

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/478960578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning to Adapt: Meta-Learning Approaches

for Speaker Adaptation

Ondřej Klejch
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2020

Abstract
The performance of automatic speech recognition systems degrades rapidly when there

is a mismatch between training and testing conditions. One way to compensate for this

mismatch is to adapt an acoustic model to test conditions, for example by performing

speaker adaptation. In this thesis we focus on the discriminative model-based speaker

adaptation approach. The success of this approach relies on having a robust speaker

adaptation procedure – we need to specify which parameters should be adapted and

how they should be adapted. Unfortunately, tuning the speaker adaptation procedure

requires considerable manual effort.

In this thesis we propose to formulate speaker adaptation as a meta-learning task. In

meta-learning, learning occurs on two levels: a learner learns a task specific model and

a meta-learner learns how to train these task specific models. In our case, the learner is

a speaker dependent-model and the meta-learner learns to adapt a speaker-independent

model into the speaker dependent model. By using this formulation, we can automati-

cally learn robust speaker adaptation procedures using gradient descent. In the exper-

iments, we demonstrate that the meta-learning approach learns competitive adaptation

schedules compared to adaptation procedures with handcrafted hyperparameters.

Subsequently, we show that speaker adaptive training can be formulated as a meta-

learning task as well. In contrast to the traditional approach, which maintains and op-

timises a copy of speaker dependent parameters for each speaker during training, we

embed the gradient based adaptation directly into the training of the acoustic model.

We hypothesise that this formulation should steer the training of the acoustic model

into finding parameters better suited for test-time speaker adaptation. We experimen-

tally compare our approach with test-only adaptation of a standard baseline model and

with SAT-LHUC, which represents a traditional speaker adaptive training method. We

show that the meta-learning speaker-adaptive training approach achieves comparable

results with SAT-LHUC. However, neither the meta-learning approach nor SAT-LHUC

outperforms the baseline approach after adaptation.

Consequently, we run a series of experimental ablations to determine why SAT-

LHUC does not yield any improvements compared to the baseline approach. In these

experiments we explored multiple factors such as using various neural network archi-

tectures, normalisation techniques, activation functions or optimisers. We find that

SAT-LHUC interferes with batch normalisation, and that it benefits from an increased

hidden layer width and an increased model size. However, the baseline model bene-

fits from increased capacity too, therefore in order to obtain the best model it is still

i

favourable to train a speaker independent model with batch normalisation. As such, an

effective way of training state-of-the-art SAT-LHUC models remains an open question.

Finally, we show that the performance of unsupervised speaker adaptation can be

further improved by using discriminative adaptation with lattices as supervision ob-

tained from a first pass decoding, instead of traditionally used one-best path tran-

scriptions. We find that this proposed approach enables many more parameters to

be adapted without overfitting being observed, and is successful even when the initial

transcription has a WER in excess of 50%.

ii

Lay Summary

Automatic speech recognition (ASR) systems have become widely used in recent

years. They are used in many areas of daily life in applications like dictation, smart

assistants, subtitling and many others. The adoption of ASR systems was enabled by

recent improvements to their accuracy, which were obtained through improved train-

ing methods that allow researchers to leverage vast amounts of training data efficiently.

However, the accuracy of ASR systems degrades rapidly when they are used in con-

ditions that differ from the training conditions, for example when transcribing child

speech or non-native speech with an ASR system trained on native adult speech. One

way to compensate for this mismatch is to adapt ASR systems to the new unseen condi-

tions, for example by adapting to unseen speaker characteristics. In this thesis we focus

on making speaker adaptation reliable by carefully tuning its parameters. In the past,

the tuning of speaker adaptation parameters required considerable manual effort. Here

we propose to use an approach called learning to learn, also known as meta-learning,

which allows us to automatically learn these speaker adaptation parameters with well

studied optimisation techniques. We experimentally show that with the learning to

adapt approach we can automatically learn speaker adaptation parameters that achieve

superior performance to the manually tuned parameters. Furthermore, we study how

the learning to adapt approach can be leveraged to train ASR models that are better

suited for rapid adaptation to new speakers. We also explore ways of making speaker

adaptation more robust in situations, where we only have access to a recording without

any transcript.

iii

Acknowledgements

First, I would like to thank my supervisors Steve Renals and Peter Bell for their support

and advice during my studies. I am especially grateful to them for encouraging me to

find my own research direction and for guiding me on the way. I want to thank Korin

Richmond for his insightful comments on my research plans during yearly reviews. I

would also like to thank my thesis examiners Sharon Goldwater and Khe Chai Sim for

reading this thesis and for their feedback.

I am grateful to all my colleagues from CSTR for creating such a friendly working

environment and for being my role-models. I would also like to thank my fellow PhD

students, Joachim Fainberg, Joanna Rownicka, Sameer Bansel, Mihai Sorin Dobre,

Craig Innes, Chau Luu, Abhirub Ghosh and Ben Krause for all the thought-provoking

discussions we had. I am especially grateful to Joachim Fainberg for our daily apple

breaks.

I also want to thank Pararth Shah, Larry Heck, Sourish Chaudhury and Joseph Roth

for hosting me during my two internships at Google and for showing me how research

ideas can be transformed into great products.

I would like to thank friends from the Edinburgh University Ballroom Dancing

Society, especially Hilary and Tibor, for making Edinburgh my second home away

from home.

I am grateful to my parents and the whole family for their support and encourage-

ment during my studies.

Most of all, I want to thank my wife Martina who showed me the beauty of research

and encouraged me to pursue PhD studies at the University of Edinburgh.

This work was partially supported by the EU H2020 projects SUMMA (grant

agreement 688139) and ELG (grant agreement 825627), and by the Office of the Direc-

tor of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity

(IARPA), via Air Force Research Laboratory (AFRL) contract #FA8650-17-C-9117.

The views and conclusions contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies, either expressed or implied,

of ODNI, IARPA, AFRL or the U.S. Government. The U.S. Government is authorised

to reproduce and distribute reprints for governmental purposes notwithstanding any

copyright annotation therein.

iv

Table of Contents

1 Introduction 1
1.1 Declaration of Content . 3

2 Automatic Speech Recognition 5
2.1 Acoustic Modelling . 8

2.2 Hybrid DNN-HMM Acoustic Models 9

2.3 Neural Network Architecture . 11

3 Speaker Adaptation 16
3.1 Feature-Space Speaker Adaptation 17

3.2 Model-Based Speaker Adaptation 18

3.3 Auxiliary Feature Speaker Adaptation 19

3.4 Estimation of Speaker Dependent Parameters 19

3.5 Structured Linear Transformations 20

3.6 Regularisation Methods for Speaker Adaptation 27

3.7 Speaker Adaptive Training . 32

3.8 Summary . 33

4 Learning to Adapt 34
4.1 Meta-Learning . 36

4.2 Speaker Adaptation as a Meta-Learning Task 42

4.3 Speaker Adaptive Training as a Meta-Learning Task 44

4.4 Implementation of Coordinate-wise Meta-Learner 45

4.5 Implementation of Model-Agnostic Meta-Learner 48

4.6 Learning All Speaker Adaptation Hyperparameters 48

4.7 Summary . 52

v

5 Speaker Adaptation Experiments 53
5.1 TED Talks . 53

5.2 Baseline Acoustic Models . 54

5.3 Speaker Adaptation Setup . 55

5.4 Training the Meta-Learner . 56

5.5 Results . 56

5.6 Benchmarking Meta-Learner Speed 61

5.7 Summary . 63

6 Speaker Adaptive Training Experiments 64
6.1 Baseline Acoustic Model . 64

6.2 Speaker Adaptation Setup . 65

6.3 SAT-LHUC Training Details . 65

6.4 MAML Training Details . 65

6.5 Results . 67

6.6 Summary . 70

7 Analysis of SAT-LHUC Training 71
7.1 Baseline Acoustic Models . 71

7.2 Speaker Adaptation Setup . 72

7.3 Effect of the Normalisation . 72

7.4 Effect of the Hidden Layer Width 74

7.5 Effect of the Model Size . 75

7.6 Effect of the Activation Function . 76

7.7 Effect of the Training Optimiser . 77

7.8 Effect of the Number of Training Iterations 78

7.9 Conclusions . 79

8 Lattice Based Unsupervised Speaker Adaptation 82
8.1 Lattice supervision . 83

8.2 Lattice-Free MMI . 84

8.3 Baseline Acoustic Models . 85

8.4 Speaker Adaptation Setup . 86

8.5 Results . 87

8.6 Summary . 89

vi

9 Conclusions 90
9.1 Future work . 92

Bibliography 96

vii

Chapter 1

Introduction

In the past few years, the accuracy of automatic speech recognition (ASR) systems has

improved dramatically. This progress was enabled mainly by access to larger training

datasets, better techniques for training neural networks and sufficient computational

power to train them on large training datasets. This improvement, together with the

increased popularity of smart devices, caused an adoption of ASR in applications like

dictation, smart assistants, subtitling and many others. However, there are still many

problems that prevent ASR to become even more widely used. One of them is that

the performance of ASR systems degrades rapidly when there is a mismatch between

training and testing conditions. One method to alleviate this problem is to adapt the

ASR system to the test-time conditions, for example to unseen speakers by performing

speaker adaptation of an acoustic model.

In the past there has been a lot of research in speaker adaptation of acoustic models.

Speaker adaptation techniques can be divided into three approaches. The first, the

feature-space approach, performs speaker adaptation by estimating a transformation

of input acoustic features that maximises the log-likelihood of the adaptation data.

The second, the model-based approach, discriminatively adapts the neural network

acoustic model parameters based on the adaptation data. In the third, the auxiliary

feature-based approach, the acoustic model is provided with auxiliary features that

inform it about speaker characteristics, which enables the acoustic model to better

model speaker variability. We provide a comprehensive review of speaker adaptation

methods in Chapter 3.

In this thesis we focus on discriminative model-based speaker adaptation which

works as follows. To perform speaker adaptation we need some adaptation data, which

consists of input acoustic features and corresponding labels. The acoustic model makes

1

Chapter 1. Introduction 2

predictions based on the input acoustic features. These predictions are then compared

with provided labels in order to compute a loss value, which measures how good the

predictions are. Subsequently, gradients of the loss are computed with respect to the

parameters of the acoustic model. Finally, these parameters are updated in the opposite

direction of the gradients to minimise the loss value with a predefined step size, which

we call learning rate. This process is usually repeated for several steps to obtain the

best results.

The biggest challenge of model-based speaker adaptation applied to neural net-

work based acoustic models is that their modelling capacity makes adaptation prone to

overfitting. This overfitting can happen in several ways. Firstly, if the amount of adap-

tation data is limited, the acoustic model is adapted only on examples for a few output

classes, which might lead to catastrophic forgetting of unseen classes. Secondly, if the

adaptation data is limited it might not be fully representative of the speaker character-

istics and the acoustic model might overfit to a certain subset of speaker characteristics

present in the adaptation data. Thirdly, the provided labels for the adaptation data

might be erroneous, therefore it is important not to overfit to those errors.

To prevent the aforementioned overfitting issues, the adaptation procedure needs

to be carefully tuned. First, we need to select which parameters of the acoustic model

should be treated as speaker dependent. By limiting the numbers of speaker depen-

dent parameters we can prevent overfitting, but on the other hand we are also limiting

the expressivity of the adaptation function which might result in sub-optimal solu-

tions. Second, we need to find a reliable learning rate schedule that will not overfit

to the adaptation data, but at the same time maximise the performance of the adapted

model. Third, we need to find a suitable loss function, for example by using a linear

combination of multiple losses. Finally, since we usually apply the update rule sev-

eral times, we need to determine an appropriate number of adaptation steps. In the

past these hyperparameters of the adaptation procedure were tuned manually, which

required considerable effort.

The main contribution of this thesis is that we show that speaker adaptation hy-

perparameters can be optimised automatically by formulating speaker adaptation as a

meta-learning task. In meta-learning, learning is happening on two levels. In the con-

text of speaker adaptation, a learner is learning a speaker-dependent acoustic model

and a meta-learner is learning to adapt a speaker-independent model into a speaker

dependent model. When both the learner and the meta-learner are differentiable, it

is possible to train them with gradient descent methods, which allows the automatic

Chapter 1. Introduction 3

tuning of speaker adaptation hyperparameters. We describe meta-learning approaches

in Chapter 4 and in Chapter 5 we experimentally show that they achieve competitive

results compared to popular speaker adaptation techniques .

Furthermore, we show that speaker adaptive training (SAT) can be also formulated

as a meta-learning task (Section 4.3). Traditionally, speaker adaptive training is used

to remove speaker variance from the data such that the canonical model can focus only

on modelling the phonological variability. In neural network based models this can

be achieved by maintaining a copy of speaker dependent parameters, which remove

the speaker variance, for each speaker. However, this approach does not allow speaker

adaptive training of the whole acoustic model. Due to memory constraints, it is not

possible to maintain a copy of all the parameters for each speaker and we also usually

do not have enough data to train the whole model in a speaker adaptive way. Our for-

mulation of speaker adaptive training differs. Instead of removing the speaker variance

from the data, we embed gradient based speaker adaptation directly into the training of

the acoustic model. We hypothesise that this should steer the training process to find

parameters suitable for test-time speaker adaptation. Also, it allows speaker adaptive

training of the whole model. Unfortunately, in our experiments in Chapter 6 we find

that model-based speaker adaptive training, both traditional and meta-learning based,

does not yield any improvements compared to the baseline acoustic models. Conse-

quently, we analyse why model-based speaker adaptive training does not work with

the current state-of-the-art models in Chapter 7. In particular, we analyse it by altering

various settings, such as the neural network architecture, hidden layer width, model

size, normalisation techniques or optimisers. We find that changing these parameters

did not improve the performance of the adapted SAT models compared to the adapted

baseline acoustic model.

Finally in Chapter 8, we address an issue common to unsupervised speaker adap-

tation, where some of the labels provided with the adaptation data might be erroneous.

We show that the issue with erroneous labels can be mitigated by using lattices, which

encode uncertainty present in the first pass decoding, instead of one best paths for

computation of the loss using the Lattice-free MMI framework.

1.1 Declaration of Content

The thesis consists of research from the following publications:

Chapter 1. Introduction 4

• Klejch, O., Fainberg, J., and Bell, P. (2018). Learning to adapt: a meta-learning

approach for speaker adaptation. In Interspeech.

• Klejch, O., Fainberg, J., Bell, P., and Renals, S. (2019b). Speaker adaptive train-

ing using model agnostic meta-learning. In ASRU.

• Klejch, O., Fainberg, J., Bell, P., and Renals, S. (2019a). Lattice-based unsu-

pervised test-time adaptation of neural network acoustic models. arXiv preprint

arXiv:1906.11521.

Furthermore, during my PhD studies I also worked extensively on punctuation predic-

tion of ASR transcripts. We decided not to include this work in this thesis in order to

make the thesis more coherent. This work was published in the following publications:

• Klejch, O., Bell, P., and Renals, S. (2016). Punctuated transcription of multi-

genre broadcasts using acoustic and lexical approaches. In SLT.

• Klejch, O., Bell, P., and Renals, S. (2017). Sequence-to-sequence models for

punctuated transcription combining lexical and acoustic features. In ICASSP.

I was also involved in several projects within and without the university which resulted

in the following publications:

• Liepins, R., Germann, U., Barzdins, G., Birch, A., Renals, S., Weber, S., van der

Kreeft, P., Bourlard, H., Prieto, J., Klejch, O., et al. (2017). The SUMMA plat-

form prototype. In Software Demonstrations ACL.

• Tsunoo, E., Klejch, O., Bell, P., and Renals, S. (2017). Hierarchical recurrent

neural network for story segmentation using fusion of lexical and acoustic fea-

tures. In ASRU.

• Roth, J., Chaudhuri, S., Klejch, O., Marvin, R., Gallagher, A., et al. (2019).

AVA-ActiveSpeaker: An audio-visual dataset for active speaker detection. arXiv

preprint arXiv:1901.01342.

• Fainberg, J., Klejch, O., Renals, S., and Bell, P. (2019b). Lattice-based lightly-

supervised acoustic model training. In Interspeech.

• Fainberg, J., Klejch, O., Loweimi, E., Bell, P., and Renals, S. (2019a). Acoustic

model adaptation from raw waveforms with SincNet. In ASRU.

Chapter 2

Automatic Speech Recognition

Automatic speech recognition (ASR) systems transcribe input audio into a sequence of

words. Thanks to recent advancements, mainly in hardware, training data availability

and training methods, ASR surpassed the usability threshold which caused its adoption

in many areas of everyday life. ASR systems are used in a range of applications such

as dictation, dialogue systems for smart assistants, subtitling and many others. In this

chapter we describe how ASR works. We especially focus on hybrid DNN-HMM

acoustic models (Bourlard and Morgan, 1993, 1994; Hinton et al., 2012; Yu and Deng,

2016) which we have used throughout this thesis.

The goal of automatic speech recognition (ASR) is to find the most likely word

sequence Ŵ = w1, . . . ,wL of length L that corresponds to an input audio signal, from

which a sequence of acoustic features X = x1, . . . ,xT of length T is extracted. In the

statistical modelling approach we use a posterior P(W |X) to find the most likely se-

quence of words Ŵ

Ŵ = argmax
W

P(W |X) . (2.1)

Nowadays, there are two predominant approaches for modelling P(W |X). The first

models the posterior directly using a neural network, this approach is sometimes called

end-to-end. The most common examples of this approach are Connectionist Temporal

Classification (CTC) (Graves, 2016), the Recurrent Neural Network Transducer (RNN-

T) (Graves, 2012) and sequence-to-sequence models (Chorowski et al., 2015; Chan

et al., 2016). The alternative, more traditional approach, is the modular approach,

which decomposes the posterior into several models using Bayes’ rule:

P(W |X) =
P(X |W)P(W)

P(X)
. (2.2)

5

Chapter 2. Automatic Speech Recognition 6

Therefore, the most likely sequence of words Ŵ can be found as

Ŵ = argmax
W

P(X |W)P(W)

P(X)
. (2.3)

Since we are looking only for the most likely sequence of words Ŵ , we ignore P(X)

in the denominator:

Ŵ = argmax
W

P(X |W)︸ ︷︷ ︸
AM

P(W)︸ ︷︷ ︸
LM

. (2.4)

As a result, the posterior is decomposed into two models: P(X |W), which we call an

acoustic model (AM), and P(W), which we call a language model (LM).

Both approaches have their advantages and disadvantages. The main benefit of the

end-to-end approach is that it optimises the posterior directly. Also, since it is just a

single neural network, it is much easier to deploy end-to-end models into production,

especially when we want to run ASR on-device. The main benefit of the modular ap-

proach is that it allows the training of models on different datasets. We typically train

the acoustic model on audio data with corresponding transcripts and we train the lan-

guage on a significantly larger text corpora. This modularisation also allows to adapt

the ASR system to different domains just by updating the language model. Moreover,

the modular approach allows us to use pronunciation modelling which is very impor-

tant in some languages, especially in languages without any written form. The main

disadvantage of the modular approach is that an improvement in one of its compo-

nents does not necessarily imply an improved performance of the overall system. This

problem can be mitigated by using sequence discriminative training criteria that take

the language model into account during training of the acoustic models. These cri-

teria include maximum mutual information (MMI) (Bahl et al., 1986; Valtchev et al.,

1997), minimum phone error (MPE) (Povey, 2005), state-level minimum Bayes risk

(sMBR) (Kaiser et al., 2000; Gibson and Hain, 2006; Povey and Kingsbury, 2007).

In this thesis we focus on the traditional modular approach that uses both acoustic

and language models. The ASR pipeline of the modular approach, as illustrated in

Figure 2.1, traditionally consists of four components:

1. feature extraction extracts acoustic features X from the input audio signal A by

converting the time-domain signal into frequency domain acoustic features such

as Mel filter bank (Fbank) coefficients (Deng et al., 2013), Mel-frequency cep-

stral coefficients (MFCC) (Davis and Mermelstein, 1980) or Perceptual linear

predictions (PLP) (Hermansky, 1990) features.

Chapter 2. Automatic Speech Recognition 7

Feature Extractor

Language Model Acoustic ModelDecoder

thank you very much

Figure 2.1: The ASR pipeline consists of four components. A feature extractor con-

verts an input audio signal into a variable length sequence of acoustic features. These

acoustic features are fed to an acoustic model that produces an AM score. A language

model then produces an LM score for hypothesised sequence of words. A decoder

combines these two scores to find the most likely sequence of words Ŵ .

2. an acoustic model P(X |W) computes the scores for a given sequence of acoustic

features. We describe acoustic models in more detail in the rest of this chapter.

3. a language model P(W) that estimates the score as the prior probability for hy-

pothesised sequences of words. In ASR the language models are typically im-

plemented as count-based n-gram language models. Recently, neural network

language models have been used as well (Bengio et al., 2003; Mikolov et al.,

2010), especially to rescore n-best lists.

4. a decoder combines scores from the acoustic and the language model to find the

most likely sequence of words Ŵ in the hypothesis space.

Note that in some approaches some components are merged into a single model.

As we mentioned before, the end-to-end models combine the acoustic model and the

language model into a single neural network (Graves, 2012; Chorowski et al., 2015;

Chan et al., 2016). Some approaches also combine feature extraction and the acoustic

Chapter 2. Automatic Speech Recognition 8

s1 s2
a12

a22

s3
a23

a33

s4
a34

a44

s5
a45

x1

b2(x1)

x2

b2(x2)

x3

b3(x3)

x4

b4(x4)

x5

b4(x5)

Figure 2.2: An illustration of a five state hidden Markov model (HMM) with transition

probabilities ai j and output observation probabilities bi(·) that is used to model phones

in ASR. Note that state s1 and state s5 are non-emitting states and they are only used

for the construction of composite models by concatenating models of single speech

units.

model into a single model which allows the model to learn a task specific feature

extractor from raw waveforms (Sainath et al., 2015; Palaz et al., 2015; Golik et al.,

2015).

2.1 Acoustic Modelling

The goal of the acoustic model is to model the likelihood P(X |W). It does so typically

by modelling speech units with continuous density hidden Markov models (HMM)

(Rabiner, 1989; Gales et al., 2008) that can deal with the variable-length nature of

speech units. In order to model the whole utterance, a composite model is created for

the utterance by concatenating a sequence of models corresponding to the speech units

present in the utterance. We typically model the speech units with a five state left-to-

right HMM topology, as illustrated in Figure 2.2, with transition probabilities
{

ai j
}

and output observation probabilities {bi(·)}. Note that the first and the last state of

the HMM are non-emitting and they are used only to construct the composite model,

therefore we sometimes also call these models three state left-to-right HMMs. The

HMM works as follows: at every time step t the model transitions from its current state

st to the next state st+1 with the transition probability astst+1 and outputs the acoustic

vector xt with the probability bst (xt). The likelihood P(X |W) is evaluated as

P(X |W) = ∑
π

P(π,X |W) , (2.5)

Chapter 2. Automatic Speech Recognition 9

where π = s0, . . . ,sT is a valid state sequence through the composite model and

P(π,X |W) = as0s1

T

∏
t=1

bst (xt)astst+1. (2.6)

In GMM-HMM systems the output observation probabilities {bi(·)} are modelled by

Gaussian mixture models (GMM).

bi(x) =
M

∑
m=1

cimN (x;µ(im),Σ(im)), (2.7)

where cim are mixing coefficients satisfying the condition

M

∑
m=1

cim = 1 (2.8)

and µ(im) is a mean vector and Σ(im) is a covariance matrix, typically diagonal. The tran-

sition probabilities and the output observation probabilities are estimated on the train-

ing data with the Baum-Welch algorithm (Baum et al., 1970; Juang et al., 1986) which

might be considered a special case of the Expectation-Maximisation algorithm (Demp-

ster et al., 1977). For more information about GMM-HMM systems we refer to Gales

et al. (2008).

The base speech unit used in ASR is the phone. When we consider phones without

their context, we call them monophones. We model words by creating a composite

model for each word by concatenating HMMs for a sequence of phones that is given

by a pronunciation dictionary. Note that each word can be uttered in multiple ways.

In English we typically use 40 phones. However, phones can be produced differently

depending on their context, which lead to using context dependent phones. Typically,

we use triphones that model a central phone in the context of its preceding and its

following phone. However, this results in a rapid increase of HMM states that need to

be modelled, for example in English we would need to model 3×403 = 192000 states,

which is impractical, because we usually do not have enough training data to estimate

GMMs for all states. Therefore, the states of HMMs for triphones are clustered and tied

to reduce their number (Young et al., 1994). We call the tied states senones (Hwang

and Huang, 1992).

2.2 Hybrid DNN-HMM Acoustic Models

In hybrid DNN-HMM acoustic models the output observation probabilities {bi(·)} are

modelled with a single neural network (Figure 2.3) (Bourlard and Morgan, 1994; Seide

Chapter 2. Automatic Speech Recognition 10

HMMs

Output Layer

Hidden Layers

Input Layer

Acoustic Features

Figure 2.3: A diagram of the feed forward neural network with two hidden layers and a

context window of 11 frames predicting senone posterior probabilities.

et al., 2011). The neural network is discriminatively trained to model the conditional

posterior P(S |X) for all senones S. In order to be able to use the output of the network

for decoding, we need to use Bayes’ rule to compute the likelihoods P(X |S) as

P(X |S) = P(S |X)P(X)

P(S)
. (2.9)

Since P(X) does not affect the decoder in Equation 2.4 we can ignore it and we can use

scaled likelihoods P̂(X |S) (Bourlard and Morgan, 1994) that are obtained by dividing

the posterior probabilities P(S |X) by the senone priors P(S)

P(X |S) ∝ P̂(X |S) = P(S |X)

P(S)
. (2.10)

The priors P(S) are estimated from the training data, by diving the senone specific

counts Cs obtained from the training alignments with the total number of frames C

P(s) =
Cs

C
. (2.11)

Chapter 2. Automatic Speech Recognition 11

2.3 Neural Network Architecture

The architecture of the neural network in the hybrid DNN-HMM acoustic model (Fig-

ure 2.3) consists of three parts: an input layer, a sequence of hidden layers and an

output layer.

The input layer accepts a stack of acoustic features for several consecutive frames,

denoted x, and projects them into a hidden representation h0 ∈Rn with an affine trans-

formation with parameters W0 ∈ Rm×n and b0 ∈ Rn

h0 =W0x+b0, (2.12)

where is m the dimension of the input vector and n is the dimension of the hidden

representation. The input layer is usually fused into the first hidden layer and trained

jointly with the rest of the network. Alternatively, the parameters of the input layer can

be estimated separately and then they can be kept fixed during the training of the neural

network. For example, in Kaldi (Povey et al., 2011), a stack of 5 acoustic frames is

fed into the input layer and the parameters of the affine transformation are estimated

using Linear Discriminant Analysis (LDA) (Batlle et al., 1998; Duda et al., 2012). One

important consequence of using LDA as the input layer is that the input layer implicitly

performs global mean and variance normalisation of the input features, which helps the

training of the neural network.

The hidden representation h0 is then processed with a sequence of hidden layers.

Each hidden layer usually consists of three components: an affine transformation with

parameters Wi ∈ Rn×n and bi ∈ Rn, an activation function and an optional normalisa-

tion. In the feed-forward neural networks, the affine projection is applied only to the

output of the previous layer for a given time-step to produce pre-activations zi

zi =Wihi−1 +bi. (2.13)

In Time-delayed neural networks (TDNN) (Waibel et al., 1989; Lang et al., 1990; Ped-

dinti et al., 2015), the affine projection is applied to a stack of hidden representations

corresponding to several time-steps (Figure 2.4). In fact, TDNNs correspond to one-

dimensional convolutional neural networks (LeCun et al., 1995; Abdel-Hamid et al.,

2012), where the convolutions are applied in the time-domain. Note that feed forward

neural networks are a special case of TDNNs.

Subsequently, a non-linear activation function is applied element-wise on the result

of the affine projection. The most commonly used activation functions are

Chapter 2. Automatic Speech Recognition 12

t - 16

t - 14

t - 13

t - 10

t + 12

t + 10

t + 8

t + 5

t - 3 t + 3

t

Figure 2.4: A diagram of a Time delayed neural network with a recursive structure

defined by offsets {−2,−1,0,1,2},{−1,2},{−3,3},{−7,3},{−3,3}. For example,

in order to make a prediction at a time-step t we need the hidden activations of the

penultimate layer for the time-steps t−3 and t +3, *and* to produce *those* we need

the hidden activations of the previous layer for the time-steps t−3−7, t−3+3, t+3−7

and t + 3+ 3. This process is applied recursively until we reach the acoustic input

features. As can be seen from the diagram, this results in a subsampled architecture

where we do not have to compute all the hidden activations to produce the prediction

for time-step t.

• the sigmoid

σ(z) =
1

1+ e−z , (2.14)

• the hyperbolic tangent

tanh(z) =
ez− e−z

ez + e−z , (2.15)

• and the rectified linear unit (Nair and Hinton, 2010)

relu(z) = max(0,z) . (2.16)

These activation functions are used to introduce non-linearities into the network, be-

cause otherwise the network would be just a linear network, whose layers can be fused

into a single affine transformation.

Finally, the hidden representations can be normalised with Batch Normalisation

(Ioffe and Szegedy, 2015), Layer Normalisation (Ba et al., 2016) or other normali-

sation techniques (Salimans and Kingma, 2016; Ioffe, 2017; Ulyanov et al., 2016).

Chapter 2. Automatic Speech Recognition 13

Normalising hidden representations can significantly speed up training convergence.

This is because it normalises the distributions of inputs for each hidden layer. This

is important because even when we have normalised features as an input to the neu-

ral network, the distribution of activations can become skewed as the input features

are passed through several hidden layers. Also normalisation enables the usage of

large learning rates (Ioffe and Szegedy, 2015). This is due to the fact that normali-

sation together with the ReLU activation function (or linear activation function if we

normalise preactivations) makes the parameters of the layer scale invariant, e.g. the

output of a layer with parameters A,b is equal to the output of a layer with parameters

pA, pb for p > 0. However, corresponding gradients differ by a factor 1
p2 , such that

∇pAL = 1
p2 ∇AL. This makes the step size of the update dependent on the scale of the

weights and as the training progresses the weights become larger and the actual step

size becomes smaller. As a result, the neural network has the ability to tune its effective

learning rate on its own (Arora et al., 2019).

Batch Normalisation (Ioffe and Szegedy, 2015) produces a normalised hidden rep-

resentation h′i from a hidden representation hi as

h′i = γ
hi−µ√
σ2 + ε

+β, (2.17)

where µ is an estimated mean of hidden representations hi, σ2 is an estimate of their

variance; and γ and β are trainable parameters. During training, these quantities are

computed on a batch of hidden activations for N inputs as

Hi =
{

h1
i , . . . ,h

N
i
}
, (2.18)

such that

µB =
1
N

N

∑
j=1

h j
i (2.19)

and

σ2
B =

1
N

N

∑
j=1

(h j
i −µ)2. (2.20)

During inference, a global mean µG and global variance σ2
G are used for Batch Nor-

malisation. They can either be computed on the whole training dataset or they can be

estimated as running mean statistics during training.

The statistics computed on the batches can be significantly different from the global

statistics depending on how the batches are sampled (for example if we include only

one speaker in a single batch compared to having multiple speakers in a single batch).

Chapter 2. Automatic Speech Recognition 14

Therefore, Ioffe (2017) proposed a technique called Batch Renormalisation, which

applies the same statistics both during training and inference. Batch renormalisation

normalises hidden activations hi during training in the following way:

h′i = γ

r
hi−µB√

σ2
B + ε

+d

+β, (2.21)

where r and d are computed during the forward pass as follows:

r =

√
σ2

B + ε√
σ2

G + ε
, (2.22)

d =
µB−µG√

σ2
G + ε

(2.23)

and are treated as constants during the backward pass. By substituting Equations 2.22

and 2.23 into Equation 2.21 we obtain

h′i = γ
hi−µG√

σ2
G + ε

+β, (2.24)

which is identical to performing Batch Normalisation during inference, therefore the

normalisation works in the same way during both training and inference.

In Layer Normalisation (Ba et al., 2016) mean and variance statistics are not com-

puted on the batch but are computed for each example in the batch separately, therefore

the statistics do not change between training and inference. The mean and variance for

activations hi are computed as

µ =
1
D

D

∑
j=1

[hi] j (2.25)

and

σ2 =
1
D

D

∑
j=1

([hi] j− [µ] j)
2 (2.26)

respectively, where D is the dimensionality of the i-th hidden layer and [hi] j denotes

the j-th element of the hidden representation hi. Note that in Kaldi (Povey et al., 2011)

a similar approach, which only normalises the variance σ2, is used.

Finally, the output of the last hidden layer hn is fed into the output layer with

parameters Wo and bo, which computes the posteriors P(S |X) as:

P(S |X) = softmax(zo), (2.27)

Chapter 2. Automatic Speech Recognition 15

where

zo =Wohn +bo (2.28)

and the softmax activation is used to obtain a normalised probability distribution as

P(S = s |X) = [softmax(ho)]s =
e[x]s

∑C
i=1 e[x]i

. (2.29)

The neural network is trained with gradient descent (Rumelhart et al., 1986) with

the cross-entropy loss function. The target senones are obtained by force-aligning

the training data with a GMM-HMM model. The network can be trained with various

optimisers such as Stochastic Gradient Descent (SGD) (Bishop, 2006), Adam (Kingma

and Ba, 2014) or Natural Gradient (Povey et al., 2014). More information about neural

network architectures and neural network training can be found in Jurafsky and Martin

(2019, Chapter 7) or Goodfellow et al. (2016).

Chapter 3

Speaker Adaptation

In the previous chapter we described the basics of automatic speech recognition. The

performance of ASR models, similarly as for all other statistical machine learning

models, deteriorates quickly when a distribution of the testing data differs from the

distribution of the training data. One way to remedy this problem is to adapt the ASR

system to new conditions found in the test data. For example, we can adapt the ASR

system to unseen speakers via speaker adaptation. Even though both acoustic model

and language model speaker adaptation have been explored in the past (Neto et al.,

1995; Gales, 1998; Woodland, 2001; Stolcke, 2001; Gretter and Riccardi, 2001; Bac-

chiani and Roark, 2003; Gangireddy et al., 2016), we focus solely on speaker adap-

tation of the acoustic model in this thesis. Speaker adaptation of an acoustic model

f (x;θ) is performed as follows. First, we need to obtain some adaptation data

Dadapt =
{
(xadapt

j ,yadapt
j)| j ∈ {1 . . .n}

}
, (3.1)

which consists of n tuples of input acoustic features xadapt
j and corresponding labels

yadapt
j . These labels can be obtained either from the reference transcript (supervised

speaker adaptation) or from transcriptions produced by some seed ASR system (un-

supervised speaker adaptation). The adaptation data might either be some enrolment

utterance or it can be a part of the recording that we want to transcribe. We use the

adaptation data Dadapt to adapt the ASR model f (x;θ) to improve its performance on

the test data D test.

In this chapter we will review techniques for speaker adaptation that are tradi-

tionally divided into three approaches: feature-space approaches, model-based ap-

proaches and auxiliary feature approaches. We only review speaker adaptation tech-

niques that are applicable to DNN-HMM acoustic models; for an overview of speaker

16

Chapter 3. Speaker Adaptation 17

adaptation of GMM-HMM models we refer to Woodland (2001). We also review

speaker adaptive training of DNN-HMM models that applies speaker adaptation tech-

niques during the training of the acoustic model in order to remove speaker variability

from the training data allowing the canonical acoustic model to focus solely on mod-

elling phonological variations.

3.1 Feature-Space Speaker Adaptation

First of the approaches is the Feature-space speaker adaptation that performs speaker

adaptation by applying some transformation to the input acoustic features. Probably

the simplest method is cepstral mean and variance normalisation (CMVN) which nor-

malises cepstral features to have zero mean and unit variance for each speaker. The

normalised features x′ can be obtained as follows:

x′ =
x−µ√
σ2 + ε

, (3.2)

where µ is a cepstral mean, σ2 is a cepstral variance and ε is a small constant used

to ensure numerical stability. The cepstral mean and variance statistics are computed

on the corresponding speaker data, which might be some enrolment utterance, a cur-

rent utterance or a whole recording. The effectiveness of CMVN, and also all other

methods, depends on the amount and quality of the data that we use to compute these

statistics. For example, estimating them on short recordings or recordings with a lot of

silence can be harmful for the performance of the acoustic model.

Another feature-space speaker adaptation method is Vocal Tract Length Normali-

sation (VTLN) (Andreou, 1994; Lee and Rose, 1996). This technique is based on the

observations that the vocal tract length, which varies a lot in the population (children

and females usually have shorter vocal tract than males (Lee and Rose, 1996)), signif-

icantly affects formant frequencies of vowels causing the performance of the speaker

independent model to degrade. Therefore, a speaker specific warping factor of the

frequency-axis is applied to minimise this mismatch between speakers. The warp-

ing factor α can be estimated from formant positions which correlate with vocal tract

length (Wakita, 1977; Eide and Gish, 1996) or it can be estimated with a line-search to

maximise the likelihood of the adaptation data.

The last feature-space speaker adaptation method that we will cover in this thesis

is an affine transformation with parameters A ∈ Rn×n and b ∈ Rn that adapts the input

Chapter 3. Speaker Adaptation 18

features as

x′ = Ax+b. (3.3)

There are two major approaches for the estimation of the parameters A and b. The first,

Constrained Maximum Likelihood Linear Regression (cMLLR) sometimes also called

Feature-space Maximum Likelihood Linear Regression (fMLLR), uses the EM algo-

rithm (Dempster et al., 1977) to estimate these parameters to maximise the likelihood

of the adaptation data. cMLLR belongs to a wider family of Maximum Likelihood

Linear Regression (MLLR) speaker adaptation methods developed for GMM-HMM

models (Gales, 1998). The second, Linear Input Network (LIN) (Neto et al., 1995)

estimates the parameters discriminatively with gradient descent.

3.2 Model-Based Speaker Adaptation

Model-based speaker adaptation uses the adaptation data Dadapt to update the acous-

tic model f (x;θ), herein represented as a neural network, to allow the acoustic model

to adapt to differences in the adaptation data (Neto et al., 1995). The acoustic model

is adapted by discriminatively adapting the parameters θ using gradient descent with

a suitable objective function. Model-based adaptation methods can be split into two

groups. The first group adapts the whole acoustic model or some of its layers (Liao,

2013; Yu et al., 2013; Huang and Gong, 2015). The second group employs linear

transformations to transform input features x, hidden activations h or outputs y of the

acoustic model. These transformations are called Linear Input Network (LIN) (Neto

et al., 1995), Linear Hidden Network (LHN) (Gemello et al., 2007) and Linear Output

Network (LON) (Li and Sim, 2010) respectively. These transforms can be parame-

terised with a transformation matrix A ∈ Rn×n and a bias b ∈ Rn. The transformation

matrix A is initialised as an identity matrix and the bias b is initialised as a zero vector

prior to the speaker adaptation. The adapted hidden activations then become

h′ = Ah+b. (3.4)

Neural network acoustic models have a large modelling capacity, but the adaptation of

too many parameters might lead to overfitting to the adaptation data. The overfitting

can manifest itself in three ways. First, if the amount of adaptation data is limited,

then speaker adaptation can overfit to classes seen in the adaptation data and forget

about classes that are not present in the adaptation data. Second, the model can also

overfit to certain speaker characteristics that are present in the adaptation data but that

Chapter 3. Speaker Adaptation 19

are not fully representative of the speaker. Third, in unsupervised speaker adaptation

the labels are obtained from erroneous transcripts, which makes the ASR model prone

to overfitting to errors made in the first pass decoding. Therefore, model-based adap-

tation typically needs to be strongly regularised. Overfitting is traditionally prevented

either by reducing the number of speaker dependent parameters, or by using appropri-

ate regularisation losses that prevent the adapted model in diverging too far from the

original model. We discuss limiting the number of speaker dependent parameters in

Section 3.5 and various regularisation techniques in Section 3.6.

3.3 Auxiliary Feature Speaker Adaptation

Both of the aforementioned approaches are typically two-pass methods, because they

require some optimisation in order to find speaker dependent parameters. In contrast,

Auxiliary feature speaker adaptation can be used in one-pass decoding because it uses

auxiliary features estimated by some external model to inform the speaker about the

target speaker, channel, environment, etc. Many different auxiliary features have been

used to inform the acoustic model about target speaker characteristics in the past. For

example i-vectors (Dehak et al., 2011; Saon et al., 2013), d-vectors (Variani et al.,

2014), x-vectors (Snyder et al., 2018; Rownicka et al., 2019), speaker codes (Abdel-

Hamid and Jiang, 2013), bottleneck speaker vectors (Huang and Sim, 2015), features

produced by summary networks (Veselý et al., 2016; Delcroix et al., 2018b), LHUC

features (Xie et al., 2019c) or pooled and transformed activations of another acoustic

model (Rownicka et al., 2018, 2019). r-vectors (Khokhlov et al., 2019) were used to

inform the acoustic model about target room acoustics and factorised representations

(Fainberg et al., 2017) were used to inform the acoustic model both about speakers and

environments independently.

3.4 Estimation of Speaker Dependent Parameters

In the previous sections we introduced speaker adaptation methods according to the

traditionally used categorisation into feature space, model-based and auxiliary feature

speaker adaptation methods. We think that this categorisation in the context of adapta-

tion of neural network acoustic models might be confusing, because one method could

belong to multiple groups. Moreover, it can be shown that all feature-based and aux-

iliary feature adaptation methods can be posed as model-based adaptation methods.

Chapter 3. Speaker Adaptation 20

For example, feature-based methods can be posed as model-based adaptation methods

by fusing the feature transformation with the acoustic model and treating the feature

transformation as the first hidden layer of the acoustic model. Similarly, auxiliary fea-

tures, which are typically used for bias adaptation of the first hidden layer (Saon et al.,

2013), can be merged with the parameters of the acoustic model. As a result, the main

difference between the various methods is how they estimate the speaker dependent pa-

rameters. For example, CMVN and formant based VTLN estimates speaker dependent

parameters by computing statistics on the adaptation data. cMLLR uses the EM algo-

rithm to estimate linear transformations to maximise the likelihood of the adaptation

data and discriminative methods use gradient descent to optimise an objective func-

tion on the adaptation data. Finally, auxiliary methods use external models to predict

speaker dependent parameters.

We believe that speaker dependent parameter estimation is also an important cri-

terion for distinguishing between speaker adaptation and speaker normalisation. The

difference is that speaker adaptation requires transcribed adaptation data to estimate

the speaker dependent parameters. In supervised speaker adaptation we use reference

transcriptions and in unsupervised speaker adaptation we use transcriptions obtained

with a seed speaker-independent model. Speaker normalisation, on the other hand, can

estimate speaker dependent parameters only from the acoustic features without any

transcriptions.

3.5 Structured Linear Transformations

In the previous section we argued that all speaker adaptation techniques can be framed

as model-based speaker adaptation and the only difference is how we estimate the

speaker dependent parameters. In this section we will review various ways to incor-

porate speaker dependent parameters into the neural network acoustic models. For

simplicity, we will assume that the speaker dependent parameters can be estimated in

any of the aforementioned ways. We will denote speaker dependent parameters with

the subscript s, for example As,bs and we will denote the set of all speaker depen-

dent parameters as θs. An acoustic model with speaker independent parameters θ and

speaker dependent parameters θs will be written as f (x;θ,θs).

The linear hidden networks adapt activations of the i-th layer with parameters As ∈
Rn×n, bs ∈ Rn as

h′i = Ashi +bs. (3.5)

Chapter 3. Speaker Adaptation 21

rs ∈ Rn

Figure 3.1: A diagram of the Learning Hidden Unit Contributions (LHUC) adaptation.

However, even one transformation matrix As can contain too many speaker dependent

parameters, which makes adaptation susceptible to overfitting to adaptation data. It

also limits its practical usage in real world deployment because of memory require-

ments. Therefore, in the past, there has been considerable research into how to struc-

ture the matrix As and the bias bs to remove the number of speaker dependent parame-

ters.

The first set of approaches restricts the adaptation matrix As to be diagonal, we will

denote the diagonal elements as rs = diag(As). Thus, the adapted hidden activations

become

h′i = rs�hi +bs. (3.6)

There are several methods that belong to this set of adaptation methods. For exam-

ple, Learning Hidden Unit Contributions (LHUC) (Swietojanski and Renals, 2014),

illustrated in Figure 3.1, that adapts only the parameters rs.

h′i = rs�hi. (3.7)

Speaker Codes (Abdel-Hamid and Jiang, 2013) essentially allow the adaptation of the

speaker dependent biases bs.

h′i = hi +bs. (3.8)

Similarly, Wang and Wang (2017) proposed a method that adapts both rs and bs as

parameters βs and γs of batch normalisation layers. Thus it adapts both the scale and

the offset of the hidden layer activations with the mean µ and the standard deviation σ:

h′ = γs
h−µ

σ
+βs. (3.9)

There have also been approaches, that further reduce the number of speaker depen-

dent parameters by removing its dependency on the hidden layer width. They achieve

this by using speaker independent control networks that predict the speaker-dependent

parameters

rs = cr(zs,θr), (3.10)

Chapter 3. Speaker Adaptation 22

bs = cb(zs,θb), (3.11)

from some lower dimensional speaker dependent representations zs ∈ Rk, typically

auxiliary features like i-vectors. The control networks c∗(zs,θ∗) can be implemented

as a single linear transformation or as a multi-layer neural network. For example, Sub-

space LHUC (Samarakoon and Sim, 2016b) used a control network to predict LHUC

parameters rs from i-vectors zs. Cui et al. (2017) used auxiliary features to adapt

both scale rs and offset bs. This style of model-adaptation has the nice property of

having a very low memory footprint, because the i-vector dimension (usually 100) is

much lower than commonly used dimensions for the hidden layers. Samarakoon and

Sim (2016b) reported a 94% memory footprint reduction compared to standard LHUC

adaptation.

A similar approach with low-memory footprint adapts the activation functions in-

stead of the scale rs and offset bs. Zhang and Woodland (2015) proposed the use of

parameterised sigmoid and ReLU activation functions. With the parameterised sig-

moid function, hidden activations hi are computed from hidden pre-activations zi as

h = ηs
1

1+ e−γszi+θs
, (3.12)

where ηs, γs and θs are speaker dependent parameters. |ηs| controls the scale of the

hidden activations, γs controls the slope of the sigmoid function and θs controls the

midpoint of the sigmoid function. Similarly, parameterised ReLU activations was de-

fined as

h =

αsz if z > 0

βsz if z≤ 0
, (3.13)

where αs and βs are speaker dependent parameters that correspond to slopes for posi-

tive and negative pre-activations, respectively.

Other approaches factorise the transformation matrix As into a product of low-

rank matrices to obtain a smaller number of speaker dependent parameters. Zhao et al.

(2016) proposed a method called Low-Rank Plus Diagonal (LRPD), which reduces the

number of speaker dependent parameters by approximating the linear transformation

matrix As ∈ Rn×n as

As ≈ Ds +PsQs, (3.14)

where the Ds ∈ Rn×n, Ps ∈ Rn×k and Qs ∈ Rk×n are speaker dependent matrices and

Ds is a diagonal matrix. This approximation was motivated by the fact that the adapted

hidden activations should not be too different from the unadapted hidden activations

Chapter 3. Speaker Adaptation 23

Ps ∈ Rn×k

Qs ∈ Rk×n

Ds ∈ Rn×n

Figure 3.2: A diagram of the Low-Rank Plus Diagonal (LRPD) adaptation method that

factorises the adaptation matrix As as Ds +PsQs.

when we have only a limited amount of adaptation data, therefore the adaptation linear

transformation should be close to a diagonal matrix. In fact, for k = 0 LRPD reduces

to LHUC adaptation. LRPD adaptation can be implemented by inserting two hidden

linear layers and a skip connection, as illustrated in Figure 3.2.

Zhao et al. (2017) later presented an extension to LRPD called Extended LRPD

(eLRPD), which removed the dependency of the number of speaker dependent param-

eters on the hidden layer size by performing a different approximation of the linear

transformation matrix As

As ≈ Ds +PTsQ, (3.15)

where matrices Ds ∈Rn×n and Ts ∈Rk×k are speaker dependent and matrices P∈Rn×k

and Q ∈ Rk×n are treated as speaker independent. Thus the number of speaker depen-

dent parameters is mostly dependent on k, which can be chosen arbitrarily. Similarly

to LRPD, eLRPD can be implemented by inserting three hidden linear layers and a

skip connection.

Another set of approaches uses the speaker dependent parameters as mixing coeffi-

cients αs for a set of bases Bi which factorise the transformation matrix. As before, the

mixing coefficients can be predicted from lower-dimensional speaker dependent rep-

resentations. Samarakoon and Sim (2015, 2016a) proposed to use factorised hidden

layers (FHL) that would allow both speaker-independent and speaker dependent mod-

elling. With this approach activations of a hidden layer h with an activation function σ
are computed as

h = σ

(
(W +

n

∑
i=0

[αs]i Bi)x+bs +b

)
. (3.16)

Note, that when αs = 0 and bs = 0, the activations correspond to a standard SI model.

Chapter 3. Speaker Adaptation 24

In Samarakoon and Sim (2016a), the bases Bi were rank-1 matrices, Bi = γiψT
i , which

allows the reparameterisation of Equation 3.16 as:

h = σ

(
(W +

n

∑
i=0

[αs]iBi)x+bs +b

)

= σ

(
(W +

n

∑
i=0

[αs]iγiψT
i)x+bs +b

)
= σ

(
(W +ΓDΨT)x+bs +b

)
,

(3.17)

where D = diag(αs). In fact, this approach is very similar to Cluster Adaptive Training

of DNN networks (CAT-DNN) (Tan et al., 2016) that uses full rank bases instead of

rank-1 bases. Tan et al. (2016) explored three different ways of initialising the bases

Bi. They can be initialised randomly, from different checkpoints of a well trained

speaker independent model or by combining several condition dependent models (for

example channel/gender dependent models). Similarly, speaker dependent mixing co-

efficients αs can be initialised randomly, using some prior knowledge (for example

channel/gender information), using some automatic data clustering or they can be pre-

dicted from auxiliary features as in Samarakoon and Sim (2016a).

Similarly, Delcroix et al. (2018a) proposed to adapt activations of a hidden layer

with a Mixture-of-Experts (Jacobs et al., 1991). The adapted hidden unit activations

are then

h′ =
n

∑
i=0

[αs]i Bih. (3.18)

Finally, the number of speaker dependent parameters in all the aforementioned

linear transformations can be reduced by applying them to bottleneck layers that have

much lower dimensionality than the standard hidden layers. These bottleneck layers

can be obtained directly by training a neural network with bottleneck-layers or by

applying Singular Value Decomposition (SVD) to the hidden layers (Xue et al., 2013,

2014). This is done by applying SVD to the weight matrix W ∈Rn×n which factorises

it as:

A =UΣV T (3.19)

where the columns of the matrix U ∈ Rn×n are called the left singular vectors of A,

the columns of the matrix V ∈ Rn×n are the right singular vectors of A, and Σ ∈ Rn×n

is a diagonal matrix with singular values of A on the diagonal. By setting the (n− k)

smallest singular values of A to 0, we can approximate A as

A≈U ′Σ′V ′T , (3.20)

Chapter 3. Speaker Adaptation 25

U ′ ∈ Rn×k

Σ′ ∈ Rk×k

V ′T ∈ Rk×n

Figure 3.3: An illustration of SVD factorisation of a hidden layer which allows us to

significantly reduce the number of speaker dependent parameters.

where U ′ ∈ Rn×k correspond to the first k columns of U and V ′T ∈ Rk×n corresponds

to the first k rows of V T . This is illustrated in Figure 3.3. By setting W ′ = Σ′V ′T , we

approximate A as a product of two low-rank matrices U ′ ∈ Rn×k and W ′ ∈ Rk×n

A≈U ′W ′. (3.21)

In Xue et al. (2014) both matrices U ′ and W ′ are treated as speaker-independent and

the smaller matrix Ss is used for speaker adaptation

A≈U ′SsW ′. (3.22)

This results in a substantial reduction of speaker dependent parameters, even for LHN

adaptation.

In order to get a better idea of how these techniques perform, we ran supervised

and unsupervised speaker adaptation experiments with 10s, 30s and 60s of adapta-

tion data. The baseline model was a TDNN model with 6 hidden layers each with

600 units, ReLU activation functions and batch normalisation. The model predicted

posterior probabilities for 4208 senones. We trained the acoustic model on a por-

tion of the TED-LIUM dataset (Rousseau et al., 2012, 2014) obtained before the year

2012. We evaluated the model on a combined test set from the IWSLT 2010-2012

challenge (Paul et al., 2010; Federico et al., 2011, 2012). More details about the base-

line acoustic model and the dataset can be found in Section 6.1 and Section 5.1, re-

Chapter 3. Speaker Adaptation 26

10 30 60
Seconds of Adaptation Data

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 (%
)

Supervised Speaker Adaptation

ALL
LIN

LHN
LON

LHUC
pRELU

Batch Normalization
LRPD

Figure 3.4: WER (%) for a comparison of various adaptation methods in supervised

speaker adaptation. The dashed line shows the performance of the unadapted model.

10 30 60
Seconds of Adaptation Data

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 (%
)

Unsupervised Speaker Adaptation

ALL
LIN

LHN
LON

LHUC
pRELU

Batch Normalization
LRPD

Figure 3.5: WER (%) for a comparison of various adaptation methods in unsupervised

speaker adaptation. The dashed line shows the performance of the unadapted model.

spectively. Since all the tested techniques are very sensitive to the choice of hyper-

parameters of the adaptation procedure, we used the combined development set from

IWSLT 2010 and 2012 to tune the adaptation procedure in order to provide a fair com-

parison of the techniques. Instead of using a hyper-parameter grid-search, we tuned

the speaker adaptation procedure using the meta-learning approach, which will be de-

scribed in Section 4.2, which can automatically learn an adaptation learning rate for

each adapted layer. With this approach we automatically tuned a learning rate for each

adapted layer.

In this experiment we compared the following methods: adaptation of the whole

model, adaptation of LIN (Neto et al., 1995), LHN (Gemello et al., 2007), LON (Li and

Sim, 2010), LHUC (Swietojanski and Renals, 2014), pRELU (Zhang and Woodland,

2015), Batch Normalisation (Wang and Wang, 2017) and LRPD (Zhao et al., 2016).

Chapter 3. Speaker Adaptation 27

Method Number of SD parameters

ALL 5.9M

LIN (Neto et al., 1995) 40.2k

LHN (Gemello et al., 2007) 2.2M

LON (Li and Sim, 2010) 17.7M

LHUC (Swietojanski et al., 2016) 3.6k

Parameterised ReLU (Zhang and Woodland, 2015) 7.2k

Batch Normalisation (γ,β) (Wang and Wang, 2017) 7.2k

LRPD (Zhao et al., 2016) with k = 10 75.6k

Table 3.1: Summary of the number of speaker dependent parameters for various tech-

niques.

In Table 3.1 we list the number of speaker dependent parameters that were adapted in

each experiment. We adapted all the hidden layers (except for LIN and LON that are

adapting only the input or output, respectively).

The results for these experiments are plotted in Figure 3.4 for supervised and Fig-

ure 3.5 for unsupervised speaker adaptation. As we can see, there are significant dif-

ferences between the methods. In supervised speaker adaptation the best results are

achieved by adapting the whole network, followed by LHN adaptation, LHUC adap-

tation and LRPD adaptation. This can be explained by the fact that for supervised

adaptation a higher number of speaker dependent parameters is beneficial. However,

the meta-learner learned not to perform LON adaptation, because it contains too many

parameters that cannot be reliably estimated using the limited amounts of adaptation

data. In the unsupervised adaptation experiment the results are more even, which can

be explained by the fact the meta-learner learns more conservative learning rates, be-

cause it does not want to overfit to errors in the labels.

3.6 Regularisation Methods for Speaker Adaptation

As we mentioned before, model-based speaker adaptation is prone to overfitting to

the adaptation data. In the previous section we discussed various ways of limiting the

number of speaker dependent parameters which reduces the capacity of the acoustic

model and thus prevents overfitting to the adaptation data. In this section we are go-

Chapter 3. Speaker Adaptation 28

ing to describe other regularisation approaches, which can be roughly divided into two

groups. The first group uses regularisation methods to prevent the model from diverg-

ing too far from the original model. The second alters the loss function to obtain better

gradients for adaptation.

Preventing the adapted model from diverging too far from the original can be

achieved in various ways, depending on how we measure the distance between the

original and the adapted model. Liao (2013) proposed to use the L2 regularisation loss

of the distance between the original speaker dependent parameters θs and the adapted

speaker dependent parameters θ′s

LL2 = |θs−θ′s|22. (3.23)

Yu et al. (2013) proposed to use Kullback-Leibler (KL) divergence to measure the dis-

tance between the senone distribution of the adapted model and the senone distribution

of the original model

LKL = DKL(f (x;θ)|| f (x;θ,θ′s)). (3.24)

If we consider the overall adaptation loss:

L = (1−λ)Lxent +λLKL, (3.25)

we can show that this loss equals to cross-entropy with the target distribution

P(Y |X) = (1−λ)P̂(Y |X)+λ f (x;θ), (3.26)

where P̂(Y |X) is a distribution corresponding to the provided labels yadapt. A similar

approach called Conservative Training was presented by Gemello et al. (2007). This

approach modified the target distribution as follows

p(yi|x) =

f (x;θ)i if yi ∈U

1−∑y j∈U f (x;θ) j if yi ∈ S & correct(yi|x)
0 if yi ∈ S & ¬correct(yi|x)

, (3.27)

where S is a set of labels seen in the adaptation data and U is a set of labels not seen

in the adaptation data. This modified target distribution ensures that labels not seen in

the adaptation data will not be catastrophically forgotten.

Meng et al. (2019) noted that KL divergence is not a perfect distance metric be-

tween distributions because it is asymmetric. Therefore, they proposed to use adver-

sarial learning which guarantees that the local minimum is reached only if the senone

Chapter 3. Speaker Adaptation 29

distributions of the speaker independent and the speaker dependent models are iden-

tical. They achieve this by adversarially training a discriminator d(x;φ) whose task

is to discriminate between the activations of the i-th hidden layer of a speaker depen-

dent f (x;θ,θ′s) and a speaker independent model f (x;θ). The regularisation loss of the

discriminator is

Ldisc =−
1
T

T

∑
t=1

{
logd(fi(xt ;θ);φ)− log

[
1−d(fi(xt ;θ,θ′s);φ)

]}
. (3.28)

The discriminator is trained in a minimax fashion during adaptation by minimising

Ldisc with respect to φ and maximising Ldisc with respect to θs. Consequently, the

distribution of activations of the i-th hidden layer of the speaker dependent model will

be indistinguishable from the distribution of activations of the i-th hidden layer of

the speaker independent model, which ought to result in more robust performance of

speaker adaptation.

Other approaches try to prevent overfitting by leveraging the uncertainty of the

speaker-dependent parameter space. Huang et al. (2015b) proposed Maximum A Pos-

teriori (MAP) adaptation of neural networks by taking an inspiration from MAP adap-

tation of GMM-HMM models (Gauvain and Lee, 1994). MAP adaptation estimates

speaker dependent parameters as a mode of the distribution

θs = argmax
θs

P(Y |X ,θ,θs)p(θs), (3.29)

where p(θs) is a prior density of the speaker dependent parameters. In order to obtain

this prior density, Huang et al. (2015b) employed an empirical Bayes approach and

treated each speaker in the training data as a data point. They performed speaker

adaptation for each speaker and noticed that the speaker parameters across speakers

resemble Gaussians. Therefore they decided to parameterise the prior density p(θs) as

p(θs) = N (µ,Σ), (3.30)

where µ is the mean of adapted speaker dependent parameters across different speakers,

and Σ is the corresponding diagonal covariance matrix. With this parameterisation the

regularisation term of the prior density p(θs) is

LMAP =
1
2
(θs−µ)T Σ(θs−µ), (3.31)

which for the prior density p(θs) = N (0, I) degenerates to the LL2 regularisation loss.

Xie et al. (2019b) proposed a fully Bayesian way of dealing with uncertainty in-

herent in speaker dependent parameters θs. More concretely they proposed a fully

Chapter 3. Speaker Adaptation 30

Bayesian way of estimating LHUC parameters (BLHUC). In standard LHUC, speaker

dependent parameters θs are estimated using maximum likelihood

θ̂s = argmax
θs

P(Y |X ,θs), (3.32)

which may deteriorate results when only a small amount of adaptation data is available.

Therefore, they decided to model the uncertainty of the speaker dependent parameters

θs ∼ p(θs), where p(θs) is a prior distribution. They approximate the posterior distri-

bution of the adapted model as:

P(Y |X ,Dadapt) =
∫

P(Y |X ,θs)P(θs|Dadapt)dθs

≈ P(Y |Z,E[θs|Dadapt]).
(3.33)

They proposed to use a distribution q(θs) as a variational approximation of the poste-

rior distribution P(θs|Dadapt) and the following loss to optimise it

L =− logP(yadapt|xadapt)

=− log
∫

P(yadapt|xadapt,θ,θs)P(θs)dθs

≤−
∫

q(θs) logP(yadapt|xadapt,θ,θs)dθs +KL(q||p).

(3.34)

For simplicity, they assumed that both q(θs) and p(θs) are normal distributions, such

that q(θs) = N (µs,γs) and p(θs) = N (µp,γp). Which means that the expected value

of the speaker dependent parameters in Equation 3.33 is

E[θs|Dadapt] = µs. (3.35)

The KL divergence term can be computed as

KL(q||p) = 1
2

{
(µs−µp)

2 +σ2
s

σ2
p

− log
σ2

s
σ2

p
−1

}
. (3.36)

Finally, the integral in Equation 3.34 can be computed using Monte Carlo approxima-

tion with J Monte Carlo samples ε∼N (0, I) as∫
q(θs) logP(yadapt|xadapt,θ,θs)dθs

=
∫

N (ε;0, I) logP(yadapt|xadapt,µs + exp(γs)⊗ ε)dε

≈ 1
J

J

∑
j=1

logP(yadapt|xadapt,θs,ε j).

(3.37)

Chapter 3. Speaker Adaptation 31

Senones Monophones

Figure 3.6: Multi-task learning speaker adaptation.

There are several ways to choose the prior density p(θs). Either we can set it to

N (1, I) or we can estimate µ and Σ in the same way as in the MAP adaptation approach.

Similarly to MAP adaptation, this will force the adaptation to stay close to the speaker

independent model when we perform adaptation with a small amount of adaptation

data.

The second group of regularisation approaches proposed to use a lower entropy

task such as monophone or senone cluster targets. This has the advantage that the

unsupervised targets might be less noisy and also that the targets have higher coverage

even with small amounts of adaptation data. Price et al. (2014) proposed to append

a new output layer predicting monophone targets on top of the original output layer

predicting senones. The layer can be either full rank or sparse – leveraging knowledge

of relationships between monophones and senones. Its parameters are trained on the

training data with a fixed speaker independent model. Only the mohophone targets are

used for the adaptation of the speaker dependent parameters.

Huang et al. (2015a) presented an approach that used the multi-task learning ap-

proach (Caruana, 1997) to leverage both senone and monophone/senone clusters tar-

gets. It worked by having multiple output layers, each on top of the last hidden layer,

that predicted the corresponding targets (Figure 3.6). These additional output layers

were also trained after a complete training pass of the speaker independent model with

its parameters fixed. Thus, the adaptation loss was a weighted sum of individual losses:

L =
n

∑
i=0

Li. (3.38)

Swietojanski et al. (2015) combined these two approaches and used multi-task learning

for speaker adaptation through a structured output layer, which predicts both mono-

phone targets and senone targets. But unlike the approach by Price et al. (2014), the

monophone predictions are used for the prediction of senones, as illustrated in Fig-

ure 3.7.

Chapter 3. Speaker Adaptation 32

Senones Phonemes

Figure 3.7: Structured output layer by Swietojanski et al. (2015).

3.7 Speaker Adaptive Training

In this chapter we introduced various test-time speaker adaptation methods that reduce

the mismatch between training and testing conditions. Speaker adaptive training (SAT)

applies these methods also during training of the model in order to allow the acous-

tic model to focus solely on modelling phonetic variations (Anastasakos et al., 1996).

For methods using global statistics or an external model to estimate speaker dependent

parameters SAT of DNN models is straightforward. These include VTLN features (Tr-

mal et al., 2010), cMLLR features (Sainath et al., 2013) and auxiliary features (Saon

et al., 2013; Miao et al., 2015). However, the situation becomes more complicated

when we want to apply SAT with methods using discriminative estimation of speaker

dependent parameters such as SAT-LHUC (Swietojanski and Renals, 2016) or speaker

codes (Abdel-Hamid and Jiang, 2013).

We will illustrate the training procedure on SAT-LHUC, but the same procedure

can be used for speaker codes or any other model-based speaker adaptation method.

Recall that in test-time speaker adaptation using LHUC parameters rs we update the

scale of hidden layer activations:

h′ = rs�h. (3.39)

In SAT training using LHUC parameters we maintain a copy of speaker dependent

parameters rs for each speaker S in the training data

θs =
{

ri
s|i ∈ {1, . . . ,S}

}
. (3.40)

Since we know speaker identities for all utterances in the training data, we can jointly

Chapter 3. Speaker Adaptation 33

optimise speaker independent and speaker dependent parameters directly during train-

ing using the cross-entropy loss

θ,θs = argmax
θ,θs
−∑

x,y,i
logP(y|x,θ,ri

s). (3.41)

In order to be able to use this model for a new unseen speaker, we first need to obtain

LHUC parameters rs for the speaker by performing speaker adaptation. To do that we

also require a speaker independent model to obtain labels for the adaptation data either

by aligning a reference transcript or by a first pass decoding. To remove the need for an

additional speaker-independent model Swietojanski and Renals (2016) introduced an

artificial speaker into the training data in order to estimate speaker-independent LHUC

parameters. This was done by assigning data to the artificial speaker with probability

p ∼ Bernoulli(λ), where the parameter λ controlled how much data was used for the

training of speaker dependent and speaker independent LHUC parameters respectively.

Performing SAT like this is complicated because we need to maintain speaker de-

pendent parameters for each speaker in the training data which has a considerable

memory footprint. Also, if we have too many speaker dependent parameters we need

much more data for each speaker to reliably estimate speaker dependent parameters.

And finally, when we use too many speaker dependent transformations the training of

the model becomes slower compared to the training of speaker independent models,

because applying different speaker dependent transformations is computationally more

expensive than applying speaker independent transformations.

3.8 Summary

In this section we described methods for speaker adaptation and speaker adaptive train-

ing of neural network based acoustic models. Since these acoustic models are prone

to overfitting to the adaptation data due to their large modelling capacity, most of the

methods described in this chapter focused on preventing this overfitting issue either

by limiting the number of speaker dependent parameters (Section 3.5), or by using

appropriate regularisation terms (Section 3.6). However, the main disadvantage of

these methods is that they require carefully tuned hyperparameters to obtain the best

possible results. Therefore, in the next chapter we review meta-learning approaches

and we show how meta-learning can be used to automatically obtain a robust speaker

adaptation procedure that is less susceptible to the aforementioned overfitting issues

(Section 4.2).

Chapter 4

Learning to Adapt

In the previous chapter we described methods for speaker adaptation of DNN-HMM

acoustic models. As we have seen, there has been a lot of effort into making dis-

criminative model-based speaker adaptation robust to overfitting to adaptation data,

especially in scenarios in which we have only limited amounts of adaptation data or

in unsupervised speaker adaptation when the labels might be erroneous. However, all

the methods described in the previous chapter require careful tuning of hyperparam-

eters in order to obtain the best possible results. In this chapter, which is the main

theoretical contribution of this thesis, we first describe meta-learning and then we pro-

pose using meta-learning to automatically learn robust speaker adaptation procedures

for discriminative model-based speaker adaptation. We empirically test the proposed

meta-learning approach for speaker adaptation and speaker adaptive training later in

Chapters 5 and 6 respectively.

As we described earlier, there are three main challenges for discriminative model-

based speaker adaptation. First, we do not want to overfit to senones seen in the adap-

tation data and forget unseen classes. This is sometimes called catastrophic forget-

ting. Second, in unsupervised speaker adaptation we do not want to overfit to errors

made in the first pass decoding by the seed model. Third, since the amount of adap-

tation data is limited it is not fully representative of a speaker, therefore the speaker

adaptation might overfit to particular speaker characteristics. The main proposed so-

lutions for solving these challenges were to use conservative learning schedules, lim-

iting the number of speaker dependent parameters and to use regularisation methods

that restrict the speaker-dependent model from diverging too far from the speaker-

independent model. However, we believe that by doing this, especially by limiting

the number of speaker-dependent parameters, we inherently restrict the expressivity of

34

Chapter 4. Learning to Adapt 35

the adaptation procedure which might not lead to the best possible performance of the

adapted model. Moreover, even if we decide to apply all these techniques to prevent

the aforementioned issues, we still need to tune an adaptation rule that will be used

for the adaptation of the speaker-dependent parameters, because an adaptation rule

with poor hyperparameters might also lead to inferior adaptation performance. The

discriminative adaptation rule,

θ′ = θ−α∇θL(θ,Dadapt), (4.1)

updates parameters θ of an acoustic model f (x;θ) by computing gradients correspond-

ing the loss L(θ,Dadapt) computed on the adaptation data Dadapt. We argue that even

such a simple adaptation rule contains many hidden hyperparameters that need to be

tuned to obtain a robust speaker adaptation procedure:

1. We need to determine which parameters θ should be treated as speaker depen-

dent. This can also be seen as deciding which hidden layers should be adapted

or how inserted linear hidden networks should be parameterised (Section 3.5).

2. We need a reliable learning rate schedule α that will not overfit to the adaptation

data, but that will maximise the performance of the adapted model on unseen

test data.

3. We need to select a suitable loss function L(θ,Dadapt), the type of supervision for

the computation of the loss and also consider the use of regularisation methods

(Section 3.6).

4. In the unsupervised setting we want to avoid training on segments with too many

errors from the first pass decoding. Therefore, we might need to use some filter-

ing pipeline that will filter out segments with too low confidence. At its simplest,

we need to tune a cut-off confidence threshold for this pipeline.

5. In most scenarios the update rule is applied multiple times, therefore we need to

determine how many update steps to make. This also includes ways of employ-

ing some form of early stopping.

Tuning all these hyperparameters manually would require considerable effort, but

we believe that finding a robust speaker adaptation procedure is worthwhile, because

speaker adaptation will be performed for many speakers in many different environ-

ments and might have a big impact on the performance of the final model. Therefore,

Chapter 4. Learning to Adapt 36

we decided to explore ways of learning robust speaker adaptation procedures auto-

matically. We call this endeavour learning to adapt. It is inspired by meta-learning

approaches that are learning to learn (Thrun and Pratt, 1998; Hochreiter et al., 2001;

Andrychowicz et al., 2016). We explain how meta-learning works and review work

done in this field in the next section. Then we show how speaker adaptation can be

formulated as a meta-learning task. Subsequently we show that speaker adaptive train-

ing is a straightforward extension of this approach. Finally, we discuss different ways

of implementing speaker adaptation as a meta-learning task by using different param-

eterisations of the update rule in Equation 4.1.

4.1 Meta-Learning

In meta-learning, learning is happening on two levels (Younger et al., 2001) – a learner

is learning a model for specific tasks and a meta-learner is learning regularities be-

tween tasks in order to better train the learner on new tasks. The learner is a function

fT (x) = y that maps inputs x to outputs y for a specific task T = (D train
T ,D test

T). Each

task T consists of training examples D train
T =

{
(x j,y j)| j ∈ {1 . . .m}

}
for the model

fT (x) and testing examples D test
T =

{
(x j,y j)| j ∈ {1 . . .m}

}
which are used to evaluate

the model with some loss function LT

LT (θ,D) = ∑
(x j,y j)∈D

L(y j, fT (x j;θ)). (4.2)

This loss is a sum of losses for tuples in the data D . For instance we can use the

cross-entropy loss

L(ŷ,y) =−
C

∑
c=1

[ŷ]c log [y]c , (4.3)

where ŷ is a gold-truth label represented as a one-hot vector and y is the prediction of

the learner. In machine learning we find the mapping from the input space to the output

space by parameterising the learner with parameters θ

fT (x)≡ fT (x;θ). (4.4)

During training of the learner we aim to find the optimal parameters θ̂ that minimise

the loss function LT computed on the training data Dtrain
T

θ̂ = argmin
θ

LT (θ,D train
T), (4.5)

Chapter 4. Learning to Adapt 37

but the goal is to train a learner that generalises well on the test data D test
T . Therefore

in practice we hold-out a portion of the training data as a validation data and we use

an early stopping criterion estimated on this validation data to prevent the learner from

overfitting to the training data.

The meta-learner aims to learn a learning algorithm g(fTi,Ti) for the task-specific

learner fTi(x;θ) using a distribution of tasks Ti ∼ p(T). In the literature there are two

ways of representing the meta-learner. In the first one, the meta-learner uses the task

specific training data D train
Ti

to predict task dependent parameters for the learner θTi

(Hochreiter et al., 2001; Andrychowicz et al., 2016; Ravi and Larochelle, 2017; Finn

et al., 2017):

g1(fTi,D
train
Ti

) = θTi, (4.6)

which can then be used to make predictions about the test data D test
Ti

. In the second way,

the meta-learner uses the task specific training data and inputs for the test data X test
Ti

to

directly make predictions Y test
Ti

(Vinyals et al., 2016; Santoro et al., 2016; Mishra et al.,

2018)

g2(D train
Ti

,X test
Ti

) = Y test
Ti

. (4.7)

It can be shown that these representations are interchangeable for a certain choice of

g1 and g2

fTi(X
test
Ti

;g1(fTi,D
train
Ti

)) = g2(D train
Ti

,X test
Ti

). (4.8)

This is only true when the meta-learner g2 does not use X test
Ti

to update its decision

boundaries. In the rest of the thesis we will use the first representation g1, because

it better corresponds to the speaker adaptation setting, where we have access only to

adaptation data and we cannot leverage unseen test data. For clarity we will denote the

meta-learner as g(fTi,D
train
Ti

).

Similar to the learner, we can parameterise the meta-learner with parameters φ:

g(fTi,D
train
Ti

)≡ g(fTi,D
train
Ti

;φ). (4.9)

We aim to find the parameters φ̂ that minimise the expected loss over a set of tasks

Ti ∼ p(T)

φ̂ = argmin
φ

E
Ti∼p(T)

LTi

(
g
(

fTi,D
train
Ti

;φ
)
,D test

Ti

)
. (4.10)

In plain words, the meta-learner is learning to learn from task specific training data to

minimise loss on task specific test data. In practice, the meta-learner is trained on a

meta-training set M train = {Ti} and tested on a meta-testing set M test =
{

T j
}

. Tradi-

tionally there is no overlap of tasks between the meta-training set and the meta-testing

Chapter 4. Learning to Adapt 38

set, which enables us to measure how well the meta-learner can transfer knowledge to

unseen tasks, and thus how well it is learning to learn.

Thrun and Pratt (1998) define the ability of learning to learn as follows. Given a

task Ti from a distribution of tasks Ti ∼ p(T), training data D train
Ti

and a correspond-

ing loss function LTi , a learning algorithm is said to be able to learn to learn if its

performance LTi on each task Ti is expected to improve with an increasing amount of

training data for each task and an increasing number of tasks Ti. Therefore, the meta-

learner needs to be able to transfer knowledge between different tasks, for example

by learning and using high-level regularities between different tasks. Thrun and Pratt

discuss that one way to achieve this is to represent the learner as a composition of a

task-dependent learner fT D and a task-independent learner fT I , such that the original

learner is for example f = fT D ◦ fT I or f = fT I ◦ fT D.1 The first composition corre-

sponds to having a shared feature extractor and learning only task specific classifiers

and the second composition corresponds to having task-dependent feature extractors

and a task-independent classifier. In ASR, the first composition is used for transfer

learning and it has been applied for multilingual training of ASR models (Ghoshal

et al., 2013; Heigold et al., 2013; Huang et al., 2013) or even LON adaptation (Li and

Sim, 2010). The second composition can be compared to feature-based speaker adap-

tation approaches described in the previous chapter in Section 3.1. Alternatively, we

can also use meta-learning to train a task specific learning algorithm.

Learning learning algorithms has a long tradition. Schmidhuber (1992, 1993) pre-

sented an approach that allowed neural networks to update their parameters by em-

bedding the learning algorithm directly into the network and allowing both the neural

network and the learning algorithm to be trained jointly. Cotter and Conwell (1990);

Younger et al. (1999) demonstrated that even neural networks with fixed weights show-

case learning abilities. This is achieved by having a recurrent neural network with fixed

weights that accumulates gradient descent updates for parameters of some classifier in-

side its hidden state. This enables evaluating the classifier with different parameters at

different steps, and thus it allows on-line learning with fixed weights. Subsequently,

Younger et al. (2001); Hochreiter et al. (2001) parameterised the update rule as a Long

Short-Term Memory network that learned to update parameters of the learner based

on corresponding gradients computed from the previous predictions. The same ap-

proach was recently used by Andrychowicz et al. (2016) for the learning of task spe-

cific learning rules and by Ravi and Larochelle (2017) for the learning of learning

1By function composition we understand (f ◦g)(x) = f (g(x)).

Chapter 4. Learning to Adapt 39

rules for few-shot learning. All these models were able to train both the learner and

the meta-learner end-to-end, which is the reason why Andrychowicz et al. (2016) call

these approaches learning to learn by gradient descent by gradient descent. Bengio

et al. (1995, 1990); Runarsson and Jonsson (2000) proposed methods that learn simple,

biologically plausible parametric learning rules for neural networks using genetic pro-

gramming or simulated annealing. Therefore, Andrychowicz et al. (2016) calls these

methods learning to learn by gradient descent without gradient descent.

Learning to learn has also been successfully applied to few-shot learning. The

goal of few-shot learning is to rapidly train a classifier for a new task from only a

few examples for each target class. For example, our goal might be to train an image

classifier that is supposed to predict five different classes but using only ten examples

of each class. In order to succeed, the meta-learner needs to learn regularities between

various tasks. There has been many different approaches using meta-learning for few-

shot learning (Vinyals et al., 2016; Ravi and Larochelle, 2017; Finn et al., 2017; Snell

et al., 2017). They usually focus on few-shot image classification on Omniglot (Lake

et al., 2011) and MiniImageNet (Russakovsky et al., 2015; Ravi and Larochelle, 2017).

In the rest of this section we describe work done by Andrychowicz et al. (2016);

Ravi and Larochelle (2017); Finn et al. (2017) as we used it as a basis for the the-

sis. Andrychowicz et al. (2016) proposed a neural network based implementation of

the meta-learner g(f ,D train;φ) (Equation 4.9). With this implementation it is possi-

ble to learn task specific update rules for the parameters of the learner f (x;θ). In

order to learn the update rule, the meta-learner needs the gradients of a loss function

L(θ,D train) computed on data D train. We will use a shorter notation for these gradients

∇θL = ∇θL(θ,D train). (4.11)

It then passes these gradients ∇θL to a multi-layer LSTM network with parameters φ,

whose output is then used to predict task dependent parameters of the learner f (x;θ)

g(f ,D train;φ)≡ θ−LST M(∇θL ;φ). (4.12)

By using the LSTM network the model can learn a learning rate schedule and even

learn to use momentum (Nesterov, 1983), because the network has access to all pre-

vious gradients. However, the problem with this approach is that it does not scale

to larger networks with at least tens of thousands of parameters, because it would

require having a large input to the network and a large hidden state. Thus, the meta-

learner would need unfeasibly large weight matrices. Consequently, Andrychowicz

Chapter 4. Learning to Adapt 40

θ0

Dadapt

f (x;θ0)

θ0

g
θ0

∇
θ0 L

Dadapt

f (x;θ1)

θ1

g
θ1

∇
θ1 L

Dadapt

f (x;θ2)

θ2

g
θ2

∇
θ2 L

D test

f (x;θ3)

θ3

∇φL(θ3,D test)

Figure 4.1: A diagram of a computation graph for the coordinate-wise meta-learner

performing 3 adaptation steps using the adaptation data Dadapt. Note that θi denotes

the weights θ at a time-step i. To update the parameters of the meta-learner, we need

to follow the solid lines when computing gradients using the first order approximation.

In the full version using second order derivatives we also need to follow the dotted lines.

et al. (2016) proposed to learn the update rule for individual parameters, similar to

how commonly used update rules such as Adam (Kingma and Ba, 2014) work. There-

fore, the meta-learner learns the following rule[
θ′
]

i = [θ]i−LST M([∇θL]i ;φ), (4.13)

where the notation [θ]i denotes the i-th element of the vector θ. In order to adapt the

whole network, its parameters are presented as a single batch of inputs to the meta-

learner. The parameters are jointly updated for several steps. Figure 4.1 illustrates how

this process works.

Subsequently, Ravi and Larochelle (2017) proposed an update rule parameterisa-

tion inspired by how LSTM networks update their hidden states. They used a two-layer

LSTM to predict two values – an input gate i and a reset gate r, that were used in the

following update rule:

θ′ = rθ− i∇θL . (4.14)

Because the LSTM used the current parameter value θ, the current loss L and the cor-

responding gradient ∇θL , it was able to learn momentum via the input gate i and also

to escape local minima by resetting parameters via the reset gate r, when the gradient

∇θL is small and the loss L is high. We describe the coordinate-wise meta-learner

proposed by Ravi and Larochelle (2017) in more detail in Section 4.4 and we use it

for speaker adaptation experiments in Chapter 5. It is important to note that the train-

ing of the meta-learner requires the computation of second order derivatives, because

Chapter 4. Learning to Adapt 41

θ

∇LS1

∇LS2

∇LS3

θ∗S1
θ∗S2

θ∗S3

Figure 4.2: Speaker adaptive training using meta-learning steers the training process

to find initial parameters θ that are suitable for rapid adaptation using adaptation data

corresponding to speakers S1, S2 and S3. The solid lines correspond to meta-training

and the dashed lines correspond to speaker adaptation.

the updated parameters θ′ which are used for the computation of the meta-learner’s

loss depend on the meta-learners parameters φ. See Figure 4.1 for an example of the

gradient flow in an unrolled meta-learner. However, both Andrychowicz et al. (2016)

and Ravi and Larochelle (2017) argued that using only first order derivatives achieves

similar results as when using second order derivatives while being significantly faster

to train. Therefore, in our experiments we also only used first order derivatives.

Finn et al. (2017) proposed an alternative approach called Model-Agnostic Meta-

Learning (MAML), which aims to find learner parameters that would allow for fast

adaptation to new tasks via a few steps of gradient descent in the context of few-shot

learning. The motivation is illustrated in Figure 4.2. The process is the same as in

Equation 4.10, except that we are not learning parameters of the adaptation function,

but we are training the initialisation of the learner θ0. Thus, the meta-learner parame-

ters are φ= {θ0}. The meta-learner function g(f ,D train
Ti

;φ) is parameterised as a simple

gradient descent rule

g(f ,D train
Ti

;φ) = θ0−α∇θ0L , (4.15)

where α is a predefined fixed learning rate. Antoniou et al. (2019) showed that by

jointly optimising learner initialisation θ0 and a learning rate for the update rule α
(φ = {θ0,α}), it is possible to achieve better performance than when keeping the learn-

ing rate fixed during training. Finn and Levine (2018) provided a proof showing that

a sufficiently deep learner trained with embedded gradient descent can approximate

any learning algorithm, such as those using LSTM networks to represent the update

rule. Note that MAML was also recently used for low-resource neural machine trans-

lation (Gu et al., 2018) and low-resource end-to-end ASR (Hsu et al., 2019). Nichol

and Schulman (2018) presented a similar approach called Reptile relying only on first

Chapter 4. Learning to Adapt 42

order derivatives. We describe an implementation of MAML in Section 4.5 and we use

it in the speaker adaptive training experiments described in Chapter 6.

4.2 Speaker Adaptation as a Meta-Learning Task

In the previous section we described how meta-learning works. In this section we are

going to describe the main contribution of this thesis – we show how speaker adapta-

tion can be formulated as a meta-learning task. First, note that speaker adaptation has

many similarities with few-shot learning. Like few-shot learning that uses task spe-

cific adaptation data to produce a task specific classifier, speaker adaptation uses the

adaptation data to adapt a speaker-independent model to produce a speaker-dependent

model. Further, we usually do not train the speaker-dependent model from scratch,

because that would require a considerable amount of speaker-dependent training data.

However unlike in few-shot learning, ASR models usually model thousands or tens

of thousands of classes and we do not have training examples for all classes in the

adaptation data. As mentioned before this might lead to catastrophic forgetting of un-

seen classes. Furthermore, the provided labels might be erroneous in the unsupervised

setting. The adaptation algorithm therefore needs to take all this into account when

adapting the speaker-independent model, which might already have a reasonable per-

formance.

Speaker adaptation can be interpreted as a meta-learner that adapts the parameters

of an acoustic model. Similarly to the meta-learner defined in Equation 4.6 it is a

function, denoted as gadapt, that given an acoustic model f (x;θ) and adaptation data

Dadapt =
{
(xadapt

j ,yadapt
j)| j ∈ {1 . . .m}

}
(4.16)

produces adapted parameters θ′:

gadapt(fθ,Dadapt) = θ′ . (4.17)

Depending on the scenario, the labels yadapt
i , corresponding to the acoustic input xadapt

i ,

might be obtained from a reference transcript (supervised adaptation) or obtained from

a first pass decode of a speaker independent model (unsupervised adaptation). The

performance of an acoustic model on unseen test data

D test =
{
(xtest

j ,ytest
j)| j ∈ {1 . . .n}

}
is measured as the loss

L(θ,D test), (4.18)

Chapter 4. Learning to Adapt 43

for example categorical cross-entropy, frame error rate or word error rate (WER). Note

that the labels ytest
i are always obtained from the reference transcripts since we want

to measure the true performance of the model. Similarly, we measure the loss of an

adapted acoustic model by:

L(gadapt(fθ,Dadapt),D test). (4.19)

To train the adaptation function using the meta-learning approach, we require the

function gadapt to be both parametric and differentiable. We therefore add parameters

φ to the adaptation function:

gadapt(fθ,Dadapt)≡ gadapt(fθ,Dadapt;φ). (4.20)

We discuss different ways of parameterising the adaptation function in Section 4.4.

We are now ready to introduce the loss of the meta-learner. Recall that the goal of

speaker adaptation is to adapt an acoustic model f (x;θ) using adaptation data Dadapt in

order to improve performance on test data D test. The loss of the meta-learner can then

be expressed as an expected loss for speakers Si sampled from a distribution Si∼ p(S):

J(θ,φ) = E
Si∼p(S)

L(gadapt(fθ,D
adapt
Si

;φ),D test
Si

). (4.21)

In theory, we should use an unlimited amount of unseen test data for the evaluation

of the adaptation algorithm. However, this is not practical when training the meta-

learner. We approximate it by using n seconds of speech as adaptation data and the

following n seconds of speech as unseen data. Further, we use a meta-training set

M train and a meta-testing set M test for the training and evaluation of the meta-learner,

respectively. The meta sets are split such that they contain different speakers, so that we

can correctly assess the generalisation of the adaptation function to unseen speakers.

Finally, we use the loss J to optimise the parameters φ of the adaptation function

using gradient descent:

φ̂ = argmin
φ

J(θ,φ) . (4.22)

The training of the adaptation function then works as follow: in each iteration we

sample a batch of S speakers with their corresponding adaptation data Dadapt
S j

and test

data D test
S j

. We use the adaptation data to adapt the speaker-independent model f (x;θ)
with the adaptation function gadapt(fθ,D

adapt
S j

;φ). Subsequently the adapted parameters

θ′ are used to compute the loss on the test data L(θ′S j
,D test

S j
). Finally, we sum the loss

function across the speakers in the batch and we update the parameters of the adapta-

tion function φ with gradients computed by differentiating the loss function. This is

Chapter 4. Learning to Adapt 44

Algorithm 1 Training of gadapt(f ,Dadapt;φ)
Require: Number of iterations N

Require: Number of speakers per batch S

Require: Trained acoustic model f (x;θ) with parameters θ
Require: Learning rate α

1: function TRAIN-ADAPT(f ,M train)

2: φ← random initialisation of the meta-learner

3: for i ∈ {1 · · ·N} do
4: for j ∈ {1 · · ·S} do
5: S j ∼ p(S)
6: JS j ← L(gadapt(fθ,D

adapt
S j

;φ),D test
S j

)

7:

8: J← ∑JS j

9: φ← φ−α∇φJ

10:

11: return φ

repeated until convergence or for a predefined number of iterations. The training of the

adaptation procedure is outlined in Algorithm 1.

4.3 Speaker Adaptive Training as a Meta-Learning Task

As we described in Section 3.7, speaker adaptive training is traditionally used to factor

out speaker variation in order to enable the canonical acoustic model to fully focus on

modelling phonological variations. In model-based speaker adaptive training a copy of

the speaker-dependent parameters is maintained and jointly optimised for each speaker

during training. However, this does not scale to speaker adaptive training of all param-

eters. Here, we propose an alternative meta-learning approach in which we embed

gradient-based speaker adaptation directly into the acoustic model training. We hy-

pothesise that this should steer the training process into finding parameters that are

more amenable to speaker adaptation compared to parameters obtained through stan-

dard acoustic model training.

We described how to train a meta-learner for speaker adaptation above. To formu-

late speaker adaptive training as a meta-learning task, we need to jointly optimise the

Chapter 4. Learning to Adapt 45

Algorithm 2 Speaker Adaptive Training of f (x;θ) using Meta-Learning
Require: Number of iterations N

Require: Number of speakers per batch S

Require: Learning rate α
1: function SAT-META(f ,M train)

2: θ← random initialisation of the acoustic model

3: φ← random initialisation of the meta-learner

4: for i ∈ {1 · · ·N} do
5: for j ∈ {1 · · ·S} do
6: S j ∼ p(S)
7: JS j ← L(gadapt(fθ,D

adapt
S j

;φ),D test
S j

)

8:

9: J← ∑JS j

10: θ← θ−α∇θJ

11: φ← φ−α∇φJ

12:

13: return θ,φ

parameters of the acoustic model θ and the parameters of the meta-learner φ, minimis-

ing the loss J (Equation 4.21):

θ̂, φ̂ = argmin
θ,φ

J(θ,φ). (4.23)

Speaker adaptive training using the meta-learning approach is very similar to the

training of the adaptation function 4.2. The main difference is that we use the sum

of the losses of the adapted models L(θ′S j
,D test

S j
) to compute gradients with respect to

the parameters of the speaker-independent acoustic model f (x;θ), because our goal

is to find speaker-independent parameters that are suitable for fast speaker adaptation.

We can keep the parameters of the adaptation function fixed during training or we can

train them jointly with the speaker-independent parameter θ. Speaker adaptive training

using the meta-learning approach (SAT-META) is outlined in Algorithm 2.

4.4 Implementation of Coordinate-wise Meta-Learner

In the previous two sections we described how speaker adaptation and speaker adaptive

training can be formulated as meta-learning tasks. In this section we describe how the

Chapter 4. Learning to Adapt 46

adaptation function gadapt(f ,Dadapt) can be parameterised as a coordinate-wise meta-

learner (Ravi and Larochelle, 2017) to allow for the joint training of the learner and

the meta-learner.

The coordinate-wise meta-learner updates each parameter [θ]i individually – each

parameter [θ]i is presented as a single data sample to the meta-learner. Note, that

in practice we batch all the parameters θ and we adapt them jointly. This has two

advantages. First, the parameters of the meta-learner, φ, are tied for all parameters θ of

the acoustic model. Second, the parameters of the meta-learner, φ, have much smaller

dimensionality because they do not need to work with big inputs. In the following

section we will describe how the meta-learner adapts a single parameter [θ]i using the

adaptation data Dadapt.

The first layer of the coordinate-wise meta-learner is a standard LSTM which at

time step t accepts an input vt ∈R3×n representing a batch of all the parameters θ∈Rn,

with three columns: the current values of the parameters θt ∈Rn, the current loss value

Lt repeated n-times, and the corresponding gradients ∇θt Lt ∈ Rn:

vt = (θt ,Lt ,∇θt Lt) . (4.24)

The loss Lt is computed using adaptation data Dadapt and the current parameters θt :

Lt = L(f (x;θt),Dadapt) (4.25)

and we initialise θ1 = θ. Using this input vt the first LSTM layer produces a hidden

representation

ht = LST M(vt). (4.26)

The second LSTM layer uses this hidden representation ht to predict the value of a

reset gate rt with parameters WR and bR:

rt = σ(WR · [ht ,rt−1]+bR), (4.27)

and to predict the value of an input gate it with parameters WI and bI:

it = σ(WI · [ht , it−1]+bI). (4.28)

Both the reset gate rt and the input gate it are used to update the parameter θt to θt+1

using the corresponding gradient ∇θt Lt :

θt+1 = rt ·θt− it ·∇θt Lt . (4.29)

Chapter 4. Learning to Adapt 47

In this update rule the input gate acts as a learning rate scheduler, which can learn

to use momentum (Nesterov, 1983) because of the LSTM recurrence, and the reset

gate can be used to escape local minima when the loss is high but the gradient is

close to zero (Ravi and Larochelle, 2017). Note that we initialised the bias of the

input gate bI to small values (sampled uniformly from [−5,−4]) and the bias of the

reset gate bR to large values (sampled uniformly from [4,5]) such that the meta-learner

starts training with an update rule similar to SGD. Also note that the inputs vt need

to be preprocessed due to a big range of possible input values, which might hurt the

learning of the meta-learner. Therefore, we followed Andrychowicz et al. (2016) and

preprocessed the losses Lt with the following method using the suggested setting with

p = 10:

Lt →

(log(|Lt |)
p ,sgn(Lt)) if |Lt | ≥ ep

(−1,epLt), otherwise.
(4.30)

We similarly preprocessed the gradients ∇θLt . We used the coordinate-wise meta-

learner as an implementation of gadapt(fθ,Dadapt;φ) in the speaker adaptation experi-

ments described in Chapter 5.

Even though presenting parameters θ as a big batch instead of one big input is

much more computationally efficient, coordinate-wise meta-learner still requires a lot

of memory and computation time to train. The memory requirements of the meta-

learner can be estimated as

O(nmp), (4.31)

where n is a number of adaptation steps, in our case we use 3 adaptation steps, m is

the size of LSTM’s hidden layer and p is the number of parameters of the acoustic

model. Current acoustic models contain millions of parameters. Therefore, training a

meta-learner even with a very small hidden layer quickly becomes infeasible, because

the model would not fit into GPU memory.

Similarly we can estimate the time complexity of a single training iteration of the

meta-learner as

O(nFAM +nBAM +npUAM +nBadapt +mUadapt), (4.32)

where FAM is the cost of the forward pass of the acoustic model, BAM is the cost of the

backward pass of the acoustic model, UAM is the cost of updating a single parameter of

the acoustic model, Badapt is the cost of backward pass of the meta-learner and Uadapt

Chapter 4. Learning to Adapt 48

is the cost of updating the parameters of the meta-learner. Consequently, if we want

to speed up the adaptation procedure we can reduce the number of adaptation steps n,

limit the number of adapted parameters p or simplify the update rule for updating the

parameters of the acoustic model thus reducing UAM. In Section 5.5 we empirically

show how limiting the number of adapted parameters p and simplifying the update rule

affects the training and inference speed of the meta-learner.

4.5 Implementation of Model-Agnostic Meta-Learner

The main disadvantages of the coordinate-wise meta-learner are the high memory and

speed requirements, which prevents it from being used with state-of-the-art models

with millions of parameters. As we discussed in the previous section the only way how

to reduce the memory and speed footprint of the meta-learner with a predefined number

of adaptations steps and a predefined model is to simplify the adaptation update rule

learned by the meta-learner. With a simpler update rule with fewer parameters m we

reduce the memory footprint and at the same time we speed up training and inference

of the meta-learner because the cost of updating a single parameter of the acoustic

model UAM becomes much smaller. In order to simplify the update rule we can either

use a coordinate-wise meta-learner with fewer units in the hidden layer or we can use

a simple update rule

gadapt(fθ,Dadapt;{α}) = θ−α∇θL , (4.33)

which has only one learnable parameter α for each adapted layer and is very fast

to compute. Learnable parameters α can be learned with Algorithm 1. This sim-

ple update rule, which is much more memory- and computationally-efficient than

the coordinate-wise meta-learner, was used and evaluated in Model-Agnostic Meta-

Learning (MAML) (Finn et al., 2017), which we described in Section 4.1. Note that

by using this version of the adaptation function we were able to scale the meta-learning

techniques to large acoustic models in Chapter 6.

4.6 Learning All Speaker Adaptation Hyperparameters

At the beginning of this chapter we argued that the gradient-based adaptation update

rule contains several hyperparameters that need to be tuned if we want to obtain a

Chapter 4. Learning to Adapt 49

robust speaker adaptation procedure that can leverage all the information in the adap-

tation data and at the same time does not overfit to it. These hyperparameters include:

a selection of speaker dependent parameters, a robust learning rate schedule, a good

loss function, a filter for selecting relevant adaptation examples; and a tuned number of

adaptation steps. The parameterisations described in Section 4.4 and Section 4.5 can

automatically learn which layers should be adapted and how they should be adapted by

learning a learning rate schedule for each layer. This is achieved by allowing the meta-

learner to adapt all the layers of the acoustic model and by having separate parameters

for each layer of the acoustic model. Therefore, the meta-learner can learn different

adaptation dynamics for each layer. In some cases it can learn that it is better not to

adapt certain layers. In this section we outline how the meta-learner could be adjusted

to be able to automatically tune the remaining aforementioned hyperparameters.

Combination of Loss Functions

As discussed in Chapter 3, various regularisation terms, such as L2 or KL-divergence,

can be used to prevent the adapted model from overfitting to the adaptation data. How-

ever, for each of these regularisation terms we need to tune the weight λ. Thus, similar

to learning which layers should be adapted, we could provide a set of all possible loss

functions {
L1

(
θ,Dadapt

)
, . . . ,LN

(
θ,Dadapt

)}
(4.34)

and learn a set of corresponding weight terms

{λ1, . . . ,λN} (4.35)

by providing a compound loss function

L̂
(

θ,Dadapt
)
=

N

∑
l=1

λlLl

(
θ,Dadapt

)
(4.36)

to the meta-learner. However, note that if we use the first-order approximation, we

cannot implement the meta-learner like this, because the gradients ∇θL̂ are treated as

constants. And therefore we would not be able to tune the weights λl . Instead, we can

reparameterise the equation by realising that the gradient of a sum is a sum of gradients

∇θL
(

θ;Dadapt
)
=

N

∑
l=1

λl∇θLl

(
θ,Dadapt

)
. (4.37)

Chapter 4. Learning to Adapt 50

We could also learn a neural network g(θ,Dadapt;φ) that predicts the gradients

directly without any need to compute the loss functions:

∇θL = g(θ,Dadapt;φ), (4.38)

which is similar to the idea of synthetic gradients (Jaderberg et al., 2017). Synthetic

gradients are implemented as networks that predict gradients for a certain layer based

on its activations and these synthetic gradient networks are trained to be as close to the

real gradients as possible. By doing this the network could for example learn a low

rank monophone output space from a high rank senone output space as done by Dighe

et al. (2017).

Selection of Adaptation Data

Another important part of the adaptation process is the selection of the adaptation data

especially in unsupervised speaker adaptation. By training only on frames for which

the speaker-independent acoustic model is confident, the speaker dependent model will

not be able to learn anything new. On the other hand if we train only on frames for

which the speaker-dependent model is not confident the gradient information will be

noisy which might hurt the performance of the adapted model.

Therefore, similarly to learning the combination of loss functions we could allow

the meta-learner to learn which adaptation examples (xi,yi) ∈ Dadapt should be used

for adaptation. We achieve this by reparameterising the loss computation as

Ll(θ,Dadapt) = ∑
(xi,yi)∈Dadapt

wiL(yi, f (xi;θ)), (4.39)

where the per example weights wi can be predicted by a trainable neural network whose

predictions can be conditioned on the loss value for the particular example but also on

the state of the meta-learner, which would allow the adaptation process to learn a form

of curriculum learning procedure (Bengio et al., 2009). Such a neural network could,

for example, assign a low weight to examples with very high loss, because they are

probably too noisy or they might be outliers.

Number of Adaptation Steps

Finally, we need to tune the number of adaptation steps. If we perform only a few

steps the speaker dependent model will remain close the speaker independent model

Chapter 4. Learning to Adapt 51

and it will not leverage the potential of the adaptation data. On the other hand with

too many adaptation steps the adaptation process becomes computationally expensive

and we risk overfitting to the adaptation data. Therefore, it is important to find a good

compromise for the number of adaptation steps.

In this thesis rather than tuning this hyperparameter we treat it as a model constraint

and we let the meta-learner learn the best strategy, given the allowed number of adap-

tation steps. An alternative solution would be to allow the meta-learner to learn the

number of adaptation steps by using ideas from Graves (2016), which proposed a way

of allowing a recurrent neural network to perform an adaptive number of computations

for each time step. In our setting this idea would be implemented by reformulating the

update rule at time-step t as

θt+1 = θt− ptαt∇θt L , (4.40)

where pt is called the halting probability. It is computed from halting unit predictions

ht = σ(Wst +b), (4.41)

which are predicted from a state of the meta-learner st at adaptation step t, using the

following equation:

pt =

R if t = N

ht otherwise
, (4.42)

where N is the actual performed number of adaptation steps and R is the halting prob-

ability remainder. The actual performed number of adaptation steps N is computed

as

N = min

{
T,min

{
t ′ :

t ′

∑
t=1

ht ≥ 1− ε

}}
, (4.43)

with a maximum number of adaptation steps T and a small constant ε that allows the

meta-learner to perform only one adaptation step. The halting probability remainder

R , which is used for the last adaptation step to ensure that the probability distributions

sum up to one, is computed as:

R = 1−
N −1

∑
t=1

ht . (4.44)

In order to minimise the number of performed adaptation steps, we can alter the

meta-loss to also include a meta-regularisation term with weight τ

τ(R +N) , (4.45)

Chapter 4. Learning to Adapt 52

which ensures that the meta-learner will learn to use as few adaptation steps as possi-

ble for each particular speaker adaptation situation. Note that by jointly learning both

halting probabilities pt and the learning rates αt , we are not enforcing a decreasing

learning rate schedule, we are just learning an adaptive number of computation steps.

However, the training of a meta-learner with an adaptive number of adaptation steps

might be very time-consuming, because during training we always have to run speaker

adaptation for the maximum number of adaptation steps T , and it might not yield sat-

isfactory results given the training costs. For more details about adaptive computation

time we refer to Graves (2016).

4.7 Summary

In this chapter we introduced meta-learning. In meta-learning learning is happening

on two levels, a learner is learning task specific classifiers and a meta-learner is learn-

ing how to better train them. This approach is also called learning to learn. As the

main contribution of this thesis, we showed that speaker adaptation can also be for-

mulated as a meta-learning task, where the learner is a speaker dependent model and

the meta-learner is learning to produce these speaker dependent models by performing

speaker adaptation of a speaker independent model. We showed that the speaker adap-

tation procedure can be implemented as a coordinate-wise meta-learner that replaces

the traditional update rule in Equation 4.1. Alternatively it can also be implemented as

a simple gradient descent update rule with learned per-layer learning rates. As a result,

we can automatically learn robust speaker adaptation procedures with gradient descent

as we demonstrate in Chapter 5. Furthermore, we showed that we can also formu-

late speaker adaptive training as a meta-learning task by embedding the gradient-based

speaker adaptation directly into the training of the acoustic model. We compare this

meta-learning approach for speaker adaptive training with traditional approaches in

Chapter 6. Finally, in Section 4.6 we also sketched out how the meta-learner could be

adjusted to be able to automatically learn all hyperparameters for the speaker adapta-

tion procedure.

Chapter 5

Speaker Adaptation Experiments

In the previous chapter we described how speaker adaptation can be formulated as a

meta-learning task. In this chapter we report results for speaker adaptation experi-

ments. In particular, we compare the meta-learning approach for speaker adaptation

with the adaptation of LHUC parameters and ALL parameters of the acoustic model

with a learning rate optimised with a grid search. We also compare the coordinate-wise

meta-learner with the meta-learner that learns per layer learning rates.

5.1 TED Talks

All speaker adaptation experiments in this thesis were performed on TED talks. We

chose them because they contain clean single speaker recordings with several minutes

of speech for each speaker. Thanks to this we believe that TED talks are an ideal task

to estimate the effectiveness of various speaker adaptation techniques. We used the

TED-LIUM dataset (Rousseau et al., 2014) to train the baseline acoustic models. To

comply with the IWSLT evaluation protocol we only used TED talks from the TED-

LIUM dataset that were recorded before the end of 2012. Our training set contains 881

speakers and is 134 hours long. We used a combined dev set from IWSLT 2010 and

2012 (Paul et al., 2010; Federico et al., 2012) for speaker adaptation hyperparameter

tuning and to train the meta-learner. We evaluated the models on a combined test

set of IWSLT 2010, 2011 and 2012 (Paul et al., 2010; Federico et al., 2011, 2012).

The combined dev set contains 18 speakers and is 3.2 hours long and the combined

test set contains 30 speakers and is 5.3 hours long. The details about the dataset are

summarised in Table 5.1.

53

Chapter 5. Speaker Adaptation Experiments 54

hours number of speakers

train 134 881

dev 3.2 18

test 5.3 30

Table 5.1: Details of the data split used in this thesis. The training data consists of TED

talks from the TED-LIUM corpus (Rousseau et al., 2014) that were recorded before

the end of 2012. Development data comes from development sets of IWSLT 2010 and

2012 (Paul et al., 2010; Federico et al., 2012) and test data comes from test sets of

IWSLT 2010-2012 (Paul et al., 2010; Federico et al., 2011, 2012)

5.2 Baseline Acoustic Models

Training the coordinate-wise meta-learners requires large amounts of memory and is

very computationally expensive (Section 4.4). Therefore, in these experiments we

evaluated the speaker adaptation methods on the largest acoustic models that allowed

us to fit the meta-learner on a single GPU. Note that this results in our models being

4× to 6× smaller than the models trained in corresponding Kaldi recipes (Povey et al.,

2011) for the TED-LIUM corpus. We address the speed efficiency of the meta-learning

approach in Section 5.5.

Our first baseline acoustic model was a small deep neural network model (called

DNN in Table 5.3 and Table 5.4) trained with Kaldi. It consists of 1.5M weights across

6 hidden layers, each with 256 neurons, using sigmoid activation functions and an

output layer corresponding to 3792 senones and an input corresponding to 7 acoustic

frames. The DNN model used the language model from Bell et al. (2014) for de-

coding. This language model was a standard Kneser-Ney smoothed 3-gram language

model (Kneser and Ney, 1995), which was pruned with a threshold of 10−7 to reduce

memory requirements.

We also experimented with the adaptation of TDNN models (Peddinti et al., 2015)

to show that the meta-learner can work with state-of-the-art architectures. Again we

trained a small model with 2.1M weights across 6 hidden layers, with 300 units each

and ReLU activation functions and an output layer corresponding to 4208 senones.

The input corresponded to 5 acoustic frames projected with an LDA transform (Batlle

et al., 1998). Except for the number of units, the architecture is based on the Tedlium 1b

Chapter 5. Speaker Adaptation Experiments 55

DNN TDNN-BN TDNN-LN

number of layers 6 6 6

hidden layer width 256 300 300

activation function sigmoid ReLU ReLU

normalisation - Batch Layer

number of senones 3792 4208 4208

language model pruned 3-gram pruned 4-gram pruned 4-gram

Table 5.2: Details of the baseline acoustic models.

Kaldi recipe.1 We evaluated two TDNN models, one using batch normalisation and the

other using layer normalisation normalising only variance (TDNN-BN and TDNN-LN

in Table 5.3 and Table 5.4). Both normalisation methods were applied after the ReLUs.

Note that prior to speaker adaptation we fused the batch normalisation parameters into

the subsequent affine transformation. Therefore, we did not have to perform batch

normalisation during speaker adaptation. The TDNN models used a pruned 4-gram

language model with 2 million n-grams for decoding. This language model was trained

with the scripts from the Tedlium Kaldi recipe. Details of the baseline acoustic models

are summarised in Table 5.2.

5.3 Speaker Adaptation Setup

In these experiments we explored rapid speaker adaptation using only 10 seconds of

data to perform speaker adaptation. For the baseline speaker adaptation experiments

we either adapted all layers or only the LHUC layers (denoted ALL and LHUC in

Table 5.3 and Table 5.4). LHUC layers were inserted after every hidden layer, either

after applying the sigmoid in the DNN model or after applying normalisation in the

TDNN models. For both techniques we adapted the acoustic model for 3 epochs using

stochastic gradient descent (SGD) with a learning rate of: 0.01 for the DNN model;

2.5 · 10−6 for the TDNN models (ALL); and 0.7 (LHUC) for both DNN and TDNN

models with a batch size corresponding to 256 frames. These learning rates were

chosen using grid search. Note that the learning rate 0.7 for adaptation of LHUC

layers is close to the learning rate of 0.8 that was used by Swietojanski et al. (2016).

1https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/nnet3/
tuning/run_tdnn_1b.sh

https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/nnet3/tuning/run_tdnn_1b.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/nnet3/tuning/run_tdnn_1b.sh

Chapter 5. Speaker Adaptation Experiments 56

5.4 Training the Meta-Learner

We used the development sets from IWSLT 2010 and 2012 (Paul et al., 2010; Federico

et al., 2012) to train the meta-learner for a pretrained acoustic model. The data for

the first 13 speakers was used as the meta-training set and the last 5 speakers as the

meta-validation set, as described in Section 4.2. We trained the meta-learner to adapt

the acoustic model using n seconds of adaptation data to improve performance on the

following n seconds. We implemented the meta-learner as a coordinate-wise meta-

learner, as described in Section 4.4, with a single-layer LSTM with 10 hidden units

performing 3 full-batch adaptation steps.2 The meta-learner was trained using Adam

(Kingma and Ba, 2014) with a learning rate of 0.001. The goal of the meta-learner

was to learn an update rule for speaker adaptation, defined in Equation 4.14, that could

replace the SGD update rule used in the baseline adaptation method. During training

we monitored the loss on the meta-validation set and we selected the meta-learner that

achieved the best meta-validation loss for testing. The meta-learner was implemented

and trained with Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2016) and

the decoding of the adapted models was done with Kaldi (Povey et al., 2011). The

source code for the meta-learner is publicly available.3

5.5 Results

We experimented with relatively small models in order to be able to train a coordinate-

wise meta-learner for them. The DNN model achieves a word error rate (WER) of

20.7% on our test set and both TDNN models achieve a WER of 15.2% which is close

to a DNN model used by Bell et al. (2014) which achieves a WER of 14.9% while the

TDNN models are 20× smaller. This is probably due to better expressive power of

TDNN models, a better language model and also improved training methods for ASR

models.

First we performed supervised speaker adaptation using 10 seconds of adaptation

data (Table 5.3). When adapting the LHUC parameters of the DNN model we ob-

tained an improvement of 0.6% absolute which is comparable to other previous exper-

iments (Swietojanski and Renals, 2014). Adapting all the weights performed worse as

the adaptation schedule may have overfit to the adaptation data, but the meta-learner

2Note that this is in contrast with experiments reported in Klejch et al. (2018), where we used only a
single full-batch adaptation step.

3https://github.com/ondrejklejch/learning_to_adapt/

https://github.com/ondrejklejch/learning_to_adapt/

Chapter 5. Speaker Adaptation Experiments 57

DNN TDNN-BN TDNN-LN

original 20.7 15.2 15.2

LHUC 20.1 14.3 14.6

ALL 20.6 14.5 14.6

META 19.3 14.1 14.1

Table 5.3: WER (%) of the supervised speaker adaptation experiments using 10s of

adaptation data.

DNN TDNN-BN TDNN-LN

original 20.7 15.2 15.2

LHUC 20.5 14.6 14.8

ALL 20.6 14.7 14.8

META 19.7 14.5 14.4

Table 5.4: WER (%) of the unsupervised speaker adaptation experiments using 10s of

adaptation data.

was able to learn a good adaptation schedule that outperformed adapting LHUC pa-

rameters by an additional 0.8% absolute. Similarly, when adapting the TDNN models

the meta-learners achieved better performance than when we adapted the LHUC pa-

rameters; however the difference was much smaller, only 0.2% and 0.5% absolute.

Supervised adaptation of all three models with the meta-learning approach achieved

6−7% relative improvement compared to the baseline.

We then performed unsupervised adaptation using 10 seconds of adaptation data

(Table 5.4). When adapting the DNN model, the meta-learner outperformed adapting

only LHUC parameters by 0.8% absolute, a relative improvement of 4.8% compared

to the baseline. Similarly, unsupervised adaptation of the TDNN models using the

meta-learning approach outperformed or matches performance of adapting only LHUC

parameters. It achieved 5% relative improvement compared to the baseline.

Subsequently, we wanted to compare performance of the coordinate-wise meta-

learner with a meta-learner that learns just per layer learning rates for the adaptation

update rule. Also, we wanted to test whether the meta-learning approach can scale

to larger amounts of adaptation data. Therefore, we ran supervised and unsupervised

speaker adaptation experiments with 10s, 30s and 60s of adaptation data. The results

Chapter 5. Speaker Adaptation Experiments 58

DNN TDNN-BN TDNN-LN

coord lr per layer coord lr per layer coord lr per layer

original 20.7 15.2 15.2

10s 19.3 19.7 14.1 14.1 14.1 14.2

30s 18.7 19.2 13.6 13.7 13.7 13.7

60s 18.2 18.8 13.7 14.0 13.5 13.7

Table 5.5: WER (%) of the supervised speaker adaptation experiments with a

coordinate-wise meta-learner and a meta-learner learning a learning rate per layer us-

ing 10s, 30s and 60s of adaptation data.

DNN TDNN-BN TDNN-LN

coord lr per layer coord lr per layer coord lr per layer

original 20.7 15.2 15.2

10s 19.7 20.2 14.4 14.5 14.5 14.6

30s 19.3 19.6 14.2 14.3 14.4 14.5

60s 19.0 19.5 14.1 14.4 14.3 14.5

Table 5.6: WER (%) of the unsupervised speaker adaptation experiments with a

coordinate-wise meta-learner and a meta-learner learning a learning rate per layer us-

ing 10s, 30s and 60s of adaptation data.

are summarised in Table 5.5 and Table 5.6. When we look at the results for speaker

adaptation of the DNN model, we can see that both meta-learners can scale to more

adaptation data. However, the coordinate-wise meta-learner consistently achieves bet-

ter results compared to learning per layer learning rates. It achieves 6.7%, 9.6% and

12% relative improvements with 10s, 30s and 60s of supervised adaptation data com-

pared to 4.8%, 7.2% and 9.1% with learning per layer learning rates. Similarly, the

coordinate-wise meta-learner achieves better results in unsupervised speaker adapta-

tion. We hypothesise that since the coordinate-wise meta-learner has a bigger capacity

it can learn more about the adapted model and it can learn better strategies for adapta-

tion. In the case of the TDNN models, both meta-learners can scale to 30s of adapta-

tion data. However they do not benefit from having 60s of adaptation data compared to

having only 30s. Additionally, the coordinate-wise meta-learner achieves comparable

results with the meta-learner learning only per layer learning rates. This might suggest

Chapter 5. Speaker Adaptation Experiments 59

that it is much harder to find a good adaptation strategy for a better baseline model with

the coordinate-wise meta-learner, therefore the meta-learner learns similar behaviour

to just learning per layer learning rates. It could also mean, that our meta-training

procedure is not optimal and we might need more meta-training data to learn a better

strategy.

Despite the fact that learning only per layer learning rates is not as powerful as

using the coordinate-wise meta-learner, learning only per layer learning rates has the

benefit that it is much easier to interpret. Note that the learned learning rates depend on

how we compute the loss function. In all meta-learning experiments we did full-batch

adaptation with the loss computed as

L(θ,Dadapt) = 10−3 ∑
(x,y)∈Dadapt

L(y, f (x;θ)) . (5.1)

We used this scaled sum of per frame losses, because we wanted to test whether we can

use a meta-learner trained with 10s of adaptation data to perform adaptation with 30s

or 60s of adaptation data. However, we found that this does not work and it is always

better to train the meta-learner with the same amounts of adaptation data as will be

used for evaluation. In Table 5.7, Table 5.8 and Table 5.9 we include learned learning

rates for supervised and unsupervised speaker adaptation of the DNN, the TDNN-BN

and the TDNN-LN models, respectively. In Table 5.7 we can see that the meta-learner

learned that it is not good to adapt the last two or three layers in the unsupervised

setting. We hypothesise that this is because of the noise in the labels and that the last

few layers might be more sensitive to overfitting to those errors.

Interestingly, we can see that the meta-learner learned very small learning rates for

the adaptation of the first layer of both TDNN models. This is probably due to the

convolutional nature of the TDNN models, as a small change in the first layer has a

serious impact on all computations in the TDNN. For a better intuition see how many

paths would be affected by changing the input layer in Figure 2.4. More importantly,

when we compare the batch normalisation model TDNN-BN and the layer normali-

sation model TDNN-LN, we see that the meta-learner learned an order of magnitude

higher learning rates for TDNN-LN. A possible explanation for this is that by fusing

the batch normalisation into subsequent layers, TDNN-BN layers stop being scale in-

variant and therefore we have to use smaller learning rates. Finally, even though the

architectures differ only in the used normalisation, they require very different learning

rates, which justifies the usage of meta-learning over hand-crafted learning rules.

Chapter 5. Speaker Adaptation Experiments 60

supervised unsupervised

10s 30s 60s 10s 30s 60s

hidden layer 1 0.1822 0.1886 0.2299 0.1999 0.1590 0.0931

hidden layer 2 0.2402 0.1579 0.1104 0.3124 0.1894 0.1583

hidden layer 3 0.2952 0.2836 0.2396 0.5587 0.4613 0.1923

hidden layer 4 0.2940 0.1629 0.0586 0.0974 0.1024 0.1673

hidden layer 5 0.3379 0.2301 0.1769 0 0 0.1262

hidden layer 6 0.3507 0.2545 0.2028 0 0 0

output layer 0.3243 0.2587 0.1549 0 0 0

Table 5.7: Learned learning rates for the adaptation of the DNN model.

supervised unsupervised

10s 30s 60s 10s 30s 60s

hidden layer 1 0.0000 0.0000 0 0.0000 0.0000 0

hidden layer 2 0.0688 0.0456 0.0197 0.0505 0.0652 0.0243

hidden layer 3 0.0072 0.0032 0.0013 0.0041 0.0009 0.0016

hidden layer 4 0.0040 0.0021 0.0010 0 0.0003 0

hidden layer 5 0.0049 0.0028 0.0007 0.0028 0.0026 0

hidden layer 6 0.0072 0.0042 0.0026 0.0034 0.0029 0.0015

output layer 0 0 0 0 0 0

Table 5.8: Learned learning rates for the adaptation of the TDNN-BN model.

supervised unsupervised

10s 30s 60s 10s 30s 60s

hidden layer 1 0.0000 0.0000 0.0000 0.0001 0.0000 0

hidden layer 2 0.1435 0.0397 0.0745 0.1061 0.1317 0.0625

hidden layer 3 0.1062 0.0774 0.0355 0.0538 0.0351 0.0779

hidden layer 4 0.0444 0.0397 0.0073 0.0588 0 0

hidden layer 5 0.1639 0.0665 0.0685 0.0911 0.0416 0

hidden layer 6 0.1091 0.0334 0.0774 0.0462 0.0781 0.0393

output layer 0.0096 0.0115 0.0028 0.0094 0.0035 0.0036

Table 5.9: Learned learning rates for the adaptation of the TDNN-LN model.

Chapter 5. Speaker Adaptation Experiments 61

AM inference AM training META inference META training0

200

400

600

m
s/

st
ep

Speed of Adapting All Parameters

MAML COORD 5 COORD 10 COORD 20

Figure 5.1: Speed benchmark of performing inference and training of a TDNN model

with 10s of data. And a benchmark of performing inference and training of meta-learner

doing 3 full-batch adaptation steps of all parameters of the acoustic model with 10s of

adaptation data and evaluating the adapted model on another 10s of data.

AM inference AM training META inference META training0

20

40

60

80

m
s/

st
ep

Speed of Adapting LHUC Parameters

MAML COORD 5 COORD 10 COORD 20

Figure 5.2: Speed benchmark of performing inference and training of a TDNN model

with 10s of data. And a benchmark of performing inference and training of meta-learner

doing 3 full-batch adaptation steps of LHUC parameters of the acoustic model with 10s

of adaptation data and evaluating the adapted model on another 10s of data.

5.6 Benchmarking Meta-Learner Speed

In the previous chapter we claimed that the training of the meta-learner is computation-

ally expensive. In this section we show this empirically by comparing the coordinate-

wise meta-learner (Section 4.4) and MAML with a simpler update rule (Section 4.5).

For this benchmark we measure how long it takes to:

• perform inference with 10s of data with the TDNN model (AM inference),

Chapter 5. Speaker Adaptation Experiments 62

• train the acoustic model for one step with 10s of data (AM training),

• perform 3 full-batch adaptation steps with 10s of data with the meta-learner

(META inference)

• train the meta-learner with 10s of adaptation and testing data for one speaker

(META training).

We conduct the benchmarks on Nvidia Titan X (Pascal) and we report how many mil-

liseconds it takes to perform one step. Figure 5.1 summarises benchmarks for the

adaptation of all 2.1M parameters of the acoustic model and Figure 5.2 summarises

benchmarks for the adaptation of 1800 LHUC parameters.

When we look at the speed of inference and training of the AM, we see that the

training is approximately 2× slower than the inference. This is because during infer-

ence we perform only a forward pass, whereas during training we need to do a forward

pass, a backward pass and an update of the parameters.

When we adapt all 2.1M parameters of the meta-learner for 3 adaptation steps (Fig-

ure 5.1), we see that the time of META inference of MAML corresponds to performing

3 adaptation steps and doing inference on the test data. This is expected because both

update rules have identical complexity. However, when we look at the time of META

inference of the coordinate-wise meta-learner (COORD) we see that it increases with

the number of units in the coordinate-wise meta-learner. This difference becomes even

more pronounced when we train the parameters of the meta-learner, because the back-

ward pass through the computation graph (Figure 4.1) takes a considerable time for

the complex coordinate-wise meta-learner. This makes the coordinate-wise unusable

for speaker adaptive training of state-of-the-art acoustic models on large datasets on a

single GPU. Therefore, in Chapter 6 we used MAML for speaker adaptive training.

When we adapt 1800 LHUC parameters (Figure 5.2), we see that MAML is still

faster than the coordinate-wise meta-learner but the difference in speeds is significantly

smaller. It is interesting to see that the coordinate-wise meta-learner does not become

slower with the increasing number of units. This is because we are adapting only 1800

LHUC parameters and the matrix operations with these small sizes are very fast on

GPU.

Finally, note that the MAML META-inference benchmarks can also be used as a

proxy to estimate the speed of grid search. This is because in grid search we also

perform 3 adaptation steps with the simple update rule (Equation 4.1). Therefore, the

main difference between training MAML and performing a grid search is that the grid

Chapter 5. Speaker Adaptation Experiments 63

search does not perform a backward pass to update the meta-learner parameters but it

finds the best parameters by evaluating parameters on a parameter grid. A grid search

usually uses much more data to evaluate the parameters to obtain a robust performance

estimate, which means that for a fixed number of evaluations MAML explores a much

larger parameters space. Therefore sometimes a coarse grid search is replaced with

Bayesian optimisation (Gelbart et al., 2014) that does not need to evaluate all possible

parameters on the grid, but instead it searches only the most promising regions in the

parameter space. However, note that while the grid-search approach works for the

estimation of the learning rates it would be unfeasible to use it to learn more complex

update rules, such as the coordinate-wise meta-learner.

To conclude, as we saw in Figures 5.1 and 5.2 if we want to reduce the memory

and compute requirements of meta-learning for speaker adaptation, we either need to

adapt fewer weights or we have to use a simpler update rule.

5.7 Summary

In this chapter we presented results for speaker adaptation experiments. We showed

that meta-learning approaches, that learn learning rate schedules for adaptation of each

adapted layer, can outperform handcrafted learning rates estimated with a coarse grid

search. In addition, we compared coordinate-wise meta-learner with a meta-learner

that learns per layer learning rates. We found that the coordinate-wise meta-learner

can learn better adaptation procedures because of its more expressive power. On the

other hand, learning only per layer learning rates allows us to better inspect what is hap-

pening during adaptation and it is much more computationally efficient. We showed

that the meta-learner can learn not to adapt certain layers and that it learns different

strategies for different models and different scenarios.

Chapter 6

Speaker Adaptive Training

Experiments

In the previous chapter we experimentally showed that meta-learning can learn a good

adaptation schedule that outperforms adaptation schedules with handcrafted learning

rates. In this chapter we test whether the performance of test-time speaker adaptation

can be further improved by using speaker adaptive training to train the acoustic model.

In particular, we compare the traditional speaker adaptive training approach, described

in Section 3.7, with our meta-learning approach, described in Section 4.3. In traditional

speaker adaptive training we maintain and optimise a copy of speaker dependent pa-

rameters for each speaker during training to allow the canonical model to focus solely

on modelling phonological variability. We used SAT-LHUC (Swietojanski and Renals,

2016), also described in Section 3.7, as a representative of the traditional methods. Our

meta-learning approach embeds the gradient based speaker adaptation into the training

of the acoustic model which ought to steer the training process into finding parameters

that are suitable for rapid adaptation.

6.1 Baseline Acoustic Model

All models in this chapter used LDA projected 40 dimensional MFCC features with-

out cepstral mean and variance normalisation. The baseline acoustic model was a

TDNN, which consisted of 6 hidden layers with 600 neurons each and ReLU acti-

vation functions followed by batch normalisation and an LHUC layer. LHUC layers

were used only for adaptation, otherwise LHUC parameters were set to 1. The model

64

Chapter 6. Speaker Adaptive Training Experiments 65

predicted posteriors for 4208 senones, and had 5.9M parameters in total.1 We trained

the model for 400 iterations with Adam (Kingma and Ba, 2014). In each iteration we

trained on 2000 batches that contained 256 chunks with 8 frames. This roughly cor-

responds to doing 3 epochs of training on all available training data. We performed

early-stopping (Morgan and Bourlard, 1990; Prechelt, 1998) by monitoring the loss on

a validation set after each iteration. We used the best performing model for decoding.

6.2 Speaker Adaptation Setup

As a baseline we performed speaker adaptation of LHUC weights and ALL weights

of a baseline model. In both methods we used 3 steps of full-batch gradient descent to

adapt the weights. In all experiments we used the combined dev set to train a meta-

learner to find the per-layer learning rate for 10s, 30s and 60s of adaptation data. We

performed both supervised and unsupervised speaker adaptation experiments. Unsu-

pervised labels were obtained using a separately trained baseline model and were used

for unsupervised speaker adaptation of all models. During adaptation, we removed

frames corresponding to silence from the adaptation data, because silence does not

contain any speaker information.

6.3 SAT-LHUC Training Details

The SAT-LHUC model had the same architecture and used the same training sched-

ule as the baseline LHUC model except that during training we used speaker specific

LHUC parameters for each speaker in order to enable the model to remove speaker

variability. In order to obtain speaker-independent LHUC parameters, we created an

artificial speaker and we mapped each utterance to this artificial speaker with proba-

bility 0.5 as we discussed in Section 3.7.

6.4 MAML Training Details

We trained a model with the same baseline acoustic model as described in Section 6.1

using the MAML approach. To train the model we used 10s of adaptation data and

1Note that this model is 50% smaller than a model used in a corresponding Kaldi recipe that has 850
neurons in each hidden layer. The smaller model achieves WER of 13.4% on the combined test set and
the bigger model achieves WER of 13.0%.

Chapter 6. Speaker Adaptive Training Experiments 66

the goal was to improve performance on the following 10s of unseen data using three

full-batch adaptation steps. We trained different models to adapt LHUC parameters

(MAML-LHUC) and to adapt ALL parameters (MAML-ALL). In both cases the meta-

learner learned separate learning rates for each adapted layer. We trained the model

with a combination of a loss computed with the speaker-independent model and a loss

computed with the adapted model. We did this because in our preliminary experiments

we found that using only the loss computed with the adapted model lead to worse

results. We initialised the model with a baseline model that was trained for 200 itera-

tions and continued training it for another 200 iterations using the MAML objective.

We used Adam (Kingma and Ba, 2014) as an optimiser. In each iteration we trained

on 1024 batches that contained data for 4 different speakers. This way all the models

used the same number of frames for training. At the end we fine-tuned the per-layer

learning rates for varying amounts of adaptation data on the dev set.

Since our baseline models use batch normalisation (Ioffe and Szegedy, 2015), we

also wanted to use it in the MAML models. In order to explain why using batch

normalisation in MAML is complicated let us first briefly recapitulate how batch nor-

malisation works. As seen in Section 2.3, batch normalisation normalises hidden acti-

vations h in the following way:

h′ = γ
h−µ√
σ2 + ε

+β, (6.1)

where γ and β are the learned scale and offset weights, µ and σ2 are the mean and

variance statistics estimated on the current batch during training (denoted µB and σ2
B)

or as running statistics during inference (denoted µG and σ2
G), and ε is a small number

preventing division by 0. Previous papers used batch normalisation in MAML with

mean and variance statistics computed only on the current batch (Finn et al., 2017) or

accumulated different running statistics for each training step, because there was a big

shift in distributions of hidden activations between different training steps (Antoniou

et al., 2019).

We believe that using statistics computed only on the current batch is not opti-

mal, because it forces the model to perform batch normalisation per utterance during

inference. Since each utterance might have a different duration, we would be using

inconsistent estimates of the true mean and variance for each utterance – it might

be compared to performing cepstral mean and variance normalisation per utterance

instead of cepstral mean and variance per speaker. This also hurts performance of

speaker adaptation because we are adapting parameters with different statistics rather

Chapter 6. Speaker Adaptive Training Experiments 67

0 10 30 60
Seconds of Adaptation Data

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 (%
)

Supervised LHUC Speaker Adaptation with Global/Batch Statistics

global stats batch stats

Figure 6.1: WERs (%) of supervised speaker adaptation of LHUC parameters of the

baseline model. Batch normalisation statistics are estimated on all the training data

(global stats), or on the adaptation data (batch stats).

than statistics that will be used during inference. Therefore we decided to use batch

renormalisation (Ioffe, 2017) in MAML models. We described batch renormalisation

in more detail in Section 2.3.

6.5 Results

Since our baseline acoustic models use batch normalisation, we first tested how to

treat the mean µ and variance statistics σ2 when adapting the LHUC weights of the

baseline model. Our results are shown in Figure 6.1. Traditionally, the batch statistics

µB, σ2
B are used during training, and the running mean µG and variance σ2

G statistics

are used for inference. The results in Figure 6.1 suggest that for speaker adaptation

with limited amounts of adaptation data it is better to use global statistics than batch

statistics. This is likely because the global statistics are better estimates of the true

means and variances – by adapting the LHUC weights we are essentially correcting

for errors in the variance estimation. (Note that this was the only experiment where we

used a learning rate of 0.7 for the adaptation of LHUC weights, because it was found

to work well in Klejch et al. (2018).)

In the second experiment we conducted supervised speaker adaptation of the base-

line model, SAT-LHUC, and MAML models (Figure 6.2). In all experiments we used

adaptation schedules learned with the meta-learning approach (Equation 4.22), instead

of a hand-crafted adaptation schedule. Using the learned adaptation schedule achieves

much better results than adaptation using a handcrafted learning rate schedule (Fig-

Chapter 6. Speaker Adaptive Training Experiments 68

0 10 30 60
Seconds of Adaptation Data

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 (%
)

Supervised Speaker Adaptation

Baseline-LHUC Baseline-ALL SAT-LHUC MAML-LHUC MAML-ALL

Figure 6.2: WER (%) for supervised speaker adaptation of the baseline, SAT-LHUC,

MAML-LHUC, and MAML-ALL models.

0 10 30 60
Seconds of Adaptation Data

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 (%
)

Supervised LHUC Speaker Adaptation with Learned/Handcrafted Learning Rates

handcrafted learning rate learned learning rate

Figure 6.3: WER (%) for supervised speaker adaptation of LHUC parameters of the

baseline model with handcrafted and learned learning rates.

ure 6.3). This is because the learned learning rates are three to four times larger than

the handcrafted learning rate 0.7, which we found to work well in Klejch et al. (2018).

This result has a straightforward explanation: In this chapter we perform full-batch

adaptation, whereas in Klejch et al. (2018), adaptation was performed with a batch

size of 256 frames. Consequently, adapting using a full batch of 10s (1000 frames)

results in performing 4× fewer adaptation steps. Therefore, the meta-learner learned

to use approximately 4× larger learning rates than the ones which worked well for a

batch size of 256. However, this rule of thumb for scaling the learning rate worked

only with 10s of adaptation. This scaling did not work when we tried to adapt the

model with 30s or 60s of adaptation data because it resulted in large learning rates of

8.4 and 16.8, respectively, whereas the meta-learner learned learning rates of 1.2 and

1.1.

Chapter 6. Speaker Adaptive Training Experiments 69

0 10 30 60
Seconds of Adaptation Data

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 (%
)

Unsupervised Speaker Adaptation

Baseline-LHUC Baseline-ALL SAT-LHUC MAML-LHUC MAML-ALL

Figure 6.4: WER (%) for unsupervised speaker adaptation of the baseline, SAT-LHUC,

MAML-LHUC, and MAML-ALL models.

When adapting all parameters, MAML-ALL typically outperforms the baseline,

particularly for 60s of adaptation data. This suggests that it has found an improved

schedule using MAML, compared to the hand-crafted schedule for Baseline-ALL.

Nevertheless, this highlights the usefulness of using the meta-learning approach for

estimating the adaptation schedule compared to an excessive hyperparameter search,

which requires selecting appropriate step-sizes and bounds on the hyperparameters.

We argue that the learned learning rates for LHUC layers are several orders of mag-

nitude larger than commonly used learning rates. There is therefore a considerable

chance that the hyperparameter bounds would not be set optimally to uncover the best

solution. We observed similar trends when we performed unsupervised speaker adap-

tation experiments (Figure 6.4), but obtained much higher WERs than with supervised

speaker adaptation.

When we compare the baseline model with SAT-LHUC and MAML-LHUC mod-

els we see that there is not a big difference between the adaptation of these models

both in supervised and unsupervised scenarios. There are several possible explana-

tions for this observation. First, SAT-LHUC was originally shown to improve speaker

adaptation with a feed-forward neural network (Swietojanski and Renals, 2016). This

feed-forward neural network was approximately 5× bigger than our TDNN baseline,

but it achieved much worse performance before adaptation. It is possible that our

TDNN baseline is sufficiently powerful to model both speaker and phonological vari-

ability inside the canonical model. It therefore might not benefit from factoring out

speaker variability into speaker dependent weights as much as the feed-forward neural

network. Second, the feed-forward neural network used in Swietojanski and Renals

Chapter 6. Speaker Adaptive Training Experiments 70

(2016) did not employ batch normalisation. It is possible that the batch normalisation

may implicitly be removing speaker variation from the data, thus removing the need

for speaker adaptation. Third, there are only 881 speakers in the training data and dif-

ferences between them are probably much smaller than differences between different

classes in the few-shot learning scenario (Finn et al., 2017), therefore the model is not

forced to factor out speaker variability into speaker dependent weights.

6.6 Summary

In this chapter we compared speaker adaptation of a baseline acoustic model and mod-

els trained with speaker adaptive training of LHUC and all parameters. We evaluated

the traditional speaker adaptive training using SAT-LHUC and our meta-learning ap-

proach for speaker adaptive training which embeds gradient based speaker adaptation

directly into training of the acoustic model. We found that neither of these speaker

adaptive training methods yield any improvement after test-time unsupervised speaker

adaptation compared to the speaker adapted baseline model. We hypothesised that

speaker adaptive training might not be helping because the baseline model has enough

capacity to model both speaker and phonological variability. Alternatively, batch nor-

malisation might be interfering with speaker adaptive training by removing the speaker

variability in the batch that might be important for speaker adaptive training. In the fol-

lowing chapter, we run more experiments to find out why unsupervised speaker adap-

tation of models training with speaker adaptive training did not work in this chapter.

Chapter 7

Analysis of SAT-LHUC Training

In the previous chapter we reported results for our speaker adaptive training experi-

ments. In those experiments we compared speaker adaptive training using the tradi-

tional SAT-LHUC approach and our meta-learning approach. Unfortunately, neither of

these speaker adaptive training methods improved the performance of speaker adapted

models compared to the adapted baseline model. This is in contrast with results re-

ported in Swietojanski and Renals (2016), in which SAT-LHUC improved the perfor-

mance of the adapted models. Therefore, we decided to run a series of ablation ex-

periments that would help to determine, why speaker adaptive training did not work in

our experiments. In the experiments we tested several factors that might have affected

the performance of speaker adaptive training. These factors were neural network ar-

chitecture, hidden layer width, model size, activation function, training optimiser and

the number of training iterations.

7.1 Baseline Acoustic Models

Swietojanski and Renals (2016) originally employed SAT-LHUC with a feed forward

neural network with 6 hidden layers with 2000 units and a sigmoid non-linearity; we

call this neural network DNN in results. This neural network was trained with SGD

with an initial learning rate of 0.08 and used the newbob learning rate schedule (John-

son et al., 2004). In our baseline DNN, we replaced sigmoids with ReLUs, we used

batch normalisation; and we trained the model with Adam. Additionally, we also

trained a TDNN with 6 hidden layers with 600 units each, ReLU non-linearities and

batch normalisation. We trained the network with Adam using an initial learning rate

of 0.0015. We gradually decreased the learning rate to a final learning rate of 0.00015

71

Chapter 7. Analysis of SAT-LHUC Training 72

test 2010 test 2013

DNN (Swietojanski and Renals (2016)) 15.2 22.3

DNN (ours) 14.2 18.6

TDNN (ours) 14.0 17.7

Table 7.1: WER (%) comparing various neural network architectures on test sets from

IWSLT 2010 and 2013.

using a linear learning rate schedule. Table 7.1 shows results for the baseline models

evaluated on the test sets from IWSLT 2010 and 2013 in comparison to the model from

Swietojanski and Renals (2016). We can see that both our baseline models achieve

comparable WER and they are both significantly better than the DNN from Swietojan-

ski and Renals (2016). Note, that in the rest of this chapter we report results on the

combined test set from IWSLT 2010–2012 as we did in all previous experiments in

Chapter 5 and Chapter 6.

7.2 Speaker Adaptation Setup

In order to be able to show whether speaker adaptive training affects the performance of

speaker adaptation, we conducted unsupervised speaker adaptation experiments with

60s of adaptation data. We chose 60s of adaptation data because we hypothesise,

that the effect of speaker adaptive training might not be visible with small amounts of

adaptation data. As in Chapter 5, we optimised the adaptation update rule by train-

ing a meta-learner with a learning rate for each layer on the combined dev set from

IWSLT 2010 and 2012. This ensures that we always use an optimal speaker adaptation

procedure for each model.

7.3 Effect of the Normalisation

Since SAT-LHUC has the expressive power to learn to normalise the variance of hid-

den representations, in the first experiment we tested how SAT-LHUC interacts with

different normalisation techniques. Our hypothesis was that if we use batch normalisa-

tion, we might be removing the variance of the hidden representations before passing

them to the LHUC layer. Depending on how we sample batches during training, for ex-

Chapter 7. Analysis of SAT-LHUC Training 73

no norm. mean
batch norm.

mean and var.
batch norm.

mean and var.
batch renorm.

variance
layer norm.

Normalisation

10

11

12

13

14

15

16

W
ER

 (%
)

Effect of normalisation - SAT-LHUC DNN AM

baseline adapted baseline SAT-LHUC adapted SAT-LHUC

Figure 7.1: WER (%) comparing speaker adaptation of a baseline and a SAT-LHUC

DNN model with various normalisation functions.

ample if the batch contains data only from a single speaker, the variance of the hidden

representations might be highly related to speaker variance. Thus, if we remove the

variance with batch normalisation, SAT-LHUC would not be able to learn to remove

the speaker variability. To test this hypothesis we trained DNN and TDNN models

with no normalisation, batch mean normalisation, standard batch mean and variance

normalisation, batch renormalisation; and variance layer normalisation. All these nor-

malisation techniques were described in Section 2.3.

As we can see from the results for the DNN models (Figure 7.1) and the TDNN

models (Figure 7.2 and Figure 7.3), SAT-LHUC improves performance of speaker

adapted models when we do not normalise the hidden representations or when we

perform batch mean normalisation. This confirms our hypothesis that variance normal-

isation performed by the standard batch normalisation or layer normalisation might be

interfering with SAT-LHUC. However, in practice our goal is to find the best perform-

ing model, regardless of whether we use speaker adaptive training or not. Therefore, in

practice it is better to use batch normalisation or batch renormalisation and adapt those

models than to train SAT-LHUC models with no normalisation or batch mean normali-

sation. Nevertheless, it is worth pointing out that the adapted SAT-LHUC DNN models

achieve better results than their SAT-LHUC TDNN counterparts, which is interesting

because they achieve comparable performance before adaptation. This observation

might be explained by wider hidden layers in the DNN models, which results in a

larger number of speaker dependent LHUC parameters discussed below.

Chapter 7. Analysis of SAT-LHUC Training 74

no norm. mean
batch norm.

mean and var.
batch norm.

mean and var.
batch renorm.

variance
layer norm.

Normalisation

10

11

12

13

14

15

16

W
ER

 (%
)

Effect of normalisation - SAT-LHUC TDNN AM

baseline adapted baseline SAT-LHUC adapted SAT-LHUC

Figure 7.2: WER (%) comparing speaker adaptation of a baseline and a SAT-LHUC

TDNN model with various normalisation functions.

7.4 Effect of the Hidden Layer Width

In the second set of experiments we experimented with wider hidden layers in the

TDNN model to test whether an increased hidden layer width can improve the perfor-

mance of SAT-LHUC models. We hypothesised that a wider hidden layer width might

allow SAT-LHUC models to learn speaker specific units instead of performing only

variance normalisation. These speaker specific units can then perform some form of

model combination, which is similar to the hypothesis that Dropout implicitly learns

an ensemble of smaller models (Srivastava et al., 2014). This might imply that SAT-

LHUC is not performing speaker adaptive training in the traditional point-of-view.

In order to keep the model size comparable to the original TDNN model, we de-

cided to use the factorised TDNN model (TDNN-F) (Povey et al., 2018). TDNN-F

models factorise each affine transformation matrix A ∈ Rn×n into a product of two

low-rank matrices U ∈ Rn×k,V ∈ Rk×n such that A = UV . This factorisation enables

an increase of the hidden layer size without increasing the total number of parameters

by controlling the bottleneck dimension. In this experiment we trained a TDNN-F

model with 2048 units in each hidden layer and a bottleneck dimension of 128. We

chose this configuration to ensure a comparable hidden layer width with the DNN

models, while having a comparable total number of parameters with the TDNN mod-

els. As in the previous experiment, we trained the model with various normalisation

techniques to test whether the better performance of SAT-LHUC DNN models can be

explained solely by the fact that they have more speaker dependent parameters.

Chapter 7. Analysis of SAT-LHUC Training 75

no norm. mean
batch norm.

mean and var.
batch norm.

mean and var.
batch renorm.

variance
layer norm.

Normalisation

10

11

12

13

14

15

16

W
ER

 (%
)

Effect of normalisation - SAT-LHUC TDNN-F AM

baseline adapted baseline SAT-LHUC adapted SAT-LHUC

Figure 7.3: WER (%) comparing speaker adaptation of a baseline and a SAT-LHUC

TDNN-F model with various normalisation functions.

When we look at the results in Figure 7.3, we see a similar trend as we saw in the

results for the TDNN models in Figure 7.2. This leads us to the conclusion that the

improved performance of the adapted SAT-LHUC DNN models must also be due to

the model size, because the DNN models have 30.8 million parameters whereas the

TDNN and TDNN-F models have only 6 million parameters. We hypothesise that the

bigger capacity of the canonical DNN models is also important to allow SAT-LHUC

models to perform model combination instead of variance normalisation.

7.5 Effect of the Model Size

To test the hypothesis that the bigger capacity of the canonical model is important for

SAT-LHUC, we ran two sets of experiments. In the first one we increased the hid-

den layer width of the TDNN models and in the second we increased the bottleneck

dimension of the TDNN-F models. In both cases we used batch-renormalisation, be-

cause it achieved similar results to batch normalisation in the previous experiments.

Also, it should be better suited theoretically for speaker adaptive training, because dur-

ing training it does not remove batch specific variance, but it removes global variance;

therefore the speaker variance might still be present in the hidden representations. As

we see from the results in Figure 7.4 and Figure 7.5, increasing the model size im-

proves performance of the models, however, it does not improve performance of the

adapted SAT-LHUC models compared to the adapted baselines.

Chapter 7. Analysis of SAT-LHUC Training 76

600 900 1200 1500
Hidden Layer Size

10

11

12

13

14

15

16

W
ER

 (%
)

Effect of Hidden Layer Size - SAT-LHUC TDNN AM

baseline adapted baseline SAT-LHUC adapted SAT-LHUC

Figure 7.4: WER (%) comparing speaker adaptation of a baseline and a SAT TDNN

model with increasing hidden layer widths.

2048 × 32 2048 × 64 2048 × 128 2048 × 256 2048 × 512 2048 × 1024
Hidden Layer Size × Bottleneck Size

10

11

12

13

14

15

16

W
ER

 (%
)

Effect of Bottleneck Layer Size - SAT-LHUC TDNN-F AM

baseline adapted baseline SAT-LHUC adapted SAT-LHUC

Figure 7.5: WER (%) comparing speaker adaptation of a baseline and a SAT TDNN-F

model with increasing bottleneck dimensions.

7.6 Effect of the Activation Function

To see whether the choice of the activation function affects speaker adaptive train-

ing, we run experiments evaluating three activations: ReLU (relu), sigmoid (σ) and

hyperbolic tangent (tanh). We used a TDNN model with 900 units and batch renor-

malisation. As we can see from Figure 7.6, in all cases the adapted SAT-LHUC models

perform worse than their corresponding baseline models. Therefore, we conclude that

the choice of an activation function is not crucial for the performance of speaker adap-

tation with SAT-LHUC models.

Chapter 7. Analysis of SAT-LHUC Training 77

relu sigmoid tanh
Activation Function

10

11

12

13

14

15

16

W
ER

 (%
)

Effect of Activation Function

baseline adapted baseline SAT-LHUC adapted SAT-LHUC

Figure 7.6: WER (%) for comparison of speaker adaptation of SI and SAT TDNN models

with 900 units, batch renormalisation and various activation functions.

7.7 Effect of the Training Optimiser

In Chapter 5, we experimentally showed that the best learning rate for the adaptation

of LHUC weights with a batch size of 256 frames is 0.7 – 0.8. However, when we train

SAT-LHUC models we a used learning rate of 0.0015 with a batch size of 2048 frames.

We can easily compute that the per frame learning rate used during training is almost

4000× smaller than the per frame learning rate used for adaptation. We hypothesise

that using larger learning rates for LHUC layers during training might be crucial for

an improved performance of SAT-LHUC models.

Moreover, we use Adam (Kingma and Ba, 2014) to train all models, but we use

standard gradient descent during adaptation. The problem with Adam might be that

it uses an exponential moving average of gradients to update parameters and imple-

mentations of Adam in the standard toolkits, Tensorflow (Abadi et al., 2016) and

Keras (Chollet et al., 2015), update this exponential moving average for each parame-

ter after every batch regardless of whether the parameter was used in that batch or not.

In our case, speaker dependent parameters are used only for speakers present in the

batch and only averages corresponding to these weights should be updated. However,

because of the incorrect implementation other speaker dependent exponential moving

averages are updated with 0. Therefore, the magnitude of the exponential moving av-

erages of gradients for speaker dependent parameters are smaller than they should be,

which makes the actual update of speaker dependent parameters smaller compared to

the traditional SGD update rule.

Therefore, we trained a SAT-LHUC TDNN model with a hidden layer size of 600

Chapter 7. Analysis of SAT-LHUC Training 78

Adam SGD
Optimiser

10

11

12

13

14

15

16

W
ER

 (%
)

Effect of Training Optimiser

SAT-LHUC adapted SAT-LHUC

Figure 7.7: WER (%) comparing SAT-LHUC models using Adam with standard settings

and SGD with a learning rate of 5.6 for the training of the speaker dependent parame-

ters.

200 400 600 800 1000 1200 1400 1600 1800 2000
Training iterations

11.0

11.5

12.0

12.5

13.0

13.5

14.0

W
ER

 (%
)

Unadapted Adapted

Figure 7.8: WER (%) for unsupervised speaker adaptation of checkpoints of the SAT-

LHUC model trained for 2000 iterations.

and batch normalisation. We used SGD with a learning rate of 5.6 to train the speaker

dependent layers, which ensures that the per-frame learning rate is consistent with the

adaptation setting, and we used Adam for all speaker independent layers. As we can

see from the results in Figure 7.7, there is no difference between using Adam and SGD

with a high learning rate for the training of the speaker dependent parameters.

7.8 Effect of the Number of Training Iterations

In the last experiment we tried to train the SAT-LHUC TDNN model for more iter-

ations. Our hypothesis was that the model in Swietojanski and Renals (2016) was

trained for many more iterations, therefore it had more time to factor out speaker vari-

Chapter 7. Analysis of SAT-LHUC Training 79

ance into the LHUC parameters and model only the phonological variances inside the

canonical model. Therefore, we trained a SAT-LHUC model for 2000 iterations instead

of 400 iterations, which we used in all other experiments. During training we saved

checkpoints of the model every 100 iterations. Subsequently, we performed speaker

adaptation on every checkpoint of the model. Unfortunately, as we can see from Fig-

ure 7.8, training the SAT-LHUC model for more iterations did not have any effect on

the performance of the adapted model.

7.9 Conclusions

In this chapter we reported results for experimental ablations, in which we wanted to

identify a good strategy for training SAT-LHUC models, especially SAT-LHUC TDNN

models. First, we tested the hypothesis that batch normalisation interferes with SAT-

LHUC training, because it normalises the variance of the hidden representations. We

found that adaptation of SAT-LHUC models works better with normalisation methods

that do not normalise variance compared to adaptation of the baseline model. How-

ever, we found that in order to train the best performing model, it is better to train a

baseline model with batch normalisation or batch renormalisation. We also found that

SAT-LHUC DNN models with wider hidden layers benefit much more from speaker

adaptation. Therefore, in the second experiment we increased the hidden layer size of

TDNN models by using the TDNN-F architecture which factorises the affine transfor-

mation matrices into a product of two low rank matrices. This allowed us to have the

same hidden layer size as the DNN models, while maintaining the number of param-

eters of the TDNN model. We found that SAT-LHUC was not affected by increasing

the hidden layer size and the adapted SAT-LHUC TDNN and SAT-LHUC TDNN-F

models achieved comparable results. Consequently, we decided to also increase the

total number of parameters by increasing the hidden layer width of the TDNN model

and by increasing the bottleneck dimension of the TDNN-F models. We found that

increasing the model size had a positive impact on the overall performance of the

models. However, the adapted SAT-LHUC models did not outperform the baseline

models. In addition, we found that using different activation functions does not affect

the performance of SAT-LHUC training. We tried to change setting of the optimiser to

make estimation of LHUC parameters closer to how they are estimated during test-time

speaker adaptation. Finally, we tried to train SAT-LHUC models for more iterations to

allow the model to factor out parameters dealing with speaker variability into LHUC

Chapter 7. Analysis of SAT-LHUC Training 80

parameters. We found that they do not have any positive impact on speaker adaptive

training. As we can see from all the results, we explored many hypotheses, none of

which fully explained why adaptation of SAT-LHUC TDNN models does not yield any

improvements compared to the adaptation of the baseline TDNN models.

We hypothesise that the current performance of adapted SAT-LHUC models might

be due to the way we train the speaker independent model. As we explained in Sec-

tion 3.7, during the training of SAT-LHUC models we create a new artificial speaker,

and we map each utterance to this speaker with probability 0.5. Subsequently, we

use LHUC parameters for this artificial speaker as LHUC parameters of the speaker-

independent model. This way we obtain a competitive speaker independent model.

However, we might be limiting the potential improvements obtained by speaker adap-

tation, because the speaker-independent model is too good and does not need to be

adapted to perform well on new speakers. Yin et al. (2020) made a similar observa-

tion that if MAML can perform well on all training tasks without any need to adapt

to them, its performance on new tasks is much worse, because it did not learn that

it needs to adapt to new tasks. Therefore, Yin et al. (2020) proposed to use a meta-

regularisation technique that forces MAML to use the task specific adaptation data in

order to perform well on new tasks. This observation might explain why other speaker

adaptive training methods, especially methods using fMLLR features but also meth-

ods using i-vectors, work well with large neural network acoustic models. With these

methods it is crucial to correctly estimate the speaker dependent parameters, because

with mismatched fMLLR transformations or mismatched i-vectors the performance of

the model significantly degrades. Therefore, the adaptation procedure is forced to use

the adaptation data in order to work well.

Finally, since we found that batch normalisation interferes with SAT-LHUC it

would be interesting to explore speaker adaptive training using only batch normali-

sation by having only a few speakers in each batch and normalising activations with

respect to the speakers. At test-time, speaker normalisation would be performed by

updating statistics of the batch normalisation layers as recently proposed by Mana

et al. (2019). The main benefit of performing speaker normalisation is that we would

not need any labels to improve the performance of the model. However, one issue

with this approach is that silence might negatively affect the statistics. To fix that we

could use a mixture of batch normalisations (Deecke et al., 2019; Xie et al., 2019a),

where one would be used for frames corresponding to silent frames and the other one

would correspond to non-silent frames. This resembles cMLLR adaptation when we

Chapter 7. Analysis of SAT-LHUC Training 81

estimate only two transforms,s one for silent frames and one for non-silent frames.

It would also be interesting to test whether the combination of speaker normalisation

and speaker adaptation, which first updates the batch normalisation statistics and then

adapts LHUC parameters, would yield any improvements compared to only perform-

ing normalisation or adaptation. Note that meta-learning could be used to find the best

mixing coefficient for updating the batch statistics by doing a linear combination of

global and speaker statistics.

Chapter 8

Lattice Based

Unsupervised Speaker Adaptation

In the previous chapters we explored ways of automatically finding a robust speaker

adaptation schedule using meta-learning. Meta-learning has the potential to find good

hyperparameters for the speaker adaptation procedure such as update rules, learning

rates or weight terms for different losses. However, we need to provide the meta-

learner with a set of existing loss functions, which can then be used to find the best

speaker adaptation schedule.

In supervised adaptation the loss is computed with respect to a label sequence that

is provided for the adaptation data. However, for unsupervised adaptation only an un-

labelled recording is available. Conventionally, the best path from a first pass decoding

is used to estimate the labels for unsupervised adaptation (Woodland, 2001). An im-

portant challenge for unsupervised model adaptation of neural networks is that we do

not want to overfit to errors made in the first pass decoding. In the past, neural network

based acoustic models were prevented from overfitting to those errors by limiting the

expressivity of the adaptation procedure. This was done, as discussed in Chapter 3, by

drastically reducing the number of speaker dependent parameters (Swietojanski and

Renals, 2014; Samarakoon and Sim, 2016b; Zhao et al., 2017) or by imposing strong

regularisers that prevent the outputs or weights of the acoustic model from diverging

too far from the original model (Li and Bilmes, 2006; Yu et al., 2013). Alternatively,

this challenge was tackled by performing adaptation only with suitable data that was

obtained by filtering adaptation data by confidence scores produced by an ASR sys-

tem (Woodland, 2001; Mathias et al., 2005; Liu et al., 2007; Walker et al., 2017; Veselý

et al., 2017) or by using an external ASR quality estimation (Falavigna et al., 2017).

82

Chapter 8. Lattice Based Unsupervised Speaker Adaptation 83

In this chapter we explore an alternative solution, in which all the adaptation data

is used to adapt the whole neural network acoustic model, but the uncertainty in the de-

coding is captured through the use of complete lattices for supervision. Since lattices

contain compressed and determinised information about the search space for a particu-

lar utterance, a suitable loss function can leverage model uncertainties for unsupervised

adaptation. Our approach is inspired by recent work on semi-supervised learning us-

ing the sequence level lattice-free maximum mutual information (LF-MMI) objective

function (Manohar et al., 2018), in which it is shown that using lattices as supervision

is beneficial compared to using only best paths in the semi-supervised learning setting.

This approach allows us to reliably adapt all weights of neural network models using

unsupervised adaptation and a discriminative training criterion, which was problematic

in the past.

8.1 Lattice supervision

Discriminative training using criteria such as maximum mutual information (MMI)

(Bahl et al., 1986) has been shown to be sensitive to the accuracy of the transcripts

(Mathias et al., 2005; Yu et al., 2010). As a replacement for better transcripts, a range of

transcript filtering approaches have previously been explored (Mathias et al., 2005; Liu

et al., 2007; Walker et al., 2017). In unsupervised or semi-supervised approaches, in

which we generate hypothesis transcriptions by decoding with a seed model, we can al-

ternatively use a lattice of supervision. Lattice supervision has previously been used in

work on unsupervised adaptation (Padmanabhan et al., 2000) and training (Fraga-Silva

et al., 2011) of GMMs, as well as discriminative (Povey, 2005) and semi-supervised

training (Manohar et al., 2018) of neural network models.

For instance, lattice supervision can be used with the MMI criterion:

FMMI(λ) =
R

∑
r=1

log
pλ(Xr|Mnum

r)

pλ(Xr|Mden
r)

, (8.1)

where the Mnum
r is a numerator lattice containing multiple hypotheses from a first pass

decoding and Mden
r is a denominator lattice containing all possible sequences of words.

The derivatives of the MMI criterion for a single audio segment r with respect to the

output of the acoustic model yt(s) for state s at time t are:

∂FMMI

∂yt(s)
= γnum

t (s)− γden
t (s), (8.2)

Chapter 8. Lattice Based Unsupervised Speaker Adaptation 84

Figure 8.1: A diagram of the HMM topology used in LF-MMI models that allows the pro-

cessing of a phone in one step. In the LF-MMI framework, HMM transition probabilities

are uniform and fixed.

where γnum
t (s) is the numerator occupation probability for state s at time t and γden

t (s)

is the denominator occupation probability. The occupation probabilities are computed

using the Forward-Backward algorithm.

8.2 Lattice-Free MMI

Following Manohar et al. (2018), we explore the use of lattice supervision versus that

of only using the best path in the denominator lattice-free version of MMI (LF-MMI)

(Povey et al., 2016). LF-MMI was introduced by Povey et al. (2016) as a method to

train neural network acoustic models with a sequence discriminative criterion (MMI)

without an initial cross-entropy (CE) stage to generate lattices approximating all pos-

sible word sequences (e.g. Veselý et al. (2013)). The word-level denominator lattice

Mden
r is instead replaced with a phone-level denominator graph encoding all possi-

ble sequences given a 3 or 4-gram phone language model. Together with an efficient

GPU implementation of the Forward-Backward algorithm, this allows us to compute

the denominator occupation probabilities on-the-fly during training. To further reduce

complexity, the model outputs at one third of the frame rate. This is enabled by util-

ising an HMM topology, illustrated in Figure 8.1, that can be traversed in one step

instead of three steps as in the standard HMM topology, illustrated in Figure 2.2. This

HMM topology was inspired by CTC (Graves et al., 2006). A mixture of regularisation

methods are required to reduce overfitting; they include multitask cross entropy loss

computed through a separate output layer or L2 regularisation of the activations of the

last layer to prevent overconfident predictions. For more details we refer to Povey et al.

(2016).

Chapter 8. Lattice Based Unsupervised Speaker Adaptation 85

8.3 Baseline Acoustic Models

We conducted test-time model adaptation experiments on two datasets: the TED-

LIUM corpus of TED talks (Rousseau et al., 2012, 2014), described in Section 5.1,

and a corpus of Somali from the IARPA MATERIAL programme. All models were

trained and adapted using the Kaldi toolkit (Povey et al., 2011). The training details

are as follows:

• TED-LIUM – We trained two TDNN models (Peddinti et al., 2015) with LF-

MMI (Povey et al., 2016) following Kaldi TED-LIUM recipe 1f.1 Both models

had the same architecture with 7 hidden layers with 450 units and they used 40

dimensional MFCC features as input. The first model was trained without i-

vector features (called no i-vectors in the Results section) and the second model

was trained with i-vector features (called i-vectors in the Results section). We

chose to train these two models to show how auxiliary features based adaptation

interacts with model-based speaker adaptation. Similarly to previous experi-

ments, all models were trained only on TED talks that were recorded before

2012 in order to conform with the IWSLT (Federico et al., 2012) evaluation

guidelines. Speaker adaptation experiments were performed on the combined

dev set from IWSLT 2010 and 2012 and test set from IWSLT 2010–2012 (Paul

et al., 2010; Federico et al., 2011, 2012). The dev set consisted of 18 speakers

with an average speech duration of 10.6 minutes. The test set consisted of 30

speakers with an average speech duration of 10.7 minutes. In contrast to our

previous experiments, we used all the speaker data for unsupervised adaptation.

• Somali – We carried out experiments on the Somali “surprise language” data

released to participants on the IARPA-MATERIAL programme.2 The training

data comprise 499 narrow-band telephone conversations sides, totalling 37 hours

of speech. The test data comprises narrowband telephone conversations (NB);

and wideband (WB) data from the news and topical broadcast domains that are

mismatched to the training material. We trained a TDNN-F model (Povey et al.,

2018) using the neural network architecture from Kaldi TED-LIUM recipe 1g.3

The model had 14 hidden layers with 1024 units. The weight matrices were
1https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/chain/

tuning/run_tdnn_1f.sh
2https://www.iarpa.gov/index.php/research-programs/material
3https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/chain/

tuning/run_tdnn_1g.sh

https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/chain/tuning/run_tdnn_1f.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/chain/tuning/run_tdnn_1f.sh
https://www.iarpa.gov/index.php/research-programs/material
https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/chain/tuning/run_tdnn_1g.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/tedlium/s5_r2/local/chain/tuning/run_tdnn_1g.sh

Chapter 8. Lattice Based Unsupervised Speaker Adaptation 86

factored into two matrices with a bottleneck dimension of 128. The model used

filterbank, pitch and probability of voicing (Ghahremani et al., 2014) features

together with multilingual bottleneck features obtained from a neural network

that was trained on all Babel languages (Cui et al., 2016; Gales et al., 2017). We

used per utterance cepstral mean and variance normalisation, since there were

no speaker clusters for the wideband test data.

The model was trained on narrowband data with speed perturbation and evalu-

ated on both narrowband and wideband data. We used data scraped from the web

to build a language model for wideband data. We performed speaker adaptation

on narrowband data which consisted of 117 speakers with an average speech du-

ration of 4.7 minutes and file-level adaptation on wideband data which consisted

of 119 files with an average speech duration of 5 minutes.

8.4 Speaker Adaptation Setup

Here, we were primarily interested in comparing model adaptation methods that use

either one best path (called BP in the Results section) or a lattice (called LAT in the

Results section) obtained from the first pass decoding for supervision. We adjusted

a recipe for semi-supervised training using LF-MMI criterion (Manohar et al., 2018)

to instead perform test-time adaptation. Our main hypothesis was that methods using

lattices for supervision are much less likely to overfit to incorrectly transcribed seg-

ments in the adaptation data. In the past when only the best path was used for model

adaptation, several techniques for data selection were required (Mathias et al., 2005;

Liu et al., 2007; Walker et al., 2017). Therefore, we also compared adapting using only

utterances with top 25%, 50% or 75% average utterance confidence.

We conducted model adaptation experiments in two regimes: in the first regime,

we adapted all the of the acoustic model (called ALL in the Results section); in the

second regime, we adapted only LHUC parameters inserted after every hidden layer

of the acoustic model (called LHUC in the Results section). When adapting all the pa-

rameters, we adapted the model for three epochs, starting with the learning rate which

was used in the last iteration during training. We gradually decreased the learning rate

down to one tenth of the initial learning rate. This learning schedule was chosen in or-

der to imitate continued learning of the model. When adapting LHUC parameters, we

adapted the model for three epochs with a fixed learning rate of 0.7, which we found

to work well in previous experiments with a similar batch size.

Chapter 8. Lattice Based Unsupervised Speaker Adaptation 87

no i-vectors i-vectors

dev test dev test

original 12.3 11.4 11.0 10.2

LHUC-LAT 11.2 10.0 10.7 9.4

LHUC-BP 11.7 10.7 10.8 9.9

ALL-LAT 11.3 9.8 10.8 9.4

ALL-BP 12.0 11.1 11.0 10.1

Table 8.1: WER (%) for speaker adaptation of the TED-LIUM model with and without

i-vectors on the combined dev set from IWSLT 2010 and 2012 and the test set from

IWLST 2010–2012.

NB WB

original 53.7 57.3

LHUC-LAT 53.6 56.7

LHUC-BP 54.1 57.9

ALL-LAT 53.0 56.5

ALL-BP 54.5 58.2

Table 8.2: WER (%) for speaker adaptation of the Somali model on narrow-band (NB)

dev data and file-adaptation on wide-band (WB) test data.

8.5 Results

We conducted the first set of experiments on the TED-LIUM dataset. Adaptation of the

model without i-vectors using lattices achieves 9% relative improvement when adapt-

ing the LHUC parameters and 9− 14% relative improvement when adapting all the

parameters, whereas improvements when adapting using the best path as supervision

were much smaller (Table 8.1). Adaptation of the model using i-vectors (Table 8.1)

using lattices as supervision improves performance of a speaker adaptive baseline,

however the relative improvement is much smaller, only 2.7% on the dev set and 7%

on the test set.

We also evaluated adaptation using lattices as supervision on the Somali data. As

can be seen from Table 8.2, Somali data is very challenging – the initial WER of the

model is very high on both NB and WB data at 53.7% and 57.3%, respectively. These

Chapter 8. Lattice Based Unsupervised Speaker Adaptation 88

TED-LIUM Somali

dev test NB WB

original 12.3 11.4 53.7 57.3

ALL-LAT 100% 11.3 9.8 53.0 56.5

ALL-LAT 75% 11.3 9.8 53.3 56.2

ALL-LAT 50% 11.5 10.0 53.8 56.5

ALL-LAT 25% 12.0 10.4 56.0 57.0

ALL-BP 100% 12.0 11.1 54.5 58.2

ALL-BP 75% 11.7 10.5 53.8 57.8

ALL-BP 50% 11.6 10.2 53.7 57.1

ALL-BP 25% 12.0 10.4 56.0 57.2

Table 8.3: WER (%) for adaptation of the TED-LIUM model without i-vectors and the

Somali model using varying fractions of the adaptation data.

results are similar to other experiments conducted on other IARPA-MATERIAL pro-

gramme languages with the same TDNN-F neural network architecture (Povey et al.,

2018). Here we show that adapting such a model using the best path as supervision

does not reduce the WER, because the best path contains too many errors. Neverthe-

less, adaptation using lattices as supervision gives 0.7−0.8% absolute improvements.

Even though the relative improvement is small, it is interesting to see that using lat-

tices as supervision allows us to improve performance at all. We believe that adapting

to entire files is sub-optimal, because the speaker variance in the wide-band data might

be too high. Therefore, we plan to perform per utterance adaptation experiments in the

future.

One common way to prevent adaptation to erroneous first pass transcripts is to filter

the adaptation data by confidences (Veselý et al., 2017), for example by the average

utterance confidence. This filtering can be done by using a hard threshold, or by using

only the fraction of utterances with the highest confidences. Either way one extra hy-

perparameter that needs to be tuned is introduced. In Table 8.3 we compare adaptation

using lattices as supervision with adaptation using only best paths on various fractions

of the adaptation data when adapting all parameters. We experiment with the TED-

LIUM model without i-vectors, and the Somali model. As can be seen from the table,

filtering utterances improves results when using best path supervision. The biggest

improvement can be achieved when using only 50% of the adaptation data. Even then

Chapter 8. Lattice Based Unsupervised Speaker Adaptation 89

the TED-LIUM model does not obtain similar performance as when adapted using

lattices for supervision. Furthermore, adaptation of the Somali model using best path

supervision only barely matches the performance of the not adapted baseline. This is

probably due to the fact that the WER of the initial Somali model is high and that the

lattice provides much more information than a combination of best path supervision

and corresponding confidences. We also performed the same filtering experiment with

lattices as supervision. We found that using a threshold of 75% – 100% achieves the

best results. Overall, adaptation using lattice supervision does not benefit from filtering

utterances as much as adaptation using best path supervision.

8.6 Summary

In this chapter we compared unsupervised model adaptation using a lattice with the

best path obtained from the first pass decoding as supervision using the LF-MMI ob-

jective function. We found that using the lattice as supervision outperforms using

the best path, even when we filter out utterances with too many possible errors using

confidence-based data selection. This is because the lattice from the first pass decod-

ing encodes much more information about confidences and possible phone confusions

than the best path. Furthermore, we showed that when using lattices as supervision it

is possible to adapt a model whose initial WER is higher than 50%, for which adapt-

ing with best path supervision often produced worse WERs than the baseline acoustic

model.

Chapter 9

Conclusions

The topic of this thesis is model-based speaker adaptation of acoustic models in ASR,

in particular automatic tuning of the hyperparameters of the adaptation procedure. We

have argued that even the simplest gradient descent-based adaptation procedure con-

tains many hyperparameters that need to be tuned in order to make the speaker adapta-

tion robust. Without correctly tuned hyperparameters the speaker adaptation procedure

is susceptible to overfitting to the adaptation data. For example, if we have only a small

amount of adaptation data, the acoustic model could overfit to the senones seen in the

adaptation data and forget about the unseen senones, it could also overfit to certain

speaker characteristics seen in the adaptation data that might not be fully representa-

tive of the speaker; or if we perform unsupervised speaker adaptation, the model could

overfit to errors in the labels. In the past these issues were usually prevented by limiting

the number of speaker dependent parameters or the choice of regularisers that enforce

the adapted model to not diverge too far from the original model. These hyperparam-

eters had to be manually designed and tuned, which required considerable effort. In

this thesis we proposed to formulate speaker adaptation as a meta-learning task, which

allows us to learn speaker adaptation hyperparameters using gradient descent.

We built upon work by Andrychowicz et al. (2016) and Ravi and Larochelle (2017)

that trained a neural network acting as a task specific optimiser which was able to re-

place and outperform traditional optimisers used in deep learning on a given task. This

approach is generally called meta-learning because learning is happening on two lev-

els: a learner is learning a task classifier and a meta-learner is learning how to train

task specific classifiers. Here, we showed that speaker adaptation can be also formu-

lated as a meta-learning task. A learner, the acoustic model, is adapting to speaker

specific characteristics and a meta-learner, the speaker adaptation procedure, is learn-

90

Chapter 9. Conclusions 91

ing the best way to adapt the acoustic model for a particular speaker. As a result, this

formulation enables automatic tuning of the hyperparameters used in gradient descent-

based speaker adaptation using gradient based optimisation. Our experimental results

suggest that the meta-learning approach can find a speaker adaptation procedure that

outperforms speaker adaptation using LHUC or all parameters with a learning rate

tuned by a hyperparameter grid-search.

Subsequently, we showed that the meta-learning approach for speaker adaptation

can be extended to support speaker adaptive training. Traditionally, speaker adaptive

training uses speaker dependent parameters to remove speaker variability from the

data such that the canonical speaker independent model can focus solely on modelling

phonological variances. In the case of the model-based speaker adaptive training meth-

ods, such as SAT-LHUC, a copy of speaker dependent parameters is maintained and

optimised for each speaker during the training of the model. Because of that the tradi-

tional speaker adaptive training methods have a big memory impact and thus they do

not allow training of the whole acoustic model in speaker adaptive fashion. Moreover,

we rarely have enough data for each speaker to estimate all parameters reliably. In con-

trast to previous approaches, we embed gradient based speaker adaptation directly into

the training of the acoustic model. We hypothesised that this should result in the acous-

tic model learning parameters that are more amenable to test-time adaptation, because

the optimisation process using the meta-learning objective should steer parameters of

the acoustic model to regions that allow rapid adaptation. However, in our experiments

we found that speaker adaptive training using SAT-LHUC or MAML did not improve

performance of speaker adaptation of a strong state-of-the-art baseline TDNN model.

Consequently, we ran a series of experimental ablations that would help us de-

termine why SAT-LHUC does not improve results. First, we tested whether the per-

formance might be affected by batch normalisation, which is a common component

of state-of-the-art models. Therefore, we trained both DNN and TDNN models with

different normalisation techniques and we found that the adapted SAT-LHUC models

achieved better results than their baseline counterparts when the normalisation tech-

nique does not normalise the variance of the hidden representations. However, if we

want to train the best model possible it is better to use standard batch normalisation. In

this experiment we noticed that the adapted SAT-LHUC DNN models that have much

wider hidden layers than TDNN models generally achieve better performance after

adaptation. We hypothesised that the difference in performance might be caused by

the increased number of speaker dependent parameters, which might allow the SAT-

Chapter 9. Conclusions 92

LHUC DNN model to perform some form of implicit model combination. Thus in the

second experiment we tried to increase the hidden layer width of the TDNN models

by using TDNN-F models. However, this change did not affect the performance of

the adapted SAT-LHUC TDNN-F models compared to the adapted SAT-LHUC DNN

models. Based on this observation we hypothesised that the model size might also

be important for SAT-LHUC training. In the following experiments we increased the

model size of TDNN models by making their hidden layers wider and we made the

TDNN-F models bigger by changing the size of the bottleneck layers. Increasing the

model size had positive effect on the performance of the models, however there was no

difference between the adapted baseline and the SAT-LHUC models. We also tested

various activation functions and we tried to change the optimiser, but we did not ob-

serve any differences. As a result a way of speaker adaptive training still remains an

open question.

Finally, in the last chapter we compared unsupervised model adaptation using a

lattice with the best path obtained from the first pass decoding as supervision. Our ex-

periments showed that using the lattice as supervision achieves better results than using

the best path, even when confidence-based data selection is used to remove transcripts

with many possible errors. This is due to the fact that the lattice from the first pass de-

coding contains much more information, such as confidence and phonetic confusions,

than the best path. We found that the use of a lattice as supervision is particularly

important when adapting all parameters, when over-fitting to incorrect first-pass tran-

scriptions is a particular problem. Moreover, we showed that when using lattices as

supervision it is possible to adapt a model whose initial WER is higher than 50%,

for which adapting with best path supervision often produced worse WERs than the

speaker-independent baseline.

9.1 Future work

In the previous chapters we described how meta-learning approaches can be used for

speaker adaptation and speaker adaptive training. Here we describe ideas which could

lead to further improvements in the performance of ASR systems. Moreover, they

could also improve our understanding of speaker adaptation and speaker adaptive train-

ing.

Chapter 9. Conclusions 93

Improving Meta-Learners for Speaker Adaptation

The parameterisation of the meta-learner that we used throughout this thesis enables us

to find a good learning rate schedule for each adapted layer given a predefined number

of full-batch adaptation steps. To do that the meta-learner uses different parameters

for each layer, which allows it to learn different strategies for each layer. As a re-

sult, it can also learn which layers are suitable for adaptation. As we described in

Section 4.6, it is theoretically possible to train the meta-learner to automatically opti-

mise other hyperparameters such as the linear combination of various loss functions,

predicting per example importance as a form of filtering of adaptation examples with

low confidence or learning an adaptive number of adaptation steps. We think that it

would be interesting to test whether this more expressive parameterisation of the meta-

learner would lead to an improved performance of speaker adaptation, especially in

the unsupervised speaker adaptation scenario. Additionally, it would be good to train

a meta-learner that can use lattice supervision with LF-MMI. This is because models

trained with LF-MMI achieve significantly better performance than the models trained

with cross-entropy and unsupervised speaker adaptation with lattice supervision out-

performs using the best path.

The big issue with the coordinate-wise meta-learner is that it is very computation-

ally and memory expensive. In order to scale this method to larger models we would

need GPUs with much larger memory. Alternatively, we could adapt only a subset

of the model. One obvious way would be to not adapt the output layer, which con-

sists of around 50% of all parameters in the small models or 30% of all parameters

of the biggest models tested in this thesis. We believe that not adapting the output

layer should not restrict the power of speaker adaptation. This is based on our finding

in Table 5.8, which shows that meta-learners sometimes learn not to adapt the output

layer. Therefore, not adapting the last hidden layer might be seen as a good inductive

bias for meta-learner training. Moreover, Hoffer et al. (2018) showed that it is possible

to train a neural network from scratch with a fixed, randomly initialised output layer

without any loss of performance. However, for big models meta-learning would still

be too memory-inefficient. Therefore, it would be interesting to train a meta-learner

that would perform adaptation in a low dimensional space that might better capture

different speaker characteristics. In some way this can be seen as a form of factorised

hidden layers (Samarakoon and Sim, 2016a) or context adaptive networks (Delcroix

et al., 2018a). Finally, once we can scale meta-learning models to larger models it

Chapter 9. Conclusions 94

would be interesting to evaluate the meta-learning approaches for speaker adaptation

of sequence-to-sequence models and also to scale these approaches to larger adaptation

tasks such as dialect adaptation or domain adaptation.

Better Understanding of Speaker Adaptive Training

As we saw in Chapter 5 and Chapter 7, model-based speaker adaptive training, namely

speaker adaptive training of LHUC parameters, does not improve the performance of

adapted TDNN models. In Chapter 7 we evaluated various neural network architec-

tures in order to understand why SAT-LHUC is not working. We hypothesised that

SAT-LHUC might not be performing variance normalisation but some form of model

combination. Thus, it would be interesting to test this hypothesis with speaker depen-

dent model pruning which we describe in the next section. We believe that speaker

dependent model pruning might prove or disprove the model combination hypothesis

by showing that we obtain significantly different sub-networks for different speakers.

Another possible hypothesis that might explain why speaker adaptive training does

not yield any improvements compared to the standard training is that the state-of-the-

art speaker independent models have sufficient capacity to model all speaker variability

and can benefit only a little from speaker adaptation. A similar thing was recently ob-

served by Yin et al. (2020), who showed that MAML training might converge to an op-

timum which can memorise all tasks and therefore does not need to be adapted to a new

task. In order to overcome this, Yin et al. (2020) proposed to use meta-regularisation

that forces the model to perform a few adaptation steps, because otherwise the model

achieves inferior performance. In a sense this is similar to what we see with the other

SAT methods, for example when we use fMLLR input features or i-vectors, that do

not work or work significantly worse with mismatched input features. Therefore, we

would like to try to use this meta-regularisation method for model-based speaker adap-

tive training.

Speaker Dependent Model Pruning

So far all the work on speaker adaptation focused on improving the accuracy of the

adapted models in the test conditions. However, accuracy is not the only metric that

is important for successful deployment of ASR models. Another important metric is

speed, which might be improved by reducing the size of the acoustic model. Therefore,

with a better understanding of speaker adaptive training it might be possible to explore

Chapter 9. Conclusions 95

joint speaker adaptation and speaker dependent model pruning. Model pruning and

model compression were already explored for ASR models (Mantena and Sim, 2016;

Liu et al., 2014), however they were never used in a speaker dependent fashion.

Our hypothesis is based on the fact that the speaker independent model has to

model both speaker variability and phonological variance. Therefore, when we use the

model only for a target speaker, the model might be performing redundant computa-

tions trying to remove inter-speaker variability. One way of enforcing smaller model

size would be to enforce sparse LHUC representations with L0 regularisation (Louizos

et al., 2018). In practice however enforcing sparse layers can be quite challenging.

Another way to achieve LHUC sparsity would be to use pruning methods like Optimal

Brain Damage (LeCun et al., 1990) and Optimal Brain Surgeon (Hassibi et al., 1993).

However, it is important to note that smaller models do not necessarily imply faster

inference, because smaller models can become less confident, which results in slower

decoding. On the other hand, when we compare models trained with cross-entropy

and models trained with LF-MMI, we can see that it is possible to train much smaller

models that are significantly faster in decoding.

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283.

Abdel-Hamid, O. and Jiang, H. (2013). Fast speaker adaptation of hybrid NN/HMM
model for speech recognition based on discriminative learning of speaker code. In
ICASSP.

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., and Penn, G. (2012). Applying con-
volutional neural networks concepts to hybrid NN-HMM model for speech recogni-
tion. In ICASSP.

Anastasakos, T., McDonough, J., Schwartz, R., and Makhoul, J. (1996). A compact
model for speaker-adaptive training. In ICSLP.

Andreou, A. (1994). Experiments in vocal tract normalization. In Proc. the CAIP
Workshop: Frontiers in Speech Recognition II, 1994.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., and
de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In
NIPS.

Antoniou, A., Edwards, H., and Storkey, A. (2019). How to train your MAML. In
ICLR.

Arora, S., Li, Z., and Lyu, K. (2019). Theoretical analysis of auto rate-tuning by batch
normalization. In ICLR.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bacchiani, M. and Roark, B. (2003). Unsupervised language model adaptation. In
ICASSP.

Bahl, L., Brown, P., De Souza, P., and Mercer, R. (1986). Maximum mutual infor-
mation estimation of hidden Markov model parameters for speech recognition. In
ICASSP.

Batlle, E., Nadeu, C., and Fonollosa, J. A. (1998). Feature decorrelation methods in
speech recognition. a comparative study. In ICSLP.

96

Bibliography 97

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains. The
annals of mathematical statistics, 41(1):164–171.

Bell, P., Swietojanski, P., Driesen, J., Sinclair, M., McInnes, F., and Renals, S. (2014).
The UEDIN ASR systems for the IWSLT 2014 evaluation. In Proc. IWSLT.

Bengio, S., Bengio, Y., and Cloutier, J. (1995). On the search for new learning rules
for ANNs. Neural Processing Letters, 2(4):26–30.

Bengio, Y., Bengio, S., and Cloutier, J. (1990). Learning a synaptic learning rule.
Université de Montréal, Département d’informatique et de recherche .

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic
language model. Journal of Machine Learning Research, 3(Feb):1137–1155.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning,
pages 41–48.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bourlard, H. and Morgan, N. (1993). Continuous speech recognition by connectionist
statistical methods. IEEE Transactions on Neural Networks, 4(6):893–909.

Bourlard, H. A. and Morgan, N. (1994). Connectionist speech recognition: a hybrid
approach, volume 247. Springer Science & Business Media.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2016). Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition. In ICASSP.

Chollet, F. et al. (2015). Keras. https://github.com/keras-team/keras.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-
based models for speech recognition. In NIPS.

Cotter, N. E. and Conwell, P. R. (1990). Fixed-weight networks can learn. In 1990
IJCNN International Joint Conference on Neural Networks, pages 553–559. IEEE.

Cui, J., Kingsbury, B., Ramabhadran, B., Sethy, A., Audkhasi, K., Cui, X., Kislal,
E., Mangu, L., Nussbaum-Thom, M., Picheny, M., Tüske, Z., Golik, P., Schlüter,
R., Ney, H., Gales, M. J. F., Knill, K. M., Ragni, A., Wang, H., and Woodland,
P. C. (2016). Multilingual representations for low resource speech recognition and
keyword search. In IEEE ICASSP.

Cui, X., Goel, V., and Saon, G. (2017). Embedding-based speaker adaptive training of
deep neural networks. In Interspeech.

https://github.com/keras-team/keras

Bibliography 98

Davis, S. and Mermelstein, P. (1980). Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE Transac-
tions on Audio, Speech, and Language Processing, 28(4):357–366.

Deecke, L., Murray, I., and Bilen, H. (2019). Mode normalization. In ICLR.

Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., and Ouellet, P. (2011). Front-end
factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and
Language Processing, 19(4):788–798.

Delcroix, M., Kinoshita, K., Ogawa, A., Huemmer, C., and Nakatani, T. (2018a). Con-
text adaptive neural network based acoustic models for rapid adaptation. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 26(5):895–908.

Delcroix, M., Watanabe, S., Ogawa, A., Karita, S., and Nakatani, T. (2018b). Auxiliary
feature based adaptation of end-to-end ASR systems. In Interspeech.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22.

Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He,
X., Williams, J., et al. (2013). Recent advances in deep learning for speech research
at microsoft. In ICASSP.

Dighe, P., Asaei, A., and Bourlard, H. (2017). Low-rank and sparse soft targets to learn
better DNN acoustic models. In ICASSP.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern classification. Wiley.

Eide, E. and Gish, H. (1996). A parametric approach to vocal tract length normaliza-
tion. In Interspeech.

Fainberg, J., Klejch, O., Loweimi, E., Bell, P., and Renals, S. (2019a). Acoustic model
adaptation from raw waveforms with SincNet. In ASRU.

Fainberg, J., Klejch, O., Renals, S., and Bell, P. (2019b). Lattice-based lightly-
supervised acoustic model training. In Interspeech.

Fainberg, J., Renals, S., and Bell, P. (2017). Factorised representations for neural
network adaptation to diverse acoustic environments. In Interspeech.

Falavigna, D., Matassoni, M., Jalalvand, S., Negri, M., and Turchi, M. (2017). DNN
adaptation by automatic quality estimation of ASR hypotheses. Computer Speech
& Language, 46:585–604.

Federico, M., Bentivogli, L., Paul, M., and Stücker, S. (2011). Overview of the IWSLT
2011 evaluation campaign. In IWSLT.

Federico, M., Cettolo, M., Bentivogli, L., Paul, M., and Stüker, S. (2012). Overview
of the IWSLT 2012 evaluation campaign. In IWSLT.

Bibliography 99

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML.

Finn, C. and Levine, S. (2018). Meta-learning and universality: Deep representations
and gradient descent can approximate any learning algorithm. In ICLR.

Fraga-Silva, T., Gauvain, J.-L., and Lamel, L. (2011). Lattice-based unsupervised
acoustic model training. In ICASSP.

Gales, M. (1998). Maximum likelihood linear transformations for HMM-based speech
recognition. Computer speech & language, 12(2):75–98.

Gales, M., Young, S., et al. (2008). The application of hidden Markov models in speech
recognition. Foundations and Trends in Signal Processing, 1(3):195–304.

Gales, M. J. F., Knill, K. M., and Ragni, A. (2017). Low-resource speech recognition
and keyword-spotting. In SPECOM.

Gangireddy, S. R., Swietojanski, P., Bell, P., and Renals, S. (2016). Unsupervised
adaptation of recurrent neural network language models. In Interspeech.

Gauvain, J.-L. and Lee, C.-H. (1994). Maximum a posteriori estimation for multivari-
ate Gaussian mixture observations of Markov chains. IEEE Transactions on Audio,
Speech, and Language Processing, 2(2):291–298.

Gelbart, M. A., Snoek, J., and Adams, R. P. (2014). Bayesian optimization with un-
known constraints. arXiv preprint arXiv:1403.5607.

Gemello, R., Mana, F., Scanzio, S., Laface, P., and De Mori, R. (2007). Linear hidden
transformations for adaptation of hybrid ANN/HMM models. Speech Communica-
tion, 49(10-11):827–835.

Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal, J., and Khudanpur,
S. (2014). A pitch extraction algorithm tuned for automatic speech recognition. In
ICASSP.

Ghoshal, A., Swietojanski, P., and Renals, S. (2013). Multilingual training of deep
neural networks. In ICASSP.

Gibson, M. and Hain, T. (2006). Hypothesis spaces for minimum bayes risk training
in large vocabulary speech recognition. In ICSLP.

Golik, P., Tüske, Z., Schlüter, R., and Ney, H. (2015). Convolutional neural networks
for acoustic modeling of raw time signal in lvcsr. In Interspeech.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. The MIT Press.

Graves, A. (2012). Sequence transduction with recurrent neural networks. arXiv
preprint arXiv:1211.3711.

Graves, A. (2016). Adaptive computation time for recurrent neural networks. arXiv
preprint arXiv:1603.08983.

Bibliography 100

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In ICML.

Gretter, R. and Riccardi, G. (2001). On-line learning of language models with word
error probability distributions. In ICASSP.

Gu, J., Wang, Y., Chen, Y., Cho, K., and Li, V. O. K. (2018). Meta-learning for low-
resource neural machine translation. In ACL.

Hassibi, B., Stork, D. G., and Wolff, G. J. (1993). Optimal brain surgeon and general
network pruning. In IEEE International Conference on Neural Networks. IEEE.

Heigold, G., Vanhoucke, V., Senior, A., Nguyen, P., Ranzato, M., Devin, M., and Dean,
J. (2013). Multilingual acoustic models using distributed deep neural networks. In
ICASSP.

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. the
Journal of the Acoustical Society of America, 87(4):1738–1752.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly, N., Senior, A., Van-
houcke, V., Nguyen, P., Kingsbury, B., et al. (2012). Deep neural networks for
acoustic modeling in speech recognition. IEEE Signal processing magazine, 29.

Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001). Learning to learn using
gradient descent. In ICANN.

Hoffer, E., Hubara, I., and Soudry, D. (2018). Fix your classifier: the marginal value
of training the last weight layer. In ICLR.

Hsu, J.-Y., Chen, Y.-J., and Lee, H.-y. (2019). Meta learning for end-to-end low-
resource speech recognition. arXiv preprint arXiv:1910.12094.

Huang, H. and Sim, K. C. (2015). An investigation of augmenting speaker represen-
tations to improve speaker normalisation for DNN-based speech recognition. In
ICASSP.

Huang, J.-T., Li, J., Yu, D., Deng, L., and Gong, Y. (2013). Cross-language knowl-
edge transfer using multilingual deep neural network with shared hidden layers. In
ICASSP.

Huang, Y. and Gong, Y. (2015). Regularized sequence-level deep neural network
model adaptation. In Interspeech.

Huang, Z., Li, J., Siniscalchi, S. M., Chen, I.-F., Wu, J., and Lee, C.-H. (2015a). Rapid
adaptation for deep neural networks through multi-task learning. In Interspeech.

Huang, Z., Siniscalchi, S. M., Chen, I.-F., Wu, J., and Lee, C.-H. (2015b). Maxi-
mum a posteriori adaptation of network parameters in deep models. arXiv preprint
arXiv:1503.02108.

Bibliography 101

Hwang, M.-Y. and Huang, X. (1992). Subphonetic modeling with Markov states-
senone. In ICASSP.

Ioffe, S. (2017). Batch renormalization: Towards reducing minibatch dependence in
batch-normalized models. In NeurIPS.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In ICML.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D., and
Kavukcuoglu, K. (2017). Decoupled neural interfaces using synthetic gradients. In
ICML.

Johnson, D., Ellis, D., Oei, C., Wooters, C., Faerber, P., Morgan, N., and Asanovic, K.
(2004). ICSI QuickNet software package. http://www1.icsi.berkeley.edu/
Speech/qn.html.

Juang, B.-H., Levinson, S., and Sondhi, M. (1986). Maximum likelihood estimation
for multivariate mixture observations of Markov chains. IEEE Transactions on In-
formation Theory, 32(2):307–309.

Jurafsky, D. and Martin, J. H. (2019). Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall PTR, USA, 3st edition.

Kaiser, J., Horvat, B., and Kacic, Z. (2000). A novel loss function for the overall
risk criterion based discriminative training of HMM models. In Sixth International
Conference on Spoken Language Processing.

Khokhlov, Y., Zatvornitskiy, A., Medennikov, I., Sorokin, I., Prisyach, T., Romanenko,
A., Mitrofanov, A., Bataev, V., Andrusenko, A., Korenevskaya, M., et al. (2019). R-
vectors: New technique for adaptation to room acoustics. Interspeech.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Klejch, O., Bell, P., and Renals, S. (2016). Punctuated transcription of multi-genre
broadcasts using acoustic and lexical approaches. In SLT.

Klejch, O., Bell, P., and Renals, S. (2017). Sequence-to-sequence models for punctu-
ated transcription combining lexical and acoustic features. In ICASSP.

Klejch, O., Fainberg, J., and Bell, P. (2018). Learning to adapt: a meta-learning ap-
proach for speaker adaptation. In Interspeech.

Klejch, O., Fainberg, J., Bell, P., and Renals, S. (2019a). Lattice-based unsu-
pervised test-time adaptation of neural network acoustic models. arXiv preprint
arXiv:1906.11521.

http://www1.icsi.berkeley.edu/Speech/qn.html
http://www1.icsi.berkeley.edu/Speech/qn.html

Bibliography 102

Klejch, O., Fainberg, J., Bell, P., and Renals, S. (2019b). Speaker adaptive training
using model agnostic meta-learning. In ASRU.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.
In ICASSP.

Lake, B., Salakhutdinov, R., Gross, J., and Tenenbaum, J. (2011). One shot learning
of simple visual concepts. In CogSci.

Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990). A time-delay neural network
architecture for isolated word recognition. Neural networks, 3(1):23–43.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995.

LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal brain damage. In NIPS.

Lee, L. and Rose, R. C. (1996). Speaker normalization using efficient frequency warp-
ing procedures. In ICASSP.

Li, B. and Sim, K. C. (2010). Comparison of discriminative input and output transfor-
mations for speaker adaptation in the hybrid nn/hmm systems. In Interspeech.

Li, X. and Bilmes, J. (2006). Regularized adaptation of discriminative classifiers. In
ICASSP.

Liao, H. (2013). Speaker adaptation of context dependent deep neural networks. In
ICASSP.

Liepins, R., Germann, U., Barzdins, G., Birch, A., Renals, S., Weber, S., van der
Kreeft, P., Bourlard, H., Prieto, J., Klejch, O., et al. (2017). The SUMMA platform
prototype. In Software Demonstrations ACL.

Liu, C., Zhang, Z., and Wang, D. (2014). Pruning deep neural networks by optimal
brain damage. In Interspeech.

Liu, S.-H., Chu, F.-H., Lin, S.-H., and Chen, B. (2007). Investigating data selection for
minimum phone error training of acoustic models. In Multimedia and Expo, 2007
IEEE International Conference on. IEEE.

Louizos, C., Welling, M., and Kingma, D. (2018). Learning sparse neural networks
through L0 regularization. In ICLR.

Mana, F., Weninger, F., Gemello, R., and Zhan, P. (2019). Online batch normalization
adaptation for automatic speech recognition. In ASRU.

Manohar, V., Hadian, H., Povey, D., and Khudanpur, S. (2018). Semi-supervised
training of acoustic models using lattice-free MMI. In ICASSP.

Mantena, G. and Sim, K. C. (2016). Entropy-based pruning of hidden units to reduce
DNN parameters. In SLT.

Bibliography 103

Mathias, L., Yegnanarayanan, G., and Fritsch, J. (2005). Discriminative training of
acoustic models applied to domains with unreliable transcripts [speech recognition
applications]. In ICASSP.

Meng, Z., Li, J., and Gong, Y. (2019). Adversarial speaker adaptation. In ICASSP.

Miao, Y., Zhang, H., and Metze, F. (2015). Speaker adaptive training of deep neural
network acoustic models using i-vectors. IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), 23(11):1938–1949.

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recur-
rent neural network based language model. In Interspeech.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. (2018). A simple neural atten-
tive meta-learner. In ICLR.

Morgan, N. and Bourlard, H. (1990). Continuous speech recognition using multilayer
perceptrons with hidden Markov models. In ICASSP.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In ICML.

Nesterov, Y. (1983). A method of solving a convex programming problem with con-
vergence rate of (1/k2). Soviet Mathematics Doklady, 27:372–376.

Neto, J., Almeida, L., Hochberg, M., Martins, C., Nunes, L., Renals, S., and Robinson,
T. (1995). Speaker-adaptation for hybrid HMM-ANN continuous speech recogni-
tion system. Eurospeech.

Nichol, A. and Schulman, J. (2018). Reptile: a scalable metalearning algorithm. arXiv
preprint arXiv:1803.02999, 2.

Padmanabhan, M., Saon, G., and Zweig, G. (2000). Lattice-based unsupervised mllr
for speaker adaptation. In ASR2000-automatic speech recognition: challenges for
the New Millenium ISCA Tutorial and Research Workshop (ITRW).

Palaz, D., Doss, M. M., and Collobert, R. (2015). Convolutional neural networks-based
continuous speech recognition using raw speech signal. In ICASSP.

Paul, M., Federico, M., and Stücker, S. (2010). Overview of the IWSLT 2010 evalua-
tion campaign. In IWSLT.

Peddinti, V., Povey, D., and Khudanpur, S. (2015). A time delay neural network archi-
tecture for efficient modeling of long temporal contexts. In Interspeech.

Povey, D. (2005). Discriminative training for large vocabulary speech recognition.
PhD thesis, University of Cambridge.

Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohamadi, M., and Khudanpur,
S. (2018). Semi-orthogonal low-rank matrix factorization for deep neural networks.
Interspeech.

Bibliography 104

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann,
M., Motlı́ček, P., Qian, Y., Schwarz, P., Silovský, J., Stemmer, G., and Veselý, K.
(2011). The Kaldi speech recognition toolkit. In ASRU.

Povey, D. and Kingsbury, B. (2007). Evaluation of proposed modifications to mpe for
large scale discriminative training. In ICASSP.

Povey, D., Peddinti, V., Galvez, D., Ghahrmani, P., Manohar, V., Na, X., Wang, Y., and
Khudanpur, S. (2016). Purely sequence-trained neural networks for ASR based on
lattice-free MMI. Interspeech.

Povey, D., Zhang, X., and Khudanpur, S. (2014). Parallel training of deep neu-
ral networks with natural gradient and parameter averaging. arXiv preprint
arXiv:1410.7455.

Prechelt, L. (1998). Automatic early stopping using cross validation: quantifying the
criteria. Neural Networks, 11(4):761–767.

Price, R., Iso, K.-i., and Shinoda, K. (2014). Speaker adaptation of deep neural net-
works using a hierarchy of output layers. In SLT.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286.

Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. In
ICLR.

Roth, J., Chaudhuri, S., Klejch, O., Marvin, R., Gallagher, A., et al. (2019). AVA-
ActiveSpeaker: An audio-visual dataset for active speaker detection. arXiv preprint
arXiv:1901.01342.

Rousseau, A., Deléglise, P., and Estève, Y. (2012). TED-LIUM: an automatic speech
recognition dedicated corpus. In LREC.

Rousseau, A., Deléglise, P., and Estève, Y. (2014). Enhancing the TED-LIUM corpus
with selected data for language modeling and more TED talks. In LREC.

Rownicka, J., Bell, P., and Renals, S. (2018). Analyzing deep CNN-based utterance
embeddings for acoustic model adaptation. In SLT.

Rownicka, J., Bell, P., and Renals, S. (2019). Embeddings for DNN speaker adaptive
training. ASRU.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323(6088):533–536.

Runarsson, T. P. and Jonsson, M. T. (2000). Evolution and design of distributed learn-
ing rules. In 2000 IEEE Symposium on Combinations of Evolutionary Computation
and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of
Evolutionary Computation and Neural Networks (Cat. No. 00, pages 59–63. IEEE.

Bibliography 105

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recog-
nition challenge. International journal of computer vision, 115(3):211–252.

Sainath, T. N., Kingsbury, B., Soltau, H., and Ramabhadran, B. (2013). Optimization
techniques to improve training speed of deep neural networks for large speech tasks.
IEEE Transactions on Audio, Speech, and Language Processing, 21(11):2267–
2276.

Sainath, T. N., Weiss, R. J., Senior, A., Wilson, K. W., and Vinyals, O. (2015). Learning
the speech front-end with raw waveform cldnns. In Interspeech.

Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameter-
ization to accelerate training of deep neural networks. In NIPS.

Samarakoon, L. and Sim, K. C. (2015). Learning factorized feature transforms for
speaker normalization. In ASRU.

Samarakoon, L. and Sim, K. C. (2016a). Factorized hidden layer adaptation for
deep neural network based acoustic modeling. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24(12):2241–2250.

Samarakoon, L. and Sim, K. C. (2016b). Subspace LHUC for fast adaptation of deep
neural network acoustic models. In Interspeech.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016). Meta-
learning with memory-augmented neural networks. In ICML.

Saon, G., Soltau, H., Nahamoo, D., and Picheny, M. (2013). Speaker adaptation of
neural network acoustic models using i-vectors. In ASRU.

Schmidhuber, J. (1992). Learning to control fast-weight memories: An alternative to
dynamic recurrent networks. Neural Computation, 4(1):131–139.

Schmidhuber, J. (1993). A neural network that embeds its own meta-levels. In IEEE
International Conference on Neural Networks, pages 407–412. IEEE.

Seide, F., Li, G., and Yu, D. (2011). Conversational speech transcription using context-
dependent deep neural networks. In Interspeech.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learn-
ing. In NIPS.

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur, S. (2018). X-
vectors: Robust DNN embeddings for speaker recognition. In ICASSP.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958.

Stolcke, A. (2001). Error modeling and unsupervised language modeling. In NIST
LVCSR Workshop.

Bibliography 106

Swietojanski, P., Bell, P., and Renals, S. (2015). Structured output layer with auxiliary
targets for context-dependent acoustic modelling. In Interspeech.

Swietojanski, P., Li, J., and Renals, S. (2016). Learning hidden unit contributions for
unsupervised acoustic model adaptation. IEEE Transactions on Audio, Speech, and
Language Processing, 14:1450–1463.

Swietojanski, P. and Renals, S. (2014). Learning hidden unit contributions for unsu-
pervised speaker adaptation of neural network acoustic models. In SLT.

Swietojanski, P. and Renals, S. (2016). SAT-LHUC: Speaker adaptive training for
learning hidden unit contributions. In ICASSP.

Tan, T., Qian, Y., and Yu, K. (2016). Cluster adaptive training for deep neural network
based acoustic model. IEEE/ACM Transactions on Audio, Speech and Language
Processing, 24(3):459–468.

Thrun, S. and Pratt, L. (1998). Learning to learn: Introduction and overview. In
Learning to learn, pages 3–17. Springer.

Trmal, J., Zelinka, J., and Müller, L. (2010). On speaker adaptive training of artificial
neural networks. In Interspeech.

Tsunoo, E., Klejch, O., Bell, P., and Renals, S. (2017). Hierarchical recurrent neural
network for story segmentation using fusion of lexical and acoustic features. In
ASRU.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

Valtchev, V., Odell, J. J., Woodland, P. C., and Young, S. J. (1997). Mmie training of
large vocabulary recognition systems. Speech Communication, 22(4):303–314.

Variani, E., Lei, X., McDermott, E., and Lopez-Moreno, I. (2014). Text dependent
speaker verification using deep neural networks. In ICASSP.

Veselý, K., Burget, L., and Černocký, J. (2017). Semi-supervised DNN training with
word selection for ASR. In Interspeech.

Veselý, K., Ghoshal, A., Burget, L., and Povey, D. (2013). Sequence-discriminative
training of deep neural networks. In Interspeech.

Veselý, K., Watanabe, S., Žmolı́ková, K., Karafiát, M., Burget, L., and Černocký, J. H.
(2016). Sequence summarizing neural network for speaker adaptation. In ICASSP.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016).
Matching networks for one shot learning. In NIPS.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme
recognition using time-delay neural networks. IEEE transactions on acoustics,
speech, and signal processing, 37(3):328–339.

Bibliography 107

Wakita, H. (1977). Normalization of vowels by vocal-tract length and its application
to vowel identification. IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, 25(2):183–192.

Walker, S., Pedersen, M., Orife, I., and Flaks, J. (2017). Semi-supervised
model training for unbounded conversational speech recognition. arXiv preprint
arXiv:1705.09724.

Wang, Z. Q. and Wang, D. (2017). Unsupervised speaker adaptation of batch normal-
ized acoustic models for robust ASR. In ICASSP.

Woodland, P. C. (2001). Speaker adaptation for continuous density HMMs: A review.
In ISCA Workshop on Adaptation Methods for Speech Recognition.

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., and Le, Q. V. (2019a). Adversarial
examples improve image recognition. arXiv preprint arXiv:1911.09665.

Xie, X., Liu, X., Lee, T., Hu, S., and Wang, L. (2019b). BLHUC: Bayesian learning of
hidden unit contributions for deep neural network speaker adaptation. In ICASSP.

Xie, X., Liu, X., Lee, T., and Wang, L. (2019c). Fast DNN acoustic model speaker
adaptation by learning hidden unit contribution features. Interspeech.

Xue, J., Li, J., and Gong, Y. (2013). Restructuring of deep neural network acoustic
models with singular value decomposition. In Interspeech, pages 2365–2369.

Xue, J., Li, J., Yu, D., Seltzer, M., and Gong, Y. (2014). Singular value decomposition
based low-footprint speaker adaptation and personalization for deep neural network.
In ICASSP.

Yin, M., Tucker, G., Zhou, M., Levine, S., and Finn, C. (2020). Meta-learning without
memorization. In ICLR.

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-based state tying for high
accuracy acoustic modelling. In Proceedings of the workshop on Human Language
Technology, pages 307–312. Association for Computational Linguistics.

Younger, A. S., Conwell, P. R., and Cotter, N. E. (1999). Fixed-weight on-line learning.
IEEE Transactions on Neural Networks, 10(2):272–283.

Younger, A. S., Hochreiter, S., and Conwell, P. R. (2001). Meta-learning with back-
propagation. In IJCNN.

Yu, D. and Deng, L. (2016). Automatic speech recognition. Springer.

Yu, D., Yao, K., Su, H., Li, G., and Seide, F. (2013). KL-divergence regularized deep
neural network adaptation for improved large vocabulary speech recognition. In
ICASSP.

Yu, K., Gales, M., Wang, L., and Woodland, P. C. (2010). Unsupervised training and
directed manual transcription for LVCSR. Speech Communication, 52(7-8):652–
663.

Bibliography 108

Zhang, C. and Woodland, P. C. (2015). Parameterised sigmoid and ReLU hidden
activation functions for DNN acoustic modelling. In Interspeech.

Zhao, Y., Li, J., and Gong, Y. (2016). Low-rank plus diagonal adaptation for deep
neural networks. In ICASSP.

Zhao, Y., Li, J., Kumar, K., and Gong, Y. (2017). Extended low-rank plus diagonal
adaptation for deep and recurrent neural networks. In ICASSP.

	Introduction
	Declaration of Content

	Automatic Speech Recognition
	Acoustic Modelling
	Hybrid DNN-HMM Acoustic Models
	Neural Network Architecture

	Speaker Adaptation
	Feature-Space Speaker Adaptation
	Model-Based Speaker Adaptation
	Auxiliary Feature Speaker Adaptation
	Estimation of Speaker Dependent Parameters
	Structured Linear Transformations
	Regularisation Methods for Speaker Adaptation
	Speaker Adaptive Training
	Summary

	Learning to Adapt
	Meta-Learning
	Speaker Adaptation as a Meta-Learning Task
	Speaker Adaptive Training as a Meta-Learning Task
	Implementation of Coordinate-wise Meta-Learner
	Implementation of Model-Agnostic Meta-Learner
	Learning All Speaker Adaptation Hyperparameters
	Summary

	Speaker Adaptation Experiments
	TED Talks
	Baseline Acoustic Models
	Speaker Adaptation Setup
	Training the Meta-Learner
	Results
	Benchmarking Meta-Learner Speed
	Summary

	Speaker Adaptive Training Experiments
	Baseline Acoustic Model
	Speaker Adaptation Setup
	SAT-LHUC Training Details
	MAML Training Details
	Results
	Summary

	Analysis of SAT-LHUC Training
	Baseline Acoustic Models
	Speaker Adaptation Setup
	Effect of the Normalisation
	Effect of the Hidden Layer Width
	Effect of the Model Size
	Effect of the Activation Function
	Effect of the Training Optimiser
	Effect of the Number of Training Iterations
	Conclusions

	Lattice Based Unsupervised Speaker Adaptation
	Lattice supervision
	Lattice-Free MMI
	Baseline Acoustic Models
	Speaker Adaptation Setup
	Results
	Summary

	Conclusions
	Future work

	Bibliography

