-AAs to examine the substrate 

specificity. In the ‘forward’ direction, only BCAAs showed the activity, undoubtedly, L-

Glu was the only natural L-AA that carried out the ‘reverse’ direction. It was also 

assumed that the PgIlvE only accept relevant branched chain keto acids, such as α-

KIC from L-Leu, 3-methyl-2-oxopentanoic acid from L-Ile, α-ketoisovaleric acid from 

L-Val, or α-KG for the transaminase cycle system. It was highly likely that the enzyme 

possessed specific residues which only recognized the BCAAs or L-Glu and those 

relevant keto acids.  

In comparison to the IlvE or BCAT from the other species (Table 3.4.4), different 

IlvE/BCATs display a different preference with different BCAAs. For example PgIlvE 

has a similar substrate affinity compared with E. coli BCAT for L-Leu, but is more 

similar to human BCAT2 for the L-Val substrate. Moreover, most BCATs display a 

higher substrate affinity with α-KIC acid rather than other substrates. However, there 

is a wide variation in the enzyme rates across the species and PgIlvE appears to have 

the lowest turnover number for all the substrates.  

In conclusion, the four assays presented above were screened, then optimised, 

for their ability to measure PgIlvE activity, two for the ‘forward’ direction and two for 

the ‘reverse’ direction. Each of them showed different kinetic activities, and technical 

advantages and disadvantages. Therefore, the assay used for obtaining the best 

results is dependent on the aim of determination, the direction of reaction and the 

variety of substrates.  
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Table 3.4.4 The enzymatic activity of IlvE or BCAT from different species [182, 192, 200, 214, 269-272]. 
Species P. gingivalis M. tuberculosis E. coli H. sapiens 

(BCAT1)g 

H. sapiens 

(BCAT2)h 

 

 

 

𝑲𝑴 (mM) 

L-Leu 2.48 ± 0.21i 6.02 ± 0.94b 2.2d 0.60 ± 0.04 1.60 ± 0.1 

L-Val 3.81 ± 0.47i 5.79 ± 0.99b 2.7d 2.4 ± 0.09 7.78 ± 0.3 

L-Ile 1.52 ± 0.10i 6.16 ± 1.14b 0.42d 0.77 ± 0.02 1.30 ± 0.1 

L-Glu 2.49 ± 0.23j 1.30 ± 0.20c 21.8 ± 1.26e NDa 22.7 ± 1.1 

-KG 0.14 ± 0.01i 6.95 ± 1.44b 6.6f NDa 8.3 ± 1.7 

-KIC 1.09 ± 0.07j 0.24 ± 0.03c 0.08 ± 0.01e 0.06 ± 0.01 0.3 ± 0.1 

 

 

𝒌𝒄𝒂𝒕 (s-1) 

L-Leu 0.89 ± 0.02i 8.96 ± 0.56b 48d 132 ± 7 337 ± 4 

L-Val 0.44 ± 0.02i 7.88 ± 0.53b 19d 122 ± 9 290 ± 4 

L-Ile 0.41 ± 0.01i 9.56 ± 0.72b 48d 172 ± 8 371 ± 3 

L-Glu 0.44 ± 0.01j 8.90 ± 0.40c 53.5 ± 1.62e NDa 277 ± 7 

-KG 0.41 ± 0.01i 8.53 ± 0.74b 78f NDa 340 ± 43 

-KIC 0.63 ± 0.01 j 9.10 ± 0.40c 24.7 ± 0.87e 309 ± 11 810 ± 30 

a Not determined; b Venos’s paper HPLC assay; c Amorim’s paper GDH coupling assay; d Inoue’s paper GDH coupling assay; e Yu’s paper HGDH coupling acid; f Kagamiyama’s 
charpter GDH coupling assay; g Davoodi’s paper NADH fluorescence; h Yennawar’s paper radioactive assay; i GDH coupling assay; j LeuDH coupling assay. 
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3.5 A study of PgIlvE inhibitors 

 

As a PLP-dependent enzyme, it was thought that the PgIlvE could be inhibited 

by inhibitors such as cycloserine (enantiomers LCS and DCS) in a similar way to that 

discussed for SPT. Blanchard’s goup had recently published a study of the 

mechanism of inhibition of the M. tuberculosis IlvE (MtIlvE) by LCS and DCS. This 

included the determination of the crystal structure of IlvE in complex with DCS (PDB 

code: 5U3F) so the aim was to carry out a comparative study with PgIlvE [204, 214]. As 

well as CS, various IlvE/BCATs have also been studied with other general PLP 

inhibitors (Figure 3.5.1), such as O-benzylhydroxylamine (BHA) for M. smegmatis IlvE, 

pharmaceutical anticonvulsant drug gabapentin and 4-methyl-5-oxohexanoic acid 

(ERG240) for H. sapiens BCAT1 – they were investigated for their mechanism of 

inhibition, and in some cases, crystal structures of the inhibitor-bound structure has 

been determined [202, 205, 273]. The idea of 4-methylbenzyl hydrazine (4-MBH) being an 

inhibitor was originally from Lightcap’s paper in 1996 which provided evidence that 

the isomer 3-hydroxybenzyl hydrazine (3-MBH) displayed inhibition of γ-aminobutyric 

acid aminotransferase (GABA-AT), for which the 𝐾௜ value was determined as 0.3 μM 

[274]. Therefore, in this section, we examined these potential inhibitors of PgIlvE. 

 

 

Figure 3.5.1 Chemical structure of inhibitors to IlvE/BCATs [202, 205, 214, 273]. 

 

Firstly, the PgIlvE was incubated with each of the potential inhibitors (0.5 mM) to 

observe the changes of the PLP cofactor by UV-vis spectroscopy as shown in Figure 

3.5.2. This would give initial insight into whether the inhibitors were interacting with 

the enzyme. Over various times (0-20 hrs), the absorbance at 410 nm (internal 

aldimine, PLP-Lys183) decreased and the absorbance at 330 nm increased 

suggesting each inhibitor had bound. Beginning with CS, Franco and Blanchard [214], 
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had suggested that the inhibition mechanism for PgIlvE involved initial formation of 

the PLP-inhibitor external aldimine form before any further reaction. Comparing both 

enantiomers of CS with PgIlvE, it took around 45 mins for the enzyme to equilibrate 

with LCS (Figure 3.5.2 A). In contrast, with DCS it took around 9 hours for equilibration 

(Figure 3.5.2 B). This suggested that the LCS reacts with the enzyme faster than DCS. 

For inhibitor BHA, it took 3 hours to equilibrate with the enzyme (Figure 3.5.2 C). 

Moreover, it appeared that 4-MBH equilibrated with the enzyme over 6 hours (Figure 

3.5.2 D). The detailed inhibition mechanism of PgIlvE will be discussed in the later 

section 3.5 with reference to a crystal structure of the PLP-LCS form. 

 

 

  

Figure 3.5.2 Absorption spectra of PgIlvE incubated with LCS (A), DCS (B), BHA (C) 

and MBH (D) overtime. Each assay contained 20 μM PgIlvE with 0.5 mM inhibitors.  
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Figure 3.5.3 Inhibition study of PgIlvE with potential inhibitors. (A) Relative enzymatic 

activity recovery by dialysis. Each assay contained 0.5 M PgllvE and relative concentrations of inhibitors. 

(B-E) Inhibition analysis of PgIlvE with inhibitor LCS (B), DCS (C), BHA (D) and 4MBH (E) by the coupled 

IlvE/GDH assay. Each assay contained 0.5M PgllvE and relative concentrations of inhibitors. All data 

were plotted as mean readings ±2-SD error bars. 
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𝑄 ൌ 𝐾௜
௄೘ାௌ

௄೘
 (1) 

𝑌 ൌ 𝑣௢ሺ1 െ
ሺሾாሿା௑ାொሻିඥሺሾாሿା௑ାொሻమିସሾாሿ௑

ଶሾாሿ
ሻ (2) 

Analysis of the kinetics and the type of inhibition (reversible or irreversible) was 

carried out for all the inhibitors (Figure 3.5.3 A). The PgIlvE was initially incubated with 

LCS (200 M), DCS (500 M), BHA (200 M) and 4MBH (4 mM) for 20 minutes, then 

dialysed for 24 hours against buffer W, which of note, included 50 μM PLP, before 

analysing the re-constituted enzyme with the coupled IlvE/GDH assay. It was 

observed that ~80% enzymatic activity was recovered after inhibition with LCS, ~77% 

activity was recovered for DCS and BHA, and ~65% for 4MBH, suggesting the 

inhibition mechanism of PgIlvE for each of the inhibitors was to a greater extent 

reversible. Earlier studies by Morrison and co-workers have provided a mathematical 

analysis to study how a reversible inhibitor effects the kinetics of enzymatic reactions. 

This has generated an equation, commonly referred to as the Morrison equation (2), 

to calculate the inhibitor constant (𝐾௜) indicating how potent an inhibitor is [275-277]. Thus, 

all the inhibition activity would be examined with Morrison analysis using the coupled 

IlvE/GDH assay conditions in ‘forward’ reaction in order to determine the 𝐾௜. 

 

Table 3.5.1 The inhibitor parameters of PgIlvE with different inhibitors. 

Substrates LCS DCS BHA 4MBH 

𝑲𝒊 (M) 60.70 ± 6.08 334.78 ± 33.2 93.45 ± 8.91 2890 ± 350 

 

As illustrated in Figure 3.5.3 (B-E) and Table 3.5.1, different concentrations of 

inhibitors were plotted against relevant initial velocity (by measuring the concentration 

of NADH produced in the GDH coupled assay) were successfully fitted to a tight 

binding inhibition model. Calculated from the Morrison equation, the 𝐾௜ value of LCS 

was 60.70 ± 6.08 μM and the 𝐾௜ value of DCS was 334.78 ± 33.2 μM. Both the UV-

vis studies and % inactivation agreed with the different stereospecificity of how the 

two different enantiomers inhibited PgIlvE. Blanchard and colleagues found that LCS 

is also a more of potent inhibitor of MtIlvE than DCS for, which the 𝐾௜ value of LCS 

was reported as 88 μM, of interest the 𝐾௜ value of DCS was not reported [214]. For 

inhibitor BHA, the inhibitor constant (𝐾௜) was determined as 93.45 ± 8.91 μM. From 

Castell’s paper [205], the 𝐾௜ value of BHA was recorded as 65 μM for MtIlvE and 42 

μM for M. smegmatis IlvE (MsIlvE) separately. For inhibitor 4MBH, the 𝐾௜ value was 

determined as 2.89 ± 0.35 mM using Morrison equation to fit the data, showing the 

weakest inhibition with PgIlvE amongst all the inhibitors tested in this study. 
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Figure 3.5.4 Inhibition study of PgIlvE with inhibitor gabapentin (black) and ERG240 

(red) by the coupled GDH/IlvE assay. 

Gabapentin (1-(Aminomethyl)cyclohexaneacetic acid, also know as brand name 

Neurontin, Fig. 3.5.1) is used as an anti-convulsant drug and it thought to act by 

inhibiting GABA AT. The inhibitor ERG240 (Fig. 3.5.1) is under current development 

for therapy of inflammatory conditions (e.g. arthritis). Both molecules were reported 

as cytosolic BCAT1 competitive inhibitors rather than mitochondrial BCAT2 inhibitors 

in human cells [273, 278]. Both compounds were analysed with PgIlvE, but unfortunately, 

there was no obvious inhibition observed through the activity assay (Figure 3.5.4). 

In summary, the study of how bacterial PgIlvE interacts with the various inhibitors 

described suggests that PgIlvE inhibition displays similar mechanisms to those 

previously observed for both MtIlvE and human BCAT, even though there is relatively 

low (<40%) overall identity in the sequences (Table 3.1). That said, there are highly 

conserved residues in the active sites of all BCAT isoforms. Unfortunately, due to time 

limitations, none of the inhibitors were examined for half maximal inhibitory 

concentration (IC50) experiments with both substrates, L-Leu and α-KG. Therefore, it 

is uncertain to determine the types of inhibitions (competitive, uncompetitive or non-

competitive). Furthermore, the inhibtors were not tested in vivo with P. gingivalis to 

determine if they displayed properties such as antimicrobial activity. 
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3.6 Structural analysis of PgIlvE 

 

Determination of the 3D structure of an enzyme is the basis for understanding 

the details of its catalytic mechanism and potential development of medicinally-

relevant drugs. As mentioned in section 3.1, a number of crystal structures of 

IlvE/BCATs has been studied and published in the PDB (Table 3.1.1). Therefore, 

obtaining the crystal structure of PgIlvE would allow comparative studies of other 

IlvE/BCAT enzymes. This work was carried out in collaboration with Dr. Jon Marles-

Wright (Newcastle University). 

 

 

Figure 3.6.1 The thermal denaturation assay of PgIlvE with Tris and CHES buffer in 

different pH. Tm stands for melting temperature. Each essay contained 5 μM enzyme and all data were 

plotted as mean readings ±2-SD error bars. 

 

To begin the route to the determination of the x-ray structure, diffraction-quality 

crystals are required. So, screens to identify conditions (pH, buffer, precipitant etc.) 

were carried out. The purified, recombinant PgIlvE WT tested by a thermal 

denaturation assay (TDA), a method used to measure the thermal stability of proteins 

through the transition unfolding temperature (Tm), in order to determine the best buffer 

for protein crystallography. We began by screening different pHs and used Tris or 

CHES buffers to analyse the range pH 7.0 - 9.5 (Figure 3.6.1). The Tm values of all 

buffers were over 90 °C, showing PgIlvE was an extremely stable enzyme giving 

promising results for protein crystallography. Concerning the chemical structure of Tris, 

which may interact with the PLP cofactor and remove the PLP from the protein and 
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the useful pH ranges of biological buffers chart at 25°C from the Sigma-Aldrich 

website, the final solution for all crystallizations was 100 mM CHES, 150 mM NaCl, 

pH 8.6 [279, 280]. 

 

 

Figure 3.6.2 Crystal morphology of PgIlvE WT from PEG/Ion Screen B12 (A) and 

PgIlvE + L-Leu incubation from Structure Screen 1+2 D9 (B). Protein condition: 9 mg/ml 

PgIlvE with/without 5mM L-Leu incubation. Precipitation condition: (A) 0.2 M lithium acetate dihydrate, 

20% w/v polyethylene glycol (PEG) 3350, pH 7.9. (B) 4 M sodium formate.  

In partnership with Dr. Jon Marles-Wright, crystallisation screening was 

performed under various precipitants’ conditions from commercial screens (PEG/Ion, 

JCSC-plus, Midas and Structure Screen 1+2) via vapour diffusion of sitting drop 

method in 96 well plates setting by the Art Robbins Gryphon nano-litre pipetting robot. 

In order to observe the interaction between the substrates or inhibitors and the 

enzyme, all the substrates or inhibitors were incubated with the enzyme for at least 

12 hours before setting the trails and crystallisation plates.  

Approximately 9 mg/ml of PgIlvE alone and PgIlvE + L-Leu incubation were 

initially screened through the system. The positive crystals were observed under more 

than 20 different conditions in PEG/Ion, JCSC-plus and Structure Screen 1+2, as 

shown as in Figure 3.5.2. Due to the characteristics of PLP, the PgIlvE formed yellow 

crystals, however the PgIlvE + L-Leu incubation formed the colourless crystals. The 

colour changes suggested L-Leu binding. The condition of PEG/Ion Screen B12, 

which was 0.2 M lithium acetate dihydrate, 20% w/v polyethylene glycol (PEG) 3350, 

pH 7.9, was utilized for further optimization crystallography using the hanging drop 

method. Meanwhile, during the optimization stage, the enzyme was screened by 

incubation with the inhibitors LCS, DCS, BHA and 4MBH were also screened. After 

several days, potential crystals were chosen and freezed in cryoprotectant for X-ray 

diffraction analysis by Dr. Jon Marles-Wright. He also directed my attempts at 

structure solution by molecular replacement and refinement as best as possible. This 

was difficult to do remotely as I was in China and then in Edinburgh – the final models 

were refined by him. 

A B



 

92 | P a g e  
 

The structure was determined in internal aldimine form, PLP:LCS and PLP:DCS, 

the initial model was built using Molrep [281-283], Phaser [284] and Refmac [285-288] in 

CCP4i [289] and the residues were checked and corrected with WinCoot with the 

highest homology structure found in the PDB which was D. radiodurans BCAT (3UYY 

[259]). However, the final confirmation of crystal structures and the crystal structure of 

external aldimine (PLP:Leu) are still in progress (October 2020). Therefore, those 

abnormal numbers in the Table 3.6.1 needs to be adjusted before publication. 

Therefore, the structures of the internal aldimine, PLP:LCS and PLP:DCS forms are 

shown and the refinement statistics data are given in Table 3.6.1. However, the 

interaction between enzyme and solvent would not be considered in the following 

discussion. 

 

Table 3.6.1 Crystallographic data and refinement statistics for DCS, WT and LCS. 

 DCS WT LCS 

Wavelength (Å) 0.976 0.976 0.976 

Resolution range (Å) 48.54 - 1.78

(1.84 - 1.78)

40.67 - 2.8 

(2.9 - 2.8) 

42.07 - 1.6 

(1.66 - 1.6) 

Space group C 1 2 1 P 21 21 21 P 21 21 21 

 

 

Unit cell  

 

 

a, b, c (Å) 207.16  

81.05 

84.29  

77.82  

78.85 

189.86  

80.09  

82.68 

195.51  

, ,  (°) 90  

110.40 

90 

90 

90 

90 

90 

90  

90 

Total reflections 451590 

(45601) 

187900 

(19388) 

1241832 

(116202) 

Unique reflections 124932 

(12437) 

29361 

(2905) 

171267 

(16903) 

Multiplicity 3.6 (3.7) 6.4 (6.7) 7.3 (6.9) 

Completeness (%) 99.67 

(99.75) 

98.84 

(99.38) 

99.92 (99.92) 

Mean I/sigma(I) 40.89 (1.57) 34.85 (1.71) 28.13 (1.14) 

Wilson B-factor (Å) 27.53 77.56 24.93 

R-merge 0.092 (0.61) 0.27 (1.16) 0.17 (1.45) 

R-meas 0.11 (0.71) 0.30 (1.26) 0.19 (1.57) 

R-pim 0.06 (0.36) 0.12 (0.49) 0.067 (0.60) 
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CC1/2 0.99 (0.53) 0.94 (0.48) 0.98 (0.17) 

CC* 1.00 (0.83) 0.98 (0.80) 0.99 (0.54) 

Reflections used in refinement 124787 

(12424) 

29223  

(2897) 

171169  

(16893) 

Reflections used for R-free 6223 (662) 1412 (128) 8422 (841) 

R-work 0.197 (0.27) 0.255 (0.39) 0.18 (0.31) 

R-free 0.23 (0.30) 0.32 (0.40) 0.21 (0.33) 

CC(work) 0.95 (0.63) 0.89 (0.45) 0.96 (0.33) 

CC(free) 0.94 (0.73) 0.84 (0.53) 0.96 (0.42) 

Number of non-hydrogen atoms 10980 10185 11990 

Macromolecules 10224 10124 10670 

Ligands 64 60 93 

Solvent 692 1 1227 

Protein residues 1309 1304 1345 

RMS(bonds) 0.02 0.02 0.01 

RMS(angles) 2.00 1.96 1.84 

Ramachandran favored (%) 96.42 90.00 96.56 

Ramachandran allowed (%) 2.88 8.49 2.92 

Ramachandran outliers (%) 0.70 1.51 0.52 

Rotamer outliers (%) 2.15 5.42 1.96 

Clashscore 4.25 8.02 3.05 

Average B-factor 35.47 90.39 32.79 

Macromolecules 35.33 90.44 31.76 

Ligands 27.83 83.49 30.85 

Solvent 38.30 34.93 41.91 

Statistics for the highest-resolution shell are shown in parentheses. 
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Figure 3.6.3 Crystal structure (at 2.80 Å resolution) of the recombinant PgIlvE internal 

aldimine form (A) The crystallographic unit cell containing four monomers. (B) the 

homodimer form (B). Each monomeric subunit is marked in a different colour and the PLP location 

is presented as solid spheres. The N- and C-termini are marked in (B). 

 

The x-ray crystal structure of the internal aldimine form of PgIlvE was solved at 

2.80 Å resolution (Figure 3.6.3). The PLP cofactor was clearly observed bound to 

Lys183. The crystallographic unit cell of PgIlvE contained two homodimers within four 
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monomeric chains. The homodimeric assembly agreed with the solution properties of 

the purified enzyme that suggested PgIlvE was a dimer of two monomer chains. 

Additionally, PgIlvE showed high homology in structure with other IlvE or BCATs. 

Aligning one chain of PgIlvE with others in the IlvE or BCAT family, the RMSD 

difference with D. radiodurans (PDB: 3UYY [259]) is 0.62 Å, with S. mutans serotype c 

(PDB: 4DQN [290]) is 0.66 Å, with MsIlvE (PDB: 3JZ6 [205]) is 0.84 Å and with MtIlvE 

(PDB: 3HT5 [204]) is 0.82 Å. 

 

 

Figure 3.6.4 The position of PLP internal aldimine in the recombinant PgIlvE structure. 

(A) The interaction between PLP internal aldimine and residues in the active site. (B) The 2Fo-Fc density 

map contoured at 0.5  and carve radius at 2.5 Å. 

 

Electron density for the PLP cofactor was clearly observed in the active site 

(Figure 3.6.4, 2Fo-Fc density map), the PLP cofactor was attached to the amine group 

of the Lys283 to as an internal aldimine. Apart from this, the -OH group of Tyr188 and 

the side-chain of Arg173 appeared to form hydrogen bonds with -OH group in the 

pyridine of PLP. The carbonyl group of Pro222 and the side chain of Glu219 engage 

in polar contacts with the amine of the pyridine ring to stabilise the PLP. Finally, the 

phosphate group of PLP displays polar contacts with the side-chain of Agr80, the –

the side chain of Ser244 and the backbone peptide bond between Glu281 and Thr282. 

There appear to be no disulfides bonds in the PgIlvE structure. Even the closest two 

cysteines in each monomer chain from Cys48 were too far apart - the distance 

between them was 5.9 Å. 

 



 

96 | P a g e  
 

 

 

Figure 3.6.5 The sequence alignment of six bacterial IlvEs/BCATs numbered 

according to the P. gingivalis IlvE. The conserved residues that interact with the PLP cofactor are 

marked with a triangle below. Residues selected for site directed mutagenesis are marked with a square. 

The seconday structural elements (-helix and -sheet) are derived from the crystal structure of PgIlvE. 

Uniprot codes of each IlvE sequence are: P. gingivalis (Q7MV21), M. tuberculosis (P9WQ75), M. 

smegmatis (A0R066), D. radiodurans (Q9RTX5), S. mutans serotype c (Q8DTW7) and E. coli (P0AB80). 

The figure was generated with CLUSTAL Omega and annoted with EsPript 3.0. 
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The sequence of PgIlvE was aligned with other five bacterial IlvEs/BCATs (Figure 

3.6.5), and residues Arg80, Arg173, Lys183, Tyr188, Glu219, Glu281 and Thr282 in 

PgIlvE were all conserved with the other IlvEs/BCATs. It is clear that Lys183 is the 

essential residue for IlvEs/BCATs since the enzyme uses this lysine to form the 

internal aldimine. Other conserved residues could also be essential for substrate 

binding and catalysing the transamination/aminotransferase activity, which can be 

explored using site-directed mutagenesis.  

The crystal structure of the LCS-inhibited form of PgIlvE was also solved at 1.60 

Å resolution (Figure 3.6.6). The PgIlvE: PLP:LCS protein structure consisted of four 

monomeric chains forming two homodimers in a similar manner as the structure of 

the PgIlvE PLP internal aldimine form. However, during the modelling stage, the 

electron density map suggested that two different structural forms of LCS were bound 

to the PLP cofactor (Figure 3.6.6 B and D). One structural form was the PLP:isoxazole 

form (ring-closed) and the other one was a ring-opened version of LCS, containing a 

-O-NH2 group pointing at one direction and a carboxylate group pointing at the 

opposite direction. The PLP:isoxazole form is the most common adduct to be 

observed in PLP enzymes. For example, Olsen et al. and Peisach et al. both 

suggested the abstraction of the -proton to give the aromatized CS adduct was 

carried out by the active site Lys in the LCS inactivation mechansims of -aminobutyric 

acid aminotransferase (GABA-AT) and DCS inactivation of D-amino acid 

aminotransferase (D-AAT) [291, 292]. In contrast, the phenomenon of a ring-opened 

version of CS has been reported in only a few PLP-dependent enzymes. Lowther et 

al. provided evidence for a ring-opened and decarboxylated version of CS on the 

SpSPT enzyme, resulting in PMP and -aminooxyacetaldehyde. They observed the 

final product -aminooxyacetaldehyde by MS analysis of dinitro-phenyl hydrazone 

adduct and in the x-ray crystal structure (PDB: 2XBN) [173]. Recently, Chiara et al. 

found the destruction of DCS in an alanine racemase and Gao et al. discovered a 

PMP-diketopiperazine adduct derived from the ring-opened form of CS in the PLP-

dependent enzyme ForI from the biosynthetic pathway of the C-nucleoside antibiotic 

formycin [293, 294]. Therefore, all these findings suggested that upon incubation with 

PgIlvE the ring of CS would be broken down and the molecule would be rearranged 

into different structures. 
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Figure 3.6.6 The x-ray crystal structure of the recombinant PgIlvE in complex with a 

PLP:LCS form at 1.60 Å resolution. (A) Two homodimers in the crystallographic unit cell. The 

2Fo-Fc map in chain A (B) and chain C (D) contoured at 1.0  and carve radius at 2.5 Å. (C) Crystal 

structure of PgIlvE inhibited with LCS, showing ring-closed (C) and ring-opened (E) forms. 
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In the active site of the PgIlvE PLP:LCS ring-closed version (Figure 3.6.6 C), the 

side chains of Arg88, Tyr188, Glu219, Gly281 and Thr282 still display polar contacts 

with the PLP cofactor in the same manner as the structure of PLP internal aldimine 

form. However, the phosphate group of the PLP cofactor appears to be shifted to form 

hydrogen bonds with the -OH group of Ser248 and the peptide backbone between 

Ser248 and Ile247. Furthermore, the keto group in the LCS ring interacts with both 

Gly58 and the side chain of Arg80. The -OH group of the Tyr123 side-chain engages 

in a polar contact with the oxygen in the LCS ring. All three of these residues stabilise 

the CS in the position of the active site. The Lys183 attached to PLP in the internal 

aldimine is clearly released from the PLP when LCS is connected to the PLP to form 

the external aldimine form (PLP:LCS). 

Comparing the active site of the PLP:LCS ring-opened version (Figure 3.6.6 E), 

more residues were involved in stabilising the ring-opened form of the inhibitor. The 

Arg125 side chain is involved in forming hydrogen bonds with -O- group of ring-

opened CS and the -OH of Tyr123. Meanwhile, the -O- group of the ring-opened CS 

is engaged in a polar contact with the amino side chain of Lys183, which was 

disconnected from the PLP. Additionally, the phosphate group of PLP was shifted 

again closer to the residues from Thr246 to Ser248, by forming a new hydrogen bond 

with the backbone amide bond between Thr246 and Ile247. 

The x-ray crystal structure of the DCS-inhibited form of PgIlvE was also solved 

at 1.78 Å resolution as shown as Figure 3.6.7. The protein crystal structure is 

composed of two homodimers within four monomeric chains in the crystallographic 

unit cell. Interestingly, instead of observing the PLP:DCS isoxazole form or a ring-

opened form in the structure, density was found suggesting a PMP form in the active 

site according to the 2Fo-Fc map (Figure 3.6.7 B). However, it was not possible to 

locate the position of a CS-derived product such as the -aminooxypyruvate or 

aldehyde. In addition, it was clear that the side chain of Lys183 is no longer forming a 

covalent bond with PLP that was observed in the PgIlvE internal aldimine complex. 

The other residues, such as the side chains of Arg80, Tyr188, Glu219, Ser248, Gly281, 

Thr282, display polar contacts with the PMP cofactor similar to the protein structure 

of PLP internal aldimine form. However, the PMP appeared to be shifted and the 

Arg173 side chain was not in a hydrogen bond with -OH group of the pyridine ring.  
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Figure 3.6.7 The x-ray structure of the recombinant PgIlvE in complex with 

PLP:DCS at 1.78 Å resolution. (A) Two homodimers in the crystallographic unit cell. (B) The 2Fo-

Fc map contoured at 1.5  and carve radius at 2.5 Å. (C) Crystal structure of PgIlvE inhibited with DCS 

in the PMP form. 

 

The structure of the covalent DCS-PMP adduct bound to MtIlvE was determined 

by Franco and Blanchard. DCS ring is showed as planar and aromatic, as previously 

observed for other enzyme systems. The research also confirmed the LCS and DCS-

inhibited used MS analysis to show that the both LCS- and DCS-PMP complexes 

have the same mass. It is suggested that both enantiomers were converted to the 

same aromatized, isoxazole product [214]. Based on this work and studies shown 

above, a mechanism of CS inhibition of PgIlvE is proposed in the Figure 3.6.8. The 

internal aldimine was firstly combined with LCS or DCS to form the PLP:CS external 

aldimine form. Then, with the support of the side chain of Lys183, the PLP:CS 
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complex would be rearranged into the ketimine form, then the aromatized isoxazole 

form, which agreed with the ring-closed version of PLP:LCS crystal structure shown 

above. However, the ring-opened version of PLP:LCS and PMP were observed from 

the crystal structure results. It is worth noting that the breaking of bonds in CS or 

between PLP and CS could be caused by the high energy synchrotron radiation used 

in the X-ray diffraction analysis. In order to fully understand the inhibition mechanism, 

it is essential to carry out a full solution of the models by adding solvent molecules to 

discover the interaction between the active site and waters. This analysis is currently 

being carried out by the collaborator Dr. Jon Marles-Wright. 

 

 

Figure 3.6.8 Proposed mechanism of CS inactivation of PgIlvE to form the 

PLP:aromatic isoxazole external aldminine. 
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3.7 Site mutagenesis study of PgIlvE 

 

During the x-ray crystal structural analysis of PgIlvE (Section 3.6), it was also 

decided to carry out side-directed mutagenesis (SDM) to identify residues involved in 

substrate binding and catalysis. Based on Figure 3.7.1 and the reaction mechanism 

(Figure 3.4.1) of PgIlvE, the -OH of the side chain of Tyr188 is close enough to provide 

a H-bond to the oxygen anion of the PLP cofactor and the amine of Lys183. The role 

of Tyr188 in the aminotransferase reaction was not known therefore, a mutant PgIlvE 

Y188A was created to test what effect it would have on the activity of PgIlvE. It was 

also noted in Franco and Blanchard’s study [214]  of MtIlvE that there was a potential 

Phe77 observed in the protein crystal structure (PDB: 1KT8) near to the main lysine 

residue of PLP that protected the active site from water molecules. The Phe residue 

was also a conserved residue in other BCATs – residue F56 in PgIlvE from sequence 

alignment (Figure 3.6.5). Thus, the mutant PgIlvE F56A was created and studied. 

 

 

Figure 3.7.1 The structure of the PgIlvE active site of the PLP internal aldimine form. 

 

 

1A 1B
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Figure 3.7.2 Mutants PgIlvE Y188A (1) and F56A (2) purification and analysis. (A) 

Chromatogram from SES column. (B) 15% SDS-PAGE gel after SEC. LMW: Low molecular weight 

marker, S200 fraction: elution fractions from main peak. (C) The mass spectrum of recombinant PgIlvE 

Y188A (1) with a mass of 36762.23 ± 0.78 Da, F56A (2) with a mass of 39782.87 ± 1.81 Da. All the 

enzyme concentrations were 10 M. 

 

The PgIlvE mutants Y188A and F56A were readily expressed and purified with 

the same procedure as PgIlvE WT described above, and both mutants showed similar 

UV-vis properties as the WT spectrum from the SEC column eluting at approximately 

68 mL (Figure 3.7.2) representing a homodimer in solution. The SDS-PAGE analysis 

showed the protein with a monomeric mass of ~40kDa. Both mutants were further 

confirmed by LC-ESI-MS (Figure 3.7.2), giving a mass of 39762.23 ± 0.78 Da for 

Y188A and a mass of 39782.87 ± 1.81 Da for F56A. Both data were in keeping with 

the theoretical mass from the predicted recombinant protein sequence (39761.39 Da 

for Y188A, 39777.39 Da for F56A) without initial methionine (131.19 Da) and multiple 

forms of the enzyme were observed representing the glycosylation of the histidine tag 

[228, 229]. 
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Figure 3.7.3 UV-vis analysis of the PgIlvE mutants F56A (1) and Y188A (2). The 

absorbance changes of PgIlvE with the addition of L-Leu (A) and L-Glu (B) over time. Each assay 

contained 20 M PgIlvE. 

 

As shown in Figure 3.7.3, both mutant F56A (1) and Y188A (2) were studied 

by the addition of 1 mM L-Leu and 1mM L-Glu and monitoring changes between 0-20 

mins. This led to a decrease in the peak at 410 nm and the formation of a broad 

absorbance with λmax at 405 nm. At the same time, the peak at 330 nm was increased 

and shifted slightly to a new peak at 328 nm. However, the changes in the mutant 

Y188A were much less pronounced than in the mutant F56A, especially since almost 

no changes were noted when L-Glu was added to the Y188A mutant. Meanwhile, 

since the binding of L-Leu and L-Glu is the first step in the aminotransferase 

mechanism, it suggests that the Y188A mutation affected the PgIlvE activity more 

severely than the F56A mutant. 
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Figure 3.7.4 Kinetic analysis of PgIlvE mutants for substrate L-Leu (A) and -KG (B) 

by the coupled IlvE/GDH assay. (1) F56A (2) Y188A. Each assay contained 1 or 15 M enzyme 

and the variable concentration of L-Leu or -KG. All data were plotted as mean readings ±2-SD error 

bars. 

 

The enzyme activity of both PgIlvE mutants with substrates L-Leu and α-KG was 

analysed using the coupled IlvE/GDH assay as shown in Figure 3.7.4. Kinetic data 

derived using Michaelis-Menten analysis showed that there was a dramatic impact 

when the Tyr188 side chain was converted to Ala in mutant Y188A. In fact it was 

necessary to increase the enzyme concentration for the assay 30 fold from 0.5 μM to 

15 μM in order to determine kinetic parameters. For substrate L-Leu, the 𝐾ெ = 4.89 

± 0.49 mM, 𝑉௠௔௫  = 0.03 ± 0.01 M/s and the 𝑘௖௔௧  = 1.87 ± 0.05 ൈ  10-3 s-1. For 

substrate α-KG, the 𝐾ெ = 1.50 ± 0.10 mM, 𝑉௠௔௫ = 0.03 ± 0.01 M/s and the 𝑘௖௔௧ = 

1.87 ± 0.05 ൈ 10-3 s-1. In contrast, the F56A mutant was not as severely affected as 

the Tyr188Ala mutant, which gave kinetic parameters 𝐾ெ = 2.67 ± 0.31 mM, 𝑉௠௔௫ = 

0.11 ± 0.01 M/s and the 𝑘௖௔௧ = 0.11 ± 0.01 s-1 with substrate L-Leu and the 𝐾ெ = 

0.02 ± 0.01 mM, 𝑉௠௔௫  = 0.06 ± 0.01 M/s and the 𝑘௖௔௧  = 0.06 ± 0.01 s-1 with 

substrate α-KG. 
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Table 3.7.1 Comparison of enzymatic activities of PgIlvE WT, Y188A and F56A with 

substrates L-Leu and α-KG using the coupled IlvE/GDH assay. 

Enzymes WT Y188A F56A 

𝑲𝑴  

(mM) 

L-Leu 2.48 ± 0.21 4.89 ± 0.49 2.67 ± 0.31

-KG 0.14± 0.01 1.50 ± 0.10 0.02 ± 0.01

𝒌𝒄𝒂𝒕 ൈ 10-3 

(s-1) 

L-Leu 886 ± 24 1.87 ± 0.05  110 ± 10 

-KG 410 ± 10 1.87 ± 0.05 60 ± 10 

𝒌𝒄𝒂𝒕/𝑲𝑴  

(M-1s-1) 

L-Leu 356.7 0.380 42.7 

-KG 2907.8 1.24 3100 

 

Contrasting with the PgIlvE WT (Table 3.7.1), the Y188A mutant showed not only 

weaker substrate affinity with L-Leu (~twice as weak) and α-KG (~10 times weaker), 

but also the catalytic activity was essentially abolished since the turnover was reduced 

by ~470 (L-Leu) and ~220 fold (α-KG). In contrast, the F56A mutant only showed a 

stronger affinity with α-KG compared to the WT, however, the turnover number of each 

substrate was approximately 8 times slower than the WT. Thus, the mutant F56A only 

affected the catalytic efficiency of L-Leu and not α-KG.  

In summary, the Phe56 residue of PgIlvE did play a role in the enzyme activity 

possibly by affecting the hydrophobic nature of the active site and the interaction with 

the substrates, in agreement with that found for the equivalent Phe77 residue in MtIlvE. 

Additionally, in our study of PgIlvE, the -OH group of the side-chain of Y188 plays 

essential role in both the catalytic activity and substrate binding according to both 

kinetic analysis and UV-vis results. Further structural studies of the PgIlvE Y188F 

mutant might reveal how the removal of this side chain has impacted on the position 

and orientation of the PLP cofactor. Furthermore, a crystal structure of the wild type 

PgIlvE in complex with a PLP:substrate external aldimine may provide insight into this 

residue interacts with both BCAA and α-KG substrates and reveal a role in the 

catalytic mechanism.  
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Chapter 4 3-Ketodihydrosphingsine reductase (KDSR) 

4.1 Cloning, expression and purification of S. Cerevisiae KDSR 

(ScKDSR) 

 

In the core, conserved SL biosynthetic pathway, after the first committed SPT-

catalysed reaction, a key second step is the conversion of the 3-KDS intermediate to 

DHS. This reduction is catalysed by a 3-KDS reductase (KDSR) and the eukaryotic 

enzymes are found in the ER. The membrane-bound nature of the KDSRs made them 

technically difficult to study e.g. an x-ray crystal structure has not been determined of 

a KDSR. Furthermore, there has not been a soluble, bacterial KDSR isolated to date 

that can be used as a model for the isozymes from a higher organism in a similar way 

that the bacterial SPT has been used as a model for the membrane-bound SPT 

complexes. 

As mentioned in Introduction 1.4, in 1998 Beeler, Dunn et al. characterised the S. 

cerevisiae yeast KDSR (encoded by the TSC10/YBR265w gene) and in the ~20 years 

since then more KDSRs have been discovered in mammals (including humans) and 

fungi [215-217]. The KDSRs can be classified as members of the short chain 

dehydrogenase/reductase (SDR) superfamily. This superfamily represents one of the 

largest protein superfamilies known to date and they can catalyse NAD(P)(H) 

dependent reactions with a substrate spectrum ranging from polyols, retinoids, 

steroids and fatty acids. Without a structure it is unclear how these KDSR enzymes 

catalyse the stereospecific reduction of 3-KDS with the NADPH cofactor. Therefore, 

to begin a study of the yeast KDSR, sequence alignment analysis was carried out 

between the characterised KDSRs (Figure 4.1.1 A). Although these KDSRs display 

low identity (15%~30%) with the yeast KDSR, they showed a conserved motif 

(YXXXK), which was considered as the catalytic site for the SDR family [295]. 

Furthermore, the Lys and Ser side chains were proposed to support a proton transfer 

from Tyr to the substrate [296]. The other conserved motif (GXXXGXG) near to the N 

terminus was suggested to form the NADPH-binding domain or Rossman fold [297]. 

Additionally, Beeler et al. prediected a 38 aa hydrophobic anchor/membrane-binding 

domain near to the C terminus of KDSR to allow interaction with the ER membrane. 

Therefore to aid in soluble expression, this domain was removed and a truncated his-

tag version had been cloned from a plasmid gifted by Prof. Teresa Dunn and 

expressed in E. coli by a previous group member, Dr. Jonathan Lowther (Figure 4.1.1 

B). However, no biochemical data on the purified yeast KDSR had been published. 
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Figure 4.1.1 Sequence alignment of KDSRs. (A) from human, fungi (A. fumigatus and C. 

albicans) and and yeast. The essential residues were highlighted as blue. (B) between yeast KDSR WT 

and truncated-his-tag version. The truncated part was highlighted in brown; the his-tag was highlighted 

in blue; the Myc-tag was highlighted in orange. The alignment was produced by Clustal Omega and 

annotated using ESPript 3.0. 

A 

B 
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Figure 4.1.2 Plasmid map of S. Cerevisiae KDSR in pET-28a 

 

Therefore, this project was based on establishing the activity of the yeast 

enzyme known as ScKDSR, which had already been cloned into a C-terminal 6xHis-

tag in a pET-28a plasmid with NcoI and XhoI restriction sites (Figure 4.1.1). The other 

goal was to couple the KDSR with SPT and directly monitor KDS formation by 

converson to DHS at the same time as oxidation of NADPH at 340 nm. 

 

 

 

Figure 4.1.3 ScKDSR purification and analysis. (A) Chromatogram from SES column. (B) 12% 

SDS-PAGE gel after SEC. LMW: Low molecular weight marker, Lane 1-10: elution fractions from 33-87 

mL. (C) The mass spectrum of recombinant ScKDSR (10 M) with a mass of 34159.95 ± 1.49 Da. 
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The ScKDSR expressed well (band at ~34 kDa in SDS-PAGE) and in soluble 

form in E. coli BL21 (DE3) for 4 hours at 30 °C after being induced with 0.1 mM IPTG. 

An EDTA-free protease inhibitor tablet (Roche) was added before the sonication and 

the ScKDSR was isolated by HisTrap using buffer M and N, then was loaded on a 

calibrated HiPrep™ 16/60 Sephacryl™ S-300 SEC with buffer G, and typical protein 

yields were ~5 mg/L culture. According to the chromatogram, the protein appeared to 

be aggregated because of several elution peaks from the SEC column and only one 

clear band on each section analysed by SDS-PAGE gel (Figure 4.1.3). The protein 

quaternary structure was unpredictable even after using the standard calibration 

(Appendix 8.2). The pure ScKDSR was analysed by denaturing LC-ESI-MS and the 

resulting mass spectrum (Figure 4.1.3) showed several peaks, representing many 

charge states of the protein. The protein mass was determined using the maximum 

entropy algorithm from smoothed and centroided data, shown as 34159.95 ± 1.49 Da, 

and was within 0.05% of the theoretical mass of 34176.04 Da calculated from 

recombinant protein sequence by using ExPaSy ProtParam tool. 

The ScKDSR catalyses the stereospecific NADPH-dependent reduction of 3-

KDS to produce DHS – also known as L-erythro-dihydrosphingosine or (2R, 3S)-2-

aminooctadecane-1,3-diol. Based on the SDR mechanism suggested by Filling et al., 

it is possible that the ScKDSR catalyses hydride attack on the 3-KDS substrate 

carbonyl from the NAPDH. The enzyme uses the –OH of the Tyr180 side chain as the 

proton donor which is replenished through a water channel as shown in Figure 4.1.4 

[298]. More details of the proposed catalytic mechanism will be discussed with a 

ScKDSR model in Section 4.5. Therefore, the kinetic parameters of the enzyme can 

be characterized by monitoring decreasing absorbance of NADPH at the wavelength 

340 nm (𝜀ெ௔௫ = 6200 M-1 cm-1). 

 

Figure 4.1.4 Proposed mechanism of ScKDSR [298] 
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4.2 Characterization and activity of KDSR  

 

As well as monitoring the oxidation of the NADPH cofactor it was also key to measure 

the reduction of the 3-KDS to DHS directly using MS This was achieved by incubation 

of the recombinant ScKDSR with 3-KDS and NADPH and then analysis of the 

products in comparison to commercial standards and the appropriate controls (Figure 

4.2.1). 

 

 

Figure 4.2.1 MALDI-ToF analysis of the recombinant ScKDSR reaction products using 

C18 3-KDS and NADPH substrates. (A) C18 DHS standard (B) C18 3-KDS standard (C) C18 

KDS + C18 DHS standards (D-E) negative controls (G) Full assay of ScKDSR reaction (H) Theoretical 

mass spectrum. Each assay contained 100 M ScKDSR, 250 M NADPH and 100 M 3-KDS. The data 

was analysed on positive mode in triplicates. 

 

The product C18 DHS (302.305 Da) produced from the KDSR reaction was 

successfully detected by MALDI-ToF-MS (Figure 4.2.1). In the positive ion mode 

MALDI-ToF-MS analysis of the standards (panel A and B in the spectra), it was 
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observed as one main peak due to the quasi-molecular ion [M+H]+ as well as one 13C 

isotope peaks [M+H]+ +1 amu. The relative abundance of this ion is ~20% of the base 

peak due to the presence of the 13C isotope (natural abundance 1.1%), Therefore, 

even if the isotope peak [M+H+2]+ (m/z 302.30) of C18 3-KDS overlapped with the 

main peak [M+H]+ (m/z 302.30) of C18 DHS, there was still a ion count at m/z = 302.30 

and the other two isotope peaks (m/z 303.30 and m/z 304.31) were also present in 

the DHS product spectrum (Panel C in the spectra, Figure 4.2.1). The Data Analysis 

Bruker software also allows calculation of the theoretical mass spectrum based on 

the chemical formula of the DHS species (C18H39NO2) for the [M+H]+ ion and the 

associated isotope peaks (panel H in Figure 4.2.1). The experimental data is in good 

agreement with the predicted values and, when combined the negative controls 

(panels D-F in Figure 4.2.1), provide good supporting data that the ScKDSR is active 

(panel G in Figure 4.2.1). 

 

 

 

Figure 4.2.2 pH dependence and kinetic analysis of recombinant KDSR by NADH 

assay. (A) The absorbance against time in different pH. (B) Comparison of initial rate in different pH. 

Each assay contained 90 nM enzyme. (C) Kinetic analysis for substrate 3-KDS. Each assay contained 

90 nM enzyme and variable concentration of 3-KDS. All data were plotted as mean readings ±2-SD error 

bars. 

 

 

 

A B 
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Before characterising the kinetic parameters of KDSR, the enzyme was firstly 

tested with a range of pH values between 6.0 and 8.0 in 0.5 increments to determine 

the optimal assay conditions. As shown in Figure 4.2.2, the highest reaction rate was 

observed at pH 6.5. Fresh solutions were prepared before the assay to avoid NADPH 

degradation each time [299]. The other problem which occurred during the assay was 

the hydrophobicity of the substrate 3-KDS and ther product DHS because of the long 

alkyl chain, and according to the safety data sheet from the provider company Matreya 

LLC, ethanol, methanol or chloroform was necessary to dissolve 3-KDS. For this 

assay, 10 mM KDS was dissolved in 50% ethanol to form a maximum stock 

concentration made for the kinetic assay. 

With the optimized assay conditions, several typical reactions were carried out 

at multiple substrate (C18 3-KDS) concentrations (0-100 M). Kinetic parameters 

were determined by using Michaelis-Menten analysis (Figure 4.2.2), which resulted in 

a determination for KDS; 𝐾ெ = 1.51 ± 0.31 M, 𝑉௠௔௫ = 10.90 ± 0.46 nM/s, and 𝑘௖௔௧ 

= 0.12 ± 0.01 s-1. Noticeably, at 0 point on the x axis, there was still an initial rate 

around 3.25 nM/s, which was considered as the background rate in the assay.  

 

Table 4.2.1 Kinetic parameters of KDS for different KDSRs [216, 217]. 

Species 𝒌𝒄𝒂𝒕 (s-1) 𝑲𝑴 (M) 𝒌𝒄𝒂𝒕/𝑲𝑴 (mM-1s-1)

HsFVT-1 NDa 3 NDa 

CaKSR1Δ39p 0.11 9 12.22 

ScKDSR 0.12 ± 0.01 1.51 ± 0.31 79.47 

a Not determined 

 

In a summary (Table 4.2.1), Fornarotto et al. [217] determined kinetic parameters 

with a truncated version of CaKSR1 which cut off 39 amino acids. Kihara’s group [216] 

only determined the estimated 𝐾ெ  value of human FVT-1 as 3 μM for KDS. 

Compared to the ScKDSR, both enzymes bound the substrate with lower affinity (high 

𝐾ெ). One possible influence on the catalytic rate could be the use of detergent which 

will be discussed below. 

As well as obtaining biochemical data for ScKDSR, another goal was to couple 

the enzyme in an assay with bacterial and other SPTs. This meant that the conditions 

for both enzymes had to be compatible – however, it had been reported that ScKDSR, 

especially the ER-bound forms, required the addition of detergents for activity. Our 

method of expression had removed the predicted C-terminal membrane-binding 

domain and the enzyme was soluble when expressed in E. coli. Therefore, as a check, 
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the ScKDSR activity was tested with different detergents and different concentrations 

(Figure 4.2.3). In general, all the detergents showed different effects on the assay. All 

the initial rates with detergents (0.5~8 nM/s) were slower than the one without 

detergent (12.5 nM/s). In the previous study of the recombinant C. albicans enzyme 

(CaKSR1), Fornarotto et al. [217] used the detergent 0.5% CHAPS in their KDSR assay. 

However, from Figure 4.2.3, the initial rate of ScKDSR with 0.5% CHAPS was only 

3.9 nM/s, showing the enzymatic activity had been lowered to ~31%. Additionally, 

detergents DDM and TDM had less influence on the ScKDSR enzyme (4~8 nM/s), 

which still retained 32%~65% enzymatic activity. It was found that 2% DDM (8.2 nM/s) 

was the best detergent condition for measuring KDSR activity, and by increasing the 

KDSR concentration in the SPT coupling assay might minimize the influence of the 

detergent. 
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Figure 4.2.3 Detergent screening of KDSR WT activity by the NADPH assay. Each 

assay contained with 90 nM enzyme, 200 μM NADPH, 60 μM KDS (0.6% ethanol). 
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4.3 KDSR and human disease 

As mentioned in the introduction, a rare, inherited syndrome of skin pathology 

and recessive progressive symmetric erythrokeratoderma, had been recently 

identified. This disease is characterized by severe lesions of thick, scaly skin on the 

face and genitals, as well as thickened, red, and scaly skin on the hands and feet. It 

has been associated with reduced ceramide levels and linked to mutations in human 

KDSR [221-223]. As shown in the Figure 4.3.1, different mutations or deletions across 

the full length of KDSR gene and led to the dysfunction of the encoded enzyme. 

 

Figure 4.3.1 KDSR mutations/deletions reported in the pathogenic patients [221-223, 300].  

 

Therefore, it is intriguing to use the ScKDSR as a model for the human isoform 

and by site-directed mutagenesis study the influence of the disease-causing 

mutations on substrate binding and catalysis. 

 

Figure 4.3.2 Sequence alignment of human and yeast KDSR. The KDSR mutations found 

in patients were highlighted in blue; the truncated part of ScKDSR was highlighted in pink; the his-tag 

was highlighted in green; the predicted membrane-binding domain was highlighted in orange; the 

predicted mutations were highlighted in brown; the essential residues were labelled with red triangles. 

The alignment was produced by Clustal Omega and annotated with EsPript 3.0. 
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First, an alignment of human FVT-1 and ScKDSR was prepared (Figure 4.3.2), 

there are extra residues at the beginning and end of the sequence of FVT-1, which is 

predicted as the ER membrane-binding sequence. According to the published KDSR 

papers, apart from the codon deletion, there are actually five mutated sites found in 

the thrombocytopenia patients, which are F138C, R154W [301], G182S, Y186F [222] and 

G271E in the FVT-1 [221]. Furthermore, in a recent study by Huber et al., the mutations 

E198K and E289K were predicted to have an impact on the function of KDSR [300]. 

However, only three of the mutated sites are conserved in both the human and yeast 

KDSR sequences. Therefore those mutations, corresponding to ScKDSR G176S, 

Y180F and G263E, will be the main subject of study and discussion in the following 

section.  

 

 

Figure 4.3.3 Test expression of ScKDSR mutants Y180F (A) and G176S (B) in E.coli 

BL21 (DE3). LMW: Low Molecular Weight marker. Ins: Insoluble. Sol: Soluble. The test conditions 

were varied from 0, 0.1, 0.5 mM concentration of IPTG added, 30 or 16 °C after induction, 3h, 5h, 

overnight growth after induction. The expected molecular weight of recombinant protein was around 

~36kDa. 

 

The equivalent ScKDSR mutant mimics, G176S, Y180F and G263E were 

successfully cloned by PCR and confirmed by DNA sequencing. All three mutants 

were tested in different expression conditions, regrettably, Y180F and G176S failed 

to express or were insoluble in expression strains such BL21 (DE3) (Figure 4.3.3), 

C41 (DE3), C43 (DE3), and Rosetta-gami 2 (DE3) cells with LB media or 2YT media 

or the addition of sorbitol [302]. The impact of these mutations on the ScKDSR suggest 

Y180 and G176 are essential residues either for protein expression or folding, 

because both changed codons, TTT for Y180F and AGC for G176S, were not rare 

codons in E.coli expression.  

  

A  Y180F B  G176S
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4.4 Expression, purification and characterization of ScKDSR 

G263E 

 

Figure 4.4.1 Expression test for ScKDSR mutant G263E in E.coli BL21 (DE3). (A) 12% 

SDS-gel analysis. (B) Western blotting analysis. LMW: Low Molecular Weight marker. Ins: Insoluble. Sol: 

Soluble. iBright PPL: iBright Prestained Protein Ladder (ThermoFisher). The expected molecular weight 

of recombinant protein was around ~36kDa. 

 

 

Figure 4.4.2 ScKDSR G263E mutant purification and analysis. (A) Chromatogram from 

SES column. (B) 12% SDS-PAGE gel after SEC. LMW: Low molecular weight marker, S300 Fraction: 

elution fractions from 38-90 mL. (C) The mass spectrum of recombinant ScKDSR G263E (10 M) with 

a mass of 34248.61 ± 1.51 Da. 
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In contrast to the other mutants, ScKDSR mutant G263E was well expressed 

and soluble in E. coli BL21 (DE3) via overnight expression at 16 °C after induction of 

0.1 or 0.5 mM IPTG. This was proved by 12% SDS-PAGE analysis and western 

blotting analysis for his-tag protein (Figure 4.4.1). Compared to the ScKDSR WT, the 

mutant G263E behaved differently during isolation (Figure 4.4.2 A). From the SEC 

chromatogram, the aggregation was absent as the mutant eluted with one sharp peak 

at ~65 mL. Therefore, by using a S300 calibration curve, the KDSR G263E behaved 

as a trimer in solution. However, the elution peak was still broad which could be a 

mixture of dimer or trimer. The protein mass was measured as 34248.61 ± 1.00 Da 

(Figure 4.4.2 C) using ESI-MS, which was in good agreement as theoretical mass of 

34248.10 Da from ExPaSy ProtParam tool. 

 

Figure 4.4.3 Characterization of ScKDSR G263E mutant by the NADH assay. (A) The 

absorbance vs time dot-line plot of KDSR WT, mutant G263E and blank samples. (B) Kinetic analysis of 

the mutant G263E. Each assay contained with 200 nM enzyme and variable concentration of KDSs. All 

data were plotted as mean readings ±2-SD error bars. 

Table 4.4.1 Kinetic parameters of KDSR WT and mutant G263E by NAPDH assay. 

Parameters WT G263E 

𝑲𝑴 (μM) 1.51 ± 0.31 1.94 ± 0.22 

𝒌𝒄𝒂𝒕 (s-1) 0.12 ± 0.01 0.08 ± 0.01 

𝒌𝒄𝒂𝒕/𝑲𝑴 (mM-1s-1) 79.47 41.23 

 

Using the same NADPH assay for the WT enzyme (Figure 4.4.3 and Table 4.4.1), 

the mutant activity was measured as 1.5 times slower in comparison with the WT 

activity, with a lower 𝑘௖௔௧ = 0.08 ± 0.01 s-1. However, there was no large difference in 

affinity with the substrate KDS, the 𝐾ெ = 1.94 ± 0.22 M for mutant and 1.51 ± 0.31 

M for WT. The catalytic efficiency (𝑘௖௔௧/𝐾ெ) showed that the mutant was reduced 

~50% compared to the WT enzyme. This result agreed with Takeichi’s study that the 

cellular DHS concentration was decreased due to the G271E mutation in human FVT-

1 but the molecular details of this impact are unknown [221].   
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4.5 Crystallography study  

 

Figure 4.5.1 The thermal denaturation assay of KDSR G263E with a range of buffer 

and pH. Tm stands for melting temperature. Each essay contained 5 M enzyme and all data were 

plotted as mean readings ±2-SD error bars. 

 

Homogenous protein is desirable to begin screening for the optimal conditions 

for growing diffraction-quality crystals. We compared the purification of ScKDSR WT 

and the G263E mutant. Considering the S300 profiles of both WT and G263E, the 

mutant G263E was taken forward for crystal trials (both in Edinburgh and in 

collaboration with Prof. Jim Naismith, Oxford). Firstly, the mutant G263E was tested 

by TDA assay to identify suitable buffers for protein stabilisation, which could aid the 

crystallisation process or improve on existing crystal quality (Figure 4.5.1). 

Considering the pH range of the buffer and the fact that the optimal pH for KDSR 

activity is 6.5, there was no need to test buffer Tris at pH 6.0 or 6.5, MES at pH 7.5 

and HEPES at pH 6.0. Both Bis-Tris pH 6.0 and Tris pH 7.0 were chosen as desirable 

buffers for mutant ScKDSR G263E, which gave high Tm values of around 72.57 ± 

1.05 °C for Bis-Tris pH 6.0 and 72.47 ± 0.99 °C for Tris pH 7.0 respectively compared 

to other conditions. Moreover, Tris pH 7.5 also obtained Tm around 70.88 ± 0.6 °C, 

showing Tris could be the best buffer for G263E stabilisation. In contrast MES buffer 

was the worst for the enzyme at all pH values with an average Tm of 65 °C. Therefore 

the buffer for the crystallography condition screen of the mutant G263E was 

processed using buffer 50 mM Tris, 150 mM NaCl, pH 7.0. Unfortunately, by the end 

of my PhD studies, diffraction-quality ScKDSR crystals had not been solved. 

Therefore, it was decided that we should attempt to build a structural model to 

understand the catalytic mechanism of this important enzyme. 
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Figure 4.5.2 The homology model of ScKDSR (also known as Tsc10). (A) The protein 

was modelled as a monomer, the prediected membrane binding domain was labelled as light pink and 

the enzymatic catalytic was labelled as slate blue. (B) The possible NADPH binding pocket is shown in 

red.  

Because Swiss-Model was based on one template to the build protein model in 

using conserved residues, and the ScKDSR (Tsc10) had less 25% identity and 41% 

similarity with all the SDR homologues in PDB Bank, we used RosettaCM software to 

carry out multi-template comparative modelling to enhance the modelling accurary 

using multiple templates. The four structure templates of the most similar protein 

sequences compared to ScKDSR were identified, which are 3RIH (41%) [303], 3WOH 

(38%) [304], 3F5S (38%) [305] and 3F5Q (38%) [306]. A homology model was built and 

shown in Figure 4.5.2 A. The total score given from the Rosetta software is -539.819. 

For a refined structure of this size, a score of -370 to -1,110 is typical, and the lower 

the score, the more stable the structure is likely to be as a given protein. The RMSD 

of the model with each template is quite close except with 3WOH, which are 3.03 and 

others are 1.12 (3RIH), 1.98 (3F5S) and 1.96 (3F5Q). Therefore, the model still is 

judged as good enough to begin to understand the mechanism of the ScKDSR. The 

model consisted of a N-terminal catalytic domain and a membrane binding domain at 

the C terminus. By using a computed atlas of surface topography of protein (CASTp) 

online service [307], a possible pocket was identified for NAPDH binding in the catalytic 

domain (Figure 4.5.2 B). Next, the catalytic domain was zoomed on by deleting the 

membrane domain and trying to dock NAPDH into the structural model by using 



 

121 | P a g e  
 

AutoDock Vina [308].  

 

 

Figure 4.5.3 The best three possible NADPH docking positions in ScKDSR using 

AutoDock Vina.  

After running the docking tests, we found that the three most possible NADPH 

positions in ScKDSR (Figure 4.5.3). Based on the reaction of KDS reduction and the 

proposed catalytic mechanism of ScKDSR (Figure 4.2.1), the residues of Tyr180 and 

Lys184 display polar contacts with both the -OH group in the ribose ring close to the 

pyridine ring (Figure 4.5.3 A). Also the Gly20 is proposed to form a hydrogen bond 

with a phosphate group. Morover, the other two Gly14 and Gly20 residues in the motif 

of the NADPH-binding domain are quite far away if they are to engage with NADPH. 

Such an interaction could be mediated by a water molecule to connect these two 

glycines and the phosphate group – such interactions have been observed in other 

SDR family crystal structures. Of interest, in all possible NADPH binding positions, 

the side chain of Gln17 would form a hydrogen bond with the additional phosphate 

bond in the 2’ position of the ribose ring. In the human FVT-1 and CaKSR1 sequences, 
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this resodues is not conserved, it is Ser and Asp respectively, which of which still have 

a potential H-bond donor to allow for binding with NADPH. Therefore, Gln17 could be 

one of the essential residues to stabilise the NADPH binding. Furthermore, this could 

be same as Gly215 since Gly215 is also a conserved residue between the species.  

In binding mode B (Figure 4.5.3 B), the adenine moiety seems to have a polar 

contact with the -C=O group of both the Val39 and Ser40 residues. Also the -NH2 

group attached to the pyridine ring has a polar contact with the -C=O group of Phe167. 

In position C (Figure 4.5.3 C), both adenine moiety and -NH2 group linked to the 

pyridine have a polar contact with Glu219, and the phosphate group would have a 

polar contact with Leu19. Thus, it seems the NADPH is much more stable in position 

B and C instead of position A. Considering the catalytic reduction mechanism, the the 

NADPH provides the hydride. The KDS would bind to the enzyme and the keto group 

of KDS would have a polar contact with Ser167 plus the hydrogen in the pyridine 

group would transfer KDS, the position B seems to be the best position for KDS 

docking. It was also gratifying to observe the Tyr180 close to the substrates in all the 

models – it would be interesting to mutate this and other side-chains to test their roles 

in the KDSR reaction. In Section 4.4, we found the mutant G263E changed the 

expression level and enzymatic activity compared to ScKDSR WT. However, from the 

potential model, the Gly263 is in a loop that is far away from the possible pocket or 

possible NADPH positions. The reason for this requires further study – it could be that 

KDS and NADPH binding causes large conformational changes in the enzyme. 
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Chapter 5 Conclusion and future work 

At the outset of this work detailed information about the complete SL biosynthetic 

pathways in various microbes was unknown. An inspection of the comprehensive 

LipidMaps database (www.lipidmaps.org/) reveals little information on the genes, 

enzymes and pathways associated with both bacterial SL biosynthesis and 

degradation. To expand our knowledge of SLs and Cers biosynthesis from these 

species we have undertaken a number of biochemical studies of key enzymes 

involved in the “core” SL biosynthesis. 

Overall, three different types of key enzymes (SPT, IlvE/BCAT and KDSR) 

involved in SL biosynthesis from B. fragilis, P. gingivalis and S. cerevisiae have been 

studied. An investigation into BfSPT led to the discovery of substrate inhibition with 

high concentrations of C16-CoA of over 80 M. Therefore, novel kinetic parameters 

of BfSPT with optimized concentrations of C16-CoA were determined. Furthermore, 

Val353 of BfSPT was proposed to control the C16-CoA interaction with the PLP:L-Ser 

external aldimine complex. This was not expected as the equivalent residue, Arg378 

of SpSPT, was previously shown to be responsible for stabilization of the carboxylate 

of the serine substrate.  

In a collaborative study with oral microbiologist Prof. Mary Ellen Davey (University 

of Florida), a novel PgSPT was characterised and a full biochemical analysis was 

carried out with both substrates (L-Ser and C16-CoA), as well as inhibitors such as 

LCS and DCS. The KDS products derived from straight-chain C14-C18 acyl-CoA 

substrates and amino acid substrates (Gly, L-Ala and L-Ser) produced by BfSPT and 

PgSPT were determined by MALDI-ToF-MS. Moreover, we found by mutagenesis 

analysis of residues in a conserved non-catalytic loop (PAXXP) in the bacterial SPTs 

influenced both the affinity and catalytic activity with the common substrates L-Ser 

and C16-CoA. Additionally, a relationship between the position of the 6His affinity tag 

(N- and C- terminus) and PgSPT activity, which had not been previously discussed in 

the literature, was observed. The position of this tag may control substrate inhibition 

observed with high concentrations of C16-CoA. Crystal trials were screened but no 

diffraction-quality crystals were obtained. Instead, a hypothetical homology model of 

the 3D structure of the PgSPT PLP:L-Ser external aldimine complex was constructed 

and the essential residues around the active site and the conserved loop were studied 

by comparison with other SPT isoforms from the Protein Data Bank (PDB) database. 

Future analysis of SPT enzymes would focus on the function of the loop (PAXXP), as 

well as understanding the binding domain of the acyl-CoA by solving the crystal 

structure of SPT with this substrate bound. 

At the same time, in collaboration with Davey, a SPT mutant strain of P. gingivalis 
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(PG1780) was constructed and incubated with THP1 macrophages. The mutant 

strain was unable to synthesise SLs and elicited a robust immune response in these 

cells compared to a wild type strain. This suggests that the ability of P. gingivalis to 

synthesise SLs is central to its ability to manipulate the host inflammatory response, 

and they demonstrate the integral importance of SLs in the physiology of P. gingivalis 

(F.G. Rocha, P. Tang, et al., Journal of Dental Research, 2020, 99, 568-576) [232]. 

Future studies are aimed at investigating the exact molecular details of what roles 

these SLs play in mediating the bacterial/host immune response.  

To investigate the origin of the iso-Me branch of the odd-numbered acyl chain of 

bacterial SLs, we explored a PLP-dependent amino transferase (IlvE/BCAT) predicted 

to be involved in metabolism of branched chain amino acids. The P. gingivalis IlvE 

(PG1290) was identified by sequence/homology analysis, cloned, purified and 

characterised. The enzyme followed a similar substrate binding and catalytic activity 

as other well-known transaminases (e.g. from M. tuberculosis), except this reversible 

enzyme used BCAAs and L-Glu AA substrates and converted them to the 

corresponding keto acids. We optimised four different coupled enzyme kinetic assay; 

two assays for the ‘forward’ direction and two assays for the ‘reverse’ direction, to 

determine the enzyme activity for different purposes. Studies of the interaction 

between PgIlvE with inhibitors, LCS and DCS suggested that the PgIlvE inhibition 

mechanism was similar to the human BCAT2 inhibition mechanism. Furthermore, in 

collaboration with Dr. Jon Marles-Wright (University of Newcastle) with the supporting 

evidence of crystal structures of PgIlvE (PLP-internal aldimine form, PLP:LCS ring-

opened and ring-closed form and PMP form in DCS structures), an understanding of 

the catalytic mechanism and inhibition mechanism has been improved. Through the 

PgIlvE crystal structure, two new mutants (F56A and Y188A) were prepared and 

studied. It was also established that Tyr188 plays an essential role in catalysis and 

F56 appears to play an important role in defining the hydrophobicity of the active site.  

Further investigations of PgIlvE would uncover the essential residues involved in 

defining the substrate specificity. To explore the role of IlvE in the biosynthesis of P. 

gingivalis SLs, PgIlvE mutant cells will be prepared and mass spectrometry used to 

determine if the SLs retained their iso-Me branch. Furthermore, labelling of the iso-

Me branched SL pool in P. gingivalis with isotope-labelled (e.g. 13C) BCAA precursors 

will allow metabolic tracking of these amino acids into the mature SLs. 

Since a bacterial, Gram-negative KDSR has not been identified, an alternative 

KDSR from the yeast S. cerevisiae (ScKDSR) was expressed and purified. Sequence 

analysis suggested the enzyme contained a transmembrane domain (TMD) at the C-

terminus. A truncated recombinant version of ScKDSR was isolated from E. coli and 
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assayed using a NADPH-dependent spectrophotometric assay. The C18 DHS 

products derived from the C18 KDS substrate were detected using a MS method. 

Interestingly, we also found that the use of detergent affects the catalytic activity of 

ScKDSR. A recently discovered genetic dysfunction in human KDSR causes a 

Mendelian disorder termed a “recessive progressive symmetric erythrokeratoderma”. 

The exact details of how these KDSR mutants lead to a KDS to DHS imbalance and 

cause a skin disorder. The human and yeast KDSR homologs show high sequence 

homology so to explore this further several mutant mimics of disease-causing 

mutations were created and their biochemistry studied (ScKDSR G176S, Y180F and 

G263E). Certain mutants changed the characteristics of ScKDSR expression, 

solubility (Y180F and G176S mutants), protein folding and enzyme activity (G263E 

mutant). Moreover, we built a homology model of ScKDSR based on multiple 

templates of the SDR superfamily as crystal trails were not successful. Three possible 

NADPH docking positions were explored and provided more information about the 

relationship between the essential residues for KDS and NADPH binding in ScKDSR.  

Further research into ScKDSR would aim to acquire a high resolution crystal 

structure of the enzyme, coupled with a detailed study of the catalytic mechanism by 

docking the substrates KDS and NADPH into the structural models. Future work is 

also aimed at finally identifying a bacterial KDSR homologue and studying both its 

biochemical properties and its role in bacterial SL biosynthesis.  

To that end a new collaboration has been initiated with groups of Dr. Eric Klein 

(Rutgers University) and Prof. Ziqiang Guan (Duke University) using the fresh-water, 

Gram-negative microbe Caulobacter crescentus. It was recently discovered a novel 

bacterial GSL specie present under the phosphate starvation condition and proposed 

several enzymes involved into ceramide synthesis of C. crescentus [309]. Olea-Ozuna 

et al. suggested five structural genes of C. crescentus for ceramide synthesis and 

sensitivity towards the antibiotic polymyxin B [310]. Based on those biological and 

bioinformatic analysis, we are able to predict more key enzymes, such as SPT, KDSR, 

SK and CerS in the genome sequence of C. crescentus as shown in Figure 5.1. 

 

 

 

Figure 5.1 The genomic context of genes related to SL biosynthesis in C. crescentus. 

(inspired from Stankeviciute et al. and Olea-Ozuna et al. [309, 310]). 
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Cloning, expression and characterization of predicted enzymes with this operon 

C. crescentus and exploring their homologues in other species would lead to a big 

progress to identify and understand the unique bacterial SLs biosynthesis pathway. 

At the end of this work it is now possible to propose a working SL biosynthetic 

pathway that explains how iso-Me SLs are formed in those human bacteria as shown 

in Figure 5.2 [45, 100, 311]. The studied enzymes (gene PG1290, BF2461 and PG1780) 

in this thesis indicated the transformation of the iso-Me group from BCAAs through 

SLs pathways and metabolism. 

 

 

Figure 5.2 A current proposed pathway for the biosynthesis of iso-branched SLs in 

microbial systems. The studied genes are coloured in pink, and putative genes are coloured in brown. 

(inspired by Wieland Brown et al., Hannich et al. and Harrison et al. [45, 100, 311]). 
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In this figure, we included those potential genes from C. crescentus and P. 

gingivalis (Figure 5.1; CC1212, CC1218, CC1220, CC1222, PG1184, PG1333, and 

PG1348) predicted by our collaborators Dr. Eric Klein (Rutgers University) and Prof. 

Mary Ellen Davey (University of Florida). The enzymes encoded by these genes are 

currently being characterized and are not discussed in this thesis. However, it worth 

noting that the predicted CC1214 gene product has been expressed and purified from 

E. coli and been shown to display CerS activity. Of interest the enzyme appears to 

use KDS as a substrate, rather than DHS which is used by the higher order CerSs 

isolated to date. This suggests that the biosynthetic order in C. crescentus is different 

compared to the pathway in mammals, plants and yeast. Overall, this thesis provides 

a foundation to characterise the remaining ‘hidden’ enzymes in core biosynthetic 

pathway of microbial SLs related in transport and regulation. 
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Chapter 6 Materials and Methodology 

6.1 Materials & Regents 

All chemicals and reagents were purchased from Sigma-Aldrich, Fisher Scientific 

or Biorad except those stated. The BfSPT gene and ScKDSR gene were provided 

from previous group members and the PgSPT and PgIlvE genes were provided by Dr. 

Mary E. Davey (University of Florida, Gainesville). The pERSRCTEVC10HIS plasmid 

was provided by University of St. Andrews. 

6.1.1 Plasmid vector 

Table 6.1.1 The information of plasmid vector 

Plasmid Bacterial 

Resistance 

Application 

pGEM Ampicillin Provides stock of DNA for cloning into 

different expression vectors 

pET-28a Kanamycin Expression of a N- or C-terminal His-

tagged protein 

pETHISTEV  Kanamycin Expression  of a N-terminal His6-tagged 

protein 

pEBSRCTEVC10HIS Ampicillin Expression of a C-terminal His10-tagged 

protein 

6.1.2 Antibiotic solution 

All antibiotics stock solutions were dissolved in distilled water and filtered through 

sterile filter (0.2 mm), before being stored at -20°C for further use. 

Table 6.1.2 The making protocol of antibiotic stock solutions 

Antibiotics Making Protocol 

Kanamycin A 30 mg/ml stock solution was made, and the relative volume 

added into media to give a final concentration of 30 g/ml 

Ampicillin A 100 mg/ml stock solution was made, and the relative volume 

added into media to give a final concentration of 100 g/ml 

Chloramphenicol A 10 mg/ml stock solution was made in ethanol and the relative 

volume added into media to give a final concentration of 10 

g/ml 
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6.1.3 Competent cell used 

Table 6.1.3 The cell lines, genotype, application of bacterial strains 

Species Cell lines Genotype Application Volume

E.coli DH5αTM 

(Invitrogen) 

F-
Φ80 lacZΔM15 Δ(lac2YA-

argF) U169 recA1 endA1 

hsdR17(rk
- mk

+) phoA 

supE44λ- thi-1 gyrA96 

relA1 

Transformation, 

plasmid storage 

25 l 

E.coli BL21 (DE3) 

(New 

England 

BioLabsinc) 

fhuA2 [lon] ompT gal [λ 

sBamHIo ∆EcoRI-B 

int::(lacI::PlacUV5::T7 

gene1) i21 ∆nin5] [dcm] 

∆hsdS 

Transformation, 

protein 

expression, 

 

10 l 

E.coli BL21-Gold 

(DE3) 

(Agilent) 

E. coli B F– ompT hsdS(rB 

– mB – ) dcm+ Tetr gal 

endA Hte 

Protein 

expression 

25 l 

E.coli C2987 

(New 

England 

BioLabsinc) 

fhuA2 Δ(argF-lacZ)U169 

phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 recA1 

relA1 endA1 thi-1 hsdR17 

High efficiency 

transformation, 

plasmid storage 

10 l 

E.coli C41 (DE3) 

(Agilent) 

F– ompT gal dcm 

hsdSB(rB- mB-)(DE3) 

Protein 

expression  

25 l 

E.coli C43 (DE3) 

(Agilent) 

F– ompT gal dcm hsdSB(rB
- 

mB
-)(DE3) 

Protein 

expression, 

25 l 

E.coli Rosetta 

(DE3) 

(Novagen) 

 F- ompT hsdSB(rB
- mB

-) gal 

dcm (DE3) pRARE (CamR)

Protein 

expression 

20 l 

E.coli Rosetta-

gami 2 

(DE3) 

(Novagen) 

Δ(ara-leu)7697 ΔlacX74 

ΔphoA PvuII phoR 

araD139 ahpC galE galK 

rpsL F′[lac+ lacIq pro] 

gor522::Tn10 trxB pRARE2 

(CamR, StrR, TetR) 

Protein 

expression 

20 l 
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6.1.4 Growth media & agar 

All growth media and agars were dissolved in distilled water and autoclaved. The 

media and agar, was stored at 4°C until used. 

Table 6.1.4 The composition of growth media and agars 

 Ingredients 

LB Tryptone: 10 g/L; yeast extract: 5 g/L; sodium chloride (NaCl): 10 

g/L. 

SOC Broth Tryptone: 20 g/L; yeast extract: 5 g/L; NaCl: 10 mM; potassium 

chloride (KCl): 2.5 mM; magnesium chloride (MgCl2): 10 mM; 

magnesium sulphate (MgSO4):10 mM; glucose: 2% w/v. 

LB Agar Tryptone: 10 g/L; yeast extract: 5 g/L; NaCl: 10 g/L; Agar (15 g/L) 

2xYT Tryptone: 16 g/L; yeast extract: 10 g/L; sodium chloride (NaCl): 5 g/L

LB + 

sorbitol 

LB media + 5 mM sorbitol 
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6.1.5 PCR primers 

Name 5’-3’ Primer Sequence 

PgSPT C’HisTev Forward AACCCCATGGGCGGAAAATTGTTA 

PgSPT C’HisTev Reverse AATTCTCGAGCAGGACACCGTTCTG 

BfSPT V353R Forward AATCCAGTTCGGCCTCCCGCATGTTCTCCGA 

BfSPT V353R Reverse GCGGGAGGCCGAACTGGATTTACAAACA 

KDSR G176S Forward GTGAGCTATTCCCAGTATGCGCCTGCAAAAG 

KDSR G176S Reverse AATAGCTCACAAATGGGTAAAGCGCGGTGG 

KDSR Y180F Forward GCTATTCCCAGTTTGCGCAAAAGCTGC 

KDSR Y180F Reverse GCAGCTTTTGCGCAAACTGGGAATAGC 

KDSR G263E Forward TGTCGAATGGATGATAATGGGGATGGA 

KDSR G263E Reverse ATCCATTCGACAAAATCTGTAAAAACGTCTTCAT 

PgSPT V358C Forward CGGCGTGCGCTCCGTCCGACACCCTTA 

PgSPT V358C Reverse GGACGGAGCGCACGCCGGAGAGACCACCG 

PgSPT V358A Forward CGGCGGCAGCTCCGTCCGACACCCTTAT 

PgSPT V358A Reverse ACGGAGCTGCCGCCGGAGAGACCACCG 

PgSPT A359S Forward GCGGTATCTCCGTCCGACACCCTTATTCGC 

PgSPT A359S Reverse GGACGGAGATACCGCCGGAGAGACCACCGG 

PgSPT DM Forward GTGCTCTCCGTCCGACACCCTTATTCGCTTTT 

PgSPT DM Reverse GACGGAGAGCACGCCGGAGAGACCAC 

PgIlvE pGEM-T Easy 

Forward 

GGCCCATATGGAAAATATCGATTGGTCATC 

PgIlvE pGEM-T Easy 

Reverse 

AACCGGATCCTTAGTCGAGGATTGTCAC 

PgIlvE Y188A Forward TAACGCTGCAGCCGGTATGATCCCCAC 

PgIlvE Y188A Reverse CTGCAGCGTTACCGCCCACTTTGATCGTA 

PgIlvE F56A Forward AGCAGCTGAAGGGATGAAGGCTTTCCGT 

PgIlvE F56A Reverse TTCAGCTGCTTCCTGTCCGTAGTGGAGAC 
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6.1.6 Experimental buffers 

Each buffer was made by following the components listed below and filtered 

before being used and stored at 4°C. The PLP was added prior to nickel affinity 

chromatography and size column chromatography. 

Table 6.1.5 The composition of experimental buffers 

Buffers Ingredients 

20mM 

KPhos 

pH 7.5  

Monobasic potassium phosphate (KH2PO4): 0.00396 moles/L; Dibasic 

potassium phosphate (K2HPO4): 0.01604 moles/L 

Buffer A 20 mM KPhos; 150 mM NaCl; 25 M PLP; 10 mM Imidazole; pH 7.5 

Buffer B 20 mM KPhos; 150 mM NaCl; 25 M PLP; 300 mM Imidazole; pH 7.5

Buffer C 20 mM KPhos; 150 mM NaCl; 25 M PLP; 10% w/v Glycerol; pH 7.5

Buffer D 20 mM KPhos; 150 mM NaCl; 25 M PLP; pH 7.5 

Buffer E 50 mM HEPES; 250 mM NaCl; 25 M PLP; 30 mM Imidazole; pH 7 

Buffer F 50 mM HEPES; 250 mM NaCl; 25 M PLP; 300 mM Imidazole; pH 7

Buffer G 20 mM KPhos; 150 mM NaCl; pH 7.5 

Buffer H 50 mM HEPES; 250 mM NaCl; 25 M PLP; 10% w/v Glycerol; pH 7 

Buffer I 48 mM Tris; 39 mM Glycine; 20% Methanol; 0.2% SDS 

Buffer J 1L Phosphate buffered saline (PBS, 0.05 M Phosphate Buffer, 13.5 

mM KCl, 0.685 M NaCl, pH 7.4) ; 0.1% Tween 20 

Buffer K 50% v/v H2O; 40% v/v methanol; 10% v/v acetic acid; 0.25% w/v 

Coomassie brilliant blue R250 

Buffer L 50% v/v H2O; 40% v/v methanol; 10% v/v acetic acid  

Buffer M 20 mM KPhos; 150 mM NaCl; 30 mM Imidazole; pH 7 

Buffer N 20 mM KPhos; 150 mM NaCl; 300 mM Imidazole; pH 7 

Buffer O 50 mM HEPES; 150 mM NaCl; pH 6.5 (KDS assay) 

Buffer P 100 mM HEPES; 250 mM NaCl; pH 7 (SPT assay) 

Buffer Q 20 mM KPhos; 500 mM NaCl; 50 M PLP; 30 mM Imidazole; pH 7.5 

Buffer R 20 mM KPhos; 500 mM NaCl; 50 M PLP; 500 mM Imidazole; pH 7.5

Buffer S 100 mM CHES; 150 mM NaCl; 50 M PLP; 30 mM Imidazole; pH 8.6

Buffer T 100 mM CHES; 150 mM NaCl; 50 M PLP; 500 mM Imidazole; pH 8.6

Buffer U 20 mM KPhos; 500 mM NaCl; 50 M PLP; pH 7.5 

Buffer V 100 mM CHES; 150 mM NaCl; 50 M PLP; pH 8.6 

Buffer W 100 mM Tris; 150 mM NaCl; 50 M PLP; pH 8.5 (GDH assay) 

Buffer X 100 mM Kphos; 50 M PLP; pH 8 (XTT assay) 
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Buffer Y 100 mM Tris; 150 mM NaCl; 50 M PLP; pH 8 (KDH/ODH assay) 

Buffer Z 100 mM CHES, 150 mM NaCl; 50 M PLP; pH 11.0 (LeuDH assay) 

Buffer 0 50 mM Tris-HCl; 25 M PLP; pH 7.5 

Buffer 1 50 mM Tris-HCl; 1 M NaCl; 25 μM PLP; pH 7.5 
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6.2 Methodology 

6.2.1 Transformation of Competent E.coli 

The required aliquot of competent cells was removed from -80°C and 

defrosted. Once defrosted, plasmid DNA (~200 g) was added to the aliquot and 

placed on ice for 30 minutes. Then, the mixture was heat-shocked for 40 seconds at 

42°C before cooling on ice. SOC media (200 l) was immediately added and the 

mixture was placed on the shaker (200 rpm) at 37°C for at least an hour. After that, 

the cells were plated on the LB antibiotics plate and left in the incubator for overnight 

at 37°C. 

6.2.2 Polymerase chain reaction (PCR) and site-directed mutagenesis 

5X Phusion HF buffer (10 l), DNA template (1 μl, 100 ng/l), forward primer 

(2.5 l, 10 μM), reverse primer (2.5 l, 10 μM), dNTPs (1.0 l, 10 mM), Phusion DNA 

Polymerase (1 l) were combined with together. DMSO (1.5 l) was added to one 

reaction and diluted to 50 l by dH2O, and the other reaction was directly diluted to 50 

l by dH2O. 

Table 6.2.1 The details of PCR condition 

Step Temperature/°C Time Number of Cycles

Initial Denaturation 98 30 seconds 1 

Denaturation 98 10 seconds  

35 Annealing 45-72 30 seconds 

Extension 72 30 seconds/kb 

Final Extension 72 10 minutes 1 

 

6.2.3 Digestion by restriction endonuclease 

Template DNA (50 l), restriction CutSmart buffer (6 l, 10x from New England 

Biolabs), and restriction enzyme (2 l) were combined together for a typical restriction 

digestion. The mixture was incubated at 37°C for at least 2 hours before being 

separated by gel electrophoresis. 

6.2.4 Ligation to Expression Vector 

Insert DNA (2 l), restricted vector (6 l), T4 DNA ligase reaction buffer (1 l, 

10x from New England Biolabs), T4 DNA ligase (1 l, New England Biolabs) were 

mixed together and placed at room temperature for 15 minutes or 4°C overnight. The 

final product was transformed into C2987 host cells. 
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6.2.5 DNA purification using ThermoFisher Scientific GeneJET plasmid miniprep kit 

An overnight inoculation liquid culture (10 mL) with desired colonies was 

centrifuged for 10 minutes at 3500 rpm to obtain a cell pellet. The pellet was 

resuspended with 250 l resuspension solution containing RNase A and transferred 

to an Eppendorf tube. A 250 l lysis solution was then added and mixed thoroughly 

by inverting the tube 4-6 times. The mixture was neutralized by adding 350 l 

neutralization solution and inverted 4-6 times. After centrifuging for 5 minutes at 13000 

rpm, the supernatant was transferred into the supplied GeneJET spin column by 

pipetting and centrifuged for 1 minute 13000 rpm. The flow-through was discarded 

and 500 l wash solution with ethanol was added into the GeneJET spin column. The 

column was centrifuged for 1 minute at 13000 rpm, and the flow-through was 

discarded. After repeating the wash procedure, the spin column was centrifuged for 

an additional one minute at 13000 rpm to prevent residual ethanol in plasmid preps. 

The GeneJET spin column was transferred into a fresh 1.5 mL Eppendorf tube and 

50 l elution buffer was added to the centre of GeneJET spin column to elute the 

plasmid DNA. The column was incubated at room temperature for 2 minutes and then 

centrifuge for 2 minutes at 13000 rpm. Finally, the column was discarded, and purified 

plasmid DNA was stored at -20°C for further investigation. 

6.2.6 DNA extraction from agarose gel using ThermoFisher Scientific GeneJET gel 

extraction kit 

The DNA in agarose gel was observed under the Ultraviolet light (254 nm) and 

the required fragment was excised using a clean scalpel blade and transferred into a 

pre-weighed 1.5 mL Eppendorf tube. The binding buffer (1:1 volume: gel weight) was 

added to the gel slice and the mixture was incubated at 50-60°C for at least 10 

minutes until the gel was completely dissolved. The gel solution was transferred to 

the GeneJET purification column and centrifuged for 1 minute at 13000 rpm. Another 

100 μl of binding buffer was added to the GeneJET purification column, and the 

column was centrifuged for 1 minute at 13000 rpm. Then, the flow-through liquid was 

discarded and 700 l of wash buffer was added to the column to centrifuge for 1 

minute at 13000 rpm. After removing the residual wash buffer by centrifuging for an 

additional 1 minute at 13000 rpm, the GeneJET purification column was transferred 

into a clean 1.5 mL microcentrifuge tube and the elution buffer (50 μl) was added to 

the centre of the purification column membrane. The DNA was obtained by 

centrifuging the column for 1 minute at 13000 rpm and stored at -20°C until required. 
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6.2.7 PCR product cleaning by using ThermoFisher Scientific GeneJET gel extraction 

and DNA cleanup kit 

The PCR products (50 l) were digested by the relevant restriction enzyme for 

2 hours and adjusted to 200 l with water before using the kit. 100 l of binding buffer 

and 300 l of ethanol were added and mixed by pipetting. The mixture was transferred 

to the DNA purification column and was centrifuged for 1 minute at 13000 rpm. The 

supernatant was discarded and 200 l of prewash buffer was added before 

centrifuging for 1 minute at 13000 rpm. 700 l of wash buffer was added and the 

column was centrifuged again for 1 minute at 13000 rpm. After repeating the wash 

buffer step, the supernatant was discarded and the column was centrifuged for an 

additional 1 minute to get rid of residual wash buffer. Finally, transferring the column 

into a clean 1.5 mL microcentrifuge tube, 10 l of elution buffer was added into centre 

of column membrane; the column was centrifuged for 1 minute at 13000 rpm and the 

purified DNA was stored at -20°C until required. 

6.2.8 Analytical digestion by restriction endonuclease 

7 l of required template DNA, 1 l of restriction CutSmart buffer and the 

restriction enzyme were mixed to make it a total 10 l solution. The mixture was 

incubated at 37°C for 2 hours before being analysed by gel electrophoresis. 

6.2.9 Gel electrophoresis 

Agarose (1% w/v) was added to TAE buffer and microwaved until all the 

agarose was in solution, and the GelRedTM (3 l, Biotium) was added after the gel had 

cooled to 50°C. The solution was mixed and poured into the gel casting and allowed 

to solidify for at least 30 minutes at room temperature. For each test sample, 2 l DNA 

loading dye (5 x buffer, Biolab) and 10 l were combined. After the gel was immersed 

into TAE buffer (89 mM Tris pH 7.6, 89 mM boric acid and 2 mM EDTA), samples were 

loaded into the walls and 5 l of DNA ladder as a maker was also loaded into the gel. 

Good separation was achieved by running the gel at a constant voltage (100 V) and 

the bands were observed under the UV light condition. 

6.2.10 Bacterial glycerol stock solution for long-term storage  

A bacterial liquid culture was inoculated for at least 8 hours and 500 l of sterile 

50% glycerol and 500 l culture were combined into a 2 mL crew top tube. The 

glycerol stock tube was frozen by liquid nitrogen and kept at -80°C for long-term 

storage.  
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6.2.11 Large scale over-expression in E.coli 

One colony was inoculated in LB broth (2 x 200 mL) containing kanamycin (30 

g/mL) and was grown overnight at 37°C with shaking (250 rpm). The inoculant was 

divided into LB broth (8 x 500 mL) with kanamycin (30 g/mL), starting with OD600 of 

0.1. After the OD600 reached 0.6~0.8, 0.1 mM of isopropyl β-D-1-

thiogalactopyranoside (IPTG) was added into growth media and the protein was left 

to express for 5 hours at 30°C. Cells were centrifuged at 7000 rpm for 10 minutes at 

4°C and were resuspend in phosphate-buffered saline (PBS) buffer. Cells were 

centrifuge at 3500 rpm at 4°C for 10 minutes before being stored at -20°C until further 

investigation. 

6.2.12 Cell lysis by sonication 

This method was carried out on ice. The cell pellet was defrosted for 10 

minutes and suspended in wash buffer. After using a Soniprep 150 for sonicating the 

cells for around 10 cycles (30 seconds on, 30 seconds off) while the sample was kept 

on ice to diminish the generated heat. Cell debris was removed by centrifugation 

(14000 rpm, 30 minutes, 4°C), and the supernatant was retained for enzyme 

purification. 

6.2.13 Cell lysis by lysozyme for expression test 

A stock of lysozyme (30 g/mL) was prepared in PBS solution. A 10 mL 

overnight small culture was centrifuged at 3500 rpm for 10 minutes at 4°C. The 

supernatant was discarded and the cell pellet was suspended into 1 mL Eppendorf 

tube. After centrifuging in a microcentrifuge tube (13000 rpm, 2 minutes) and 

discarding the supernatant, 50 l of lysozyme was added into pellet and the cell was 

suspended by pipetting or vortexing. After being left for 45 minutes, the cell was 

centrifuged again at 13000 rpm for 2 minutes. The supernant (soluble protein) 

combined with 50 l SDS 2xSample buffer and the pellet (insoluble protein) mixed 

with 50 l H2O and 50 l SDS 2xSample buffer were analysed by SDS-PAGE. 

6.2.14 Ni-NTA agarose affinity chromatography 

The HisTrapTM FF column (1 mL, GE Healthcare Life Science) was attached 

to an ÄKTA purifier (GE Healthcare). Then, the column was washed by water and 

wash buffer individually for 10 minutes (0.3 MPa, 1.0 mL/min). The injection loop was 

washed by water and wash buffer separately and the purified protein was injected into 

the loop. After the sample was loaded onto the column, the column was washed by 

wash buffer for at least 20 minutes to get rid of unbound protein. Elution buffer was 

pumped onto the column using a gradient increase for 40 minutes, and during this 

time, the fractions (3 mL each) were collected in glass tube. The tubes with peaks 
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shown in the chromatogram were collected and analysed by SDS-PAGE. The 

HisTrapTM FF column was washed by wash buffer, water and 20% ethanol for 

storage/re-use. 

6.2.15 Anion exchange chromatography 

The HiTrap Q HP column (1 mL, GE Healthcare Life Science) was attached to 

an ÄKTA purifier (GE Healthcare), the column was washed with water and wash buffer 

individually for 10 minutes (0.3 MPa, 1.0 mL/min). The injection loop was washed with 

water and wash buffer separately and then the purified protein was injected into the 

loop. After the sample was loaded onto the column, it was washed with wash buffer 

for at least 20 minutes to get rid of unbound protein. Elution buffer was pumped onto 

the column with a gradient increase for 40 minutes, and during this time, the fractions 

(3 mL each) were collected in glass tube. The tubes with peaks shown in the 

chromatogram were collected and analysed by SDS-PAGE. The HiTrap Q HP column 

was washed by wash buffer, water and 20% ethanol for storage/re-use. 

6.2.16 Size exclusion chromatography 

The HiLoadTM 16/600 SuperdexTM 200 pg column (120 mL) or HiPrep™ 16/60 

Sephacryl™ S-300 column was attached to an ÄKTA purifier (GE Healthcare), the 

column was equilibrated with water and buffer for 140 minutes (0.3 MPa, 1.0 mL/min). 

The injection loop was washed with water and buffer separately and the concentrated 

protein (up to 1 mL) was injected into the loop. After loading the protein onto the 

column, the protein was eluted with buffer for 140 minutes which was collected in 3 

mL fractions. The fractions with desired peaks shown in the chromatogram were 

collected and analysed by SDS-PAGE. The protein was concentrated using a spin-

column and the column was equilibrated with water for maintenance. 

6.2.17 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

A typical gel (6 mL) was made of a 4 mL 15% running gel, which contained 

1.425 mL H2O, 1.5 mL 40% bis-acrylamide, 1 mL 1.5 M Tris pH 8.8, 37.5 l 10% w/v 

SDS, 75 l ammonium persulfate (APS) and 5 l tetramethylethylenediamine 

(TEMED), and 2 mL 6% stacking gel, which consisted of 0.725 mL H2O, 187.5 l 40% 

bis-acrylamide, 312.5 l 0.5 M Tris pH 6.8, 12.5 l 10% w/v SDS, 25 l APS and 1.25 

l TEMED. All protein samples were denatured by the addition of SDS 2xSample 

buffer (2.5 mL 0.5 M Tris pH 8.8, 2 mL Glycerol, 4 mL 10% w/v SDS, 0.5 mL 0.1% w/v 

bromophenol blue and 1 mL β-mercaptoethanol) and boiled at 90-100°C for 10 

minutes. The samples were centrifuged at 11000 rpm for 1 minute before being loaded 

onto the gel. After low molecular weight maker (5 l, LMW-SDS Marker Kit, GE 

Healthcare) was also loaded, the gel was run for 60 minutes at a constant voltage of 
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200 volts in the TGS buffer (BIO-RAD, 25 mM Tris, 192 mM Glycerol, 0.1% w/v SDS, 

pH 8.3). The protein bands were observed by staining the gel with Coomassie Blue 

stain buffer K for overnight and detaining with buffer L until excess blue was removed. 

6.2.18 Western blotting for His-tag protein 

Protein samples were separated by SDS-PAGE and the filter papers and 

membrane were immersed in Buffer I. After the SDS-PAGE finished in, the order of a 

fibre pad, a filter paper, a gel, a membrane, a filter paper and a fibre pad were placed 

on the cassette. The cassette module was run in buffer I with a constant voltage of 

100V for an hour. The membrane was immersed into a skimmed 0.1% fat milk solution 

to reduce the background proteins for an hour. After that, the membrane was washed 

with buffer J for 5 minutes each and 30 minutes in total. The membrane was 

submerged in 10 μl Monoclonal Anti-polyHistidine antibody for an hour and then was 

washed with buffer J for 5 minutes each and 30 minutes in total. The protein peaks 

were visualized by using ECLTM Prime Western Blotting Detection Reagent Kit (GE 

Healthcare) under the laser scanner chemiluminescent mode. 

6.2.19 Quick startTM bradford protein assay 

50 μl of water was added to a Bradford solution as a blank and a series of 

standards (0.25, 0.5, 1.0 and 1.4 mg/mL) were made. The calibration curve was 

plotted by measuring the absorbance at 595 nm using a UV spectrometer. A diluted 

protein sample was then loaded into the Bradford solution and the concentration of 

the protein was calculated from the calibration curve and protein molecular weight.  

6.2.20 Desalting and buffer exchange of proteins by using PD-10 desalting column 

The top cap was removed and the column storage solution was poured off 

from the PD-10 desalting column (GE Healthcare). The sealed end was then cut at 

the notch. 25 mL of equilibration buffer was loaded onto the column until the packed 

bed was completely covered. 2.5 mL of sample was loaded onto column. After the 

sample had been loaded on the packed bed, a collection tube was placed under the 

column and 3.5 mL of equilibration buffer was used to elute the protein. The protein 

was stored in the -80°C for further investigation. 

6.2.21 Spectroscopic measurements  

All UV-vis spectra was obtained on a Cary 50 UV-Vis spectrophotometer and 

analysed using Cary WinUV software (Varian). The PLP enzymes were dialysed 

through a PD-10 desalting column with buffer G before any spectroscopic analysis. 

The machine was blanked with buffer G and the analysis was taken at room 

temperature.  

  



 

140 | P a g e  
 

6.2.22 Determination of dissociation constants (𝐾ௗ) for substrates 

A typical binding assay consisted of a certain enzyme in buffer G. Various 

concentrations of amino acids were added. The reaction mixture was allowed to 

equilibrate for 20 - 25 minutes at room temperature. Assays were analysed in 1 cm 

pathlength cuvettes. Baseline correction was adjusted before acquiring spectra. The 

acquired spectra was normalized by the maximum of the 280nm peak to diminish the 

error from dilution of the sample with addition of the substrate solution. The 𝐾ௗ value 

was calculated from different plots of ∆𝐴ସଶହ versus amino acids concentrations by 

fitting to a hyperbolic saturation curve (Equation 6-1) on Omega 2019. 

∆𝐴௢௕௦ ൌ
∆𝐴ெ஺௑ ൈ ሾ𝐴𝑚𝑖𝑛𝑜 𝐴𝑐𝑖𝑑ሿ

𝐾ௗ ൅ ሾ𝐴𝑚𝑖𝑛𝑜 𝐴𝑐𝑖𝑑ሿ
 

Equation 6.1 𝐾ௗ calculation formula 

(∆𝐴௢௕௦ represents the observed change in absorbance at 425 nm, ∆𝐴ெ஺௑ is the maximal absorbance 

change, [𝐴𝑚𝑖𝑛𝑜 𝐴𝑐𝑖𝑑] is amino acid concentration, and the 𝐾ௗ is the dissociation constant) 

6.2.23 Determination of kinetic constants (𝐾ெ ) for SPT by using 5, 5’-dithiobis-2-

nitrobenzoic acid (DTNB) assay 

The SPT activity was determined by monitoring the release of CoASH from 

the reaction of C16-CoA with L-Ser as suggested by Raman’s paper [159]. The principle 

(Figure 5.2.1) of the assay is that the thiol group on the CoA will react with 5,5’-

dithiobis-2-nitrobenzoic acid (DTNB, Ellman’s reagent) in order to break the disulphide 

bond and generate the coloured TNB- anion measured at 412 nm (λmax = 412nm; ε = 

14,150/M-1cm-1). 

 

Figure 6.2.1 The reaction of DTNB with CoASH 

The kinetic assay was carried out in a 96 wells microtiter plate contained 0.4 

mM DTNB (100 l), SPT enzyme (20 l), deionized water (40 l), L-Ser (20 l), 

palmitoyl-CoA (20 l). When measuring various concentration of L-Ser (0.1-100 mM), 

the concentration of palmitoyl-CoA was maintained at 250 M. When measuring 

different concentration of palmitoyl-CoA (1-1000 M), the concentration of L-Ser was 

maintained at 20 mM. The absorbance was monitored by plate reader at 412 nm in 1 

min intervals for 60 minutes in total at 30 °C. The kinetic constant was calculated from 

the Michaelis-Menten equation by plotting rate versus concentration using Origin 

2019. 
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𝑣 ൌ
𝑉ெ஺௑ ൈ ሾ𝑆ሿ
𝐾ெ ൅ ሾ𝑆ሿ

 

Equation 6.2 Michaelis-Menten equation  

(𝑣 is relative reaction rate, [S] is substrate concentration, and the 𝐾ெ is the substrate concentration at 

which the reaction rate is half of 𝑉ெ஺௑, 𝑉ெ஺௑ represents the maximum rate achieved by the system) 

6.2.24 Determination of kinetic constants (𝐾ெ ) for IlvE with the coupled IlvE/GDH 

assay 

The IlvE activity of the ‘forward’ direction was determined by monitoring the 

production of NADH from the reduction of NAD+ generating an increase in absorbance 

at 340 nm (ε = 6,220 M-1cm-1) (Figure 3.3.2). The enzyme kinetic assay was carried 

out in a 96 well microtiter plate containing GDH (20 l), ilvE enzyme (20 l), BCAAs 

(20 l), -KG (20 l), NAD+ (20 l) and buffer W (100 l). The absorbance was 

monitored by the plate reader at 340 nm at 0.5 min intervals for 60 minutes in total at 

30 °C. The kinetic constant was calculated from the Michaelis-Menten equation by 

plotting rate versus concentration using Origin 2019. 

6.2.25 Determination of kinetic constants (𝐾ெ) for IlvE with the XTT assay [260] 

The IlvE activity of the ‘forward’ direction was determined by monitoring the 

production of XTT formazan from XTT Tetrazolium generating an increase in 

absorbance at 470 nm (Figure 3.3.4). A calibration curve was made with NADH (0-

100 M) against absorbance470nm in buffer X. The enzyme kinetic assay was carried 

out in a 96 well microtiter plate contained GDH (20 l), ilvE enzyme (20 l), BCAAs 

(20 l), -KG (20 l), NAD+ (20 l), XTT (20 l), PMS (20 l) and buffer W (60 l). The 

absorbance was monitored by a plate reader at 470 nm at the end point of the assay 

after an hour at 30 °C. The kinetic constant was calculated from the Michaelis-Menten 

equation by plotting rate versus concentration using Origin 2019. 

6.2.26 Determination of kinetic constants (𝐾ெ) for IlvE with coupled IlvE/KDH(ODH) 

assay 

The IlvE activity of the ‘reverse’ direction was also determined by monitoring 

the production of NADH from the reduction of NAD+ generating an increase in 

absorbance at 340 nm (ε = 6,220 M-1cm-1) (Figure 3.3.6). The enzyme kinetic assay 

was carried out in a 96 wells microtiter plate containing KDH/ODH (20 l), ilvE enzyme 

(20 l), BCAAs (20 l), -KG (20 l), CoASH (20 l), NAD+ (20 l) and buffer W (80 

l). The absorbance was monitored by the plate reader at 340 nm at 0.5 min intervals 

for 60 minutes in total at 30 °C. The kinetic constant was calculated from the 

Michaelis-Menten equation by plotting rate versus concentration using Origin 2019. 
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6.2.27 Determination of kinetic constants (𝐾ெ) for IlvE with coupled IlvE/LeuDH assay 

The IlvE activity of the ‘reverse’ direction was also determined by monitoring 

the production of NADH from the reduction of NAD+ generating an increase in 

absorbance at 340 nm (ε = 6,220 M-1cm-1) (Figure 3.3.11). The enzyme kinetic assay 

was carried out in a 96 well microtiter plate containing LeuDH (20 l), ilvE enzyme (20 

l), BCAAs (20 l), a-KG (20 l), NAD+ (20 l) and buffer W (100 l). The absorbance 

was monitored by the plate reader at 340 nm at 0.5 min intervals for 60 minutes in 

total at 30 °C. The kinetic constant was calculated from the Michaelis-Menten 

equation by plotting rate versus concentration using Origin 2019. 

6.2.28 Determination of kinetic constants (𝐾ெ) for KDSR with NADPH assay 

The KDSR activity was determined by monitoring the reduction of NADPH 

from the reduction of NADP+ generating a decrease in absorbance at 340 nm (ε = 

6,220 M-1cm-1) (Figure 4.2.1). The enzyme kinetic assay was carried out in a 96 well 

microtiter plate containING KDSR enzyme (20 l), KDS (20 l) and buffer O (160 l) 

containing 250 μM NADPH. The KDS stock solution was made as 1 mM in 2:8 (v/v) 

ethanol/buffer O. The absorbance was monitored by the plate reader at 340 nm at 0.5 

min intervals for 60 minutes in total at 30 °C. The kinetic constant was calculated from 

the Michaelis-Menten equation by plotting rate versus concentration using Origin 

2019. 

6.2.29 Determination of inhibitor constants (𝐾௜). 

The enzyme was incubated with different concentrations of inhibitors for 20 

mins at room temperature. Then, the enzyme kinetic assay was carried out in a 96 

well microtiter plate. For SPT inhibition, the DTNB assay was carried out and for IlvE 

inhibition, the coupled IlvE/GDH assay was carried out. The absorbance was 

monitored by the plate reader at relative wavelengths in 0.5 min intervals for 60 

minutes in total at 30 °C. The inhibitor constants were calculated from equation 5.3 

for irreversible inhibition or Morrison tight-binding inhibition equation for reversible 

inhibition. 

𝐴 ൌ  𝐴଴𝑒ି௞೚್ೞ௧ (1) 

𝑘௢௕௦ ൌ
௞೔೙ೌ೎೟ሾூ௡௛௜௕௜௧௢௥ሿ

௄೔ାሾூ௡௛௜௕௜௧௢௥ሿ
 (2) 

Equation 6.3 Irreversible inhibition equation. 

(𝐴  is absorbance, 𝐴଴  is time-zero absorbance, 𝑡  is the time period, 𝑘௢௕௦  is observed constant, 𝑒  is 

numerical constant, the [inhibitor] is inhibitor concentration, 𝐾௜  is the inhibitor concentration, 𝑘௜௡௔௖௧ 

represents the rate of enzyme inactivation) 
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6.2.30 Liquid Chromatography-Mass Spectrometry (LC-MS) for Protein Identification 

The total protein concentration was determined by Bradford assay and diluted 

with relative buffer to a concentration of 5-10 M plus filtering with 0.45 m filter for 

LC-MS. LC-MS was analysed on the Waters Synapt G2-Si ion mobility instrument with 

the LC column Thermo Proswift RP 4H coupled to an electrospray ionisation (ESI) 

source. The LC gradient started at 5% acetonitrile and 95% water with 0.1% formic 

acid and ran to 95% acetonitrile over 15 mins. 

6.2.31 Confirming Protein Sequence by Using Mass Spectrometric Analysis of Tryptic 

Peptides 

The total protein concentration was determined by the Bradford assay and 

diluted with relative buffer to 50 g. 50 l of 8 M urea was added into the sample and 

incubated at room temperature for 2 hours. 5 mM dithiothreitol (DTT) was added and 

incubated for 30 mins at room temperature. Then 15 mM iodacetamide was added 

and incubated at room temperature in the dark for 30 mins. Next 15 mM DTT was 

added and incubated at room temperature for 30 mins. The urea in the samples was 

diluted down to less than 1 M and 450 l of 50 mM ammonium bicarbonate was added 

to the mixture. The trypsin was added to the sample in a ratio of 1:50 (Trypsin to 

protein w/w) and the sample was incubated overnight at 37°C. The next day, the 

sample was cleaned using C18 100 l ziptips, then washed in 0.2% formic acid and 

eluted in 60% acetonitrile (ACN) with 0.2% formic acid (FA). The resulting  peptide 

mixture was diluted and analysed by FT-ICR-MS with nanomate infusion in positive 

ion mode and the resulting data processed and calibrated using Bruker data analysis, 

MS fit and prosight lite. 

6.2.32 Measuring SLs using Matrix-Assisted Laser Desorption/Ionization-Time-of-

Flight-Mass Spectroscopy (MALDI-TOF-MS). 

The samples were obtained from the kinetic assay and desalted using OMIX C4 

pipette tips. Samples were eluted in 100% ACN containing 0.2% FA. 1 L of matrix 

seed (20 mg/mL apha-cyano-4-hydroxycinnamic acid (CHCA) in methanol/acetone 

(2:3)) was spotted onto a MTP 384 ground steel plate and left to air dry. The sample 

was then mixed with matrix (20 mg/mL CHCA in 50% ACN within 0.25% trifluoroacetic 

acid (TFA)) in a 1:1 ratio, and 1 L of this mixture was spotted on top of CHCA-acetone 

layer and left to air-dry. The sample was analysed in reflector mode using a calibrated 

Bruker UltrafleXtreme MALDI-TOF-MS. The analysis was carried out in positive ion 

mode. The laser power was adjusted to provide optimum signal. 500 laser shots were 

used per sample and each spectrum was a sum of over 5000 shots. Spectra were 

acquired over a range of 200-1500 m/z. The data acquisition software used was Flex 
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Control version 3.4. The data was analysed using Data Analysis version 4.4 software. 

6.2.33 Thermal Denaturation Assay (TDA) 

The fresh enzyme was prepared day before the assay and the concentration of 

the sample was calculated as 1000/𝑀𝑊௣௥௢௧௘௜௡ ௠௢௡௢௠௘௥  M. The concentration of the 

sypro orange (5000X stock in DMSO) sample was made as 10X in the protein 

purification buffer. The enzyme (5 l), the test buffer (20 l) and the sypro orange 

sample (25 l) were mixed in MicroAmpTM Fast Optical 96-Well Reaction Plate. The 

test plate was sealed with adhesive film and centrifuged for 5 minutes at 500 rpm. 

Then the plate was put into TOptical Thermocycler (Biometra) and the method was 

set up on the TOptical software. The assay was run under a temperature gradient of 

20°C - 90°C for an hour. Finally, the data was collected and analysed in TOptical 

software and Microsoft Excel 365. 

6.2.34 Robot screening of enzyme crystallography. 

Recombinant enzyme was purified and concentrated to 8~10 mg/mL before the 

experiment. The robot screening experiment was carried out in 96 MRC plates 

(Swissci) with 0.2 L of enzyme and 0.2 L of different precipitant solutions by the 

nano-litre pipetting robot (Art Robbins Gryphon). The precipitant solutions were from 

commercially available screens, such as PEG/Ion, JCSG+, Midas and Structure 

Screen 1+2 from Molecular Dimensions Limited and Hampton Industrial Limited. The 

enzyme was crystallised by hanging-drop vapour diffusion and the plates were left at 

18°C. After one week, the MRC plates were examined under the microscope to see 

whether enzyme crystals had formed. 

6.2.35 Enzyme crystallography optimization. 

Once the enzyme crystals were spotted out from robot screening, the 

optimization experiment was then set up in a 24 well crystallography plate with 1 mL 

crystallization solution with different conditions. The crystallization conditions were 

further optimized by changing the pH, concentration of precipitant, and concentration 

of salt. The enzyme with same concentration from robot screening. After that, the 

enzyme was sent to X-ray diffraction to obtain the electron density map for structural 

modelling. 
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Appendix 
Appendix 8.1 Calibration curve of the HiLoad 16/60 Superdex 200 prep grade 

column 

 

 

 

The MW of the protein is estimated as follows:  

MW=10 ௄ೌೡିଶ.଴ହହଽ

ି଴.ଵସ଴଻
  

Kav= 
௏೐ି௏೚

௏೟ି௏೚
 

Where:  

MW is measured in Da  

Ve = Elution volume    

Vo = Void volume 

Vt = Total bed volume   

Standards
Elution vol 

(Ve)

Vol 0 
(dextran 

blue) Vol t Ve/Vo Mr (kDa) Mr (Dalton) Ln (Dalton) Kav Lg (Dalton)
Ovalbumin 78.48 40.97 110 1.92 43 43000 10.67 0.54 4.63

Conalbumin 74.57 40.97 110 1.82 75 75000 11.23 0.49 4.88
Aldolase 67.22 40.97 110 1.64 158 158000 11.97 0.38 5.20
Ferritin 56.19 40.97 110 1.37 440 440000 12.99 0.22 5.64



 

165 | P a g e  
 

Appendix 8.2 Calibration curve of the HiPrep™ 16/60 Sephacryl™ S-300 column 

 

 

The MW of the protein is estimated as follows:  

MW=10 ௄ೌೡିଵ.଼଻଺ଶ

ି଴.ଵଷଽସ
  

Kav= 
௏೐ି௏೚

௏೟ି௏೚
 

Where:  

MW is measured in Da  

Ve = Elution volume    

Vo = Void volume 

Vt = Total bed volume  

  

Standards
Elution vol 

(Ve)
Vol 0      

(dextran blue) Vol t Ve/Vo Mr (kDa) Mr (Dalton) Ln (Dalton) Kav Lg (Dalton)
Ovalbumin 69.48 36.9 120 1.883 43 43000 10.669 0.392 4.633

Conablumin 64.29 36.9 120 1.742 75 75000 11.225 0.330 4.875
Aldolase 51.11 36.9 120 1.385 158 158000 11.970 0.171 5.199
Ferritin 42.99 36.9 120 1.165 440 440000 12.995 0.073 5.643

Thyroglobulin 37.94 36.9 120 1.028 669 669000 13.414 0.012 5.825
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Appendix 8.3 The DNA and amino acid sequences of recombinant proteins 

>DNA sequence of KDSR 

       1 ATGGAGTTTA CGTTAGAAGA CCAAGTTGTG TTGATCACTG GTGGTTCACA  
      51 AGGTCTTGGA AAGGAATTCG CCAAAAAATA TTATAATGAG GCTGAAAACA  
     101 CAAAGATTAT TATCGTCAGT AGGTCAGAGG CTAGACTGCT GGACACATGC  
     151 AACGAAATTA GGATTGAAGC TCACCTGAGA AGGGAAACCA CTGACGAGGG  
     201 CCAAGTGCAA CATAAGTTGG CTGCGCCCTT GGACCTTGAG CAACGGTTAT  
     251 TTTACTACCC ATGCGACTTG TCCTGCTACG AATCCGTGGA ATGTTTGTTC  
     301 AATGCCCTGA GAGACTTGGA TTTACTCCCT ACACAAACGT TATGCTGTGC  
     351 AGGGGGGGCT GTTCCTAAGT TATTTCGTGG GCTAAGCGGA CATGAGTTGA  
     401 ACTTGGGTAT GGACATCAAC TATAAAACAA CTTTGAACGT GGCACATCAG  
     451 ATTGCCCTTG CAGAGCAAAC CAAGGAACAC CACCTCATCA TCTTTTCTAG  
     501 TGCCACCGCG CTTTACCCAT TTGTGGGCTA TTCCCAGTAT GCGCCTGCAA  
     551 AAGCTGCAAT CAAATCACTG GTAGCAATCT TAAGACAAGA ACTGACGAAC  
     601 TTCCGTATCA GTTGTGTTTA TCCTGGTAAT TTTGAAAGCG AAGGTTTCAC  
     651 TGTAGAGCAG CTAACGAAAC CCGAAATTAC AAAGTTGATC GAAGGCCCCT  
     701 CAGACGCTAT CCCATGCAAA CAAGCATGTG ATATCATTGC CAAGTCGCTG  
     751 GCCAGAGGTG ATGAAGACGT TTTTACAGAT TTTGTCGGAT GGATGATAAT  
     801 GGGGATGGAC CTTGGGCTCA CCGCAAAGAA AAGCCGCTTT GTTCCGAATC  
     851 TAGAACAAAA ACTCATCTCA GAAGAGGATC TGAATAGCGC CCTCGAGCAC  
     901 CACCACCACC ACCAC  
 
>Amino acid sequence of KDSR 

       1 MEFTLEDQVV LITGGSQGLG KEFAKKYYNE AENTKIIIVS RSEARLLDTC  
      51 NEIRIEAHLR RETTDEGQVQ HKLAAPLDLE QRLFYYPCDL SCYESVECLF  
     101 NALRDLDLLP TQTLCCAGGA VPKLFRGLSG HELNLGMDIN YKTTLNVAHQ  
     151 IALAEQTKEH HLIIFSSATA LYPFVGYSQY APAKAAIKSL VAILRQELTN  
     201 FRISCVYPGN FESEGFTVEQ LTKPEITKLI EGPSDAIPCK QACDIIAKSL  
     251 ARGDEDVFTD FVGWMIMGMD LGLTAKKSRF VPNLEQKLIS EEDLNSALEH  
     301 HHHHH  
(C-terminal His6 tag in red) 
> DNA sequence of KDSR G263E 
       1 ATGGAGTTTA CGTTAGAAGA CCAAGTTGTG TTGATCACTG GTGGTTCACA  
      51 AGGTCTTGGA AAGGAATTCG CCAAAAAATA TTATAATGAG GCTGAAAACA  
     101 CAAAGATTAT TATCGTCAGT AGGTCAGAGG CTAGACTGCT GGACACATGC  
     151 AACGAAATTA GGATTGAAGC TCACCTGAGA AGGGAAACCA CTGACGAGGG  
     201 CCAAGTGCAA CATAAGTTGG CTGCGCCCTT GGACCTTGAG CAACGGTTAT  
     251 TTTACTACCC ATGCGACTTG TCCTGCTACG AATCCGTGGA ATGTTTGTTC  
     301 AATGCCCTGA GAGACTTGGA TTTACTCCCT ACACAAACGT TATGCTGTGC  
     351 AGGGGGGGCT GTTCCTAAGT TATTTCGTGG GCTAAGCGGA CATGAGTTGA  
     401 ACTTGGGTAT GGACATCAAC TATAAAACAA CTTTGAACGT GGCACATCAG  
     451 ATTGCCCTTG CAGAGCAAAC CAAGGAACAC CACCTCATCA TCTTTTCTAG  
     501 TGCCACCGCG CTTTACCCAT TTGTGGGCTA TTCCCAGTAT GCGCCTGCAA  
     551 AAGCTGCAAT CAAATCACTG GTAGCAATCT TAAGACAAGA ACTGACGAAC  
     601 TTCCGTATCA GTTGTGTTTA TCCTGGTAAT TTTGAAAGCG AAGGTTTCAC  
     651 TGTAGAGCAG CTAACGAAAC CCGAAATTAC AAAGTTGATC GAAGGCCCCT  
     701 CAGACGCTAT CCCATGCAAA CAAGCATGTG ATATCATTGC CAAGTCGCTG  
     751 GCCAGAGGTG ATGAAGACGT TTTTACAGAT TTTGTCGAAT GGATGATAAT  
     801 GGGGATGGAC CTTGGGCTCA CCGCAAAGAA AAGCCGCTTT GTTCCGAATC  
     851 TAGAACAAAA ACTCATCTCA GAAGAGGATC TGAATAGCGC CCTCGAGCAC  
     901 CACCACCACC ACCAC 
 
 
> Amino acid sequence of KDSR G263E 

       1 MEFTLEDQVV LITGGSQGLG KEFAKKYYNE AENTKIIIVS RSEARLLDTC  
      51 NEIRIEAHLR RETTDEGQVQ HKLAAPLDLE QRLFYYPCDL SCYESVECLF  
     101 NALRDLDLLP TQTLCCAGGA VPKLFRGLSG HELNLGMDIN YKTTLNVAHQ  
     151 IALAEQTKEH HLIIFSSATA LYPFVGYSQY APAKAAIKSL VAILRQELTN  
     201 FRISCVYPGN FESEGFTVEQ LTKPEITKLI EGPSDAIPCK QACDIIAKSL  
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     251 ARGDEDVFTD FVEWMIMGMD LGLTAKKSRF VPNLEQKLIS EEDLNSALEH  
     301 HHHHH  
(C-terminal His6 tag in red, the mutated site in blue) 
 
> DNA sequence of BfSPT 
       1 ATGGGATTAT TACAAGAGAA GTTAGCTAAA TACGACCTCC CTCAGCAGAT  
      51 AAAGGCTAAA GGCGTATATC CATACTTTCG TTGTATCGAA AGTGAACAGA  
     101 ACACAGAGGT GATAATGAGT GGCAGAAAGG TGTTAATGTT TGGCTCAAAC  
     151 TCATACTTAG GCCTGACTAA TCATCCGAAA GTAATTGAAG CTGCTGTTGA  
     201 AGCTACCCGC AAATATGGTA CAGGTTGCGC CGGATCGCGT TTTCTGAACG  
     251 GTACACTCGA CCTCCATCTT CAATTGGAGA AAGAATTGGC CGAATTTGTT  
     301 GGTAAAGAAG ATGCTATCAT TTATTCTACC GGATTTCAGG TAAATCTGGG  
     351 TGTGGTTTCG TGTGTGACAG GTCGTGAAGA TTATGTGATC TGTGATGAAC  
     401 TTGACCACGC TTCTATTGTT GAAGGACGCC GCCTTTCTTT TTCTACCATT  
     451 CTTAAGTTCA AGCATAACGA TATGGAATCT CTTGAGAAAG AGTTGCAGAA  
     501 ATGTCGTCCT GATGCAGTGA AACTGATTGT AGTAGATGGA GTATTCAGTA  
     551 TGGAGGGTGA TATTGCCAAT TTGCCTGAGA TCGTCCGTTT GTCTAAAAAA  
     601 TATGATGCTA ATATCATGGT AGATGAAGCG CATGGACTGG GAGTTTTGGG  
     651 TAATCACGGA CGCGGTACTT GTGATCATTT CGGATTGACT AAAGAGGTGG  
     701 ATCTTATTAT GGGTACATTC AGTAAGTCAT TGGCCGCTAT CGGTGGCTTT  
     751 ATTGCAGCAG ACGAGTCCAT CATTAATTAT TTGCGTCACA ATTCACGTTC  
     801 ATATATCTTT AGTGCAAGTA ATACGCCTGC TGCTACAGCT GCCGCTCGTG  
     851 CTGCACTTCA GATTATGAAA AACGAACCGG AACGTATTGA GCATTTGTGG  
     901 GATATAACCA ATTACTCTTT AAAGTGTTTC CGTGAACTTG GTTTTGAGAT  
     951 CGGACATACC TCCACTCCTA TCATTCCTCT ATATGTACGT GATATGGAGA  
    1001 AGACATTTAT GGTAACTAAG ATGTTATTTG ACGAAGGTGT GTTTGTAAAT  
    1051 CCAGTTGTGC CTCCCGCATG TTCTCCGAAC GATACGTTGA TTCGTTTCTC  
    1101 GTTGATGGCT ACACACTCTA AAGAACAGAT TGATTTTGCT 
 
>Amino acid sequence of BfSPT 

       1 MGLLQEKLAK YDLPQQIKAK GVYPYFRCIE SEQNTEVIMS GRKVLMFGSN  
      51 SYLGLTNHPK VIEAAVEATR KYGTGCAGSR FLNGTLDLHL QLEKELAEFV  
     101 GKEDAIIYST GFQVNLGVVS CVTGREDYVI CDELDHASIV EGRRLSFSTI  
     151 LKFKHNDMES LEKELQKCRP DAVKLIVVDG VFSMEGDIAN LPEIVRLSKK  
     201 YDANIMVDEA HGLGVLGNHG RGTCDHFGLT KEVDLIMGTF SKSLAAIGGF  
     251 IAADESIINY LRHNSRSYIF SASNTPAATA AARAALQIMK NEPERIEHLW  
     301 DITNYSLKCF RELGFEIGHT STPIIPLYVR DMEKTFMVTK MLFDEGVFVN  
     351 PVVPPACSPN DTLIRFSLMA THSKEQIDFA IGKLVKCFKA LDLLEHHHHH  
     401 H  
(C-terminal His6 tag in red) 
 
> DNA sequence of BfSPT V353R 
       1 ATGGGATTAT TACAAGAGAA GTTAGCTAAA TACGACCTCC CTCAGCAGAT  
      51 AAAGGCTAAA GGCGTATATC CATACTTTCG TTGTATCGAA AGTGAACAGA  
     101 ACACAGAGGT GATAATGAGT GGCAGAAAGG TGTTAATGTT TGGCTCAAAC  
     151 TCATACTTAG GCCTGACTAA TCATCCGAAA GTAATTGAAG CTGCTGTTGA  
     201 AGCTACCCGC AAATATGGTA CAGGTTGCGC CGGATCGCGT TTTCTGAACG  
     251 GTACACTCGA CCTCCATCTT CAATTGGAGA AAGAATTGGC CGAATTTGTT  
     301 GGTAAAGAAG ATGCTATCAT TTATTCTACC GGATTTCAGG TAAATCTGGG  
     351 TGTGGTTTCG TGTGTGACAG GTCGTGAAGA TTATGTGATC TGTGATGAAC  
     401 TTGACCACGC TTCTATTGTT GAAGGACGCC GCCTTTCTTT TTCTACCATT  
     451 CTTAAGTTCA AGCATAACGA TATGGAATCT CTTGAGAAAG AGTTGCAGAA  
     501 ATGTCGTCCT GATGCAGTGA AACTGATTGT AGTAGATGGA GTATTCAGTA  
     551 TGGAGGGTGA TATTGCCAAT TTGCCTGAGA TCGTCCGTTT GTCTAAAAAA  
     601 TATGATGCTA ATATCATGGT AGATGAAGCG CATGGACTGG GAGTTTTGGG  
     651 TAATCACGGA CGCGGTACTT GTGATCATTT CGGATTGACT AAAGAGGTGG  
     701 ATCTTATTAT GGGTACATTC AGTAAGTCAT TGGCCGCTAT CGGTGGCTTT  
     751 ATTGCAGCAG ACGAGTCCAT CATTAATTAT TTGCGTCACA ATTCACGTTC  
     801 ATATATCTTT AGTGCAAGTA ATACGCCTGC TGCTACAGCT GCCGCTCGTG  
     851 CTGCACTTCA GATTATGAAA AACGAACCGG AACGTATTGA GCATTTGTGG  
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     901 GATATAACCA ATTACTCTTT AAAGTGTTTC CGTGAACTTG GTTTTGAGAT  
     951 CGGACATACC TCCACTCCTA TCATTCCTCT ATATGTACGT GATATGGAGA  
    1001 AGACATTTAT GGTAACTAAG ATGTTATTTG ACGAAGGTGT GTTTGTAAAT  
    1051 CCAGTTCGGC CTCCCGCATG TTCTCCGAAC GATACGTTGA TTCGTTTCTC  
    1101 GTTGATGGCT ACACACTCTA AAGAACAGAT TGATTTTGCT ATCGGTAAGT  
    1151 TAGTGAAATG TTTCAAGGCA CTTGATCTTC TCGAGCACCA CCACCACCAC  
    1201 CACTGA  
 
>Amino acid sequence of BfSPT V353R 

       1 MGLLQEKLAK YDLPQQIKAK GVYPYFRCIE SEQNTEVIMS GRKVLMFGSN  
      51 SYLGLTNHPK VIEAAVEATR KYGTGCAGSR FLNGTLDLHL QLEKELAEFV  
     101 GKEDAIIYST GFQVNLGVVS CVTGREDYVI CDELDHASIV EGRRLSFSTI  
     151 LKFKHNDMES LEKELQKCRP DAVKLIVVDG VFSMEGDIAN LPEIVRLSKK  
     201 YDANIMVDEA HGLGVLGNHG RGTCDHFGLT KEVDLIMGTF SKSLAAIGGF  
     251 IAADESIINY LRHNSRSYIF SASNTPAATA AARAALQIMK NEPERIEHLW  
     301 DITNYSLKCF RELGFEIGHT STPIIPLYVR DMEKTFMVTK MLFDEGVFVN  
     351 PVRPPACSPN DTLIRFSLMA THSKEQIDFA IGKLVKCFKA LDLLEHHHHH  
     401 H  
 (C-terminal His6 tag in red, the mutated site in blue) 
 
> DNA sequence of C-terminal pETHis10PgSPT 
       1 ATGGGCGGAA AATTGTTACA GGATAAATTG GATCAGTATA CCGAGCCGCA  
      51 AAAGGCACAA GCCGCAGGTA TTTACCCTTA TTTCAGAAAA ATCGAAAGTG  
     101 ATCAGGATAC CGAGGTCGTT ATCGATGGTC GGAAAGTCCT CATGTTCGGC  
     151 TCCAATGCAT ATCTGGGACT GACGAACCAC CCGAAAGTCA AGGAGGCAGC  
     201 TATCGAAGCG ACAAAGAAGT ACGGTACGGG CTGTGCCGGC TCCCGCTTCC  
     251 TCAACGGCAC ACTCGATATT CACCTCGAAC TGGAAAAACG GCTGGCCGAG  
     301 TTCGTCGGCA AGGAAGATGC CATCAGCTTC TCTACCGGCT TCCAAGTGAA  
     351 TCTGGGCGTT GTCTCCTGCA TCACCGGCCG CGAGGATTAT ATCATCTGGG  
     401 ACGAGTTGGA TCATGCTTCG ATCATCGAGG GTATTCGCCT TTCATTCAGC  
     451 ACGAAGTTAA AGTACAAGCA TAATGATATG GTTTCTCTGG AGAAGCGGCT  
     501 CCAGCAGTGC GACCACGGAG AAGATCAAAC TGATTGTGGT CCGATGGTGT  
     551 CTTTCAGTAT GGAGGGTGAT GTCTGCAATC TGCCCGAAAT CGTTCGCCTC  
     601 GCCAAGCGAT ACAACGCCAA TGTGATGGTG GACGAAGCTC ACGGTATCGG  
     651 CGTGATGGGC GACCACGGAC GCGGCGTCTG CAATCACTTC GGTCTGACCG  
     701 ACGAAGTGGA CTTGATCATG GGTACTTTCA GCAAATCTTT CGCTTCGCTC  
     751 GGAGGGTTTA TTGCAGGAGA CAAGAGCGTT ATCAACTACC TGCGCCACCA  
     801 CGCCCGATCC TATATTTTCA GTGCCAGCTG TACGCCGGCC TCTACGGCAG  
     851 CGGCAGCAGC TGCTCTGGAC ATTATGTTTA GCGAACCGGA GCGTTTAGCC  
     901 CGATTGTGGG AGCTGACGCA CTACTCATTG AACGCATTCC GCAGTCTTGG  
     951 ATTCGAAATA GGTCATACAT CGACACCTAT TATCCCGCTT TTTATCCGCA  
    1001 ACAACGAGAA GACATTCCAA ATAACCCGAG ACGCTTTCGA AGAAGGGGTA  
    1051 TTCGTCAATC CGGTGGTCTC TCCGGCGGTA GCTCCGTCCG ACACCCTTAT  
    1101 TCGCTTTTCA CTCATGGCTA CGCATACGAA GGAGCAACTC GACTTTGCCA  
    1151 TCGAAAAGCT GCATAAGGTA TTCAAGCAGA ACGGTGTCCT GCTCGAGGAA  
    1201 AACCTGTATT TTCAGGGCAC GCATCATCAT CATCACCACC ACCACCACCA  
    1251 CTGA  
 
> Amino acid sequence of C-terminal pETHis10PgSPT 
       1 MGKLLQDKLA QYTEPQKAQA AGIYPYFRKI ESDQDTEVVI DGRKVLMFGS  
      51 NAYLGLTNHP KVKEAAIEAT KKYGTGCAGS RFLNGTLDIH LELEKRLAEF  
     101 VGKEDAISFS TGFQVNLGVV SCITGREDYI IWDELDHASI IEGIRLSFST  
     151 KLKYKHNDMG SLEKRLQQCD PEKIKLIVVD GVFSMEGDVC NLPEIVRLAK  
     201 RYNANVMVDE AHGIGVMGDH GRGVCNHFGL TDEVDLIMGT FSKSFASLGG  
     251 FIAGDKSVIN YLRHHARSYI FSASCTPAST AAAAAALDIM FSEPERLARL  
     301 WELTHYSLNA FRSLGFEIGH TSTPIIPLFI RNNEKTFQIT RDAFEEGVFV  
     351 NPVVSPAVAP SDTLIRFSLM ATHTKEQLDF AIEKLHKVFK QNGVLLEENL  
     401 YFQGAHHHHH HHHHH 
 
(C-terminal His6 tag in red) 
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> DNA sequence of C-terminal pETHis10PgSPT V358C 
       1 ATGGGAAAAT TGTTACAGGA TAAATTGGCT CAGTATACCG AGCCGCAAAA  
      51 GGCACAAGCC GCAGGTATTT ACCCTTATTT CAGAAAAATC GAAAGTGATC  
     101 AGGATACCGA GGTCGTTATC GATGGTCGGA AAGTCCTCAT GTTCGGCTCC  
     151 AATGCATATC TGGGACTGAC GAACCACCCG AAAGTCAAGG AGGCAGCTAT  
     201 CGAAGCGACA AAGAAGTACG GTACGGGCTG TGCCGGCTCC CGCTTCCTCA  
     251 ACGGCACACT CGATATTCAC CTCGAACTGG AAAAACGGCT GGCCGAGTTC  
     301 GTCGGCAAGG AAGATGCCAT CAGCTTCTCT ACCGGCTTCC AAGTGAATCT  
     351 GGGCGTTGTC TCCTGCATCA CCGGCCGCGA GGATTATATC ATCTGGGACG  
     401 AGTTGGATCA TGCTTCGATC ATCGAGGGTA TTCGCCTTTC ATTCAGCACG  
     451 AAGTTAAAGT ACAAGCATAA TGATATGGGT TCTCTGGAGA AGCGGCTCCA  
     501 GCAGTGCGAC CCGGAGAAGA TCAAACTGAT TGTGGTCGAT GGTGTCTTCA  
     551 GTATGGAGGG TGATGTCTGC AATCTGCCCG AAATCGTTCG CCTCGCCAAG  
     601 CGATACAACG CCAATGTGAT GGTGGACGAA GCTCACGGTA TCGGCGTGAT  
     651 GGGCGACCAC GGACGCGGCG TCTGCAATCA CTTCGGTCTG ACCGACGAAG  
     701 TGGACTTGAT CATGGGTACT TTCAGCAAAT CTTTCGCTTC GCTCGGAGGG  
     751 TTTATTGCAG GAGACAAGAG CGTTATCAAC TACCTGCGCC ACCACGCCCG  
     801 ATCCTATATT TTCAGTGCCA GCTGTACGCC GGCCTCTACG GCAGCGGCAG  
     851 CAGCTGCTCT GGACATTATG TTTAGCGAAC CGGAGCGTTT AGCCCGATTG  
     901 TGGGAGCTGA CGCACTACTC ATTGAACGCA TTCCGCAGTC TTGGATTCGA  
     951 AATAGGTCAT ACATCGACAC CTATTATCCC GCTTTTTATC CGCAACAACG  
    1001 AGAAGACATT CCAAATAACC CGAGACGCTT TCGAAGAAGG GGTATTCGTC  
    1051 AATCCGGTGG TCTCTCCGGC GTGCGCTCCG TCCGACACCC TTATTCGCTT  
    1101 TTCACTCATG GCTACGCATA CGAAGGAGCA ACTCGACTTT GCCATCGAAA  
    1151 AGCTGCATAA GGTATTCAAG CAGAACGGTG TCCTG  
> Amino acid sequence of C-terminal pETHis10PgSPT V358C 
       1 MGKLLQDKLA QYTEPQKAQA AGIYPYFRKI ESDQDTEVVI DGRKVLMFGS  
      51 NAYLGLTNHP KVKEAAIEAT KKYGTGCAGS RFLNGTLDIH LELEKRLAEF  
     101 VGKEDAISFS TGFQVNLGVV SCITGREDYI IWDELDHASI IEGIRLSFST  
     151 KLKYKHNDMG SLEKRLQQCD PEKIKLIVVD GVFSMEGDVC NLPEIVRLAK  
     201 RYNANVMVDE AHGIGVMGDH GRGVCNHFGL TDEVDLIMGT FSKSFASLGG  
     251 FIAGDKSVIN YLRHHARSYI FSASCTPAST AAAAAALDIM FSEPERLARL  
     301 WELTHYSLNA FRSLGFEIGH TSTPIIPLFI RNNEKTFQIT RDAFEEGVFV  
     351 NPVVSPACAP SDTLIRFSLM ATHTKEQLDF AIEKLHKVFK QNGVLLEENL  
     401 YFQGAHHHHH HHHHH  
(C-terminal His10 tag in red, the mutated site in blue) 
 
> DNA sequence of C-terminal pETHis10PgSPT V358A 
       1 ATGGGAAAAT TGTTACAGGA TAAATTGGCT CAGTATACCG AGCCGCAAAA  
      51 GGCACAAGCC GCAGGTATTT ACCCTTATTT CAGAAAAATC GAAAGTGATC  
     101 AGGATACCGA GGTCGTTATC GATGGTCGGA AAGTCCTCAT GTTCGGCTCC  
     151 AATGCATATC TGGGACTGAC GAACCACCCG AAAGTCAAGG AGGCAGCTAT  
     201 CGAAGCGACA AAGAAGTACG GTACGGGCTG TGCCGGCTCC CGCTTCCTCA  
     251 ACGGCACACT CGATATTCAC CTCGAACTGG AAAAACGGCT GGCCGAGTTC  
     301 GTCGGCAAGG AAGATGCCAT CAGCTTCTCT ACCGGCTTCC AAGTGAATCT  
     351 GGGCGTTGTC TCCTGCATCA CCGGCCGCGA GGATTATATC ATCTGGGACG  
     401 AGTTGGATCA TGCTTCGATC ATCGAGGGTA TTCGCCTTTC ATTCAGCACG  
     451 AAGTTAAAGT ACAAGCATAA TGATATGGGT TCTCTGGAGA AGCGGCTCCA  
     501 GCAGTGCGAC CCGGAGAAGA TCAAACTGAT TGTGGTCGAT GGTGTCTTCA  
     551 GTATGGAGGG TGATGTCTGC AATCTGCCCG AAATCGTTCG CCTCGCCAAG  
     601 CGATACAACG CCAATGTGAT GGTGGACGAA GCTCACGGTA TCGGCGTGAT  
     651 GGGCGACCAC GGACGCGGCG TCTGCAATCA CTTCGGTCTG ACCGACGAAG  
     701 TGGACTTGAT CATGGGTACT TTCAGCAAAT CTTTCGCTTC GCTCGGAGGG  
     751 TTTATTGCAG GAGACAAGAG CGTTATCAAC TACCTGCGCC ACCACGCCCG  
     801 ATCCTATATT TTCAGTGCCA GCTGTACGCC GGCCTCTACG GCAGCGGCAG  
     851 CAGCTGCTCT GGACATTATG TTTAGCGAAC CGGAGCGTTT AGCCCGATTG  
     901 TGGGAGCTGA CGCACTACTC ATTGAACGCA TTCCGCAGTC TTGGATTCGA  
     951 AATAGGTCAT ACATCGACAC CTATTATCCC GCTTTTTATC CGCAACAACG  
    1001 AGAAGACATT CCAAATAACC CGAGACGCTT TCGAAGAAGG GGTATTCGTC  
    1051 AATCCGGTGG TCTCTCCGGC GGCAGCTCCG TCCGACACCC TTATTCGCTT  
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    1101 TTCACTCATG GCTACGCATA CGAAGGAGCA ACTCGACTTT GCCATCGAAA  
1151 AGCTGCATAA GGTATTCAAG CAGAACGGTG TCCTG  

 
> Amino acid sequence of C-terminal pETHis10PgSPT V358A 
       1 MGKLLQDKLA QYTEPQKAQA AGIYPYFRKI ESDQDTEVVI DGRKVLMFGS  
      51 NAYLGLTNHP KVKEAAIEAT KKYGTGCAGS RFLNGTLDIH LELEKRLAEF  
     101 VGKEDAISFS TGFQVNLGVV SCITGREDYI IWDELDHASI IEGIRLSFST  
     151 KLKYKHNDMG SLEKRLQQCD PEKIKLIVVD GVFSMEGDVC NLPEIVRLAK  
     201 RYNANVMVDE AHGIGVMGDH GRGVCNHFGL TDEVDLIMGT FSKSFASLGG  
     251 FIAGDKSVIN YLRHHARSYI FSASCTPAST AAAAAALDIM FSEPERLARL  
     301 WELTHYSLNA FRSLGFEIGH TSTPIIPLFI RNNEKTFQIT RDAFEEGVFV  
     351 NPVVSPAAAP SDTLIRFSLM ATHTKEQLDF AIEKLHKVFK QNGVLLEENL  
     401 YFQGAHHHHH HHHHH  
(C-terminal His10 tag in red, the mutated site in blue) 
 
 
> DNA sequence of C-terminal pETHis10PgSPT A359S 
       1 ATGGGAAAAT TGTTACAGGA TAAATTGGCT CAGTATACCG AGCCGCAAAA  
      51 GGCACAAGCC GCAGGTATTT ACCCTTATTT CAGAAAAATC GAAAGTGATC  
     101 AGGATACCGA GGTCGTTATC GATGGTCGGA AAGTCCTCAT GTTCGGCTCC  
     151 AATGCATATC TGGGACTGAC GAACCACCCG AAAGTCAAGG AGGCAGCTAT  
     201 CGAAGCGACA AAGAAGTACG GTACGGGCTG TGCCGGCTCC CGCTTCCTCA  
     251 ACGGCACACT CGATATTCAC CTCGAACTGG AAAAACGGCT GGCCGAGTTC  
     301 GTCGGCAAGG AAGATGCCAT CAGCTTCTCT ACCGGCTTCC AAGTGAATCT  
     351 GGGCGTTGTC TCCTGCATCA CCGGCCGCGA GGATTATATC ATCTGGGACG  
     401 AGTTGGATCA TGCTTCGATC ATCGAGGGTA TTCGCCTTTC ATTCAGCACG  
     451 AAGTTAAAGT ACAAGCATAA TGATATGGGT TCTCTGGAGA AGCGGCTCCA  
     501 GCAGTGCGAC CCGGAGAAGA TCAAACTGAT TGTGGTCGAT GGTGTCTTCA  
     551 GTATGGAGGG TGATGTCTGC AATCTGCCCG AAATCGTTCG CCTCGCCAAG  
     601 CGATACAACG CCAATGTGAT GGTGGACGAA GCTCACGGTA TCGGCGTGAT  
     651 GGGCGACCAC GGACGCGGCG TCTGCAATCA CTTCGGTCTG ACCGACGAAG  
     701 TGGACTTGAT CATGGGTACT TTCAGCAAAT CTTTCGCTTC GCTCGGAGGG  
     751 TTTATTGCAG GAGACAAGAG CGTTATCAAC TACCTGCGCC ACCACGCCCG  
     801 ATCCTATATT TTCAGTGCCA GCTGTACGCC GGCCTCTACG GCAGCGGCAG  
     851 CAGCTGCTCT GGACATTATG TTTAGCGAAC CGGAGCGTTT AGCCCGATTG  
     901 TGGGAGCTGA CGCACTACTC ATTGAACGCA TTCCGCAGTC TTGGATTCGA  
     951 AATAGGTCAT ACATCGACAC CTATTATCCC GCTTTTTATC CGCAACAACG  
    1001 AGAAGACATT CCAAATAACC CGAGACGCTT TCGAAGAAGG GGTATTCGTC  
    1051 AATCCGGTGG TCTCTCCGGC GGTCTCTCCG TCCGACACCC TTATTCGCTT  
    1101 TTCACTCATG GCTACGCATA CGAAGGAGCA ACTCGACTTT GCCATCGAAA  

1151 AGCTGCATAA GGTATTCAAG CAGAACGGTG TCCTG  
 
> Amino acid sequence of C-terminal pETHis10PgSPT A359S 
       1 MGKLLQDKLA QYTEPQKAQA AGIYPYFRKI ESDQDTEVVI DGRKVLMFGS  
      51 NAYLGLTNHP KVKEAAIEAT KKYGTGCAGS RFLNGTLDIH LELEKRLAEF  
     101 VGKEDAISFS TGFQVNLGVV SCITGREDYI IWDELDHASI IEGIRLSFST  
     151 KLKYKHNDMG SLEKRLQQCD PEKIKLIVVD GVFSMEGDVC NLPEIVRLAK  
     201 RYNANVMVDE AHGIGVMGDH GRGVCNHFGL TDEVDLIMGT FSKSFASLGG  
     251 FIAGDKSVIN YLRHHARSYI FSASCTPAST AAAAAALDIM FSEPERLARL  
     301 WELTHYSLNA FRSLGFEIGH TSTPIIPLFI RNNEKTFQIT RDAFEEGVFV  
     351 NPVVSPAVSP SDTLIRFSLM ATHTKEQLDF AIEKLHKVFK QNGVLLEENL  
     401 YFQGAHHHHH HHHHH  
(C-terminal His10 tag in red, the mutated site in blue) 
 
> DNA sequence of C-terminal pETHis10PgSPT DM V358C A359S 
       1 ATGGGAAAAT TGTTACAGGA TAAATTGGCT CAGTATACCG AGCCGCAAAA  
      51 GGCACAAGCC GCAGGTATTT ACCCTTATTT CAGAAAAATC GAAAGTGATC  
     101 AGGATACCGA GGTCGTTATC GATGGTCGGA AAGTCCTCAT GTTCGGCTCC  
     151 AATGCATATC TGGGACTGAC GAACCACCCG AAAGTCAAGG AGGCAGCTAT  
     201 CGAAGCGACA AAGAAGTACG GTACGGGCTG TGCCGGCTCC CGCTTCCTCA  
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     251 ACGGCACACT CGATATTCAC CTCGAACTGG AAAAACGGCT GGCCGAGTTC  
     301 GTCGGCAAGG AAGATGCCAT CAGCTTCTCT ACCGGCTTCC AAGTGAATCT  
     351 GGGCGTTGTC TCCTGCATCA CCGGCCGCGA GGATTATATC ATCTGGGACG  
     401 AGTTGGATCA TGCTTCGATC ATCGAGGGTA TTCGCCTTTC ATTCAGCACG  
     451 AAGTTAAAGT ACAAGCATAA TGATATGGGT TCTCTGGAGA AGCGGCTCCA  
     501 GCAGTGCGAC CCGGAGAAGA TCAAACTGAT TGTGGTCGAT GGTGTCTTCA  
     551 GTATGGAGGG TGATGTCTGC AATCTGCCCG AAATCGTTCG CCTCGCCAAG  
     601 CGATACAACG CCAATGTGAT GGTGGACGAA GCTCACGGTA TCGGCGTGAT  
     651 GGGCGACCAC GGACGCGGCG TCTGCAATCA CTTCGGTCTG ACCGACGAAG  
     701 TGGACTTGAT CATGGGTACT TTCAGCAAAT CTTTCGCTTC GCTCGGAGGG  
     751 TTTATTGCAG GAGACAAGAG CGTTATCAAC TACCTGCGCC ACCACGCCCG  
     801 ATCCTATATT TTCAGTGCCA GCTGTACGCC GGCCTCTACG GCAGCGGCAG  
     851 CAGCTGCTCT GGACATTATG TTTAGCGAAC CGGAGCGTTT AGCCCGATTG  
     901 TGGGAGCTGA CGCACTACTC ATTGAACGCA TTCCGCAGTC TTGGATTCGA  
     951 AATAGGTCAT ACATCGACAC CTATTATCCC GCTTTTTATC CGCAACAACG  
    1001 AGAAGACATT CCAAATAACC CGAGACGCTT TCGAAGAAGG GGTATTCGTC  
    1051 AATCCGGTGG TCTCTCCGGC GTGCTCTCCG TCCGACACCC TTATTCGCTT  
    1101 TTCACTCATG GCTACGCATA CGAAGGAGCA ACTCGACTTT GCCATCGAAA  

1151 AGCTGCATAA GGTATTCAAG CAGAACGGTG TCCTG  
 
> Amino acid sequence of C-terminal pETHis10PgSPT DM V358C A359S 
       1 MGKLLQDKLA QYTEPQKAQA AGIYPYFRKI ESDQDTEVVI DGRKVLMFGS  
      51 NAYLGLTNHP KVKEAAIEAT KKYGTGCAGS RFLNGTLDIH LELEKRLAEF  
     101 VGKEDAISFS TGFQVNLGVV SCITGREDYI IWDELDHASI IEGIRLSFST  
     151 KLKYKHNDMG SLEKRLQQCD PEKIKLIVVD GVFSMEGDVC NLPEIVRLAK  
     201 RYNANVMVDE AHGIGVMGDH GRGVCNHFGL TDEVDLIMGT FSKSFASLGG  
     251 FIAGDKSVIN YLRHHARSYI FSASCTPAST AAAAAALDIM FSEPERLARL  
     301 WELTHYSLNA FRSLGFEIGH TSTPIIPLFI RNNEKTFQIT RDAFEEGVFV  
     351 NPVVSPACSP SDTLIRFSLM ATHTKEQLDF AIEKLHKVFK QNGVLLEENL  
     401 YFQGAHHHHH HHHHH  
(C-terminal His10 tag in red, the mutated site in blue) 
 
> DNA sequence of N-terminal pETHis6PgSPT 
     -74 ATGTCGTACT ACCATCACCA TCACCATCAC GATTACGACA TCCCAACGAC  
     -24 CGAAAACCTG TATTTTCAGG GCGCCATGGG AAAATTGTTA CAGGATAAAT  
      26 TGGCTCAGTA TACCGAGCCG CAAAAGGCAC AAGCCGCAGG TATTTACCCT  
      76 TATTTCAGAA AAATCGAAAG TGATCAGGAT ACCGAGGTCG TTATCGATGG  
     126 TCGGAAAGTC CTCATGTTCG GCTCCAATGC ATATCTGGGA CTGACGAACC  
     176 ACCCGAAAGT CAAGGAGGCA GCTATCGAAG CGACAAAGAA GTACGGTACG  
     226 GGCTGTGCCG GCTCCCGCTT CCTCAACGGC ACACTCGATA TTCACCTCGA  
     276 ACTGGAAAAA CGGCTGGCCG AGTTCGTCGG CAAGGAAGAT GCCATCAGCT  
     326 TCTCTACCGG CTTCCAAGTG AATCTGGGCG TTGTCTCCTG CATCACCGGC  
     376 CGCGAGGATT ATATCATCTG GGACGAGTTG GATCATGCTT CGATCATCGA  
     426 GGGTATTCGC CTTTCATTCA GCACGAAGTT AAAGTACAAG CATAATGATA  
     476 TGGGTTCTCT GGAGAAGCGG CTCCAGCAGT GCGACCCGGA GAAGATCAAA  
     526 CTGATTGTGG TCGATGGTGT CTTCAGTATG GAGGGTGATG TCTGCAATCT  
     576 GCCCGAAATC GTTCGCCTCG CCAAGCGATA CAACGCCAAT GTGATGGTGG  
     626 ACGAAGCTCA CGGTATCGGC GTGATGGGCG ACCACGGACG CGGCGTCTGC  
     676 AATCACTTCG GTCTGACCGA CGAAGTGGAC TTGATCATGG GTACTTTCAG  
     726 CAAATCTTTC GCTTCGCTCG GAGGGTTTAT TGCAGGAGAC AAGAGCGTTA  
     776 TCAACTACCT GCGCCACCAC GCCCGATCCT ATATTTTCAG TGCCAGCTGT  
     826 ACGCCGGCCT CTACGGCAGC GGCAGCAGCT GCTCTGGACA TTATGTTTAG  
     876 CGAACCGGAG CGTTTAGCCC GATTGTGGGA GCTGACGCAC TACTCATTGA  
     926 ACGCATTCCG CAGTCTTGGA TTCGAAATAG GTCATACATC GACACCTATT  
     976 ATCCCGCTTT TTATCCGCAA CAACGAGAAG ACATTCCAAA TAACCCGAGA  
    1026 CGCTTTCGAA GAAGGGGTAT TCGTCAATCC GGTGGTCTCT CCGGCGGTAG  
    1076 CTCCGTCCGA CACCCTTATT CGCTTTTCAC TCATGGCTAC GCATACGAAG  
    1126 GAGCAACTCG ACTTTGCCAT CGAAAAGCTG CATAAGGTAT TCAAGCAGAA  
    1176 CGGTGTCCTG TAA  
 
> Amino acid sequence of N-terminal pETHis6PgSPT 
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     -24 MSYYHHHHHH DYDIPTTENL YFQGAMGKLL QDKLAQYTEP QKAQAAGIYP  
      26 YFRKIESDQD TEVVIDGRKV LMFGSNAYLG LTNHPKVKEA AIEATKKYGT  
      76 GCAGSRFLNG TLDIHLELEK RLAEFVGKED AISFSTGFQV NLGVVSCITG  
     126 REDYIIWDEL DHASIIEGIR LSFSTKLKYK HNDMGSLEKR LQQCDPEKIK  
     176 LIVVDGVFSM EGDVCNLPEI VRLAKRYNAN VMVDEAHGIG VMGDHGRGVC  
     226 NHFGLTDEVD LIMGTFSKSF ASLGGFIAGD KSVINYLRHH ARSYIFSASC  
     276 TPASTAAAAA ALDIMFSEPE RLARLWELTH YSLNAFRSLG FEIGHTSTPI  
     326 IPLFIRNNEK TFQITRDAFE EGVFVNPVVS PAVAPSDTLI RFSLMATHTK  
     376 EQLDFAIEKL HKVFKQNGVL  
(N-terminal His6 tag in red) 
 
> DNA sequence of N-terminal pETHis6PgIlvE 
     -57 ATGGGCAGCA GCCATCATCA TCATCATCAC AGCAGCGGCC TGGTGCCGCG  
      -7 CGGCAGCCCA TATGGAAAAT ATCGATTGGT CATCGCTCTC ATTCGGTTAT  
      43 AGGAAGACCG ACTACAACGT GCGCTGTTAC TATCGCAACG GCAAGTGGGG  
      93 AGAGCTTGAA GTATCCTCAG AGGAAACGAT CACGATGCAC ATGGCTGCCA  
     143 CTTGTCTCCA CTACGGACAG GAAGCATTCG AAGGGATGAA GGCTTTCCGT  
     193 GGCAAAGATG GCAAGATCCG CCTCTTCCGC ATGGATGAGA ATGCCAAGCG  
     243 CATGAACAGA TCATGCCAAG GTGTGGTAAT GGCCGAGCTG CCGCAGGAAA  
     293 TCTTCGAAGC AGCTGTAATC AAGGCCGTAA AGATGAACGA GCGTTTCGTT  
     343 CCTCCTTACG AAAGCGGAGC TTCTCTTTAC ATCCGTCCGC TTGTTATCGG  
     393 ACTGGGTGCA CAAGTGGGTG TGAAGCCGGC TCCCGAGTAT CTCTTCATCG  
     443 TCTTTGTAAC GCCCGTAGGG CCGTATTTCA AAGAAGGATT CAAACCGACC  
     493 AAGATGGCCA TCTTCCGCGA CTATGACCGT GCAGCTCCTC TGGGTACGGG  
     543 TACGATCAAA GTGGGCGGTA ACTATGCAGC CGGTATGATC CCCACAGTGA  
     593 AAGCTCACGA AATGGGCTAC TCTGCAGCTA TCTTCTTGGA TGCCAAAGAA  
     643 AAGAAGTACA TAGACGAAGC CGGTCCGGCC AACTTCTTCG CCATCAAGAA  
     693 CAATACTTAT ATCACTCCCG AATCCAGCTC TATCCTGCCC TCTATCACAA  
     743 ACAAGAGTCT GATGCAGGTG GCTCAGGATC TGGGTCTGAA GGTAGAGCGT  
     793 CGTCCGGTAG CCGAAGAAGA GCTTGCTACT TTCGAAGAAG CAGGTGCTTG  
     843 TGGTACGGCA GCCGTGATCA GCCCTATCTC CGAGATTGAC GACTTGGAGA  
     893 ACAACAAACA GTACGTCATC AGCAAGGACG GCAAACCGGG TCCGTGGTGT  
     943 GAAAAGCTCT ATCACGAACT TCGTGCCATC CAGTATGGCG ACAAGCCCGA  
     993 CATTCATGGT TGGGTGACAA TCCTCGACTA A  
 
> Amino acid sequence of N-terminal pETHis6 PgIlvE 
     -19 MGSSHHHHHH SSGLVPRGSH MENIDWSSLS FGYRKTDYNV RCYYRNGKWG  
      31 ELEVSSEETI TMHMAATCLH YGQEAFEGMK AFRGKDGKIR LFRMDENAKR  
      81 MNRSCQGVVM AELPQEIFEA AVIKAVKMNE RFVPPYESGA SLYIRPLVIG  
     131 LGAQVGVKPA PEYLFIVFVT PVGPYFKEGF KPTKMAIFRD YDRAAPLGTG  
     181 TIKVGGNYAA GMIPTVKAHE MGYSAAIFLD AKEKKYIDEA GPANFFAIKN  
     231 NTYITPESSS ILPSITNKSL MQVAQDLGLK VERRPVAEEE LATFEEAGAC  
     281 GTAAVISPIS EIDDLENNKQ YVISKDGKPG PWCEKLYHEL RAIQYGDKPD  
     331 IHGWVTILD  
(N-terminal His6 tag in red) 
> DNA sequence of N-terminal pETHis6PgIlvE Y188A 
     -57 ATGGGCAGCA GCCATCATCA TCATCATCAC AGCAGCGGCC TGGTGCCGCG  
      -7 CGGCAGCCCA TATGGAAAAT ATCGATTGGT CATCGCTCTC ATTCGGTTAT  
      43 AGGAAGACCG ACTACAACGT GCGCTGTTAC TATCGCAACG GCAAGTGGGG  
      93 AGAGCTTGAA GTATCCTCAG AGGAAACGAT CACGATGCAC ATGGCTGCCA  
     143 CTTGTCTCCA CTACGGACAG GAAGCATTCG AAGGGATGAA GGCTTTCCGT  
     193 GGCAAAGATG GCAAGATCCG CCTCTTCCGC ATGGATGAGA ATGCCAAGCG  
     243 CATGAACAGA TCATGCCAAG GTGTGGTAAT GGCCGAGCTG CCGCAGGAAA  
     293 TCTTCGAAGC AGCTGTAATC AAGGCCGTAA AGATGAACGA GCGTTTCGTT  
     343 CCTCCTTACG AAAGCGGAGC TTCTCTTTAC ATCCGTCCGC TTGTTATCGG  
     393 ACTGGGTGCA CAAGTGGGTG TGAAGCCGGC TCCCGAGTAT CTCTTCATCG  
     443 TCTTTGTAAC GCCCGTAGGG CCGTATTTCA AAGAAGGATT CAAACCGACC  
     493 AAGATGGCCA TCTTCCGCGA CTATGACCGT GCAGCTCCTC TGGGTACGGG  
     543 TACGATCAAA GTGGGCGGTA ACGCTGCAGC CGGTATGATC CCCACAGTGA  
     593 AAGCTCACGA AATGGGCTAC TCTGCAGCTA TCTTCTTGGA TGCCAAAGAA  
     643 AAGAAGTACA TAGACGAAGC CGGTCCGGCC AACTTCTTCG CCATCAAGAA  
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     693 CAATACTTAT ATCACTCCCG AATCCAGCTC TATCCTGCCC TCTATCACAA  
     743 ACAAGAGTCT GATGCAGGTG GCTCAGGATC TGGGTCTGAA GGTAGAGCGT  
     793 CGTCCGGTAG CCGAAGAAGA GCTTGCTACT TTCGAAGAAG CAGGTGCTTG  
     843 TGGTACGGCA GCCGTGATCA GCCCTATCTC CGAGATTGAC GACTTGGAGA  
     893 ACAACAAACA GTACGTCATC AGCAAGGACG GCAAACCGGG TCCGTGGTGT  
     943 GAAAAGCTCT ATCACGAACT TCGTGCCATC CAGTATGGCG ACAAGCCCGA  
     993 CATTCATGGT TGGGTGACAA TCCTCGACTA A  
 
> Amino acid sequence of N-terminal pETHis6 PgIlvE Y188A 
     -19 MGSSHHHHHH SSGLVPRGSH MENIDWSSLS FGYRKTDYNV RCYYRNGKWG  
      31 ELEVSSEETI TMHMAATCLH YGQEAFEGMK AFRGKDGKIR LFRMDENAKR  
      81 MNRSCQGVVM AELPQEIFEA AVIKAVKMNE RFVPPYESGA SLYIRPLVIG  
     131 LGAQVGVKPA PEYLFIVFVT PVGPYFKEGF KPTKMAIFRD YDRAAPLGTG  
     181 TIKVGGNAAA GMIPTVKAHE MGYSAAIFLD AKEKKYIDEA GPANFFAIKN  
     231 NTYITPESSS ILPSITNKSL MQVAQDLGLK VERRPVAEEE LATFEEAGAC  
     281 GTAAVISPIS EIDDLENNKQ YVISKDGKPG PWCEKLYHEL RAIQYGDKPD  
     331 IHGWVTILD  
(N-terminal His6 tag in red, the mutated site in blue) 
 
> DNA sequence of N-terminal pETHis6PgIlvE F56A 
     -57 ATGGGCAGCA GCCATCATCA TCATCATCAC AGCAGCGGCC TGGTGCCGCG  
      -7 CGGCAGCCCA TATGGAAAAT ATCGATTGGT CATCGCTCTC ATTCGGTTAT  
      43 AGGAAGACCG ACTACAACGT GCGCTGTTAC TATCGCAACG GCAAGTGGGG  
      93 AGAGCTTGAA GTATCCTCAG AGGAAACGAT CACGATGCAC ATGGCTGCCA  
     143 CTTGTCTCCA CTACGGACAG GAAGCAGCTG AAGGGATGAA GGCTTTCCGT  
     193 GGCAAAGATG GCAAGATCCG CCTCTTCCGC ATGGATGAGA ATGCCAAGCG  
     243 CATGAACAGA TCATGCCAAG GTGTGGTAAT GGCCGAGCTG CCGCAGGAAA  
     293 TCTTCGAAGC AGCTGTAATC AAGGCCGTAA AGATGAACGA GCGTTTCGTT  
     343 CCTCCTTACG AAAGCGGAGC TTCTCTTTAC ATCCGTCCGC TTGTTATCGG  
     393 ACTGGGTGCA CAAGTGGGTG TGAAGCCGGC TCCCGAGTAT CTCTTCATCG  
     443 TCTTTGTAAC GCCCGTAGGG CCGTATTTCA AAGAAGGATT CAAACCGACC  
     493 AAGATGGCCA TCTTCCGCGA CTATGACCGT GCAGCTCCTC TGGGTACGGG  
     543 TACGATCAAA GTGGGCGGTA ACTATGCAGC CGGTATGATC CCCACAGTGA  
     593 AAGCTCACGA AATGGGCTAC TCTGCAGCTA TCTTCTTGGA TGCCAAAGAA  
     643 AAGAAGTACA TAGACGAAGC CGGTCCGGCC AACTTCTTCG CCATCAAGAA  
     693 CAATACTTAT ATCACTCCCG AATCCAGCTC TATCCTGCCC TCTATCACAA  
     743 ACAAGAGTCT GATGCAGGTG GCTCAGGATC TGGGTCTGAA GGTAGAGCGT  
     793 CGTCCGGTAG CCGAAGAAGA GCTTGCTACT TTCGAAGAAG CAGGTGCTTG  
     843 TGGTACGGCA GCCGTGATCA GCCCTATCTC CGAGATTGAC GACTTGGAGA  
     893 ACAACAAACA GTACGTCATC AGCAAGGACG GCAAACCGGG TCCGTGGTGT  
     943 GAAAAGCTCT ATCACGAACT TCGTGCCATC CAGTATGGCG ACAAGCCCGA  
     993 CATTCATGGT TGGGTGACAA TCCTCGACTA A  
 
> Amino acid sequence of N-terminal pETHis6 PgIlvE Y188A 
     -19 MGSSHHHHHH SSGLVPRGSH MENIDWSSLS FGYRKTDYNV RCYYRNGKWG  
      31 ELEVSSEETI TMHMAATCLH YGQEAAEGMK AFRGKDGKIR LFRMDENAKR  
      81 MNRSCQGVVM AELPQEIFEA AVIKAVKMNE RFVPPYESGA SLYIRPLVIG  
     131 LGAQVGVKPA PEYLFIVFVT PVGPYFKEGF KPTKMAIFRD YDRAAPLGTG  
     181 TIKVGGNYAA GMIPTVKAHE MGYSAAIFLD AKEKKYIDEA GPANFFAIKN  
     231 NTYITPESSS ILPSITNKSL MQVAQDLGLK VERRPVAEEE LATFEEAGAC  
     281 GTAAVISPIS EIDDLENNKQ YVISKDGKPG PWCEKLYHEL RAIQYGDKPD  
     331 IHGWVTILD  
(N-terminal His6 tag in red, the mutated site in blue) 
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