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Abstract

Detection of manoeuvring and small objects is a challenging task in radar surveillance
applications. Small objects in high noise background induce low signal to noise ratio (SNR)
reflections. Conventional methods detect such objects by integrating multiple reflections in the
same range-bearing and doppler bins in sampled versions of received signals. When the objects
manoeuvre, however, these methods are likely to fail to detect them because the integration is
performed without taking into account the possibility of the object movements across resolution
bins. Furthermore, slowly manoeuvring objects create detection difficulties in discriminating
them from radar clutter. Reflections of such objects contain micro-Doppler shifts generated by
their propulsion devices. These shifts can characterise specific types of objects. In this case,
estimation of these shifts is a challenging task because the front-end signals at the receiver are
low SNR reflections and are the superposition of all reflections from the entire object and the
noise background. Conventional estimators for this purpose only use reflections collected in a
coherent processing interval (CPI) and produce poor estimate outputs. In order to achieve the
desired accuracy, one requires more reflections than those collected in a CPI.

This thesis mainly considers the aforementioned two difficulties and aims to develop efficient
algorithms, which can detect low SNR and manoeuvring objects by incorporating long-time
pulse integration and micro-doppler estimation. Main contributions in this thesis are based
on the following two algorithms. The first work considers the detection of manoeuvring and
small objects with radars. The radar systems are considered both co-located and separated
transmitter/receiver pairs, i.e., monostatic and bistatic configurations, respectively, as well
as multistatic settings involving both types. The proposed detection algorithm is capable of
coherently integrating reflected signals within a CPI in all these configurations and continuing
integration for an arbitrarily long time across consecutive CPIs. This approach estimates the
complex value of the reflection coefficients for the integration while simultaneously estimating
the object trajectory. Compounded with this simultaneous tracking and reflection coefficient
estimation is the estimation of the unknown time reference shift of the separated transmitters
necessary for coherent processing. The detection is made by using the resulting integration
value in a Neyman-Pearson test against a constant false alarm rate threshold.

The second work focuses on micro-Doppler signature estimation of manoeuvring and small rotor
based unmanned aerial vehicle (UAV) systems with a monostatic radar. The micro-Doppler
signature is considered rotation frequencies generated by rotating rotor blades of the UAVs.
This estimation uses a maximum likelihood (ML) approach that finds rotation frequencies
to maximise a likelihood function conditioned on an object trajectory, complex reflection
coefficients, and rotation frequencies. In particular, the proposed algorithm uses an
expectation-maximisation (EM) approach such that the expectation of the likelihood mentioned
above is approximated by using the state distributions generated from Bayesian recursive
filtering for the trajectory estimation. The reflection coefficients and the rotation frequencies
are estimated by maximising this approximated expectation. As a result, this algorithm is
capable of simultaneously tracking the trajectory and estimating the reflection coefficients and
the rotation frequencies of the UAVs before the decision on the object presence is made.



Lay Summary

Small aircraft detection and object-related parameter estimation in high noise
background environmental conditions are challenging in radar surveillance applications.
That is because small aircraft have low reflectivity, which makes a level of reflected
signals similar to noise only signals. In order to detect such objects, conventional
detection techniques use a sum of multiple reflected signals from the same location
over time. When this integrated value exceeds a threshold, a conventional detector
decides on the object presence. However, when these objects move to another location,
this detector is likely to fail to detect them because the integrated value does not follow
their movements. Another problem scenario would be slowly manoeuvring aircraft when
flying at nearly zero velocity, such as hovering drones. In this scenario, the conventional
detector might detect them but cannot discriminate them from stationary background
objects. That is because the integrated value cannot specify the reflections from the
object of interest or stationary background objects. Therefore, this thesis mainly focuses
on these two difficulties. It aims to develop efficient algorithms to detect small aircraft
and estimate their object-related parameters.

The main contributions are based on the following two algorithms: The first focus
is on detecting manoeuvring and small objects and proposes a detection algorithm
that is capable of coherently integrating reflected signals collected by simultaneously
estimating the object trajectory. Its benefit produces high integrated value for a
long time while simultaneously estimating the object trajectory. The second work
considers the micro-Doppler signature estimation of slowly manoeuvring rotary-wing
aircraft, such as drones, for object identification/classification. The micro-Doppler
signature considers rotation frequencies generated by rotating rotor blades of such
objects. This work proposes a novel algorithm that can estimate the micro-Doppler
signature and discriminate the objects of interest from stationary background objects.
In particular, this estimator uses a maximum likelihood (ML) approach that finds
both a rotation frequency and an object trajectory to maximise a likelihood function
conditioned on an object trajectory and a rotation frequency. As a result, this algorithm
can simultaneously track the object trajectory and estimate the rotation frequency of
drones.
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Chapter 1
Introduction

RADAR is an acronym for RAdio Detection And Range that consists of a transmitter

and a receiver. The transmitter emits electromagnetic waves towards a surveillance

region, and the receiver collects reflected versions of the transmitted waves from objects

in this region [12, Chp.1]. The reflected signals vary with object-related parameters:

One is the reflectivity induced by the object’s surface on which the transmitted waves

are reflected. The second is the time delay caused by the distance (or range) of the object

to the radar. The next is the angle of arrival induced by the object’s bearing angle to the

radar receiver. The last is the Doppler shift caused by the object’s velocity [13, Chp.9].

Signal processing with the reflected signals at the radar receiver decides on the object’s

presence and estimates the object-related parameters above.

Radar systems were originally developed to detect, locate and track aircraft during

World War II [5, Chp.1]. The use of these systems has mainly two advantages: One

provides a long detection distance in which the electromagnetic wave used in the radars

can travel a longer distance than ultrasonic waves, infrared rays, and visible rays. The

other gives less performance degradation of object detection and tracking due to weather

changes such as fogy, rain, and snow compared to the use of ultrasonic sensors and

infrared light imaging sensors. Thus, since World War II, radars have played a major

role for military surveillance applications such as fire control [5, Chp.4], ballistic missile

defence [6], and ground-based early warning [5, Chp.8] as well as commercial applications

1



Introduction

whose examples are weather forecast [7], air traffic control [8], and advanced driver

assistance system for vehicles [9, 10].

In many radar applications, one often requires detecting and tracking manoeuvring

and small objects in high noise background environmental conditions. It is challenging

because such objects have a small-sized body that generates low reflected signals, and

the level of them is frequently lower than that of the noise signals [14–16]. Therefore,

this thesis addresses problems on this task and proposes novel approaches in order to

solve them.

This chapter is organised as follows: Section 1.1 presents motivation and objectives for

the detection and tracking of manoeuvring and small objects. Section 1.3 highlights

contributions contained in this thesis. Section 1.4 gives the thesis outline.

1.1 Motivation and objectives

Radar systems can be categorised according to transmitting waveforms: One uses a

continuous waveform (CW) for transmission. The receiver simultaneously collects the

reflected signals while the transmitter is emitting the continuous waveforms. This is

referred to as the CW radar [5, Chp.1]. At the initial state, the CW radar employs

unmodulated continuous waveforms and only provide Doppler measurements. The

distance measurement on a detected object is not available because the time reference

at the receiver for measuring the time delay of the reflected signals is not applicable.

The demand for this distance measurement leads to the use of a frequency-modulated

continuous waveform (FMCW), which provides the time reference at the receiver to

measure the time delay of the object’s distance. This is referred to as the FMCW

radar [5, Chp.2]. Due to the simultaneous transmission and reception, this radar often

utilises separated transmission/reception antennas, which are closely located. The

transmitter propagates the waveforms with relatively low power in order to prevent

the leakage power from the transmission antenna to the reception antenna during the

transmission. This system is hence used for short-range applications [17, Chp.1]
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The other type is the pulse-Doppler radar, which employs a single antenna that

propagates multiple pulsed waveforms separated by a short time interval. This interval

is known as the pulse repetition interval (PRI) [2] and is divided into transmission

and reception. During the transmission, the receiver is isolated from the antenna, and

no signals are collected. For the reception, the receiver collects reflected signals while

the transmitter stops emitting the waveforms. Consequently, the PRI is an essential

factor that provides the unambiguous distance (or range) and Doppler shift of objects.

For example, when the PRI is short, the maximum unambiguous range is short due

to the short reception time. In contrast, the maximum unambiguous Doppler shift in

the received signals is high due to the high pulse repetition frequency (PRF), which is

the inverse of PRI [2, Chp.3]. As a result, the selection of PRI is a trade-off between

the unambiguous range and the unambiguous Doppler shift. Regarding the separated

transmission/reception intervals, the pulse-Doppler radar provides the perfect isolation

of the leakage power from the transmiter to the receiver while collecting the reflected

signals. Thus the pulse-Doppler radar can use the high transmission power in order

to cover a long distance area [17, Chp.1]. Table 1.1 compares the detection coverage

obtained by the FMCW radar and the pulse-Doppler radar, repectively, based on their

applications. For example, surveillance systems using the pulse-Doppler radar provide

the detection range (i.e., 200km ) much longer than the use of the FMCW radar (i.e.,

32km). Therefore, many surveillance systems utilise the pulse-Doppler radars instead

of the FMCW radars.

The primary focus in this thesis is on the detection of manoeuvring and small object

using pulse-Doppler radar systems. Regarding active sensing, the object detection at the

receiver is made by testing the hypothesis that the received signal contains the reflections

against the noise only signal hypothesis [1, Chp.6] [18, Chp.7]. This test uses the sampled

output of the matched filter (MF) in which the front-end input is filtered with a system

response matching the probing waveform [1, Chp.6]. The resulting samples correspond

to resolution bins in equally divided range space. In conventional processing chains,

these samples are further segmented by using beam-forming and Doppler processing.
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Table 1.1: Comparison of FMCW radar and pulse-Doppler radar based on their
applications [5–10]

Radar type Application Typical detection range

FMCW

Surveillance 20km to 32km

Weather sensing 120km

Altimeters 2.4km to 15.2km

Aircraft landing and obstacle avoidance 1.5km to 6km

Advanced driver assistance system 50m to 250m

Level measurement 60m

Imaging 20m to 50m

Pulse-Doppler

Surveillance 120km to 200km

Weather sensing 115km to 468km

Fire-control 120km

Ballistic missile defence 3000km to 6000km

Air traffic control 96km

These outputs correspond to resolution bins in equally divided bearing and Doppler

space [2, Chp.7].

In order to detect small objects, the sufficient statistics of multiple pulse-returns (i.e.,

multiple measurements) need to be considered because of the low signal to noise ratio

(SNR) reflected signals. This is obtained by summing the associated reflections across

themselves over time. This process is referred to as the pulse integration [1, Chp.8].

Conventional methods such as coherent integration and non-coherent integration

integrate reflections in the same range-bearing and Doppler bins across them over time.

However, when small objects manoeuvre, the reflections follow their trajectories across

the corresponding resolution bins over time. The conventional methods fail to collect

evidence on the object’s presence for a long time due to not considering their trajectories.

On the other hand, a longer integration time provides a higher integrated value, which

improves the probability of detection for a given false alarm rate.

One possible approach for this purpose is to design filters with long impulse responses,

which match the multiple pulse returns along with the selection of possible range-bearing

and Doppler values [19–23]. However, the number of filters required in this approach
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easily becomes impractically excessive in order to increase the integration time. An

alternative approach employs a dynamic programming perspective and integrates the

MF outputs along a trajectory estimated simultaneously. This approach is referred to

as the track-before-detect (TBD) [24, Chp.11].

Most TBD algorithms use the modulus of the MF within models, which describe the

statistics of the modulus of the MF output [25] [26]. The MF output is, however, a

complex value that is a sum of the reflections and noise background. Thus, the existing

TBD algorithms cannot fully exploit the complex measurements. On the other hand,

the detection performance can be improved by taking into account both the phase and

the modulus of the data samples [27]. In principle, coherent processing achieves the

best detection performance [1]. This process requires the complex reflection coefficient

estimation from the MF outputs. This is challenging because the estimation of this

quantity with a reasonable accuracy requires more samples than those, which can be

collected at the pulse-width sampling rate in a coherent processing interval (CPI) [4].

The degree of identifying the object-related parameters can be improved by using an

array antenna structure. This antenna enables one to form a narrow beam which can

improve the signal-to-noise ratio (SNR) of reflected signals from a particular region due

to the attenuation of reflections from the other regions produced by the beam pattern.

The angle of arrival is also found by steering the beam mechanically or electronically [2,

Chp.8]. Modern radar systems often employ a phased array antenna. Each element

on this antenna has an amplifier cascading to a phase shifter that can form multiple

narrow beams. Thus, the phased array antenna is capable of collecting uninterrupted

and simultaneous signals by electronically steering multiple beams in arbitrarily selected

directions [5, Chp.8] [28].

The identifiability of the object-related parameter estimation using the phased array

receiver can be further improved by using geographically separated transmitter/receiver

locations. When the receiver is separately located at the transmitter, this setting

provides different angles in the transmission/reception of the signals and is referred

to as the bistatic configuration [29, Chp.1]. When the co-located transmitter/receiver
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pair together with the separately located transmitter is used, this configuration

provides the spatial diversity of angles for the transmission and reception from

geographically separated transmitter/receiver locations and is referred to as the

multistatic configuration. This diversity enables one to improve the degree of

identifiability of the object kinematics [30] and can improve the detection performance

using multiple pulse returns emitted from the separately located transmitters [29,

Chp.1]. These benefits can only be practically feasible if the receiver is synchronised

with the separately located transmitters. This synchronisation can be done by using

a physical communication line between the transmitter and the receiver. However, in

practice, there are many difficulties in connecting the physical communication line. For

example, a radar transmitter is located on the top of a mountain, and the corresponding

receiver is located at 500km away along a mountainous region. It would be difficult

to connect the physical communication line between them due to the long-distance

and harsh environmental conditions. Therefore, one needs to find a possible approach

to synchronise the separately located transmitter/receiver pair without connecting the

physical communication line.

The other primary focus in this thesis is on the micro-Doppler signature (or shift)

estimation of slowly manoeuvring and small objects. Such objects create detection

difficulties in discriminating them from radar clutter due to the limitation in resolving

range-bearing and Doppler estimates [31, Chp.1]. In general, objects have propulsion

components. When transmitted waveforms illuminate these components, additional

frequency shifts centred at the main Doppler shift are generated [32, Chp.3]. These

extra shifts are referred to as the micro-Doppler signature [33, Chp.1]. This signature

contains information on the specific types of propulsion components and can help to

discriminate the slowly moving objects from radar clutter [34].

The micro-Doppler signature is a time-varying value: One needs to analyse this value in

both time and frequency domains. A common method for this purpose is the short-time

Fourier transform (STFT) [35] [36]. This process often requires a long dwell time to

collect many reflections in a CPI and is performed for a given range bin after the
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detection decision is made. When the pulsed transmission is used for illumination, the

collection of the reflected signals in a CPI is, however, insufficient in order to provide

the desired frequency resolution.

1.1.1 Objectives

This thesis mainly considers the aforementioned two difficulties and aims to develop

efficient algorithms, which can detect/classify manoeuvring and small objects by

incorporating the long time pulse integration and the micro-Doppler estimation in

different radar configurations. In order to achieve this aim, the following objectives

are considered:

1. Investigate existing TBD algorithms in different radar configurations such as the

monostatic radar, the bistatic radar, and the multistatic radar.

2. Develop TBD algorithms that can perform the coherent integration in order to

detect manoeuvring and small objects in all the different radar configurations

where the receiver is not synchronised with the separately located transmitters.

3. Investigate existing micro-Doppler estimation algorithms for a low SNR object in

the monostatic radar system.

4. Develop a joint object detection and micro-Doppler estimation algorithm for

manoeuvring and small objects.

1.2 Assumptions

A radar system considered in this thesis is a ground-based security surveillance system

for small aircraft detection, where multiple transmitters and a single receiver are located

at different regions on the ground and observe small aircraft in the sky. Regarding this

system, the following assumptions are made:
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1. Small aircraft are assumed to be small rotary-wing unmanned aerial vehicles, and

their body size is less than the size of a range-bearing resolution obtained by the

radar system.

2. Radar clutters are not specified because all objects in the sky are not stationary

and considered detectable objects.

3. Multipath interference at the receiver is not considered because the level of

reflections along the radar line of sight, discussed in this thesis, is much less than

that of the receiver noise.

4. Jammers are not considered in the signal model.

5. Receiver noise is modelled with a circular symmetry complex Gaussian random

vector, and noise samples are statistically independent.

6. The receiver is assumed not to be synchronised with the separately located

transmitters.

7. The radar system uses phased array antennas whose calibration is assumed to be

completed.

8. Electromagnetic field of reflected waves is assumed to be the far field.

1.3 Contributions

This thesis contains a series of contributions that can improve the detection performance

and the object-related parameter estimation of manoeuvring and small objects in high

noise background. There are two main contributions highlighted in this thesis.

The first contribution is on detecting manoeuvring and small objects with phased

array radars in the monostatic setting, the bistatic setting, and the multistatic radar
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configuration. In all these configurations, a reliable detection scheme is proposed.

This scheme can coherently integrate reflected signals within a CPI and continue the

integration for an arbitrarily long time across consecutive CPIs. Unlike existing TBD

algorithms, the proposed scheme is evaluated by taking a long-time likelihood ratio

conditioned on a trajectory, reflection coefficients, and synchronisation terms. For

finding the kinematic quantities, a Markov state-space model is used together with

the Bayesian recursive filtering. The reflection coefficients are estimated by using

an expectation-maximisation (EM) algorithm within the Bayesian filtering recursions.

Compounded with these computations is the estimation of unknown time-reference shifts

of the separated transmitters, which is necessary for coherent processing. The object

detection is made by using the resulting integration value in a Neyman-Pearson test

against a constant false alarm rate threshold. Parts of this work have been published.

The second work employs the coherent track-before-detect scheme in the first work and

extends the micro-Doppler signature estimation for object identification/classification.

This work is on the micro-Doppler signature estimation of small rotary-wing aircraft

in a co-located transmitter/uniform planar array (UPA) receiver. The micro-Doppler

signature of such aircraft is considered a rotation frequency of rotor blades. In this

scenario, a joint object detection/micro-Doppler estimation algorithm is proposed: This

algorithm can estimate both the rotation frequency of the rotor blades and the reflection

coefficients of the fuselage while simultaneously tracking the aircraft. In particular, the

proposed estimation scheme uses a maximum likelihood (ML) approach that finds the

rotation frequency to maximise a likelihood function. In order to evaluate this ML, a

joint Bayesian recursive filtering/EM approach is proposed. The estimation scheme of

this work has been published, and the joint detection and estimation scheme has been

published for IET Radar, Sonar and Navigation.

All the publications related to this thesis are listed in Appendix B.
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1.4 Thesis outline

The rest of this thesis is organised as follows:

Chapter 2 provides the background materials which are related to the object detection

and the micro-Doppler estimation with radars. It will start by introducing a brief

overview of radar configurations with their advantages and disadvantages. Then,

conventional processing for detection will be introduced. Next, it will present a

brief introduction to time-frequency analysis methods for micro-Doppler signatures.

The following section will introduce pulse integration. Finally, the concept of

track-before-detect algorithms and the recent advanced in this topic will be present.

Chapter 3 is the first technical chapter that introduces the first contribution. This

chapter will start by introducing a problem scenario using mathematical statements.

Then, the trajectory estimation using Bayesian recursive filtering will be introduced.

The next will explain the ML estimators for both the complex reflection coefficients and

the synchronisation terms. Finally, the proposed detector’s efficacy will be demonstrated

compared to a clairvoyant detector and other schemes.

Chapter 4 is the second technical chapter that provides the second contribution. First, it

will present a problem scenario with a UPA receiver and detail mathematical expressions

of reflected signals from small rotary-wing aircraft. The following section will explain

the trajectory estimation using Bayesian recursive filtering. Next, the proposed EM

algorithm for both the complex reflection coefficient estimation and the micro-Doppler

signature estimation will be introduced. Finally, the efficacy of the proposed scheme

will be demonstrated compared to that of other methods.

Chapter 5 summarises the proposed approaches presented in this thesis and provides

possible directions for future work.
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Chapter 2
Background

2.1 Introduction

Active sensing systems with geographically distributed transmitter/receiver components

promise the detection and localisation performance higher than the use of a single

transmitter/receiver pair [37–41]. Such systems provide the diversity of aspect angles in

which the reflections from an object are observed [42]. This diversity gives benefits

to the object detection and its kinematic estimation, such as the location and the

velocity. A brief overview of radar configurations and their advantages will be described

in Section 2.2.

The object detection with radars involves testing the hypothesis that the received signal

contains the reflected versions of transmitted waveforms from objects against the noise

only hypothesis [1, Chp.4]. These reflections are characterised by the object reflectivity,

the kinematic quantities, and the other relevant physical features. In conventional

processing, the detection test is evaluated by a fixed set of these object-related parameter

values [1, Chp.6]. This processing chain for the detection will be shown in Section 2.3.

Slowly moving objects create detection difficulties in discriminating them from radar

clutters due to limitations in resolving their object-related parameters, such as range,

bearing and velocity [31, Chp.1]. Such object’s reflections contain micro-Doppler

signatures (or shifts) generated by their propulsion devices, such as rotating rotor
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blades or jet engines. These shifts, hence, can provide information on a specific type of

propulsion devices on the object [33, Chp.1]. Section 2.4 will provide a brief introduction

to the estimation of micro-Doppler shifts.

For manoeuvring and small objects in high noise background, the detection is challenging

because such objects generate low reflectivity, which induces low signal to noise ratio

(SNR) reflections in radar measurements. In order to achieve a plausible detection

performance, one needs to consider the sufficient statistics of multiple pulse returns. This

sufficient statistics is found by summing the associated reflections across themselves,

which is referred to as the pulse integration [1, Chp.8]. Section 2.5 will introduce the

integration methods.

Conventional integration methods for detecting manoeuvring and small objects often

fail to collect evidence on the object that exists within a coheret processing interval due

to not taking into account their manoeuvres. In order to overcome this challenge, one

approach has proposed a joint tracking and detection algorithm, which is referred to as

the track-before-detect (TBD) approach [14,43], [44, Chp.8]. Section 2.6 will introduce

a brief overview of TBD along with the recent advances in this topic, and the summary

of this chapter is given in Section 2.7.

2.2 Radar fundamentals

Regarding active sensing systems, a radar consists of a transmitter connected to a

transmitting antenna for propagating modulated pulses separated by a PRI towards

a surveillance region and a receiver connected to a receiving antenna for collecting

reflected versions of the transmitted waveforms from objects in this region. Figure 2.1

illustrates the block diagram of a conventional pulsed monostatic radar system. Here,

the black arrowheads indicate the signal flow between consecutive blocks. The system

components are as follows:

1. Waveform generator: This component generates the desired waveform, such as a
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(a) Conventional radar system block diagram

(b) Block diagram of the signal processor in (a)

Figure 2.1: Block diagram of a conventional pulsed monostatic radar (reproduced from Figure 1.2.
in [1, Chp.1]): (a) Overall system block diagram. (b) Block diagram of the signal processor in (a).

monotone waveform, a linear frequency modulated (LFM) waveform, or a phase

modulated (PM) waveform.

2. Transmitter: This component can be a power amplifier in which the outputs of

the waveform generator are further modulated with a carrier frequency supplied

from a local oscillator (LO).

3. Duplexer: This component acts as a transmission/reception switch that the

antenna is connected to the transmitter during the transmission and disconnected

to the radio frequency (RF) front-end (depicted by the dashed rectangular box).

For the reception, the antenna is connected to the RF front-end and disconnected

to the transmitter.

4. Antenna: This component is the interface between the transmitter’s outputs and

the atmosphere by forming a radiation pattern (i.e., the beam-pattern). There
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are many different types of antennas used in radar systems. For example, the

common types are parabolic reflector antennas, horn antennas, and phased array

antennas [2, Chp.8].

5. Low noise RF amplifier: This component is the first stage in the RF front-end and

amplifies a low power signal which contains reflections (depicted by the dashed

line) without significantly degrading the signal-to-noise ratio (SNR).

6. Mixer: This component creates an intermediate frequency (IF) signal by mixing

(i.e., addition and subtraction) the reflected signal with the carrier frequency

supplied from the LO.

7. IF amplifier: This component is the last stage in the front-end, and its output is the

baseband signal obtained by amplifying the output of a low-pass filter cascading

to an IF band-pass filter that filters out the mixer output [45, Chp.11].

8. Signal processor: The purpose of this component is to reject undesired signals in

the front-end output and to find the object kinematics by using pulse matched

filtering for finding the range, Doppler processing for estimating the velocity,

and spatial filtering for finding the angle of arrival. Compounded with these

computations is deciding on the presence of objects or the absence (i.e., H1 or

H0, respectively) using statistical models. This processing chain for the object

detection is illustrated in Figure 2.1(b) and will be detailed in Section 2.3.

9. Data processor: This processing unit performs tracking, classification, and

recognition of the detected objects after the object detection is made.

10. Display: This stage displays information on the detected objects and their

kinematics using a graphical user interface (GUI) to radar operators.

Table 2.1 shows the summary of airport surveillance radar (ASR) technical

characteristics as an example of typical radar system parameters. Here, the ASR-8,-9,
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Table 2.1: Summary of airport surveillance radar (ASR) technical characteristics
(reproduced from Table C-1 in [11])

Parameter Units ASR-8 Value ASR-9 Value ASR-11 Value

Detection range km 110 110 110

Peak transmitter power kW 1× 103 1.32× 103 25

Operating-frequency
range

MHz 2700 to 2900 2700 to 2900 2700 to 2900

Antenna type Parabolic
reflector

Parabolic
reflector

Parabolic
reflector

Antenna gain dBi 34 34 34

Antenna beam width
(horizontal)

◦ 2.3 2.3 2.3

Antenna beam width
(vertical)

◦ 0.3 to 30 0.3 to 30 0.3 to 30

Antenna beam-scanning
rate

rpm 12.5 12.5 12.5

Transmitted pulse width us 0.6 1.05 89

Transmitted pulse
modulation Monotone Monotone LFM

Transmitted pulse
repetition frequency
(PRF)

Hz 1014 1156 865

Local oscillator frequency MHz 2800 2800 2800

LNA gain dB 10 10 10

IF range MHz 2.6 to 3.9 3.1 to 3.8 3.3 to 4.4

IF 3dB bandwidth MHz 1.3 0.7 1.1

and -11 are the airport surveillance radar systems used in the United States and select

low PRF values due to the long unambiguous range (≤ 110km) for the detection [46].

As explained in Chapter 1.1, the selection of PRFs is an essential factor to provide the

unambiguous range/velocity and is a trade-off between the unambiguous range and the

unambiguous velocity. Table 2.2 shows unambiguous ranges and unambiguous velocities

obtained by the typical values of high, medium, and low PRFs.

Another important factor for the radar operation is the dwell time. This term is

defined as the data acquisition interval in which the collection of reflected signals from

a surveillance region is processed for the detection [47]. For example, the ASR-8,
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Table 2.2: Representative values and characteristics of high, medium, and low PRFs
(reproduced from Table 5.9-1 in [5])

Parameter Units High PRF Medium PRF Low PRF

PRF kHz 100 to 300 5 to 30 0.5 to 2

Unambiguous range km 0.5 to 1.5 5 to 30 75 to 300

Unambiguous velocity m/s 750 to 2250 37.5 to 225 3.75 to 15

-9, and -11 in Table 2.1 employ mechanically rotating antennas, which produce the

limited dwell time due to the mechanical beam-scanning rate when the transmitted

waveforms illuminate an object within a processing interval. They, hence, might fail

to collect sufficient measurements to be processed for the estimation of object-related

parameters accurately. A uniform linear array (ULA) receiver, on the other hand,

can collect uninterrupted measurements from all directions simultaneously and then

filter out signals from selected directions by the digital beam-forming [48, Chp.2]. This

receiver structure, therefore, improves the estimation performance of the object-related

parameters with better accuracy. This accuracy can be further improved by using

separately located transmitter/receiver pairs in exploiting the diversity of aspect angles

in which the objects are illuminated, and the reflections are observed [42].

Figure 2.2 illustrates the geometry of different radar configurations with the ULA

receiver (depicted by the red dots). Here, X = [x, y, ẋ, ẏ]T in the two-dimensional (2D)

Cartesian plane denotes the object kinematic state (depicted by the black dot), where

[x, y]T is the location with the velocity, [ẋ, ẏ]T , and T denotes the vector transpose.

As briefly explained in Chapter 1.1, there are mainly three different configurations,

which are the monostatic setting (depicted by the red triangle and the red dots

in Figure 2.2(a)), the bistatic configuration (depicted by the blue triangle and the

red dots in Figure 2.2(b)), and the multistatic setting (illustrated in Figure 2.2(c)),

respectively. Here, the propagated waveforms travel from the transmitter to the object

and, upon echo, back to the receiver. This path is referred to as the channel (or the

medium). The channel used in this thesis is assumed to be free space. One important

property of the free space is that the electromagnetic waves travel at the speed of light

defined by a constant c ≈ 3× 108 m/s. Another is that the superposition principle (i.e.,
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(a) Monostatic setting (b) Bistatic setting

(c) Multistatic setting

Figure 2.2: The geometry of radar configurations: An object (black dot) is located at [x, y]T

with velocity [ẋ, ẏ]T . (a) The geometry of the monostatic configuration formed by a co-located
transmitter/receiver pair. (b) The bistatic configuration formed by a separated transmitter/receiver
pair. (c) The multistatic configuration combined by both the monostatic and the bistatic with M
separately located transmitters.

additivity and homogeneity) is always true. The other properties are detailed in [49,

Chp.2].

Regarding the free space (or vacuum), it contains no air and atmospheric pressure. The

propagation speed (or the wave speed) equals the speed of light, which is obtained by the

electric permittivity, ε0, and the magnetic permeability, µ0, of the free space [49, Chp.2]:

c =
1

√
ε0µ0

= 2.9979245× 108

≈ 3× 108m/s. (2.1)
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A specific medium has its relative electric permittivity, εr, and its relative magnetic

permeability, µr. The propagation speed in a specific medium is found by the ratio of

the speed of light in a vacuum to the product of εr and µr:

v =
c

√
εrµr

, (2.2)

where v denotes the propagation speed in a specific medium. For example, when a wave

propagates through water, the wave speed is found by using (2.2) and is 2.249×108m/s.

This speed is slower than the speed of light in a vacuum. Furthermore, the ratio of the

speed of light in a vuccum to its speed in a specific medium is often referred to as the

refractive index [49, Chp.3]:

n =
c

v
, (2.3)

where n denotes the refractive index. The refractive index of the free space is 1, and

that of other mediums can be calculated by (2.3). The refractive index also indicates

that a higher index value gives a slower propagation speed compared to its speed in the

free space.

In practice, the channel is Earth’s atmosphere, which contains air and other gases with

atmospheric pressure. This atmosphere consists of layers, each of which has its own

properties, such as composition, temperature and pressure. These components differ

in relative electric permittivity and relative magnetic permeability [49, Chp.4]. In this

thesis, it is assumed that the radar system is located on the ground and observes objects

up to the troposphere, which contains 78.08% of air. The refraction index of air is

n = 1.0000027, which is very close to that of the free space. In other words, the

propagation speed in air approximates the speed of light in the free sapce [49, Chp.3].

Thus, the propagation speed in this thesis is assumed to be the speed of light in the free

space. Also the free space properties hold in the rest of thesis. On the basis of the free

space properties, the characteristics of reflected signals through the channel in all the

different configurations in Figure 2.2 will be explored in the next section. Furthermore,

regarding a signal model at a receiver, the signal model is based on the two dimantional
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Figure 2.3: Geometry of a co-located transmitter/receiver pair and a single object in the monostatic
channel

(2D) Catesian coordinates and aims to provide the basic concept of reflected signals to

be understood. More complicated models will be discussed in Chapter 3 and 4.

2.2.1 Monostatic configuration

In the monostatic channel, Figure 2.3 shows the geometry of the co-located

transmitter/receiver pair and a single object. Here, the distance from the object

kinematic state, X, to the receiver at [x1, y1] is the same as that from the co-located

transmitter to X. Let one denote this distance by R(X). Because the transmitted

waveform travels at the speed of light, c, this quantity is found as

R(X) ,
√

(x1 − x)2 + (y1 − y)2 (2.4)

τ(X) = 2× R(X)

c
(2.5)

where τ(X) is the time of flight for the reflected signals in the monostatic channel and

the factor, 2, is used due to the two-way propagation.

Regarding the distance (or range), it can calculate the received power of the reflected

signals at the receiver by using the radar range equation [50, Chp.2]. Let one denote

this power by Pr. Also, consider the transmitted power denoted by Pt and the gain
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denoted by Gt. The received power at the RF front-end, hence, can be found as

Pr =
λ2
c

(4π)3
× PtGt
R2(X)

× GrLs
R2(X)

× σt

= λ2
c ×

PtGtGrLs
(4π)3R4(X)

× σt, (2.6)

where

• Gr denotes the receiver gain.

• Ls denotes the system loss.

• σt denotes the object’s radar cross section (RCS) which is related to the object

reflectivity.

• λc = c
fc

is the carrier wavelength of the carrier frequency, fc.

• R(X) is the range of the object state, X, to the receiver given in (2.4).

Here, (2.6) contains the product of the transmitted gain and the receiver gain, each of

which is inversely proportional to R(X)2 due to the two-way propagation. The received

power is hence inversely proportional to R(X)4. For the signal to noise ratio (SNR)

at the receiver, the front-end signal is the superposition of all reflections from objects

and noise background. In practice, the noise is random and can be characterised by

its power spectral density (PSD) function in the radar operating bandwidth. Let one

assume that the noise is white Gaussian thermal noise with its power, σ2. Now, the

SNR of the reflected signals from the object state, X, at the receiver can be found by

dividing both sides of (2.6) with the noise power:

SNR ,
Pr
σ2

(2.7)

= λ2
c ×

PtGtGrLs
(4π)3R4(X)

× σt
σ2
.

For the detection of manoeuvring objects using radars, the object velocity is an

important indicator, which can discriminate moving objects from the background, such
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as trees and buildings. A moving object when illuminated by the pulse train genreates

an angular frequency shift in the consecutively reflected pulses (see, Figure 2.3). This

is referred to as the angular Doppler shift. This quantity with the object velocity [ẋ, ẏ]

in the 2D Cartesian coordinates when the object recedes from the receiver can be found

in [51] [52] [53]:

Ω(X) = −2πT

λc
{ẋ× (cos θ(X) + cos θ(X)) + ẏ × (sin θ(X) + sin θ(X))} (2.8)

= −4πT

λc
(ẋ cos θ(X) + ẏ sin θ(X))

= −4πT

λc
(v cos θv cos θ(X) + v sin θv sin θ(X))

= −4πT

λc
v cos (θv − θ(X)) ,

v =
√
ẋ2 + ẏ2, θv = arctan

(
ẏ

ẋ

)
where T denotes the PRI, and θ(X) denotes the angle of arrival (AoA) of the reflections

from the object state, X, to the receiver. This quantity is given by

θ(X) = arctan

(
y1 − y
x1 − x

)
, (2.9)

where the geometry of all these variables in (2.8) and (2.9) is illustrated in Figure 2.3.

Note that the angular Doppler shift, Ω(X), in (2.8) varies with the object velocity and

the angle of arrival. One provides its maximum value when an object travels along the

line of sight (i.e., θv = 0◦ and θ(X) = 0◦), whereas this value becomes zero when the

object moves horizontally with respect to the receiver (i.e., θv = 90◦ and θ(X) = 0◦).

As a result, the monostatic system’s major disadvantage is that this system cannot

measure the object velocity when moving horizontally with respect to the receiver. This

is illustrated in Figure 2.4.

In conventional detection processing chains, the decision on the object’s presence is

often made after Doppler processing. In this processing, there are mainly two methods

used [1, Chp.5]: One is the notch filter that filters out signals which contain zero Doppler

frequencies from the stationary background. The other uses the spectral analysis of

received signals and considers non-zero Doppler frequencies in the frequency domain.
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(a) Maximum Doppler
shift

(b) Zero Doppler shift

Figure 2.4: Doppler effect of a moving object with the ULA receiver: (a) Maximum Doppler shift
measurement at the ULA receiver (red dots). (b) Zero Doppler shift measurement at the ULA receiver.
An object (black dot) at an initial location [x1, y1]T moves to [xk, yk]T with velocity [ẋk, ẏk]T . The line
of slight with respect to the receiver is depicted by the solid black line.

However, when an object moves horizontally with respect to the receiver, its Doppler

frequency is close to zero, and this object might be considered the stationary background.

Therefore, the conventional detectors using the monostatic channel are likely to fail in

detecting it.

2.2.2 Bistatic and multistatic configurations

Let this section consider the characteristics of reflected signals in the bistatic/multistatic

channels. The bistatic system is comprised of a separately located transmitter/receiver

pair. Unlike this system, the multistatic system consists of M transmitters and one

receiver. One of these transmitters is co-located with the receiver, and the others are

separately located from the receiver (see, Figure 2.2(c)). Figure 2.5 shows an example

of the multistatic channel with one co-located transmitter/receiver pair and the mth

separately located transmitter. This configuration involves both the monostatic (see,

red dashed box) channel and the bistatic (see, green dashed box) channel. In order to

avoid repetitions, this section only focuses on the multistatic channel.

The monostatic channel has the same distance from the transmitter to an object and it

to the receiver, whereas the distance in the bistatic channel is different: The distance
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Figure 2.5: Geometry of a moving object with the multistatic channel

of the object state, X, to the receiver differs from that of X to the separately located

transmitters. Let one denote the distance of the object state, X, to the mth transmitter

by Rtxm(X) for m = 1, . . . ,M , where, m = 1 indicates the distance in the monostatic

channel (see, Figure 2.5). This quantity for the mth channel is hence given by

Rtxm(X) ,
√

(xm − x)2 + (ym − y)2, m = 1, . . . ,M, (2.10)

and the distance of X to the receiver is denoted by R(X). This quantity is given in (2.4).

The corresponding pulse time of flight in the mth channel is hence found as

τm(X) = τ txm (X) + τ rx(X), m = 1, . . . ,M, (2.11)

τ txm (X) =
Rtxm(X)

c
,

τ rx(X) =
R(X)

c
,

where m > 1 indicates the bistatic channels.

In the multistatic channel, the front-end signal is the superposition of all reflections

from M different channels. Its received power is hence found as

Pr =

M∑
m=1

P
(m)
t G

(m)
t GrLsσ

(m)
t λ2

c

(4π)3Rtxm(X)2R(X)2
. (2.12)

where P (m)
t , G(m)

t , and σ
(m)
t denote the transmitted power, the transmitter gain, and

the object’s RCS, respectively, at the mth transmitter. As a result, the SNR of the
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front-end signal in the multistatic channel is found as

SNR =
Pr
σ2

=
M∑
m=1

P
(m)
t G

(m)
t GrLsσ

(m)
t λ2

c

(4π)3Rtxm
2
(X)R2(X)

× 1

σ2
, (2.13)

where the SNR indicates a sum of M channels and is inversely proportional to

Rtxm
2
(X)R2(X).

For velocity measurements in the multistatic channel, the angular Doppler shift of the

object state, X, in the mth channel for m = 1, . . . ,M when X recedes from the receiver

is found by using (2.8) with the bearing angle of the object to the mth transmitter.

This quantity is given in [38] [51] [52] [53]:

Ωm(X) = −2πT

λc

{
ẋ× (cos θm(X) + cos θ(X)) + ẏ × (sin θm(X) + sin θ(X))

}
, (2.14)

where θ(X) is the AoA in (2.9), and θm(X) denotes the bearing angle of the object

state, X, to the mth transmitter. This quantity is given by

θm(X) = arctan

(
ym − y
xm − x

)
. (2.15)

Note that the angular Doppler shift, Ωm(X), in (2.14) varies with the AoA, θ(X), and

the bearing angle, θm(X). For m = 1, θ1(X) equals to θ(X) (i.e., θ1(X) = θ(X))

due to the co-located transmitter/receiver pair. Ω1(X) also yields the same angular

Doppler shift, Ω(X), in (2.8). When m > 1, Ωm(X) differs from Ω(X) because θm(X)

is not the same value of θ(X). This leads to an advantage in the velocity measurement

compared to that in the monostatic channel. For example, when an object moves

horizontally with respect to the receiver, the multistatic configuration enable one to

find the object velocity, which cannot be found using the monostatic channel alone (see,

Figure 2.4). Another advantage of the multistatic channel is that the SNR for the

multistatic configuration provides a sum of M SNRs with m = 1 indexing monostatic

channel and m > 1 accounting for the bistatic channels. These highly desired features

can only be practically feasible if the receiver is synchronised with the separately located

transmitters.
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The synchronisation of the separately located transmitter/receiver pairs involves finding

the differences between the receiver time reference and that of the transmitters so as to

accurately map the receiver time axis onto spatial locations [29]. For example, if the

time reference shift of the transmitters with respect to the receiver is known precisely,

these values can be further mapped to precise spatial (bistatic) range values [29]. The

ambiguity of these quantities significantly deteriorates the system performance [54].

A typical approach to estimate the transmitters’ time reference shift is to use atomic

clocks and/or external references, such as global positioning system (GPS) signals [55].

Such a process is tedious and requires expensive pieces of equipment to measure external

references precisely. Also, this is prone to errors due to inaccuracy in locating transmitter

and receiver elements [29]. A data-driven solution consisting of processing at the receiver

side is preferable. Chapter 3 will consider this problem in a scenario where the ULA

receiver is not synchronised with separately located transmitters, and it will introduce

local processing for the estimation of a time reference shift of each transmitter using a

digital beam-forming technique at the receiver side.

This section has introduced the basic elements of a radar system and discussed the

advantages and disadvantages of the monostatic, bistatic, and multistatic configurations.

The next section will introduce an overview of conventional detection processing chains

using phased array radar receivers.

2.3 Conventional object detection in array receivers

The object detection using radars involves testing the hypothesis that the received

signal contains reflections from objects against the noise only hypothesis. This test

uses sampled outputs of a matched filter (MF), which filters out the front-end input

with an impulse response that matches the probing waveform [1, Chp.4].

In conventional processing chains, the aforementioned test is evaluated by using a

pre-specified set of kinematic parameters corresponding to the sample timings of the

MF stage. In effect, these samples correspond to equally separated range values that
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Figure 2.6: Example of a pulse train (reproduced from Figure 3-1 in [2, Chp.3]): N consecutive
waveforms are separated by a time interval T . The pulse waveform, ũ(t), for the transmission uses a
pulse duration Tp.

partition the range space into equally divided bins. These samples are further used with

conventional beam-forming and Doppler processing. These correspond to segmenting

the bearing and Doppler space into resolution bins. The decision on the object’s presence

in each bin is made by using the hypothesis testing the corresponding processed data

sample, which involves testing a likelihood ratio against a detection threshold.

The problem scenario in this section is illustrated in Figure 2.3, where the co-located

transmitter(see, red triangle)/receiver(see, the red dots) pair is located in the origin of

the 2D Cartesian coordinates. This transmitter emits N consecutive pulse waveforms,

ũ(t), separated by the PRI, T , towards a surveillance region after modulating with a

common carrier that has an angular frequency of ωc = 2πfc. This is given by

u(t) = Re
{N−1∑
n=0

ũ(t− nT )ejωct
}
, (2.16)

where Re{·} denotes the real part of its input complex argument, and n for n =

0, . . . N − 1 indicates the nth pulse waveform. This waveform for the transmission uses

its pulse duration denoted by Tp with its bandwidth denoted by Bw. This is illustrated

in Figure 2.6.

In the surveillance region, a single object at the kinematic state, X, is illuminated by the

transmitted waveforms defined in (2.16). The receiver co-located with the transmitter

utilises the ULA antenna, which has L elements spaced by half of the carrier wavelength.

Each array element collects the reflected signals, each of which is the superposition of the

reflections from an object and noise background. The object reflectivity is assumed to
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Figure 2.7: Data acquisition from a ULA array receiver: The input of the pulse MF stage is the
baseband signal from the front-end. The MF output is sampled by using the pulse width Tp and
arranged in array index, fast time and slow time axes, respectively.

remain coherent (i.e., unchanged) during the collection of N pulses. This time interval

is known as the coherent processing interval (CPI).

Let one detail the reflected signals from X. For narrowband, the refelctions collected

at the array elements are characterised by a spatial steering vector as a function of

θ [48, Chp.2]:

ss(θ) =
[
1, e−jωc

d
c

sin θ, . . . , e−jωc(L−1) d
c

sin θ
]T
, (2.17)

where d = λc/2 is the separation between the array elements selected as half of the

carrier wavelength. Substituting this quantity together with c = λc × fc in (2.17) leads

to

ss(θ) =
[
1, e−jπ sin θ, . . . , e−j(L−1)π sin θ

]T
, (2.18)

where ss ∈ CL×1 is an L× 1 vector.

The superposition of N reflections after demodulation at the receiver together

with (2.18) when the single object is in the surveillance region is found as

z(t) = ss(θ(X))
N−1∑
n=0

αejnΩ(X)e−jωcτ(X) × ũ(t− τ(X)− nT ), (2.19)

where α is a complex coefficient modelling the reflectivity. Here, θ(X) is the AoA given

in (2.9). τ(X) and Ω(X) are the time of flight given in (2.5) and the Doppler shift given

in (2.8), respectively.
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The reflections in the received signal are searched by convolving the input with inverted

versions of the probing waveforms. This fitering is referred to as the matched filtering

(MF) [13]. For the array processing, each of L array elements cascades to each of L

matched filters. The outputs of the MFs for the array elements are then sampled with

a period that is equal to the pulse duration of Tp. This is found as

z̃(t) , z(t) ∗ ũ(−t)

= αss(θ(X))

N−1∑
n=0

ejnΩ(X)e−jωcτ(X) × Λ(t− τ(X)− nT ). (2.20)

where ∗ denotes convolution and Λ(·) is the auto-correlation of the waveform given by

Λ(t) =

Tp∫
0

ũ(t′)ũ∗(t′ − t)dt′. (2.21)

Now, these samples uniformly divide the PRI of T into Γ samples with Tp interval (i.e.,

T = Γ × Tp), where Γ ∈ Z+ is the positive integer number. Γ × N samples of this

discrete-time vector sequence is given by

z̃(γTp) = [z̃0(γTp), z̃1(γTp), . . . , z̃n(γTp), . . . , z̃N−1(γTp)], γ = 0, . . . ,Γ− 1, (2.22)

and the discrete-time vector for the nth pulse when the object is located in the γth

sample is given by

z̃n[γ] , z̃n(γTp) (2.23)

= αe−jωcτ(X) × ss(θ(X))× ejnΩ(X)Λ(γTp − τ(X)− nT ),

where the resulting output is an L× 1 vector.

Next, the vector sequence in (2.22) is arranged as a cube by folding the two dimensional

data array in lengths of Γ samples. The nth layer of the resulting cube corresponds

to the samples collected between L array elements and Γ outputs of MF when the nth

pulse is reflected:

Cn ,
[
z̃n[0], z̃n[1], . . . , z̃n[Γ− 1]

]
,
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and the cube that capters N reflected pulses is given by

C = [C0,C1, . . . ,CN−1]T . (2.24)

This processing chain is illustrated in Figure 2.7 together with the cube, C, which is also

known as the radar data cube [1]. The axes of this cube are array index, slow-time, and

fast-time, respectively. The fast-time axis consists of Γ samples of the MF filter output,

each of which is associated with a time delay of the reflected signal. These time delays

correspond to the time of flights which can easily be converted to range (or distance)

values using (2.5). The corresponding resolution is given in [2, Chp.3]:

∆R =
c

2
× Tp, (2.25)

Tp = ∆R× 2

c
. (2.26)

Each range bin (or range sample) consists of L spatial samples collected from the array

elements along the array index axis and N Doppler samples (or temporal samples),

which indicate N pulse returns separated by the PRI of T along the slow-time axis. As

a result, N measurements when the object state, X, is located at the rth range bin are

a slice along the slow time axis, which is given by

Z̃(r) ,
[
z̃0[r], z̃1[Γ + r], · · · , z̃N−1[(N − 1)Γ + r]

]
= αe−jωcτ(X)ss(θ(X))sTt (Ω(X))× Λ(rTp − τ(X)), (2.27)

and the term st ∈ CN×1 is referred to as the temporal steering vector [56] given by

st
(
Ω′
)
,
[
1, ejΩ

′
, . . . , ej(N−1)Ω′

]T
. (2.28)

Note that Z̃(r) in (2.27) form an L×N matrix, which is used to further map the bearing

and Doppler spaces by using spatial and temporal filtering (i.e., beam-forming and

Doppler processing), respectively. For this purpose, there are three different sequences

to be processed [1, Chp.9] [57, Chp.3]: One first performs the Doppler processing with

N temporal samples at each spatial sample, and then the beam-forming with these

outputs is performed. Another is that the beam-forming with L spatial samples at each
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Figure 2.8: Spatial and temporal signal processing (reproduced from Figure 9.22. in [1, Chp.9]):
There are three approaches for this purpose. One first performs Doppler filtering with N temporal
samples, and then these outputs are further used for beam-forming (i.e., the pre-Doppler filtering and the
post-beam-forming, respectively). The second performs first the beam-forming with L spatial samples
and later the Doppler filtering with these outputs (i.e., the pre-beam-forming and the post-Doppler
filtering, respectively). The last is space-time filtering that performs joint beam-forming and Doppler
filtering with L×N samples. All these outputs produce the bearing-Doppler map that forms an I × J
matrix.

temporal sample is performed, and then the Doppler processing with these outputs is

processed. The other uses a space-time filter, which performs joint beam-forming and

Doppler processing with L×N samples. The outputs of all these sequences correspond

to the bearing-Doppler map at each range bin. These processing chains are illustrated

in Figure 2.8. The remaining parts of this section will introduce the beam-forming

in Section 2.3.1 and then the Doppler processing in Section 2.3.2. The conventional

space-time filtering will be detailed in Section 2.3.3. Then, the object detection process

will be introduced in Section 2.3.4.
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2.3.1 Beam-forming

This subsection considers the digital beam-forming with L spatial samples from the

array elements. The aim of this technique provides identifiability concerning AoAs of the

reflected signals at the receiver [1, Chp.9]. In a sensing context, these AoAs correspond

to the bearing angles of objects. Conventional beam-forming is a non-adaptive method

and implemented by using a weighted sum of the array element measurements (i.e., L

spatial samples) given a bearing angle [48, Chp.2]. Let one denote these weights by a

vector of hs as a function of the bearing angle, θ. This quantity is given in Equation

9.5 [1, Chp.9]:

hs(θ) = w � s∗s(θ), (2.29)

where w , [w0, . . . , wL−1]T denotes weights, s∗s ∈ CL×1 is the conjugate of the spatial

steering vector in (2.18), and � denotes the Hadamard product operator.

The AoA of the reflected signal from the object state, X, is searched by matching θ to

θ(X) using (2.29) over the bearing space. This space is equally divided into I resolution

bins with a interval, ∆θ. This is known as the bearing bins [48]. This interval (i.e.,

resolution) can be calculated by the half-power beamwidth (or 3dB beamwidth). This

quantity is given in Table 2.2 [48, Chp.2] and approximates to

∆θ ≈ 2× arcsin

√
2× λc

π × L× d
. (2.30)

When d = λc
2 , the baring resolution in (2.30) becomes

∆θ ≈ 2× arcsin

√
2× λc × 2

π × L× λc
≈ 2× arcsin

0.89

L
. (2.31)

As a result, the the beam-forming response with Z̃(r) in (2.27) at the receiver steered

to i×∆θ over I bearing bins is given by

zs(r, i) , hTs (i∆θ)× Z̃(r), i = 1, . . . , I. (2.32)

These outputs are I bearing samples along the slow-time axis given the rth range bin.
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This is illustrated in the bottom left plot in Figure 2.8. For example, when all of weights

in (2.29) are equal to 1 (i.e., w = [1, . . . , 1]T ), the measurement at the ith bearing bin

and the rth range bin that contain the reflections from X is found as

zs(r, i) =
sin{Lπ2 (sin(i∆θ)− sin θ(X))}
sin{π2 (sin(i∆θ)− sin θ(X))}
×e{j(L−1)π(sin(i∆θ)−sin θ(X))}

×αe−jωcτ(X)st (Ω(X))T × Λ(rTp − τ(X)). (2.33)

Note that zs(r, i) ∈ C1×N in (2.33) provides N temporal samples (i.e., the slow-time

samples) and gives the peak value when i∆θ is matched to θ(X) (i.e., i∆θ = θ(X)).

The next section will introduce the Doppler processing with these samples.

2.3.2 Doppler processing

The Doppler processing aims to filter out signals at the receiver front-end concerning

the velocity induced by the reflector/source. This processing uses the reflected versions

of multiple pulses illuminated in the surveillance region. These reflections contain

frequency shifted versions of the transmitted waveforms by the reflector velocity. The

estimation of this quantity, for example, enables one to discriminate moving objects

from stationary objects.

The spectral analysis of the slow-time samples at each range bin uses the discrete Fourier

transform (DFT) to find a frequency domain representation of the slow-time samples [1,

Chp.5] [2, Chp.7]. This can be done by using a temporal steering vector. Let one denote

a DFT coefficient vector by ht as a function of the Doppler frequency, f . This vector is

given by

ht(f) = s∗t (2πfT ), (2.34)

where s∗t ∈ CN×1 is the conjugate of the temporal steering vector in (2.28).

The Doppler shift of the reflected signal from the object state, X, is searched using (2.34)

over the Doppler space. This space is equally divided into J resolution bins known as
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the Doppler bins [1, Chp.5]. The resolution of these bins with N temporal samples is

determined by

∆f =
1

N × T
. (2.35)

Given the rth range bin, the Doppler response of zs(r, i) in (2.32) using (2.34) over I

bearing bins and J Doppler bins is found as

h(r, i, ) = zs(r, i)ht(∆f) i = 1, . . . , I and  = 1, . . . , J. (2.36)

These outputs form an I × J bearing-Doppler map converted from the L×N samples

at the rth range bin and correspond to resolution bins equally spaced by the bearing

resolution ∆θ given in (2.30) and the Doppler resolution ∆f given in (2.35). This is

illustrated in the bottom right plot in Figure 2.8. As a result, the measurement at the

rth range bin, the ith bearing bin, and the th Doppler bin that contains the reflection

from X is given by

h(r, i, ) =
sin{Lπ2 (sin(i∆θ)− sin θ(X))}
sin{π2 (sin(i∆θ)− sin θ(X))}

× e{jπ(L−1)(sin i∆θ−sin θ(X))}

×
sin{N (2π∆f − Ω(X)) T2 }
sin{(2π∆f − Ω(X)) T2 }

× e{−j
(N−1)

2
(2π∆f−Ω(X))T}

×αe−jωcτ(X) × Λ(rTp − τ(X)), (2.37)

where the first line indicates the bearing sample at the ith bearing bin, the second line

shows the Doppler sample at the th Doppler bin, and the last represents the range

sample at the rth range bin.

2.3.3 Space-time filtering

This subsection considers the space-time filtering with the radar data cube. This filtering

is joint beam-forming and Doppler processing with L × N data samples at each range

bin. For this purpose, it stacks the columns of Z̃(r) in (2.27) and form an LN × 1 data

vector. Let one denote this vector by Z(r), which is found as

Z(r) = αe−jωcτ(X)ss(θ(X))⊗ st(Ω(X))× Λ(rTp − τ(X)). (2.38)
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Figure 2.9: Space-time data vector (reproduced from Figure 9.12. in [1, Chp.9]): Mapping of an
L×N matrix at the rth range bin to an LN × 1 vector as a space-time data vector.

where ⊗ denotes the Kronecker product operator. This vector at the rth range bin is

illustrated in Figure 2.9.

The conventional space-time filtering can be done by combining the weighted vector of

the beaming-forming and the vector of the DFT coefficients for the Doppler processing [1,

Chp.9]. This quantity is found as

h(θ, f) , hs(θ)⊗ ht(f), (2.39)

where hs(·) is the weighted vector of the beaming-forming given in (2.29), and ht(·) is

the vector of the DFT coefficients given in (2.34).

Given the rth range bin, the space-time filtering response with (2.38) is obtained by

multiplying h(·) in (2.39) and Z(r) over I bearing bins and J Doppler bins. These

outputs provide a bearing-Doppler map, which is equivalent to the map obtained by

using h in (2.37):

h(i∆θ, ∆f)T × Z(r) = h(r, i, ), i = 1, . . . , I and  = 1, . . . , J, (2.40)
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where ∆θ is the bearing resolution given in (2.30), and, ∆f is the Doppler resolution

given in (2.35). The next section will show the object detection using (2.40).

2.3.4 Object detection

The object detection performs a hypothesis test based on two hypotheses. These

hypotheses are found by using the modulus of (2.40): One is the hypothesis that contains

a single reflection from an object state, X. The other is the null hypothesis that contains

a noise only signal. These are defined with (2.40):

Z(r, i, ) =


|h(r, i, )|+ n(r, i, ) , H1 holds,

n(r, i, ) , H0 holds,
(2.41)

whereH1 denotes the hypothesis that an object exists, H0 is the null the hypothesis, and

n(r, i, ) is the noise background modelled with a circular symmetry Gaussian random

value n(r, i, ) ∼ N(.; 0, σ2) of zero mean and variance σ2. Here, this test is assumed

that a single object is located at a range bin. The matched filter output, however, takes

more range bins than one range bin due to the auto-correlation. Also, this test only

uses the modulus value, which is the magnitude of a reflected signal without its phase

component. This implies that the hypothesis test using the modulus value might lose

information on the phase component.

A conventional detector uses a likelihood ratio test against a threshold in the

Neyman-Pearson sense [18, Chp.3] [1, Chp.6]. The decision on the object’s presence

is made at each resolution bin. This processing requires to perform Γ×I×J hypothesis

tests in order to detect an object. The detector at the (r, i, )th bin hence takes the

form:

L(r, i, )
H1

≷
H0

T, (2.42)

where T denotes the detect threshold for selecting one of the two hypotheses. The

likelihood ratio on the left hand side of (2.42) is found as

L(r, i, ) =
l(Z(r, i, )|H = H1)

l(Z(r, i, )|H = H0)
. (2.43)
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The numerator term in (2.43) can easily be found using the distribution of the noise in

the signal model in (2.41):

l(Z(r, i, )|H = H1) = N(Z(r, i, ); |h(r, i, )|, σ2), (2.44)

and the denominator regarding the noise only hypothesis is found as

l(Z(r, i, )|H = H0) = N(Z(r, i, ); 0, σ2). (2.45)

Therefore, the likelihood ratio after substituting (2.44) and (2.45) into (2.43) is found

as

L(r, i, ) ,
N(Z(r, i, ); |h(r, i, )|, σ2)

N(Z(r, i, ); 0, σ2)

= exp
{ 2

σ2
|h(r, i, )|Z(r, i, )

}
× exp

{
− 2

σ2
|h(r, i, )|2

}
. (2.46)

The conventional detector often uses a log-likelihood ratio [18, Chp.13] that takes the

natural logarithm of (2.42):

logL(r, i, )
H1

≷
H0

log T (2.47)

logL(r, i, ) =
2

σ2
|h(r, i, )|Z(r, i, )− 2

σ2
|h(r, i, )|2 (2.48)

As a result, the decision on the object’s presence when the object is located in

the (r, i, )th bin is found as

|h(r, i, )|Z(r, i, )
H1

≷
H0

log T × σ2

2
+ |h(r, i, )|2. (2.49)

An alternative is the hypothesis test that directly uses the space-time data vector given

in (2.38) without preprocessing for the digital beam-forming and Doppler processing.

For convenience regarding the notation in the rest of this section, let one combine the

spatial vector and the temporal steering vector as a function of the bearing angle, θ,
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and the angular Doppler shift, Ω, given the rth range bin:

s(r, θ,Ω) , ss(θ)⊗ st(Ω)× Λ(rTp − τ) (2.50)

where ss(·) is the spatial steering vector in (2.18), and st(·) is the temporal steering

vector in (2.28). As a result, the measurement in (2.38) with the noise background for

the hypothesis that an object exits and the null hypothesis is found as

Z(r) =


α̃s(r, θ,Ω) + n(r) , H1 holds,

n(r) , H0 holds,
(2.51)

where

α̃ , αe−jωcτ

is the complex reflection coefficient that contains the phase value of the pulse time of

flight, and n(r) ∼ CN (.;0,Σ) models a circular symmetry complex Gaussian random

vector with zero mean and covariance Σ.

Given (r, θ,Ω), the most-well known detector that uses the inverse covariance is the

adaptive matched filter (AMF) detector given in [58]:

|sH(r, θ,Ω)Σ̂−1Z(r)|2

sH(r, θ,Ω)Σ̂−1s(r, θ,Ω)

H1

≷
H0

T. (2.52)

where

Σ̂ = E{Z(r)ZH(r)|H = H0}

is the estimate of the covariance, Σ, using the noise only signals, E{·} denotes the

expectation, and (·)H is the Hermitian of its argument. In [59], the generalised likelihood

ratio test (GLRT) detector is also found as

|sH(r, θ,Ω)Σ̂−1Z(r)|2

sH(r, θ,Ω)Σ̂−1s(r, θ,Ω){1 + sH(r, θ,Ω)Σ̂−1Z(r)}

H1

≷
H0

T. (2.53)

Note that the GLRT detector in (2.53) compared to the AMF detector in (2.52) has

an additional term in the denominator because this detector includes both the reflected

signals and the noise only signals when estimating the covariance. In contrast, the
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Figure 2.10: Example of slowly manoeuvring objects: A helicopter consists of its body and rotor
blades. The micro-Doppler shift is characterised by a rotation frequency of the rotor blades (red line),
the blade length, and the number of the rotor blades.

AMF detector uses the noise only signals for finding the covariance. When θ and Ω are

unknown, these detectors need to estimate them. The typical approach for this purpose

is to use a pre-specified set of kinematic parameters corresponding to the sample timings

of the MF stage as discussed in Section 2.3.1 and Section 2.3.2. Another important

factor for the detection test is a selection of the detection threshold, T, because this

value affects a constant false alarm rate for the detection. The selection of the detection

threshold in the case of the multistatic channel will be explained in Chapter 3.

The low velocity of moving objects generates a small Doppler shift close to zero. The

aformentioned detectors fail to discriminate them from the stationary background due

to the limited Doppler resolution. The next section will introduce an additional signal

feature that can help to discriminate these objects from the stationary background.

2.4 Micro-Doppler signatures

In general, moving objects have their propulsion components to move, such as rotor blade

based engines and jet aircraft engines [32, Chp.3]. A moving object when illuminated by

transmitted waveforms induces a frequency shift due to its velocity. The reflections when

the transmitted waveform illuminates its propulsion component contain an additional
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frequency shift centred at the main Doppler shift. This extra shift is referred to as the

micro-Doppler shift [33, Chp.1]. The micro-Doppler shift differs from different types of

propulsion components and enables one to classify them [34]. For example, jet aircraft

engines’ micro-Doppler shifts are characterised by sinusoid harmonic signals with a

combination of different fundamental frequencies. These shifts differ from those collected

from rotor blade based engines [60]. [33, Chp.2] is also shown that the micro-Doppler

measurements from human gaits differ from horse walking. Therefore, Information on

micro-Doppler measurements allows one to discriminate slowly moving objects from the

stationary background.

This section focuses on the micro-Doppler shifts (or signatures) of slowly manoeuvring

objects. One type of such objects is a helicopter with a rotor blade based engine

with several rotor blades, which can hover and fly at low velocity. This is illustrated

in Figure 2.10. The helicopter’s micro-Doppler shift is characterised by the rotation

frequency of rotor blades, the blade length, and the number of the rotor blades [61–63].

The front-end signal reflected from the helicopter is the superposition of all reflections

from both the helicopter’s body and its rotor blades. Owing to the superposition of the

full reflections in the received signal, one needs to separate the rotor blade reflections

from them in order to analyse the micro-Doppler shift. One possible approach is to

transmit waveforms with high bandwidth and sampling the MF outputs with a high

sampling rate. This leads to high-resolution range bins, each containing the reflections

from different parts of the object. This is referred to as the high-resolution range

profile [31, Chp.3].

The radar system considered in this section uses the same radar introduced in

Section 2.3. Suppose that the ULA receiver collects N reflected pulses from L̃ rotor

blades of the helicopter. Each of them has the blade length denoted by B. When

these blades are rotating with an angular frequency, ω, the rotating blades induce

micro-Doppler shifts. The quantity for the lth rotating blade is hence given in [33,

Chp.3] [62]:

µ
(l)
D (t) =

4π

λc
×B × sin

(
ωt+

2π(l − 1)

L̃

)
, l = 1, . . . , L̃, (2.54)
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where the micro-Doppler shift indicates that it varies with sin (ωt) over time and

is a time-varying parameter. And, the signal model using (2.27) that captures the

micro-Doppler shifts in (2.54) for L̃ rotor blades and N reflected pulses is given by

Z̃(r) = ss(θ(X))×

st(Ω(X))�



∑L̃
l=1B × sinc{µ(l)

D (0)} × ejωl(0)∑L̃
l=1B × sinc{µ(l)

D (T )} × ejωl(T )

...∑L̃
l=1B × sinc{µ(l)

D ((N − 1)T )} × ejωl(N−1)T





T

×αe−jωcτ(X)Λ (rTp − τ(X)) , (2.55)

where X = [x, y, ẋ, ẏ] denotes the helicopter state associated with θ(X), Ω(X) and

τ(X) given in (2.4), (2.9), and (2.8), respectively, and � denotes the Hadamard (i.e.,

element-by-element) product operator. Here, ss is given in (2.18), and sinc{x} = sin(x)
x

denotes the sinc function. After the beam-forming is applyed using hs in (2.29), the

resulting expression is given by

zs(r, i) = hTs (i∆θ)Z̃(r) (2.56)

where the output of zs(r, i) ∈ C1×N has N temporal samples given the rth range bin and

the ith bearing bin. For convenience regarding the notation in the rest of this section,

let one denote N temporal samples in (2.56) by z(r,i), which is given by

z(r,i) = [z(r,i)(0), z(r,i)(1), . . . , z(r,i)(n), . . . , z(r,i)(N − 1)]. (2.57)

When rTp = τ(X) and i∆θ = θ(X), the nth temporal sample from the MF output

in (2.55) through (2.56) and (2.57) is found as

z(r,i)(n) = L× α̃ejnΩ(X) ×
L̃∑
l=1

B × sinc{µ(l)
D (nT )} × ejωl(nT ), (2.58)

where L is the total number of the array elements in the ULA, and α̃ is the complex

reflection coefficient given in (2.51). Here, the mathematical expression only emphasises

reflected signals on the micro-Doppler shifts. The full details of the radar data cube,

which contains the entire reflected signals from different parts of an object and noise

background, will be considered in Chapter 4.
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As discussed in Section 2.3.2, the temporal samples are analysed by using Doppler

processing. This is done by using the DFT. This method only provides frequency

information on the reflected signals and does not fit for the analysis of micro-Doppler

shifts because they are time-varying samples collected in a CPI. In order to analyse

the time-varying samples, one considers the time-frequency analysis, which provides

both time and frequency information on the reflected signals. A common method for

this purpose is the short-time Fourier transform (STFT) [64, Chp.8], which assumes

that signals contain constant frequencies in a short-time interval. In this interval, the

Fourier transform is performed without the effect of frequency variation. The STFT of

(2.57) is found as

STFT(τ, f) =
N−1∑
n=0

z(r,i)(n)w(n− τ)e−j2πf
n
N , (2.59)

where τ and f denote time and frequency of the STFT, z(r,i)(n) is the nth temporal

sample given in (2.58), w denotes a window function used to divide z(r,i) into equally

uniformed time intervals, and N is the number of temporal samples (i.e., N pulses).

The purpose of window functions for STFT is to truncate a continuing signal into

segments with the window length. This also suppresses Gibbs’ phenomenon that

produces oscillatory behaviour of the signal at the truncated point [3, Chp.2] as well as

the side-lobe in the frequency domain [3, Chp.7]. The level of the side-lobe suppression

depends on the coefficients of the window function. Commonly used window functions

are listed in Table 2.3, where the window length is denoted by Nt. These functions are

symmetric and plotted as a function of the continuous variable. These are illustrated

in Figure 2.11.

Figure 2.12 illustrates an example of STFT results with the use of different window

functions defined in Table 2.3 and Figure 2.11. In this example, the parameters for

transmission set N = 1024 transmitted pulses with the carrier wavelength, λc =

6 × 10−2m, and the PRI, T = 5 × 10−5s. A ULA receiver with L = 10 array elements

collects reflections from a single rotor of the helicopter: The number of blades sets

L̃ = 1 blade with its length B = 1.5m (see, Figure 2.10). The main Doppler shift
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Table 2.3: Commonly used window functions [3, Chp.7]

Name Window functions

Rectangular w(n) =

{
1, 0 ≤ n ≤ Nt

0, otherwise

Bartlett(triangular) w(n) =


2×n
Nt
, 0 ≤ n ≤ Nt

2

2− 2×n
Nt
, Nt

2 ≤ n ≤ Nt

0, otherwise

Hanning w(n) =

{
0.5− 0.5 cos(2π×n

Nt
), 0 ≤ n ≤ Nt

0, otherwise

Hamming w(n) =

{
0.54− 0.46 cos(2π×n

Nt
), 0 ≤ n ≤ Nt

0, otherwise

Blackman w(n) =

{
0.42− 0.5 cos(2π×n

Nt
) + 0.08 cos(4π×n

Nt
), 0 ≤ n ≤ Nt

0, otherwise

Figure 2.11: Commonly used window functions defined in Table 2.3 (reproduced from Figure 7.21
in [3, Chp.7]): The solid red line is the rectangular window function, and the blue line shows the
Bartlett. The solid, dashed, and dashed-dot black lines indicate the Hanning, the Hamming, and the
Blackman, respectively. Each of them is plotted as a function of the continuous variable.

sets fD = Ω
2π = 5 × 103Hz which is induced by the helicopter velocity. After sampling

outputs of the MF stage in (2.55) and matching the bearing angle to the AoA in (2.56),

the STFT in (2.59) uses these samples, each of which is given in (2.57). The window

length in this STFT sets Nt = 128, which provides the time-interval ∆τ = 6.4× 10−3s

in a CPI = 51.2× 10−3s. In Figure 2.12, (a), (b), (c), (d), and (e) are obtained by the

rectangular, the Bartlett, the Hanning, the Hamming, and the Blackman, respectively,

as the window functions. Here, the main Doppler shift is depicted by the yellow line.

The frequency changes in the frequency domain (i.e., the y axis) form a sinusoidal signal

in the CPI (i.e., the x axis) as depicted by yellow colour. This can indicate that the

number of rotor blades is the same number of sinusoidal signals. The rotation frequency
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(a) STFT-Rectagular
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(b) STFT-Bartlett
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(c) STFT-Hanning
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(d) STFT-Hamming
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(e) STFT-Blackman

Figure 2.12: Comparison of short time Fourier transform (STFT) with different windows defined
in Table 2.3:(a) STFT with the rectangular window, (b) STFT with the Bartlett, (c) STFT with the
Hanning, (d) STFT with the Hamming, (e) STFT with the Blackman. All these results are obtained
when a helicopter has a single rotor blade (i.e., L̃ = 1).

and the blade length can be found by using the inverse period and the amplitude of the

sinusoidal signal, respectively, (see, for example [33, Chp.2]).

For side-lobe suppression, the background colour of the STFT shows the level of the

side-lobe signals. Here, the Hanning and the Blackman perform better suppression than

the others (see, (c) and (e) in Figure 2.12). For time and frequency resolutions, the

vertical thickness of the sinusoidal signal shows the frequency resolution. Its horizontal

thickness indicates the time resolution. Overall, the Hanning window provides the

resolution and the side-lobe suppression better than the others. Note that the length of

the window function in (2.59) indicates the time interval in which frequency components

are found. Hence, the selection of this window length is a trade-off between time and

frequency resolutions [64, Chp.2]. In order to obtain the acceptable resolution in the

frequency domain, the STFT often requires the collection of many temporal samples in

a CPI.

An alternative, which provides a better frequency resolution than that in STFT, is

a quadratic time-frequency representation. This is referred to as the Wigner-Ville
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(a) STFT: L̃ = 1 rotor blade
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(b) WVD: L̃ = 1 rotor blade
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(c) STFT: L̃ = 2 rotor blades
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(d) WVD: L̃ = 2 rotor blades

Figure 2.13: Comparison of short time Fourier transform (STFT) and Wigner-Ville distribution
(WVD): (a) STFT with the number of blades L̃ = 1, (b) WVD with L̃ = 1, (c) STFT with L̃ = 2, (d)
WVD with L̃ = 2. All parameters used in this example are the wavelength λc = 5m, the blade length
B = 1.5m, the Doppler shift fD = Ω

2πT
= 5 × 103Hz, and the PRI T = 5 × 10−5s.

distribution (WVD) [34]:

WVD(n, f) =

N∑
τ=−N

z(r,i)

(
n+

τ

2

)
z∗(r,i)

(
n− τ

2

)
e−j2πf

τ
N , (2.60)

where the WVD performs auto-correlation of the temporal samples given in (2.57).

One disadvantage of this method has cross-terms, which deteriorate the degree of

identifiability of frequency components in the time-frequency analysis when the samples

combine more than two different signals.

Figure 2.13 illustrates an example of the WVD in (2.60) compared to the STFT in (2.59).

In this example, the same parameters are used in Figure 2.12 and the Hanning window is

selected for the STFT in Figure 2.13(a). The WVD using (2.60) with the same samples
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(a) STFT: λc < B
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(b) STFT: λc > B
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(c) WVD: λc < B
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(d) WVD: λc > B

Figure 2.14: Relationship between the wavelength and the blade length: (a) STFT when the
wavelength is larger than the blade length B: λc < B, (b) STFT when the wavelength is smaller than
the blade length B: λc > B, (c) WVD when the wavelength is larger than the blade length B: λc < B,
(d) WVD when the wavelength is larger than the blade length B: λc < B. All parameters are the same
parameters used in Figure 2.13.

used in the STFT is illustrated in Figure 2.13(b). This resulting plot shows the same

sinusoidal signal depicted by the cyan line, where this line is much narrower than that

in the STFT. In Figure 2.13(c) and (d), the outputs of the STFT and the WVD present

two sinusoidal signals, which imply that L̃ = 2 rotor blades are rotating.

Another important factor is the relation between the wavelength, λc, and the blade

length, B. Figure 2.14 illustrates this relation. When λc > B, one can find the rotation

frequency, the blade length, and the number of the blades regarding the output of the

STFT as discussed above and illustrated in Figure 2.14(a). When λc < B, the STFT

is unable to find these parameters due to small unresolvable difference between the

Doppler shidt and the micro-Doppler signature (see, Figure 2.14(b)). In the case of the
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WVD used, the parameters mentioned above can be found in the WVD when λc > B,

whereas they cannot be found when λc < B (see, Figure 2.14(c) and (d), respectively).

Chapter 4 will consider this scenario in which the carrier wavelength is longer than

the rotor blade length and will introduce the solution to the micro-Doppler signature

estimation in this scenario.

Current literature on this study has focused on estimating micro-Doppler signatures

from small rotor based unmanned aerial vehicle (UAV) systems [65]. This is challenging

because small UAVs generate low reflectivity, and their reflected signals are the

superposition of all reflections from the entire UAV. In [66], it is shown that the

reflected signal model of a small UAV explains a sum of its different parts’ reflections,

and the commercial UAVs’ micro-Doppler signatures are analysed using this model.

For the classification of commercial UAVs, [35] proposes an algorithm, which extracts

micro-Doppler signatures from the STFT output by using support vector machine

(SVM) and then classifies different UAVs and birds. Another algorithm uses singular

value decomposition (SVD) to extract micro-Doppler signatures from the STFT

output [36] and classifies loaded/unloaded UAVs by using a naive Bayes classifier. In [67],

convolutional neural network (CNN) is used to extract micro-Doppler signatures of small

UAVs from an image used in both STFT and cadence-velocity diagram (CVD). These

algorithms involve the time-frequency analysis that often requires a long dwell time in

order to collect many reflections in a CPI. However, when the pulsed transmission is

used for illumination, the collection of reflections in a CPI is insufficient in order to

provide the desired frequency resolution. Also, the aforementioned algorithms can be

processed after the detection decision is made.

The detection of such objects often requires more reflected signals than those collected in

a CPI. In order to achieve a plausible detection performance, one considers the sufficient

statistics of multiple measurements found by summing the associated reflections across

themselves, which is referred to as the pulse integration [1, Chp.8]. The next section

will introduce the pulse integration.
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2.5 Pulse integration

As discussed in 2.3, the radar data cube after the MF stage is a complex number.

After the beam-forming and the Doppler processing with this cube, the output is

also a complex number. Conventional integration methods are mainly categorised into

non-coherent integration and coherent integration [1, Chp.6]: The first is found by

summing the modulus of the complex samples of the MF stage at the same range-bearing

and Doppler bins across time. The latter is obtained by taking the modulus of the sum

of the complex samples at the same bins over time. This is known as the coherent

processing [2, Chp.2] [1, Chp.6]. In [68], it is shown that the integrated gain using the

coherent integration is always higher than that using the non-coherent.

In the case of a manoeuvring and small object, the reflection follows its trajectory across

the corresponding resolution bins over time. The conventional methods might fail to

collect all evidence on the object’s presence for a long time due to not considering its

manoeuvres. In principle, a longer integration time provides a higher probability of

detection for a given false alarm rate. In order to achieve the long time integration for

manoeuvring objects, one needs to be considered range-bearing and Doppler migration

in which the reflections move across their resolution bins during the integration time.

In the current literature on this topic, keystone transform (KT) is used for matching

multiple-pulse returns with all possible range values in order to reduce the range

migration effect [19,21,23]. The keystone transform is a filter that matches the object’s

kinematic parameters (i.e., range and velocity) with measurements collected during

a time window and reduce the migration effect within this time window. [22] uses

KT and Lv’s distribution (LVD) in order to reduce the range and Doppler migration

effect. In [20], radon-fractional Fourier transform is proposed to moderate the range and

Doppler migration effect. These algorithms are filters with long impulse responses that

match the multiple-pulse returns along with a selection of possible range and Doppler

values. These are, however, impractical because the number of filters required quickly

becomes computationally excessive with increasing integration time.
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An alternative is to employ a dynamic programming perspective that uses a regular

probing pulse MF to integrate its outputs along a trajectory estimated simultaneously.

This approach is referred to as the track-before-detect (TBD) [24, Chp.11] [26, 43, 69].

The next section will introduce a basic concept of TBD along with the recent advances

in this topic.

2.6 Track-before-detect

As explained in Section 2.3, conventional detectors use two hypotheses that form a

likelihood ratio and test this ratio against a threshold at each resolution bin. Unlike

these detectors, track-before-detect (TBD) is a joint detection and tracking algorithm

that estimates the object-related parameters with measurements before the detection

decision is made and then makes the decision on the object’s presence by evaluating a

probability of the object existence using the estimated parameters [24, Chp.11].

Typically TBD is a batch algorithm implemented by using Hough transform [70],

maximum likelihood estimation [71, 72], or dynamic programming [14, 15, 73]. These

algorithms are only used for moving objects with a constant velocity, which makes the

linear movements. In the recent literature of this topic, many algorithms use Bayesian

recursive filtering because this framework enables one to use stochastic dynamic

equations that represent manoeuvring objects. Also, this fitering can implement

an online algorithm that does not require to store and process multiple scans of

measurements [43,69,74–76].

In details, the Bayesian TBD uses a Markov state space model [24, Chp.1] and performs

Bayesian recursive filtering, which consists of prediction and update stage [77]. Suppose

the distribution of the state variable, Xk−1, at the time step k− 1 is available, and this

distribution is based on all the measurements collected up to k − 1. In order to update

this prior at the time step k, the prediction density is given in Equation (11.10) [24,
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Chp.11]:

p (Xk, Ek = 1|Zk−1) =

∫
p (Xk, Ek = 1|Xk−1, Ek−1 = 1,Zk−1)

×p (Xk−1, Ek−1 = 1|Zk−1) dXk−1

+

∫
p (Xk, Ek = 1|Xk−1, Ek−1 = 0,Zk−1)

×p (Xk−1, Ek−1 = 0|Zk−1) dXk−1 (2.61)

whereXk = [xk, yk, ẋk, ẏk, Ik]
T denotes the object’s kinematic state which consists of the

location [xk, yk], the velocity [ẋk, ẏk], and the intensity Ik, respectively, at the time step

k, and Ek ∈ {0, 1} indicates the object’s presence when Ek = 1 and the object’s absence

when Ek = 0. Here, the intensity is defined as the reflected energy that indicates

the square of modulus of (2.37). The first term inside the integral of (2.61) is the

Markov transition. The update stage of this filtering is found by using the product of

this prediction density and the measurement likelihood given in Equation (11.13) [24,

Chp.11]:

p (Xk, Ek = 1|Zk) =
l(Zk|Xk, Ek = 1)× p(Xk, Ek = 1|Zk−1)

p (Zk|Zk−1)
, (2.62)

where the first term in the right hand side is the measurement likelihood, and the second

term is the prediction density given in (2.61).

In the Bayesian TBD, the key factor is the measurement likelihood in (2.62). Most TBD

algorithms use the modulus of the MF within models, which describe the statistics of

the modulus of the MF output. For example, the measurement likelihood in (2.62) is

expressed in Equation (11.14) [24, Chp.11]:

l(Zk|Xk, Ek) =


∏Γ
r=1

∏I
i=1

∏J
=1 ps+n

(
Z

(r,i,)
k |Xk

)
, Ek = 1 holds,∏Γ

r=1

∏I
i=1

∏J
=1 pn

(
Z

(r,i,)
k

)
, Ek = 0 holds.

(2.63)

Here, ps+n(·) is the probability density function that contains the reflection at the rth

range bin, the ith bearing bin, and the th Doppler bin, and, models

ps+n

(
Z

(r,i,)
k |Xk

)
∼ N

(
Z

(r,i,)
k ; |hk(r, i, )|, σ2

)
,
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Table 2.4: Characteristics of the Swerlling case 0, 1, 2, 3, 4,and 5 with their fluctuation
models [2, Chp.2]

RCS model Swerlling
case Model Notation

Non-fluctuation Case 0/ 5 A exp(jθA)
• A: Amplitude
• θA: Phase.

Fluctuation
Case 1/ 2 P (σt) = 1

σ0
exp

(
− σt
σ0

) • σt: RCS of the target.
• σ0: Mean of RCS over

all target fluctuations.

Case 3/ 4 P (σt) = 4
σ2

0
exp

(
−2σt

σ0

)
where hk(·) is the range-bearing and Doppler map obtained by MF outputs in (2.37) as

explained in Section 2.3, | · | denotes the modulus of its input argument, and σ2 is the

variance given in (2.7). The probability density function of pn(·) in (2.63) contains the

noise only signal and models

pn

(
Z

(r,i,)
k

)
∼ N

(
Z

(r,i,)
k ; 0, σ2

)
.

In [76], the measurement likelihood is parametrised on the object state, Xk, and the

complex reflection coefficient and evaluated by marginalising the complex reflection

coefficient out. This marginal likelihood with the measurements in (2.51) can be found

as

l(|Zk|2|Xk) =

∞∫
0

l(|Zk|2|Xk, α̃)× p(α̃)dα̃ (2.64)

where Zk is given in (2.51), and p(α̃) is a prior of the complex reflection coefficient. This

prior often uses Swerlling fluctuation models that represent probability distribution of

the reflection coefficient based on the radar-cross-section (RCS) [1, Chp.6] [2, Chp.2].

Table 2.4 shows the characteristics of Swerlling models, which are categorised into two

different models: One is the non-fluctuation model in which an object when illuminated

by the transmitted waveform generates constant scatters for all CPIs. This model is

shown in Case 0/ 5. The other is the fluctuation models, which are divided into 4 cases.

50



Background

Case 1 is assumed that scatters reflected from an object are random and all equally

weighted. These scatters within a CPI are correlated but uncorrelated from one CPI

to another. Case 2 is assumed that the scatters are uncorrelated from one reflected

pulse to another, and the object’s aspect angle changes rapidly. The model of these

cases is shown in Case 1/ 2. Next, Case 3 and 4 are assumed that an object consists

of one dominant reflector and several sub-reflectors. In Case 3, the scatters within a

CPI are correlated but uncorrelated from one CPI to another, whereas the scatters are

uncorrelated from one pulse to another in Case 4. These models are shown in Case 3/ 4.

Some other TBD algorithms employ likelihood ratios instead of using the measurement

likelihood. For example, [25,43,74,78,79] use a likelihood ratio:

L(Zk|Xk) ∝
∏

r∈C(Xk)

∏
i∈C(Xk)

∏
∈C(Xk)

ps+n

(
Z

(r,i,)
k |Xk

)
pn

(
Z

(r,i,)
k

) (2.65)

where C(Xk) denotes a set of range-bearing and Doppler bins associated with the object

state, Xk, at the time step k.

In the recent literature on this topic, [80] proposes the modified particle filter that

uses the range-Doppler map obtained from preprocessing. The use of this map leads

to a simple calculation of particle weights for the update stage and can detect low

SNR target in the range-Doppler map domain with lower computational complexity.

Another is that [81] proposes multi-frame track-before-detect (MF-TBD), which, first,

employs a low detection threshold to detect target candidates, and then MF-TBD is

applied for further tracking based on particle filtering. In [69], a novel particle filter

for multiple target tracking with track-before-detect measurement models is proposed:

This approach employs the dimensional reduction technique into the proposed particle

filtering in order to reduce the computation effort for the multiple-target case. Moreover,

in [82], the multi-mode-multi-target TBD (MM-MM-TBD) algorithm is proposed: This

algorithm can estimate the probabilities of all possible combinations of target existence

scenarios and then obtain the joint multi-target posterior probability density function

in a recursive Bayesian framework with a heuristic decision-directed based approach.
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All these algorithms are developed based on the sequential Monte carol method known

as the particle filtering [77].

An alternative approach is that [83] proposes a novel Greedy algorithm-based TBD for

weak target detection and tracking in order to solve problems on the computational

burden and the complex threshold determination, which are produced by typical

dynamic programming TBD algorithms. This proposed scheme, first, conducts the

detection with a low threshold to eliminate noise cells and then employs detection

processing based on the Greedy algorithm to determine whether the target exists or

not. Another one is that dynamic-programming based track-before-detect (DP-TBD)

for radar systems with a high clutter environmental condition. In this algorithm, the

log-likelihood ratio (LLR) is used to evaluate pulse integration for low SNR target

detection [84].

For other approaches, [85] employs a Bernoulli filter TBD algorithm based on

a random finite set (RFS) for target detection and tracking handling real radar

measurements collected from a multiple-input multiple-output radar system in a high

clutter environmental condition. The likelihood used in this algorithm is evaluated

using the Rayleigh distribution for the null hypothesis and the Rician distribution for

the target-present hypothesis. The RFS represents a random (spatial) point pattern

on a radar screen in which the points are random and unordered as treat random

variables. Regarding this concept, [86] proposes an online path planning algorithm with

joint detection and tracking for UAVs. This algorithm employs a partially observable

Markov decision process with a random finite set track-before-detect (TBD) multi-object

filter. [87] proposes a Bernoulli track-before-detect filter together with a signal model

that captures the target amplitude fluctuation model and improves performance in

detecting a small object and estimating its kinematic parameters.

As discussed in Section 2.3, the sample that corresponds to the actual object

kinematic state is a complex value that is a sum of the reflection coefficient and noise

background [13]. It is emphasised that the models used for the modulus of the MF

output in the aforementioned algorithms are averaged and cannot hence fully exploit
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information on the actual object kinematic state captured by the measurements. In [27],

it is shown that the detection performance of using the modulus of data samples can be

further improved by taking into account the phase of the data samples in addition to

the modulus.

The best achievable detection performance is obtained by coherent processing [1], in

which one needs to estimate the complex reflection coefficient from the complex samples

of the MF outputs, and then the pulse integration is performed by injecting this estimate

into a complex likelihood. This corresponds to a non-averaged model in which the

reflection coefficient is a random variable that remains the same during a coherent

processing interval (CPI) and is changed randomly between consecutive CPIs [13]. This

is challenging partly because the estimation of this quantity with a reasonable accuracy

requires more samples than those which can collect at the pulse-width sampling rate in

a CPI [4]. For example, in [88], coherent processing together with the pulse integration

within a CPI is performed with a very high sampling rate. This sampling rate yields a

large number of samples in the pulse interval.

2.7 Summary

This chapter has provided the background materials on radar systems, explained the

monostatic configuration and the bistatic/multistatic setting, respectively, and the

conventional signal processing techniques. Section 2.2 first gave the overview of radar

systems with the aforementioned configurations and explained their advantages and

disadvantages. Section 2.3 explained the conventional processing chains for object

detection and introduced the mathematical notation for the signal model. With

this signal model, the matched filtering, the Doppler processing, and the digital

beam-forming were explained for the conventional processing chains. Section 2.4

introduced the time-frequency analysis techniques for the micro-Doppler signatures of

rotary-wing aircraft. Then, Section 2.5 introduced the pulse integration methods with

the current literature on this topic. Finally, the track-before-detect with the current
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literature on this topic was discussed in Section 2.6. The next chapter will introduce

simultaneously tracking and long-time integration for the detection of manoeuvring and

small objects as the solution of the aforementioned problems and the first contribution

in this thesis.
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Chapter 3
Detection via simultaneous

trajectory estimation and long time
integration

3.1 Introduction

This chapter is the first technical chapter that provides the first contribution. The

radar system considered in this chapter consists of multiple transmitters and a single

ULA receiver, which form the mutistatic configuration, as discussed in Section 2.2.2. In

particular, Figure 3.1 illustrates the system structure, where the multiple transmitters

use mutually orthogonal waveforms and are separately located. The receiver,

co-located with one of these transmitters, has the full knowledge of their transmission

characteristics except for their time references of transmission. This receiver also steers

beams to the locations of the separately located transmitters directly. This path forms

a direct channel between the receiver and the separately located transmitter. The

front-end signal at the receive elements is the superposition of noise, signals from the

direct channels, and reflections from objects.

In this setting, a coherent processing scheme to detect manoeuvring and small objects

is proposed using the coherent pulse integration based on the TBD framework. The

main differences compared to existing TBD algorithms [25, 43, 69, 72, 76, 82, 89] are i)

the evaluation of a complex likelihood ratio conditioned on object-related parameters,
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Figure 3.1: Problem scenario: M transmitters and a ULA receiver to detect a small object located
at [x, y]T with the velocity [ẋ, ẏ]T (reproduced from Figure 2.2(c)).

complex reflection coefficients, and synchronisation therms based on Bayesian recursive

filtering in order to achieve the coherent processing and ii) the detection test, which

uses the coherent integration obtained by the resulting values of the complex likelihood

ratios for an arbitrarily long time instead of the use of the probability of target existence

used in the existing TBD algorithms.

Central to the proposed approach is a Markov state-space model in which the object

state consists of location and velocity variables as the object-related parameters. The

measurement model in this state-space model involves the radar ambiguity function.

Here, the sequential Monte Carlo method is considered to estimate the state parameters

for realising Bayesian recursive filtering. In this filtering, the update of the state

needs to evaluate a likelihood, which uses the measurement model and captures the

complex reflection coefficient as the additional parameter. This reflection coefficient

needs to be estimated within the Bayesian filtering recursions in order to achieve coherent

processing (or coherent integration). There are many parameter estimation approaches

such as a minimum variance unbiased estimator (MVU), a maximum likelihood (ML)

estimator, and a least square (LS) approach [90]. Within the filtering recursions, one

plausible approach is the ML estimation due to the known noise distribution together

with the measurement model. For example, one approach, proposed in [88, 91], is

the ML estimate of the reflection coefficient at each sample (or particle) of the state
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parameter generated from the prediction stage (for example, Section 2.6). The resulting

ML estimates are uniformly distributed and produce the average of them as the final

estimate. The accuracy of this estimate might not be enough to perform the coherent

processing. The proposed ML estimator in this chapter, on the other hand, uses an

expectation-maximisation algorithm that captures the state samples together with their

corresponding weights and leads to a more accurate estimate. It is also shown that

this scheme is an empirical Bayesian method [92] for realising the update stage of the

filtering. The estimation of unknown time references in the bistatic channel is also used

with this proposed approach, thereby relaxing the commonly used assumption that the

local receiver is synchronised with the separately located transmitters.

For the detection processing, a Neyman-Pearson test, evaluated based on this Markov

model, is used instead of the probability of target existence. Equivalently, the integrated

value, obtained by using the coherent processing, is tested against a constant false

alarm rate (CFAR) threshold. Therefore, the resulting algorithm enables one to collect

the entire evidence of the object’s presence at the receiver by i) performing coherent

integration in both monostatic and bistatic channels within a coherent processing

interval (CPI), ii) non-coherently integrating across different (non-coherent) channels

(i.e., local monostatic and remote bistatic channels), and iii) continuing integration for

an arbitrarily long interval that contains many CPIs.

This chapter is organised as follows: Section 3.2 details the mathematical statement of

the problem in Figure 3.1. Section 3.3 discusses the trajectory estimation with the array

measurements and details the aforementioned empirical Bayes approach. Section 3.4

first introduces the proposed EM algorithm for the ML estimates of the complex

reflection coefficients. Then, the ML estimator of the synchronisation term is discussed.

Section 3.5 specifies the proposed detection scheme together with the combination of

these estimators. Then, the proposed algorithm’s efficacy is demonstrated and compared

to a clairvoyant detector and other techniques in Section 3.6. Finally, the summary of

the proposed detection scheme is in Section 3.7.
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Figure 3.2: Geometry of the problem: A ULA receiver co-located with a transmitter and the mth
remote transmitter on the 2D Cartesian plane. Both polar and Cartesian coordinate variables are
depicted. Each transmitter emits N pulses in a CPI. The waveforms, used here, are orthogonal.

3.2 Problem statement

Let this section consider the geometry of the problem scenario as illustrated in Figure 3.1

and detail the array signal at the receiver. Figure 3.2 illustrates the geometry of M = 2

transmitters and a single ULA receiver as an example. Here, M transmitters use

mutually orthogonal waveforms of the pulse duration, Tp, and the bandwidth, Bw. At

the mth transmitter, N consecutive pulse waveforms, ũm, are emitted with a PRI of

T and an unknown time reference of ∆tm. This waveform after modulating with an

angular frequency of ωc = 2πfc is therefore given by

um(t) = Re

{
N−1∑
n=0

ũm(t− nT −∆tm)ejωct

}
. (3.1)

Here, reflectors in the scene are assumed to remain coherent (i.e., the object reflectivity

in each channel remain constant) during this overall NT seconds. This period is known

as the CPI. These transmission characteristics are fully known at the receiver except for

the time reference shift (i.e., ∆tm) of the separately located transmitters concerning the

receiver clock for themth channel. This time reference is designated as a synchronisation

term for the rest of this chapter.
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The use of such orthogonal transmit waveforms underlies the vision of multiple-input

multiple-output (MIMO) radars [37,38], a particular configuration of which is hence the

system considered here. Design of orthogonal sets for MIMO sensing was investigated

with various objectives such as the maximisation of diversity [93] and waveform

identifiability [94]. In this chapter, a narrowband regime is considered, where frequency

division multiplexing can be used to achieve orthogonality in practice.

The ULA receiver (see, red dots in Figure 3.2) has L elements spaced by half of the carrier

wavelength (i.e., λc) and directly steers beams to locations of the separately located

transmitters with the prior knowledge of their locations. Here, there are two categories of

channels defined: One is a reflection channel in which transmitted waveforms travel from

the transmitter to reflectors and upon echo back to the receiver as defined in Section 2.2.

In the reflection channels (see, blue shaded ellipse), each element at the receiver collects

the superposition of noise background and reflected signals originating from the local

(monostatic) transmitter and the remote (bistatic) transmitters. The other is a direct

channel in which the transmitted waveforms directly travel from the transmitter to the

receiver. In the direct channels (see, red shaded ellipse), the transmitted waveforms are

collected directly. The front-end signal at the receive elements is hence the superposition

of noise, signals from the direct channels, and reflections in the reflation channels.

3.2.1 Spatio-temporal signal model in reflation channels

As explained in Section 2.3, the processing chain for the mth reflection channel begins

with demodulation followed by matched filtering with the mth probing waveform which

completely suppresses the contributions of the other channels owing to the orthogonality

of the waveforms used. The output of the mth matched filter is then sampled with a

period that is equal to the pulse duration of Tp. A total of Γ samples are collected for

each of the N pulse at each of the L elements. The resulting data form a radar data cube

(see, Figure 3.3). For the rth range bin, it stacks the columns of the data cube and forms

an LN × 1 data vector. When a single object exists in the surveillance region, this data

vector is a function of the synchronisation term, ∆tm, and the kinematic state, X. This
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Figure 3.3: Data acquisition in the mth channel reproduced from Figure 2.7 in Chapter 2: Sampled
version of the received signal within a CPI as the radar data cube in the mth reflation channel. The
output of the mth matched filter is sampled and arranged in array index, fast time and slow time axis.
Z̃m(r) is an L×N matrix, and forms an LN × 1 vector as the measurement, Zm(r), at the rth range
bin.

case is denoted by H1. Otherwise, the case when an object is absent in the surveillance

region is denoted by H0:

Zm(r) =


αmsm(r,X,∆tm) + nm(r) , H1 holds,

nm(r) , H0 holds,
(3.2)

where sm is the reflected signal model that will be detailed later in this section, αm is

the complex reflection coefficient in the mth reflection channel, and X = [x, y, ẋ, ẏ]T is

the kinematic state of the reflector (i.e., its location of [x, y]T and its velocity of [ẋ, ẏ]T ).

The noise background is modelled with a circular symmetry complex Gaussian random

vector with zero mean and covariance Σm (see, (2.51)).

The reflected signal model in (3.2) is given by

sm(r,X,∆tm) , s(∆tm)ss(θ(X))⊗ st(τm(X),Ωm(X))

×Λm(rTp − τm(X)−∆tm) (3.3)

s(∆tm) , e−jωc∆tm (3.4)

st (τm,Ωm) , e−jωcτm ×
[
1, ejΩm , . . . , ej(N−1)Ωm

]T
, (3.5)

where θ(X), τm(X), and Ωm(X) are the angle of arrival (AoA) in (2.9), the time-of-flight

(ToF) in (2.11), and the angular Doppler shift in (2.14), respectively, associated with X
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(see, Figure 3.2), and Λm(·) is the auto-correlation of the mth waveform (see, (2.21)).

Here, ss is the spatial steering vector in (2.18), and st is the temporal steering vector,

parametrised on τm(X) and Ωm(X). This is the modified version of (2.28).

3.2.2 Spatio-temporal signal model in direct channels

The direct path signal in the mth direct channel can easily be modelled using the spatial

and temporal steering vectors, respectively, in (3.3). The state of the mth transmitter

is given by X
(tx)
m = [xm, ym, 0, 0]T . The corresponding time-of-flight is τ(X

(tx)
m ) given in

(2.11). The angle of arrival is denoted by θm(X
(tx)
m ), which is computed using (2.15).

Unlike the reflection channel, the unknown reflectivity is replaced with a known pulse

energy term. This quantity can be obtained by the product of the pulse duration, Tp,

and the received power from the mth transmitter:

Em = P (m)
r × Tp. (3.6)

where Em denotes the pulse energy, and P
(m)
r is the received power. This received

power can be calculated by using the system parameters such as the transmitted power,

P
(m)
t , the transmitter gain, G(m)

t , and the distance from the mth transmitter to the

receiver [95]:

P (m)
r =

P
(m)
t G

(m)
t

4πR(X
(tx)
m )

×AeKa

=
P

(m)
t G

(m)
t

4πR2(X
(tx)
m )

× Gaλ
2
c

4πKa
Ka

=
P

(m)
t G

(m)
t

4πR2(X
(tx)
m )

× Gaλ
2
c

4π
, (3.7)

where Ae = Gaλ2
c

4πKa
is the receiver antenna’s effective area, and Ka is the efficiency of the

antenna.

As explained in this section above, the receiver is assumed to have all these parameter

values as the prior knowledge. Regarding this prior knowledge, the receiver has the

known pulse energy, Em, in the mth direct channel. The direct channel measurement
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vector at the rth range bin obtained by sampling the mth matched filter output in a

CPI is hence given by

Zm(r) =
√
Ems̃m(r,X(tx)

m ) + nm(r), (3.8)

s̃m(r,X(tx)
m ) , s(∆tm)ss(θ(X

(tx)
m )⊗ st

(
τ(X

(tx)
m )

2
,Ω(X(tx)

m ) = 0

)

×Λm

(
rTp −

τ(X
(tx)
m )

2
−∆tm

)

= s(∆tm)s

(
τ(X

(tx)
m )

2

)
× ss(θ(X

(tx)
m ))⊗ 1

×Λm

(
rTp −

τ(X
(tx)
m )

2
−∆tm

)
.

Here, θ(X(tx)
m ) is the AoA from the mth transmitter given in (2.9). τ(X

(tx)
m )
2 is the ToF

between the transmitter and the receiver using (2.5), where the factor, 1
2 , indicates

one-way propagation. s̃m is the noise free signal model associated with θ(X
(tx)
m ) and

τ(X
(tx)
m )
2 of the transmitter state, X(tx)

m , and 1 is an N × 1 all ones vector.

Note that s̃m differs from sm in (3.3): The latter uses the bistatic ToF in both the

temporal steering vector and the waveform auto-correlation delay, whereas, the former

uses direct path ToF. Because the transmitters are of zero Doppler frequency, the

temporal steering vector reduces to an all ones vector scaled with s
(
τ(X

(tx)
m )
2

)
.

3.2.3 Problem definition

Here, it would like to perform a hypothesis test based on the measurement model in

(3.2). These measurements are complex numbers, and it is interested in the evaluation

of the sufficient statistics for the two hypotheses with them. Detection/processing using

complex measurements is often referred to as the coherent detection/processing, and

conventionally the input is the same resolution bin over multiple-pulse returns [1].

Therefore, in order for this operation to maintain coherence, the target position should

not be changing over time.
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In order to extend coherent processing to the case of manoeuvring objects and remote

transmitters, the mathematical statement of the problem is considered as the evaluation

of a likelihood-ratio i) using complex versions of measurements (as opposed to, for

example, using only their modulus in Section 2.6) for all M reflection channels and ii)

for a time window of K CPIs given an object trajectory,

X1:K , {Xk}Kk=1,

where Xk = [xk, yk, ẋk, ẏk]
T is the kinematic state of an object at the kth CPI. This

likelihood ratio will then be tested against a threshold in a Neyman-Pearson sense [18,

Chp.3]. The detector considered this section hence takes the form:

L(Z1,1:K , . . . ,Zm,1:K , . . . ,ZM,1:K |X1:K ,α,∆t)
H1

≷
H0

T, (3.9)

where

Zm,1:K , {Zm,1, . . . ,Zm,k, . . . ,Zm,K}

is a set of the measurements collected in the mth reflection channel over k = 1, . . . ,K

CPIs, and

Zm,k = [Zm,k(0), . . . ,Zm,k(Γ− 1)]

is the measurement of the mth reflection channel at the kth CPI, whose size is an

LN × Γ matrix (see, Figure 2.9). Here, α and ∆t are sets of reflection coefficients and

synchronisation terms across all the reflection channels, respectively. They are defined

by

α , {α1, . . . ,αk, . . . ,αK},

αk , {α1,k, . . . , αM,k}, k = 1, . . . ,K,

∆t , {∆t1,∆t2, . . . ,∆tM}.

In order to carry out the test in (3.9), the trajectory, X1:K , needs to be estimated. This

is also referred to as tracking and is the subject of Section 3.3 along with the estimation

of α. Algorithmic strategies for estimating the synchronisation term, ∆t, are introduced
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Figure 3.4: Example of the matched filter output: The pulsed waveform has the pulse width,
Tp = 0.01s. The corresponding output of the matched filter with this waveform is illustrated at the
bottom. The highest level of this output is depicted by a red dot.

in Section 3.4. These results are combined in Section 3.5, and the threshold selection is

detailed in order to evaluate the detection test in (3.9).

3.2.4 Sufficient statistics for the likelihood ratio

The likelihood ratio on the left hand side of (3.9) factorises over measurement likelihood

ratios for K CPIs as the noise samples between consecutive CPIs are independent. Each

time term also factorises over M channel likelihood ratios as the related parameters are

independent. When a single object is in the surveillance region, this forms:

L =

K∏
k=1

M∏
m=1

l(Zm,k|Xk, αm,k,∆tm, H = H1)

l(Zm,k|Xk,∆tmH = H0)
. (3.10)

These measurements satisfy a locality property: The number of range bins, associated

with Xk, are limited by the support of the auto-correlation, which is of duration 2Tp.
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These bins are defined:

Em(Xk) =


{rm,k, rm,k + 1}, rm,kTp < τm(Xk) + ∆tm

{rm,k}, rm,kTp = τm(Xk) + ∆tm

{rm,k − 1, rm,k}, rm,kTp > τm(Xk) + ∆tm

, (3.11)

where

rm,k ,
⌊τm(Xk) + ∆tm

Tp

⌋
, (3.12)

with b·c denoting the nearest integer function, and τm(Xk)+∆tm gives the time of flight

in the mth reflection channel associated with the object state, Xk. Figure 3.4 gives an

example of the matched filter output with a single pulsed waveform. This waveform has

the pulse width, Tp = 0.01s. Thus, the sampling time at the ADC state is Tp. Here,

the output of the auto-correlation at the matched filter is occupied with two range bins,

and its highest level is centred of them in this example. In practice, the highest level

might not be centred, and the range bins in (3.11) are considered in that case. Here,

the range bin, rm,k, has the highest signal-to-noise ratio (in the mth reflection channel)

given Λm as the time auto-correlation function typically vanishes towards tails (see, the

red dot in Figure 3.4).

As a result, the likelihood ratio in (3.10) further decomposes into factors over range bins

using (3.11):

L =

K∏
k=1

M∏
m=1

∏
r∈Em(Xk)

l(Zm,k(r)|Xk, αm,k,∆tm, H = H1)

l(Zm,k(r)|H = H0)
. (3.13)

The numerator terms in (3.13) can easily be found using the distribution of the noise in

the signal model in (3.2):

l(Zm,k(r)|Xk, αm,k,∆tm, H = H1) = CN
(
Zm,k(r); sm,k(r,Xk,∆tm),Σm

)
. (3.14)

The denominator in (3.13) regarding the noise only hypothesis is nothing but the noise

density evaluated at Zm,k(r). Therefore, the instantaneous likelihood ratio in (3.13)
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after substituting from (3.14) and the noise distribution is found as

L(Zm,k(r)|Xk, αm,k,∆tm) ,
CN
(
Zm,k(r);αm,ksm(r,Xk,∆tm),Σm

)
CN
(
Zm,k(rm,k);0,Σm

) (3.15)

= exp
{

2Re
{
α∗m,ks

H
m(r,Xk,∆tm)Σ−1

m Zm,k(r)
}}

× exp
{
− |αm,k|2sHm(r,Xk,∆tm)Σ−1

m sm(r,Xk,∆tm)
}
,

where ()∗ and |.| denote the complex conjugate and the modulus of a complex variable,

respectively.

The likelihood ratio evaluation given in (3.15) is advantageous: Only a linear operation

needs to be performed on the measurements: This operation is in the form of a whitening

transform with the inverse noise covariance followed by an inner product with the

signal model. Because the signal model involves the spatial steering vector in (3.3),

this inner product effectively performs beam-forming on the measurements filtering out

contributions of other objects at the same range. This operation also involves the

Doppler processing with the temporal steering vector (3.5) which extracts the velocity

component.

3.3 Simultaneous tracking and reflection coefficient estimation

In the previous section, the detector defined in (3.9) needs to perform tracking object

kinematics over K CPIs (i.e., X1:K) and the estimation of the other parameters (i.e., α

and ∆t) in order to evaluate the likelihood ratio in (3.13). Figure 3.5 shows the block

diagram of the proposed scheme. This scheme is on-line processing when the receiver

collects all radar data cubes fromM reflection channels at the kth CPI as the processing

input.

Let this section consider the trajectory estimation using coherent pulse returns during

a CPI (i.e., the radar data cubes). An object trajectory over K CPIs is modelled as
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(b)

Figure 3.5: Block diagram of the proposed detector: (a) Inference on the object trajectory X1:K ,
(b) Markov model for the radar data cube measurements. TX1 , . . . , TXM indicate the M transmitters.

random vector sequences generated by a Markov state space model [24]:

X1:K ∼ p(X1)

K∏
k=2

p(Xk|Xk−1), (3.16)

where the Markov transition density is selected as

p(Xk|Xk−1) = N(Xk;FXk−1,Q)

F =


1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1

 , (3.17)

where ∆ is the time interval between two consecutive pulse train transmissions (or, the

illumination period), F models constant velocity motion, and Q is the covariance matrix

specifying the level of the process noise modelling unknown manoeuvres [96, Chp.6].

For example, a variance of σ2
v in each direction of the velocity is modelled with

Q = σ2
v ×


∆3

3 0 ∆2

2 0

0 ∆3

3 0 ∆2

2

∆2

2 0 ∆ 0

0 ∆2

2 0 ∆

 . (3.18)

As explained in (3.17), the constant velocity motion model is selected, which does
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not have an acceleration term as the input parameter needs to be estimated. There

are various motion (or dynamic) models that introduce target manoeuvres based on

the acceleration term in tracking frameworks, such as a constant acceleration motion

model [96, Chp.6], a constant acceleration turn rate motion model [97], and a Brownian

motion model that contains unknown acceleration rates as Brownian dynamics (see, for

example, [98]). These motion models can be applied to (3.17) in order to improve

tracking performance. However, the primary problem considered in this chapter is

the detection problem defined in Section 3.2.3, and the detection performance will be

measured in the same setup used in [4] for the comparison in Section 3.6. For this

reason, the constant velocity motion model holds in the rest of this chapter.

The initial distribution, p(X1), is selected as a uniform distribution over the

range-bearing interval for the detection test due to no prior knowledge of the object

kinematics. This interval often corresponds to the radar specific resolution bin. Let

this denote the corresponding bounded set in the state-space by B, and a uniform

distribution on B by UB:

p(X1) = UB(X1). (3.19)

Sequential estimation of X1:K is performed by using Bayesian recursive filtering [24] as

explained in Section 2.6. Suppose the distribution of the state variable at the time step

k − 1 is given based on all the measurements collected up to this time step:

p(Xk−1|Z1:k−1).

In order to update this prior information with the measurement at the kth CPI, the

Chapman-Kolmogorov equation is, first, realised, and then the prediction density is

found as

p(Xk|Z1:k−1) =

∫
Xk−1

p(Xk|Xk−1)p(Xk−1|Z1:k−1)dXk−1, (3.20)

where the first term inside the integral is the Markov transition given by (3.17).

The update stage of the proposed filtering starts with the product of the measurement
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likelihood and a prior density for all the unknowns. This density is found as

p(Xk,αk,∆t|Z1:k) ∝ l(Zk|Xk,αk,∆t,Z1:k−1)p(αk,∆t,Xk|Z1:k−1). (3.21)

Here, the measurement likelihood is independent of the previous measurements collected

up to k − 1 CPIs as discussed in Section 3.2.4:

l(Zk|Xk,αk,∆t,Z1:k−1) = l(Zk|Xk,αk,∆t)

This likelihood is given by the product of the numerator terms in the likelihood ratio

in (3.13) over the object’s range bins and M reflection channels for the time step k:

l(Zk|Xk,αk,∆t) ∝
M∏
m=1

∏
r∈Em(Xk)

l(Zm,k(r)|Xk, αm,k,∆tm, H = H1), (3.22)

and is easily computed by evaluating complex Gaussian densities as discussed in

Section 3.2.4.

The second term on the right-hand side of (3.21) is rewritten by using the chain rule of

probabilities:

p(αk,∆t,Xk|Z1:k−1) = p(αk,∆t|Xk,Z1:k−1)p(Xk|Z1:k−1), (3.23)

where p(αk,∆t|Xk,Z1:k−1) is a prior density for the reflection coefficient and the

synchronisation term, conditioned on Xk and Z1:k−1. Here, this prior density is

unknown: One reasonable approach of this selection is to use a non-informative prior

such as Jeffrey’s prior [99, Chp.5]. This is useful when it leads to tractable computations

in (3.21) (see, for example, [100]). In the problem setting considered in this section,

however, Jeffrey’s priors for the reflection coefficients and the synchronisation terms are

constant and do not help in finding a tractable form in (3.21).

In order to tackle this challenge, an empirical Bayes approach [92] is proposed: (3.21)

is, first, rewritten by using the chain rule of probabilities. This quantity is found as

p(Xk,αk,∆t|Z1:k) = p(Xk|Z1:k,αk,∆t)p(αk,∆t|Z1:k), (3.24)

and the proposed posterior density in order to update the prediction density in (3.17)
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is found by marginalising out α and ∆t:

p(Xk|Z1:k) =

∫
αk

∫
∆t

p(Xk|Z1:k,αk,∆t)p(αk,∆t|Z1:k)dαkd∆t. (3.25)

Here, the reflection coefficients and the synchronisation terms act as model parameters

to be selected, and the second term inside the integration is similar to a prior for them.

Because this prior is conditioned on the measurements, more probability mass should

be concentrating at the maximum likelihood (ML) estimates of these values. Let this

density be selected:

p(αk,∆t|Z1:k) = p(αk|Z1:k)p(∆t|Z1:k)

p(αk|Z1:k)← δα̂k(αk)

p(∆t|Z1:k)← δ∆t̂(∆t), (3.26)

where ← denotes assignment and δ is Dirac’s delta distribution. In other words, the

model densities given the measurements are selected as a Dirac’s delta distribution

concentrated in the vicinity of their ML estimates, α̂k and ∆t̂, respectively.

After substituting from the empirical priors in (3.26) into (3.25), one obtains the

empirical Bayes update within the proposed filtering (see, Figure 3.5) :

p(Xk|Z1:k) ∝∼ l(Zk|Xk, α̂k,∆t̂)p(Xk|Z1:k−1), (3.27)

where ∝∼ denotes approximate proportionality.

Note that the approximation accuracy is better when these ML estimates are obtained

using informative likelihoods (as quantified by their Fisher information) and equivalently

have small Cramér-Rao bounds (CRBs). When these ML estimates are reasonably

accurate, the empirical Bayes update is an accurate approximation in comparison to the

otherwise intractable filtering update equations. This approach is also ensured by the

use of an array receiver. The details of ML estimates of α and ∆t will be discussed in

Section 3.4. For the remaining part of this section, it is assumed that these estimates

are given.
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For realising the recursive filtering equations, a sequential Monte Carlo (SMC) approach

known as the particle filter [77] is employed. In particular, a bootstrap filtering approach

is used for estimating the object trajectory: The prediction stage at the time step k = 1

is realised by forming a regular grid of P points over B representing samples generated

from the initial state distribution in (3.19). These points constitute an equally weighted

set of particles. For k > 1, the weighted samples (or, particles) representing the state

posterior in the previous step will be found. Let this set denote{
X

(p)
k−1, ζ

(p)
k−1

}P
p=1

,

where ζ(p)
k−1 is the weight of the pth sample. The prediction stage is then realised by

sampling from the Markov transition:

X
(p)
k|k−1 ∼ p( · |X(p)

k−1), p = 1, . . . , P. (3.28)

The weights of these samples in the particle set {X(p)
k|k−1, ζ

(p)
k|k−1} is given by

ζ
(p)
k|k−1 = ζ

(p)
k−1, (3.29)

in order for this set to represent the prediction density in (3.20).

In the update stage, the same sample set is used to represent the state posterior in (3.27):

X
(p)
k ← X

(p)
k|k−1 p = 1, . . . , P, (3.30)

where ← denotes assignment. The weights of these samples need to be adjusted using

the measurement likelihood (as per the importance sampling principle [101]):

ζ
(p)
k =

ζ̃
(p)
k∑P

p′=1 ζ̃
(p′)
k

, (3.31)

ζ̃
(p)
k = ζ

(p)
k|k−1l(Zk|Xk = X

(p)
k , α̂k,∆t̂),

After finding the normalised weights in (3.31), the degeneracy of the weighted particles

is tested by finding the number of effective particles:

Neff =
1∑P

p=1

(
ζ

(p)
k

)2 (3.32)
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and comparing it with a threshold, Teff . When Neff < Teff , re-sampling and

post-regularised steps (see, for example, [102, Chp.12]) are performed in order to avoid

degeneracy phenomenon, in which after a few recursions, all-but-one of particles might

have negligible weighted values and sample impoverishment, which is a loss of diversity

among particles due to the small number of very high weighted particles [77]. The

output of these steps is a new set of equally weighted samples:

{ζ(p)
k ← 1/P,X

(p)
k ← X̃

(p)
k }

P
p=1.

Here,

ζ
(p)
k ← 1/P (3.33)

is the output of the re-sampling, and X̃(p) is the output of the post-regularised step,

which is found in [102, Chp.12]:

X̃
(p)
k = X

(p)
k|k−1 + hInxε

(p)
x , (3.34)

where h = AKP
− 1
nx+4 and AK = ( 4

(nx+2)) denote the bandwidth of a kernel and its

coefficient, respectively, from Equation (12.2.7) in [102, Chp.12], and nx = 4 is the

dimension of Xk. Here, ε
(p)
x is an nx × 1 vector and denotes the regularisation samples

generated from the Gaussian kernel with zero mean and covariance Inx in this filtering:

ε(p)
x ∼ N(.;0, Inx),

where Inx is the nx × nx identity matrix. Using the proposed particle filter, the object

state, Xk, at the kth CPI is estimated by using the empirical weighted average:

X̂k =

P∑
p=1

ζ
(p)
k X

(p)
k|k−1, (3.35)

where X̂k denotes the estimated object state, Xk.

A remarkable feature of the processing scheme driven by the Bayesian recursions above

is that no fixed selections of the spatio-temporal steering vectors are used. The

evaluation of the likelihood in the update stage in (3.31) specifies the steering vectors

through (3.3) and (3.14) as a function of the state value, X(p)
k . Because X(p)

k is generated
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Algorithm 1 Particle EM algorithm for estimation of the reflection coefficients

1: Input: α(0), ε . Initial guess and termination threshold
2: Input: {ζ(p)

k|k−1X
(p)
k|k−1}

P
p=1 . Particles from p(Xk|Z1:k−1)

3: i← 1, α(1) ←∞ . Initialisation for the iterations
4: while ‖ α(i) − α(i−1) ‖ > ε do . Test convergence
5: Find Q̂(αk,α

(i−1)
k ) in (3.44) using (3.42), (3.43) . E step

6: Find α(i) ←− {α̂m,k}Mm=1 using (3.45),(3.43) . M step
7: i←− i+ 1
8: end while
9: Return α̂k ← α(i)

by sequential processing of the data cubes over CPIs, the resulting set of spatio-temporal

steering vectors adapt to the measurements. This is in stark contrast with conventional

processing chains in which the bearing and Doppler space is sampled with equal size

steps leading to a fixed set of steering vectors and corresponding resolution bins. Thus,

a super-resolution effect is achieved when finding the object locations. This will be

demonstrated in Section 3.6.

3.4 Maximum Likelihood estimation of unknown parameters

Let this section consider ML estimators for the reflection coefficients, αk, and the

synchronisation terms, ∆t. Section 3.4.1 discusses the ML estimator for the reflection

coefficients that proposes an iterative EM algorithm at each step of the recursive filtering

as explained in Section 3.3. Then, Section 3.4.2 introduces the ML synchronisation

term estimator used with the direct channel measurements in (3.8). These estimates are

substituted into both the update stage of the filtering and the likelihood ratio in order

to evaluate them (see, Figure 3.5).

3.4.1 ML estimation of the reflection coefficients

The reflection coefficient associated with an object at state, Xk, is unknown constant

during a CPI and varies across consecutive CPIs due to the change of the effective

reflective surface (i.e., the object’s aspect angle). This might be due to the object
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changing its location (hence, changing the strength of the reflected signal) and/or its

orientation of reflections. In order to estimate this term, a ML estimator is considered,

which finds the most likely value that maximises the likelihood defined in (3.22). Here,

there are two unknown terms (i.e., the object state, Xk, and synchronisation term, ∆t).

The latter term will be found by the direct channel measurements in (3.8) and will be

discussed in the next section. It is hence assumed that the synchronisation term, ∆t̂,

is given in this section, and Xk is treated as unobserved data (or latent variable). Due

to this latent variable, the ML estimator, proposed here, uses an EM approach, which

offers an iterative solution in which the lower bounds of the logarithm of (3.22) can

iteratively be maximised so that the difference between the lower and the actual value

leads to zero when the optimal αk equals the ML estimate [103]. Thus, EM iterations

are given for i = 1, 2, . . . by solving the problem:

α
(i)
k = arg max

αk
Q(αk,α

(i−1)
k ), (3.36)

where Q is the function, which needs to be maximised for given α(i−1)
k and ∆t̂, and is

defined:

Q(αk,α
(i−1)
k ) , E{log p(Xk,Zk|αk,∆t = ∆t̂)|Zk,α

(i−1)
k ,∆t = ∆t̂} (3.37)

=

∫
Xk

log p(Xk,Zk|αk,∆t̂)× p(Xk|Zk,α
(i−1)
k ,∆t̂)dXk.

Note that Zk is the current measurement at the kth CPI, and Xk is unknown and

treated as the unobserved data in Q.

As discussed in Section 3.2.4, it is assumed that all the unknown variables in the

conditional likelihood are independent because one has no influences on the change

of the others. Regarding this assumption, the first term inside the integral of (3.37) is

given by using Bayes’ rule:

log p(Xk,Zk|αk,∆t̂) = log{l(Zk|Xk,αk,∆t̂)× p(Xk|αk,∆t̂)}

= log l(Zk|Xk,αk,∆t̂) + log p(Xk), (3.38)

where log p(Xk) is not dependent on αk. The second term inside the integral of (3.37)
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can also be expressed using Bayes’ rule:

p(Xk|Zk,α
(i−1)
k ,∆t̂) ∝ l(Zk|Xk,α

(i−1)
k ,∆t̂)× p(Xk|α

(i−1)
k ,∆t̂). (3.39)

Here, α(i−1)
k and ∆t̂ are given, and p(Xk|·) is a prior density and selected as the

prediction density in (3.20) because this prediction density is already defined in (3.20)

and is realised in (3.28). Xk is also independent to the other variables:

p(Xk|α
(i−1)
k ,∆t̂)← p(Xk|Z1:k−1). (3.40)

As result, the Q in (3.37) is rewritten using (3.38) (3.39) and (3.40):

Q(αk,α
(i−1)
k ) ∝

∫
Xk

log l(Zk|Xk,αk,∆t̂)× l(Zk|Xk,α
(i−1)
k ,∆t̂)× p(Xk|Z1:k−1)dXk.

(3.41)

Now, it focus on the computation of the expectation in (3.41) and its maximisation. The

samples, generated in the prediction stage in (3.28) and (3.29), lead to an importance

sampling estimate of the expectation. This is a novel approach that realises the

ML estimate of αk and the update density in (3.27) within the Bayesian recursions.

Given
{
X

(p)
k|k−1, ζ

(p)
k|k−1

}P
p=1

, this importance sampling estimate is given by

Q̂(αk,α
(i−1)
k ) ∝∼

P∑
p=1

ξ(i−1)
p log l(Zk|Xk = X

(p)
k|k−1,αk,∆t̂), (3.42)

ξ(i−1)
p =

l(Zk|Xk = X
(p)
k|k−1,α

(i−1)
k ,∆t̂)ζ

(p)
k|k−1∑P

p′=1 l(Zk|Xk = X
(p′)
k|k−1,α

(i−1)
k ,∆t̂)ζ

(p′)
k|k−1

, (3.43)

where Q̂ denotes the estimate of the term proportional to the Q in (3.41). This proposed

approximation is new and a sum of terms quadratic in αk. This can easily be seen by

substituting from (3.14) and (3.22) to (3.42). The resulting expression is given by

Q̂(αk,α
(i−1)) =

P∑
p=1

M∑
m=1

∑
r∈Em(X

(p)
k|k−1

)

ξ(i−1)
p

×
(
− log

(
πLN det(Σm)

)
− ZHm,k(r)Σ

−1
m Zm,k(r)

+2 Re{α∗m,ksHm(r,X
(p)
k|k−1,∆t̂m)Σ−1

m Zm,k(r)}

−|αm,k|2sHm(r,X
(p)
k|k−1,∆t̂m)Σ−1

m sm(r,X
(p)
k|k−1,∆t̂m)

)
(3.44)
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After taking the first order partial derivative of (3.44) with respect to αm,k and setting

it to zero, the ML estimate of the mth reflection channel is found in closed form:

α̂m,k =

∑P
p=1

∑
r∈Em(X

(p)
k|k−1

)
ξ

(i−1)
p sHm(r,X

(p)
k|k−1,∆t̂m)Σ−1

m Zm,k(r)∑P
p=1

∑
r∈Em(X

(p)
k|k−1

)
ξ

(i−1)
p sHm(r,X

(p)
k|k−1,∆t̂m)Σ−1

m sm(r,X
(p)
k|k−1,∆t̂m)

. (3.45)

Here, the ML estimate, obtained by the proposed EM approach within the Bayesian

filtering recursions, contains the set of weighted particles, which completely defers from

that of existing EM algorithms, in which equally weighted samples in evaluating the

Monte Carol integration are used for the expectation (see, for example [104,105]).

The ML estimator in (3.45) takes the inner product of the “whitened” measurements

with the signal model sm given in (3.3) for each state particle, X(p)
k|k−1. This operation

effectively performs digital beam-forming towards the particle state in which an object

is located in a surveillance region. The conventional beam-forming, however, needs to

scan all the surveillance region with a regular grid (i.e., angular resolution, ∆θ) in order

to find the angle of arrival as discussed in Section 2.3.1. This operation also matches its

approach speed through its Doppler frequency encoded in sm. As a result, the estimator

will not be rejecting interference from other objects unless they appear very close to the

state value in terms of the achievable spatial and Doppler resolution.

After finding α̂(i)
k = {α̂(i)

m,k}
M
m=1 for M reflection coefficients using (3.45), convergence is

tested by comparing the norm of the difference between parameter configurations, which

is found in consecutive iterations with a threshold. In other words, the EM iterations

are terminated at i when

‖ α(i)
k − α

(i−1)
k ‖ < ε,

where ‖.‖ denotes the complex Euclidean norm. A pseudo-code of these steps are given

in Algorithm 1.
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Figure 3.6: Block diagram of the proposed synchronisation term estimator: The input of this
estimator is the direct channel (black-dashed box) measurements, and the receiver has full knowledge
of both the transmission characteristics and all the transmitter’s locations as the prior knowledge. The
resulting estimate (i.e., ∆t̂) is the inputs of both, the Bayesian filtering recursions and the proposed
detector.

3.4.2 Synchronisation of the local processor with remote transmitters

Let this section consider the ML estimation of the unknown synchronisation term,

∆tm, parametrising the time origin shift between the local receiver and the mth

separately located transmitter. Figure 3.6 shows the overall processing sequences of

the synchronisation term estimator using the block diagram: The proposed approach

exploits, in fact, the data cube for the mth remote (or bistatic) channel that contains

direct path signals (depiched by the dashed black box) from the separately located

transmitter. This collection can be done by simultaneously diverting multiple (digital)

beams towards both the transmitter spatial states and the object spatial state for other

processing tasks on the data cube. For example, the latter, which is related to the

estimation of an object’s trajectory and reflection coefficients, is not the same regions of

the transmitter spatial states. Here, it is assumed that the receiver has full knowledge

of both the transmission characteristics defined in (3.1) and the system characteristics

in (3.7) as well as all the transmitter’s locations, X(tx) = {X(tx)
m }Mm=1, as the prior

knowledge. The input of this estimator is the mth radar data cube that contains the

direct path signal in (3.8).
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When reflectors are present, the superposition of this signal and reflections from different

spatio-temporal states is collected. In order to recover the direct path signal (see, the

black-dashed box), this uses a spatio-temporal steering vector that is matched to s̃m in

(3.8). This steering vector for the mth direct channel with the known location of the

mth transmitter, X(tx)
m , is given by

h(X(tx)
m ) , ss(θ(X

(tx)
m )⊗ st

(
τ(X

(tx)
m )

2
,Ωm(X(tx)

m ) = 0

)
,

= s

(
τ(X

(tx)
m )

2

)
× ss(θ(X

(tx)
m ))⊗ 1, (3.46)

where θ(X(tx)
m ) is the AoA from the mth transmitter given in (2.9), τ(X

(tx)
m )
2 is the ToF in

one-way propagation between the transmitter and the receiver using (2.5), and 1 is an

N × 1 all ones vector. All these values for M direct channels are known at the receiver.

Note that this filter is nothing but a (scaled) beam-forming vector diverting a beam

towards θ(X(tx)
m ) and maps the LN × 1 measurement vector, Zm(r), to a single complex

value given by

dm(r) , h(X(tx)
m )HZm(r)

= LN
√
Ems(∆tm)Λm

(
rTp −

τ(X
(tx)
m )

2
−∆tm

)
+ nm(r). (3.47)

Here, Em is the received energy, which can be calculated by using (3.6) and (3.7) with the

known system parameters, and the noise term is the inner product of the beam-forming

vector and the complex Gaussian measurement noise in (3.2):

nm(r) = h(X(tx)
m )Hnm(r)

which itself is a random variable with a complex Gaussian distribution of mean zero and

variance:

σ2
d,m = hH(X(tx)

m )Σmh(X(tx)
m ).

As a result, the likelihood to be maximised is

l(dm(0), . . . , dm(Γ− 1)|∆tm) =
Γ−1∏
r=0

CN(dm(r);µd,m(∆tm), σ2
d,m) (3.48)
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where the expected value of the complex Gaussian distributions as a function of ∆tm is

given by

µd,m(∆tm) =
√
EmLN exp(−jωc∆tm)× Λm

(
rTp −

τ(X
(tx)
m )

2
−∆tm

)
. (3.49)

Note that only those range bins for which the argument of Λm falls within (0, 2Tp)

contribute to the maximisation. Otherwise, the corresponding distribution is the same

with that for the noise term. These range bins are hence given by

Ẽm(∆tm) =


{rm, rm + 1} rmTp <

τ(X
(tx)
m )
2 + ∆tm

{rm} rmTp = τ(X
(tx)
m )
2 + ∆tm

{rm, rm − 1} rmTp >
τ(X

(tx)
m )
2 + ∆tm

. (3.50)

Here

rm =
⌊τ(X

(tx)
m )

2× Tp
+

∆tm
Tp

⌋
,

where this range bin is different to (3.12) due to one-way propagation and contains the

same synchronisation term with (3.12). Thus, the ML estimator that takes into account

k data cubes at time k, which starts from the first one up to, is given by

∆t̂m = arg max
∆tm

Jk(∆tm)

Jk(∆tm) = log

k∏
k′=1

∏
r∈Ẽm(∆tm)

CN(dm,k′(r);µd,m(∆tm), σ2
d,m) (3.51)

∝
k∑

k′=1

∑
r∈Ẽm(∆tm)

(
dm,k′(r)− µd,m(∆tm)

)∗ × (dm,k′(r)− µd,m(∆tm)
)
,

where k′ = 1, . . . , k indicates the k′th CPI up to the kth CPI.

Note that the relation between ∆t and the objective function, Jk, is a concave relation

on the average (and as k increases, asymptotically). However, (3.49) does not yield a

closed-form solution and render gradient-free iterative methods such as one-dimensional

line search techniques [106] as better alternatives. These algorithms require only

evaluation of (3.51) and iteratively reduce an initially selected interval of uncertainty.

For this reason, the proposed estimator uses the golden section search algorithm [106]
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Algorithm 2 Maximum likelihood estimation of ∆tm via golden section line search: The
initial interval of uncertainty is selected as [∆t̂0 − Tp,∆t̂0 + Tp] as detailed in Section 3.4.2.

1: Input: [∆t1,∆t2], ε =
Tp
10 . Initial interval of uncertainty and termination threshold

2: α← 0.618
3: ∆t̃1 ← ∆t1 + (1− α)(∆t2 −∆t1) . Evaluation point 1
4: ∆t̃2 ← ∆t1 + α(∆t2 −∆t1) . Evaluation point 2
5: Compute Jk(∆t̃1) and Jk(∆t̃2) using (3.51), (3.49), (3.47)
6: while |∆t2 −∆t1| > ε do . Until ε accuracy is reached
7: if Jk(∆t̃1) > Jk(∆t̃2) then
8: ∆t2 ← ∆t̃2 . New interval:[∆t1,∆t̃2]
9: ∆t̃2 ← ∆t̃1, Jk(∆t̃2)← Jk(∆t̃1) . Assignments
10: ∆t̃1 ← ∆t1 + (1− α)(∆t2 −∆t1)
11: Compute Jk(∆t̃1) using (3.51), (3.49), (3.47) . New evaluation
12: else
13: ∆t1 ← ∆t̃1 . New interval:[∆t̃1,∆t2]
14: ∆t̃1 ← ∆t̃2, Jk(∆t̃1)← Jk(∆t̃2) . Assignments
15: ∆t̃2 ← ∆t1 + α(∆t2 −∆t1)
16: Compute Jk(∆t̃2) using (3.51), (3.49), (3.47) . New evaluation
17: end if
18: end while
19: if Jk(∆t̃1) > Jk(∆t̃2) then
20: Return ∆t̂m = ∆t1
21: else
22: Return ∆t̂m = ∆t2
23: end if

and selects the initial interval for ∆tm based on a preliminary search over the grid of

values, ∆tm ∈ {0, Tp, 2Tp, . . . , (Γ− 1)Tp}, which yields a rough estimate. Let this term

denote ∆t̂0, which produces

r̂m =
⌊τ(X

(tx)
m )

2× Tp
+

∆t̂0
Tp

⌋
.

The initial interval of uncertainty is selected as [∆t̂0−Tp,∆t̂0 +Tp]. The golden section

search reduces the width of this interval exponentially to a ratio of (0.618)ν−1 after ν

iterations [106]. Therefore, in eight iterations, this width reduces below one tenth of a

pulse duration (i.e., Tp10 ). A termination threshold in this golden section search algorithm

is hence selected as this value (ε =
Tp
10 ). This search algorithm is detailed in Algorithm 2.

80



Detection via simultaneous trajectory estimation and long time integration

3.5 Long time integration for detection

Let this section consider the evaluation of the statistical test given in (3.9). The sufficient

statistics of this test is given in (3.13)–(3.15) of Section 3.2.4. Here, the results from

Sections 3.3 and 3.4 are, first, combined into a single algorithm. Then, Section 3.5.1

provides explicit formulae for finding the threshold as a function of the selected constant

false alarm rate, Pfa, and integration time k.

In order to evaluate the likelihood ratio in (3.13), ∆t̂ is, first, estimated using

Algorithm 2 for all direct channels. Given this quantity, the target trajectory, X̂1:k, is

sequentially estimated using Section 3.3. At the prediction stage of the Bayesian filtering

recursions for k = 1, . . . ,K CPIs, the EM iterations in Algorithm 1 over k = 1, . . . ,K

produces α̂k. As such, the integration of instantaneous likelihood ratios in (3.15), which

is evaluated by given the aforementioned estimates into the test value in (3.13), is carried

out recursively. For this purpose, let one define the logarithm of the test value at k:

logLk ,
k∑

k′=1

M∑
m=1

∑
r∈Em(X̂k)

logL(Zm,k′(r)|X̂k′ , α̂m,k′ ,∆t̂m)

= logLk−1 + L(Zk(X̂k)|X̂k, α̂k,∆t̂), (3.52)

and the second term on the right-hand side of the second line is defined usingM reflection

channels and the range bins associated with X̂k in (3.11):

L(Zk(X̂k)|X̂k, α̂k,∆t̂) ,
M∑
m=1

∑
r∈Em(X̂k)

logL(Zm,k′(r)|X̂k′ , α̂m,k′ ,∆t̂m)

=
M∑
m=1

∑
r∈Em(X̂k)

(
2Re

{
α̂∗m,ks

H
m(r, X̂k,∆t̂m)Σ−1

m Zm,k(r)
}

−|α̂m,k|2sHm(r, X̂k,∆t̂m)Σ−1
m sm(r, X̂k,∆t̂m)

)
. (3.53)

Note that, (3.53) is the contribution of the measurements at time k into the integration

in (3.52). The proposed processing performs coherent integration of Em(X̂k) × L × N

samples during a CPI in each reflection channel. The integration is non-coherent across
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Algorithm 3 The proposed simultaneous tracking and long time integration algorithm

1: Input: Data cubes Zm,k for channels m = 1, . . . ,M , time steps k = 1, . . . ,K .
see (3.2)

2: Input: Detection threshold TK

3: Initialisation: Generate particles in the cell under test
{
X

(p)
1 , ζ

(p)
1

}P
p=1

. see (3.19)

4: Initialisation: logL0 ← 0
5: for k = 1, . . . ,K do
6: if k ≥ 2 then . Prediction stage

7: Generate
{
Xp
k|k−1, ζ

p
k|k−1

}P
p=1

. see (3.28), (3.29)

8: end if
9: Find ∆t̂ using Algorithm 2 for m = 2, . . . ,M . see Section 3.4.2

10: Find α̂k using the EM iterations in Algorithm 1
11: Update {X(p)

k , ζ
(p)
k }

P
p=1 using (3.30), (3.31) . Update stage

12: Estimate X̂k using (3.35)
13: Compute L(Zk(X̂k)|X̂k, α̂k,∆t̂) using (3.53)
14: logLk = logLk−1 + L(Zk(X̂k)|X̂k, α̂k,∆t̂) . Integration step, see (3.52)
15: end for
16: if logLK > log TK then . The detection test in (3.54)
17: Return H1

18: else
19: Return H0

20: end if

the channels as well as consecutive CPIs. The key is that the object trajectory is taken

into account when performing all these simultaneously.

The object detection is hence performed by comparing the output of the aforementioned

log-likelihood ratio to a detection threshold:

logLK
H1

≷
H0

log TK , (3.54)

where log TK is the detection threshold for a given constant false alarm rate (CFAR)

for K steps of integration. The next section details the computation of this threshold

value. A pseudo-code of the overall process is given in Algorithm 3.

3.5.1 Constant false alarm rate threshold for the detection test

In the hypothesis test in (3.54) it is highly desirable to select the threshold, TK , that

yields a selected constant false alarm rate (CFAR), Pfa. For the calculation of TK as a
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function of Pfa, let one consider the distribution of the likelihood ratio given in (3.13)

under the H = H0 hypothesis for the measurement in (3.2). The logarithm of this

likelihood ratio after substituting from (3.15) into (3.13) is given by

ηK , logLK

=
K∑
k=1

M∑
m=1

∑
r∈Em(Xk)

ηm,k,r (3.55)

where the terms inside the summations are given by

ηm,k,r = 2Re{sHm,k,rΣ−1
m Zm,k(r)} − sHm,k,rΣ

−1
m sm,k,r

sm,k,r = αm,ksm(r,Xk,∆tm). (3.56)

The distribution of the real variable, ηm,k,r, is a Gaussian when the signal model, sm,k,r,

is known and the measurements, Zm,k(r), are generated from a complex Gaussian [18,

Chp.13] (i.e., ηm,k,r ∼ N(.;µm,k,r, σ
2
m,k,r)) with the moments given by

µm,k,r = −sHm,k,rΣ−1
m sm,k,r,

σ2
m,k,r = 2sHm,k,rΣ

−1
m sm,k,r.

Owing to the independence of the noise samples, ηK is also Gaussian for the case, i.e.,

ηK ∼ N(.;µK , σ
2
K), with the moments given by

µK =

K∑
k=1

M∑
m=1

∑
r∈Em(Xk)

µm,k,r (3.57)

σ2
K =

K∑
k=1

M∑
m=1

∑
r∈Em(Xk)

σ2
m,k,r. (3.58)

Therefore, the probability of false alarm, Pfa, is related to the test variable, ηK , in (3.55)
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and the threshold, TK , through

Pfa = Pr{ηK > log TK |H = H0}

=

+∞∫
log TK

N(η′K ;µK , σ
2
K)dη′K

= Q

(
log TK − µK

σK

)
where Q(.) denotes the tail probability function of the standard normal distribution [18].

As a result, the threshold, TK , given Pfa for K steps of integration is found as

TK = exp
(
Q−1(Pfa)σK + µK

)
. (3.59)

Similarly, the probability of detection, Pd, is related to the integrated value,

logLk, in (3.52) and the threshold, TK , through

Pd = Pr{logLk > log TK |H = H1}

= Q

(
log TK − logLk

σK

)
. (3.60)

The relation between Pd and Pfa can also be found after substituting (3.59) into (3.60):

Pd = Q

(
Q−1(Pfa)σK + µK − logLk

σK

)
= Q

(
Q−1(Pfa) +

µK − logLk
σK

)
. (3.61)

As a summary, the CFAR threshold for the proposed integration scheme is calculated

using (3.56)–(3.59) given the true values of the reflection coefficients and the object

trajectory specifying (3.56). This clairvoyant threshold is used in Section 3.6 for

comparing Algorithm 3 with the clairvoyant integrator and a conventional alternative.

3.5.2 Signal to noise ratio (SNR) in the radar data cube

This subsection provides explicit formulae for the signal to noise ratio (SNR) of the mth

channel radar data cube in (3.2). In the problem setting in this chapter, it is assumed

that all parameters are independent because regarding the signal model of the mth
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reflection channel, which contains the object kinematic (i.e., X), the reflection coefficient

(i.e., αm), and the synchronisation term (i.e., ∆tm), the change of one parameter

produces no influences on the change of the others. Another assumption is that the

reflection coefficient varies with the radar cross section (RCS) and the orientation of

the object’s aspect angle. With these assumptions, SNR at the kth CPI for the mth

channel is found as a function of the object state, Xk, at the rth range bin:

SNRm,k(r,Xk) ,
E{(αm,ksm(r,Xk,∆tm))T (αm,ksm(r,Xk,∆tm))}

E{nm(r)Tnm(r)}

=
E{α∗m,kαm,k}E{sTm(r,Xk,∆tm)sm(r,Xk,∆tm)}

tr{Σm}
, (3.62)

where αm,k , Re{αm,k} + jIm{αm,k} is the complex reflection coefficient of the mth

channel which is comprised of a real part, Re{.}, and an imaginary part, Im{.}, and

sm ∈ CLN×1 is the signal model associated with the object state, Xk, as given in (3.2).

Here, tr{Σm} denotes the trance of Σm, nm ∼ CN(.;0,Σm) models the noise background

of the mth channel and is a complex random variable with zero mean and covariance of

Σm as discussed in Section 3.2.1.

The SNR associated with the object state, Xk, over the range bins is considered: Due to

the auto-correlation function, Λm, in (3.3), the second term in the numerator of (3.62)

yields

E
{ ∑
r∈Em(Xk)

sTm(r,Xk,∆tm)sm(r,Xk,∆tm)
}

= LN × Λm(Em(Xk)) (3.63)

Λm(Em(Xk)) ,
∑

r∈Em(Xk)

Λ∗m(rTp − τm(Xk)−∆tm)

×Λm(rTp − τm(Xk)−∆tm), (3.64)

where L indicates the number of array elements, and N is the number of transmitted

pulses in a CPI. Thus, the SNR for the radar data cube at the kth CPI for the mth

channel through (3.62)–(3.64) is given by

SNRm,k =
LNΛm(Em(Xk))E{α∗m,kαm,k}

tr{Σm}
(3.65)

SNRm,k
dB = 10 log10 (SNRm,k) , (3.66)
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where SNRm,k
dB denotes SNRm,k in decibels (dB). As a result, the SNR for an integrated

value of all radar data cubes up to k CPIs for M reflection channels is found by using

the sum of all the M reflection channel SNRs:

SNRk =
k∑

k′=1

M∑
m=1

SNRm,k′ . (3.67)

Now, it is shown that the expectation of the long time likelihood ratio for the detection

test equals to that of the SNR in (3.67). The test value at the kth CPI for detection,

logLk, in (3.52) is found by using the sum of instantaneous likelihood ratios up to time

k. The instantaneous likelihood ratio in (3.53) at time k is easily factorised to the mth

reflection channel instantaneous likelihood ratio:

Lm(Zk(Xk)|Xk,αk,∆tm) ,
∑

r∈Em(Xk)

logL(Zm,k(r)|Xk, αm,k,∆tm)

=
∑

r∈Em(Xk)

(
2Re

{
α∗m,ks

H
m(r,Xk,∆tm)Σ−1

m Zm,k(r)
}

−|αm,k|2sHm(r,Xk,∆tm)Σ−1
m sm(r,Xk,∆tm)

)
. (3.68)

Then, the expectation of this likelihood ratio is given by

E
{
Lm(Zk(Xk)|Xk,αk,∆tm)

}
=

∑
r∈Em(Xk)

(
2Re

{
α∗m,ks

H
m(r,Xk,∆tm)Σ−1

m E
{
Zm,k(r)

}}
−|αm,k|2sHm(r,Xk,∆tm)Σ−1

m sm(r,Xk,∆tm)
)
. (3.69)

From the radar data cube in (3.2), when H = H1 hypothesis holds, the expectation of

Zm,k(r) is given by

E
{
Zm,k(r)

}
= αm,ksm(r,Xk,∆tm). (3.70)

After substituting (3.70) into (3.69), the resulting expression is found as

E
{
Lm(Zk(Xk)|Xk,αk,∆tm)

}
=

∑
r∈Em(Xk)

|αm,k|2sHm(r,Xk,∆tm)Σ−1
m sm(r,Xk,∆tm)

=
∑

r∈Em(Xk)

SNRm,k(r,Xk). (3.71)

As a result, the expectation of the mth instantaneous likelihood in (3.71) for the rth
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Figure 3.7: Example scenario: (a) M = 3 transmitters (i.e., Tr1, Tr2, and Tr3) emitting N = 20
pulses (solid line arrows) towards a small object (a black dot). A ULA (red dots) collects low SNR
(-6dB) reflections (dashed line arrows) and direct signals (a dotted green line arrow). (b) The object’s
trajectory depicted with the red line. The range resolution bins resulting from sampling in time are
shown by the dashed red lines. The bearing resolution bins, obtained by (2.31), are shown by the
dashed blue lines.

range bin is equivalent to SNRm,k(r,Xk) in (3.62). Therefore, the integrated value of

logLk in (3.52) is equivalent to the estimate of SNRk in (3.67).

3.6 Example

This section demonstrates the proposed algorithm through an example and compares

its efficacy to other techniques. A scenario is considered that a ULA (red dots)

receiver co-located with a transmitter (red triangle) is at the origin of the 2D Cartesian

plane. The other two separated transmitters (green and cyan triangles) are located at

[0m, 500m] and [500m, 0m], respectively (see. Figure 3.7(a)). In this setting, M = 3

transmitters emit N = 20 linear frequency modulated (i.e., up-chirp) waveforms towards

a surveillance region (shaded region in Figure 3.7(a)) and repeats this illumination

pattern every 0.1 s. In this region, there is a small object (black dot) with an initial

state, X0 = [700m, 700m, 10m/s, 50m/s], moving along an unknown trajectory (see,

Figure 3.7(b)). This trajectory is generated from the object dynamic model following

(3.17). The ULA receiver with L = 20 elements collects reflections (dashed line arrows)

in accordance with the signal model in (3.2) from the local (dashed red line arrow)

and the remote (dashed green/cyan line arrows) channels. Superposition in the remote
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Table 3.1: Transmitted signal parameters

Parameter Value

Carrier frequency, i.e., fc 10 GHz

Probing waveform bandwidth, i.e., B 1 MHz

Probing waveform duration, i.e., Tp 1.0 µs

Pulse repetition interval (PRI), i.e., T 100 µs

Number of range bins, i.e., Γ 100

Number of pulses, i.e., N 20

Number of elements in the ULA, i.e., L 20

Length of the coherent processing interval (CPI) 2 ms

Illumination period (∆ in (3.17)) 0.1 s

Number of transmitters, i.e., M 3

channels is the direct probing transmission from the separately located transmitters.

The parameter configuration of these transmissions is shown in Table 3.1.

In this example, when the separately located transmitters are close to the receiver, the

performance of synchronisation term estimates will be improved due to the high SNR

of direct channels when no objects are located at the line of sight from the transmitters.

In practice, objects might be located at the line of sight from the separately located

transmitters, but not be at the locations of the transmitters. In this case, the proposed

estimator for the synchronisation terms can resolve ∆t estimation by the filtering

in (3.46) with the prior knowledge of all the transmitter locations, and the receiver

can detect the objects. When objects are located at the separately located transmitters

and are slowly moving, the receiver cannot detect them because the receiver treats

them as the locations of the transmitters. In this case, the receiver requires spatial

filtering (i.e., digital beam-forming) by using planar array antennas in order to separate

objects from the transmitters. This filtering with a uniform planar array receiver will

be discussed in Chapter 4. For the rest of this section, it is assumed that the regions

for the direct channels (see, the dashed lines between the receiver and the separately

located transmitters in Figure 3.7(a)) are not included in the surveillance region (see,

shaded regions).

88



Detection via simultaneous trajectory estimation and long time integration

This experiment simulates 100 independent sets of trajectories, which produce 100 sets

of array measurements: When the H = H1 hypothesis holds, the array measurements

at the kth CPI are associated with the object state, Xk, and the reflection coefficient,

αm,k. These quantities are generated from a complex Gaussian by using

Zm,k(r) ∼ CN(.;αmsm(r,Xk,∆tm),Σm), (3.72)

m = 1, . . . ,M, r ∈ E(Xk),

where m indicates the mth reflection channel, E(Xk) is the set of the range bins

associated with Xk in (3.11). Otherwise, the measurements are generated from

Zm,k(r) ∼ CN(.;0,Σm), (3.73)

m = 1, . . . ,M, r ∈ Γ\E(Xk),

where Γ is the length of range bins given in Table 3.1.

Each direct signal from the separately located transmitter is received with additive noise

using (3.8) with the SNR of 0dB. The common time reference shift, ∆t, between the

separately located transmitters and the receiver is selected randomly in the range of

0 < ∆t < PRI, and this value is used for all experiments.

Algorithm 3 uses 100 CPIs and spans 10 s. Each CPI corresponds to one radar data cube

(see, Figure 3.3). The performance of the proposed scheme in this scenario is compared

with the following detectors:

1. The clairvoyant detector: This detector uses the ground truth values of the

unknown parameters (i.e., the object trajectory, reflection coefficient, and the

synchronisation term) when evaluating the logarithm of the likelihood ratio test

in (3.13). In other words, this test substitutes the true values of these unknowns

in (3.52) and leads to

logLk
H1

≷
H0

log Tk (3.74)

logLk = logLk−1 + L(Zk(Xtrue,k)|Xtrue,k,αtrue,k,∆ttrue), (3.75)
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where Xtrue,k, αtrue,k, and ∆ttrue are the true values of Xk, αk, and ∆t,

respectively. The CFAR threshold, log Tk, for this detector is found with Pfa =

10−6 using (3.56)–(3.59) as discussed in Section 3.5.1.

Note that the clairvoyant detector is the optimal detector [18, Chp.13]. The k

integrated value of logLk with the ground truth values provides the maximum

achievable value for the detection test. Therefore, this integrated value is used

as the performance upper bound when comparing the efficacy of the proposed

integration approach in this section.

2. Conventional coherent detector: This detector processes the measurements after

mapping them over a grid of bearing and Doppler bins. These bins correspond to

resolution cells, which are found for the example system as follows: The bearing

resolution is found as ∆θ = 5.1◦ using (2.31). The range resolution is found as

∆R = 150m using (2.25). The velocity resolution of the conventional processing is

found as ∆V = 7.5m/s using ∆V = λc
2NT (or, equivalently, the Doppler resolution

∆ω = 4πfc
∆V
c T as π/10 rad s−1).

The conventional coherent detector over a grid of bearing and Doppler bins is

found in [18, Chp.13], and this detector with the signal model in (3.3) with given

∆t is given by

TK(r,X(i, )) =
K∑
k=1

M∑
m=1

Re{sm(r,X(i, ),∆t)Σ−1
m Zm,k(r)}

H1

≷
H0

log Tk. (3.76)

Here, X(i, ) denotes a location (i.e., range and bearing) and velocity associated

with the ith bearing bin and the th Doppler for the rth range bin. This detector

integrates the mapped complex values for the same “cell under test” across time

without taking into account object manoeuvres [18, Chp.13] [1]. This detector is

compared to the proposed detector.

For the selection of the number of particles, the proposed algorithm is initiated with

P = 200, P = 400, P = 600, P = 800, and P = 1000 particles, respectively, and
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Figure 3.8: The proposed scheme with M = 1 transmitters versus the number of particles: The
number of particles sets P = 200, P = 400, P = 600, P = 800, and P = 1000, respectively.

performs Algorithm 3 with the only local channel measurements, whose SNR sets −3dB.

This quantity is found by using SNRm,k
dB in (3.66). Figure 3.8 illustrates the resulting

integrated value using P = 200, P = 400, P = 600, P = 800, and P = 1000 particles,

respectively. Here, the algorithm with P = 200 particles fails to continue the integration

(i.e., dashed black line). Regarding these results, the number of particles sets P = 400

for the rest of the experiments. These particles are initialised as an 20×20 uniform grid

over a bounded region of location and velocity vectors such that the locations span the

“cell under test”. Note that because all the steering vectors during processing are selected

by the Bayesian recursive filtering, there are no fixed bearing or velocity resolution cells

for the proposed approach unlike the conventional detector. As the Bayesian filtering

and trajectory estimation steps iterate, these particles evolve to converge to the true

state of the object simultaneously giving rise to the integrated value in (3.52).
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Figure 3.9: Proposed integration compared to the probability of target existence obtained by
Bernoulli track-before-detect [4]: Both algorithms use the same sets of measurements. The dashed
blue, the dashed cyan, the dotted green, the dashed brown, and the solid pink lines indicate SNR
−1dB, −2dB, −3dB, −4dB, and −5dB, respectively.

3.6.1 Detection test via long time integration

This section, first, discusses the detection via long time integration with only local

channel measurements (i.e., M = 1). Then, this results are compared to the probability

of target existence obtained by Bernoulli track-before-detect [4]. It is assumed that

this Bernoulli track-before-detect has the full knowledge of the reflection coefficients

as the known parameter. Next, the benefit of multiple transmitters (i.e., M > 1) is

demonstrated.

Long time integration versus probability of target existence for M = 1
transmitter

Let one compare the proposed long time integration usingM = 1 reflection channel with

a probability of target existence. This is because the existing TBD algorithms commonly

use the probability of target existence for the detection instead of the integration scheme.

Here, the proposed integration is the key difference compared to the existing TBDs.

In order to measure the integration performance, Algorithm 3 uses the different SNRs

of array measurements in the range of −20dB to −1dB to provide the proposed long

time integration. Then, this resulting integration is compared to the probability of
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Figure 3.10: Detection performance comparison: The probability of detection, obtained by the
proposed detector, is depicted by the solid green line, That of the Bernoulli track-before-detect is
depicted by the solid black line.

target existence (i.e., equivalent to (2.62) in Section 2.6) obtained by the Bernoulli

track-before-detect [4] with the same measurements used in Algorithm 3. These results

obtained by using the array measurements in the range of −5dB to −1dB are illustrated

in Figure 3.9. Here, the clairvoyant CFAR detection threshold for Pfa = 10−6 is depicted

as the solid magenta line in Figure 3.9(a). The predefined threshold for the probability

of target existence sets 0.5 and is depicted as the solid magenta line in Figure 3.9(b).

As discussed in Section 3.5, the integrated value is a function of time. The proposed

integration continues integrating measurements over many CPIs for all the cases (see,

Figure 3.9(a)). The detection is made by comparing these integration values against

the clairvoyant CFAR threshold. The last two integrated values (i.e., SNR −1dB and

−2dB) exceed this threshold after t = 4s (dashed blue line) and t = 7s (dashed green

line). In the other hand, the probabilities of target existence for SNR −1dB and −2dB

measurements only produce high values and exceed the threshold after t = 1.8s (dashed

blue line) and t = 5.7s (dashed cyan line) as illustrated in Figure 3.9(b). It is emphasised

that the probability of target existence is not equivalent to that of detection.
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As discussed in Section 3.5.1, the probability of detection for the proposed detector is

defined in (3.60). The probability of detection for the Bernoulli track-before-detect is

obtained by using

Pd =
The number of trials that exceeds the threshold

The total number of trials
,

where the number of trials that exceeds the threshold counts the probability of target

existence that exceeds the threshold at each CPI, and the total number of trials is 100

CPIs in this case. Figure 3.10 illustrates the probabilities of detection with the expected

SNR for measurements in the range of −20dB to −1dB. Here, it is clearly shown that

the proposed detector (solid green line) provides the higher probability of detection than

that of the Bernoulli track-before-detect (solid black line).

Long time integration for M > 1 transmitters

Let one consider the proposed long time integration with M = 3 transmitters and

demonstrate the benefits of multiple transmitters used for the detection. For this

purpose, Algorithm 3 is repeated with 100 scenario realisations. The performance of the

resulting long time integration is compared with that of the clairvoyant and conventional

detectors. Here, the Bernoulli track-before-detect is not considered because, as discussed

above, its detection performance is lower than that of the proposed detector whenM = 1

transmitter is used (see, Figure 3.10). In order to demonstrate the benefits of multiple

transmitters used, the clairvoyant CFAR detection threshold used in Figure 3.9(a) is

used for the rest of experiments, and the expected SNR for themth channel measurement

in a CPI sets −6dB.

In Figure 3.11, the clairvoyant integrator sets an upper bound for the integrated

sufficient statistics, the average of which is depicted by the dashed red line. Long time

integration accuracy of the proposed algorithm is coupled to the trajectory estimation

performance through the EM iterations for finding the reflection coefficients (i.e.,

Algorithm 1). As shown in Figure 3.11, the integration performance obtained by the

proposed scheme produces an integrated value, which is very close to the clairvoyant
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Figure 3.11: Long time integration using the proposed scheme, the clairvoyant integrator, and the
conventional coherent integrator, whenM = 3 transmitters are used: The integrated sufficient statistics
from the proposed integration averaged over 100 experiments is depicted by the solid blue line. The
integrated value from the clairvoyant integrator is the dashed red line and the clairvoyant (CFAR)
threshold for Pfa = 10−6 (averaged for 100 experiments) is the solid magenta line. The conventional
scheme is depicted by the solid black line.

detector bound (solid blue line rendering the average with ±σ bounds shown with

dotted blue lines). Here, the proposed integration reaches to 110.6 at t = 10s, which

is relatively close to 114 achieved by the clairvoyant integration. This indicates that

the loss in integration performance due to the estimation errors of the target trajectory

and reflection coefficients is very small. The conventional scheme fails to continue the

integration after the object leaves at the initial cell under test. This is because the

conventional integration does not take into account the object movement and integrates

the received energy across the same resolution bins over time. This integration is shown

with the solid black line in Figure 3.11. For the detection, the proposed scheme exceeds

the CFAR threshold and enables one to decide on the object existence hypothesis

(H = H1) at t = 3s whereas the conventional scheme stays in the region for the noise

only signal hypothesis (H = H0).
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Figure 3.12: The proposed scheme with M = 3 transmitters (solid blue line) versus the single
channel integrations: The local channel (solid green line) integration, and the remote channel (solid
brown line) integration fail to exceed the detection threshold. The clairvoyant (CFAR) threshold for
Pfa = 10−6 (averaged for 100 experiments) is the solid magenta line

Figure 3.12 illustrates the benefit of the multi-channel integration compared to the

single-channel integration. The results are averaged over 100 experiments. All these

integrations (see, the multi-channel integration usingM = 3 reflection channels depiched

by the solid blue line, the single-channel integration using the local channel depiched

by the solid green line, and the single-channel integration using the remote channel

depiched by the dashed brown line (or the dotted pink line)) increase over time. However,

the single integration fails to exceed the CFAR threshold by itself. Also, Figure 3.13

illustrates the proposed integration with M = 2 reflection channels (solid cyan line)

in comparison with the previous integration for M = 3 reflection channels (solid blue

line). The integrated value usingM = 2 reflection channels exceeds the CFAR threshold

at t = 6.3s which is the much slow detection time in comparison to the required time

for M = 3 reflection case (t = 3s). These results reveal the advantage of using more

transmitters.
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Figure 3.13: The proposed scheme with M = 3 transmitters (solid blue line) versus the integration
M = 2 transmitters (solid cyan line): The clairvoyant (CFAR) threshold is used in Figure 3.12.

Now, consider the probability of detection, Pd, as a function of the integration time.

This is illustrated in Figure 3.14. Here, the Pd of the clairvoyant detector (dashed red

line) sets the upper performance bound. The Pd of the proposed scheme for M = 3

reflection channels is drawn by the solid blue line in Figure 3.14. This quantity increases

with time and reaches Pd = 1 at t = 5s, which is relatively close to the Pd = 1 at t = 4.5s

of the clairvoyant detector. The Pd of the proposed scheme forM = 2 reflection channels

(solid cyan line) increases with time and reaches Pd = 0.97 at t = 10s, which enables

one to detect the object after t = 6.6s. The Pds of the local channel (solid green line)

and the remote channel integrations (brown and pink lines) stay in the vicinity of zeros

and indicate that they fail to detect the object in an overwhelming majority of the

experiments.

Next, consider the probability of detection Pd as a function of different false alarm (Pfa)

values in the range of Pfa = 10−15 to Pfa = 100. This is referred to as the receiver

operating characteristic (ROC) curve [18, Chp.3] and is defined in (3.61). For ROC
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Figure 3.14: Probability of detection (Pd) for the proposed scheme in comparison with the
clairvoyant detector and the conventional detector: Pd for the proposed scheme (solid blue line) with
M = 3 transmitters and Pd for the proposed scheme (solid cyan line) with M = 2 transmitters are
compared to Pd for the clairvoyant detector (dashed red line). The probability of false alarm Pfa = 10−6

compared to Pd for the clairvoyant detector (dashed red line).

calculation, the resulting integrated values at t = 10s are used because Pd is a function

of integration time (see, Figure 3.12). Figure 3.15 illustrates the ROC curves obtained

by using Algorithm 3 forM = 3 reflection channels,M = 2 reflection channels, the local

channel, and the remote channels, resepctively, as well as the ROC of the conventional

coherent detector (dotted black line). The ROC of the proposed integration for M = 3

reflection channels (solid blue line) provides Pd = 1 after Pfa = 10−15, whereas the

integration value for M = 2 reflection channels (solid cyan line) yields Pd = 1 after

Pfa = 10−5. Furthermore, the single channel integration (solid green, dotted brown,

and dashed pink lines) enables one to have Pd = 1 after a small false alarm rate of

Pfa = 10−2. The conventional coherent integration, however, provides Pd = 1 after

Pfa = 100.

The ROCs in Figure 3.15 can present the probability of detection Pd as a function of

different SNR values in the range of SNR = −20dB to SNR = −1dB. For this ROC

calculation, the resulting integrated values at t = 10s are used. Figure 3.16 illustrates

the ROC curves obtained by using Algorithm 3 for M = 3 reflection channels, M = 2

reflection channels, and the single channel. The ROC of the proposed integration for

M = 3 reflection channels (solid blue line) provides Pd = 1 after SNR = −6dB, whereas
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Figure 3.15: Receiver operating characteristic (ROC) curves as a function of Pfa: The proposed
detector with M = 3 transmitters (solid blue line), and, M = 2 transmitters (solid cyan line),
respectively, are given. The solid green, the dashed brown, the dotted pink, and the dotted black
lines denote the single channel integrations and the conventional coherent integration, respectively.

the integration value for M = 2 reflection channels (solid cyan line) yields Pd = 1 after

SNR = −4dB. Furthermore, the single channel integration (solid green, dotted brown,

and dashed pink lines) enables one to have Pd = 0.98 after SNR = −2dB.

3.6.2 Performance in estimating the unknowns

This subsection demonstrates the inner workings of Algorithm 3. In particular, consider

the estimation accuracy of the object trajectory, the reflection coefficient, and the

synchronisation term within Algorithm 3. Here, the estimation performance is based on

M = 2 transmitters used in order to avoid repetitions.

Figure 3.17(a) illustrates the typical trajectory (red line), which would lead to resolution

bin migrations in conventional processing. The trajectory estimate output by the

proposed algorithm is depicted by the blue line along the resolution bins (dashed lines)

of a conventional detector. Figure 3.17(b) shows the root mean squared error (RMSE)

of the corresponding range estimate in comparison with the range resolution of ∆τ

(dashed red line). Note that the error reduces to 20% of the range resolution after 2.3 s.

Figure 3.17(c) presents the RMSE of the velocity component of the trajectory estimate
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Figure 3.16: Receiver operating characteristic (ROC) curves as a function of SNR: The proposed
detector with M = 3 transmitters (solid blue line), and M = 2 transmitters (solid cyan line),
respectively, are given. The solid green, the dashed brown, and the dotted pink lines denote the
single channel integrations, respectively.

in Figure 3.17(a). This estimation error is below the velocity resolution of ∆V (dashed

red line), where the error between 6 s and 10 s shows a relatively large value due to the

object’s manoeuvres. Figure 3.17(d) illustrates the RMSE of the bearing component

of the trajectory estimate in Figure 3.17(a). Here, the estimation error is a very small

compared to the bearing resolution of ∆θ (dashed red line). Note that the resolution

bins of the system provides only a coarse view of the trajectory whereas the proposed

algorithm yields a super-resolution effect.

Now, consider the estimation performance in finding the complex reflection coefficient

in the radar data cube. Before this, let one consider the estimation performance given

true values of all unknowns except for the complex reflection coefficient. For this

purpose, Algorithm 1 is used with given the true values of the object state and the

synchronisation term. The number of transmitted pulses also increases in the range of

1 to 30 and generates 100 measurements for each case in order to justify the number of

pulses that are required to estimate the complex reflection coefficients in fine accuracy.
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(c) RMSE of the velocity estimation
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Figure 3.17: Typical trajectory estimation: (a) The estimated trajectory by the proposed algorithm
is depicted with the blue line. (b) Root mean square error (RMSE) of the range estimation in (a). (c)
RMSE of the velocity estimation in (a). (d) RMSE of the angle of arrival estimation in (a). The
dashed red lines in (b), (c), and (d) are the range resolution (∆τ = 150m), the velocity resolution
(∆V = 7.5m/s) and the bearing resolution (∆θ = 5.1◦)

Given the true values, Algorithm 1 estimates the complex reflection coefficient for 100

realisations at each scenario and obtains its variance. This value is compared to CRB

in Appendix A.2. Figure 3.18(a) and (b) show the real part variance and the imaginary

part variance of the esimated reflection coefficient obtained when the number of pulses

increases. The variance of the proposed estimator is very close to the CRB after 15

pulses used. This also implies that the proposed estimator is unbiased in this case.

Next, Algorithm 1 is used within Algorithm 3 for 100 scenario realisations.

Figure 3.18(c) and (d) show typical estimates of the complex reflection coefficients

for the typical steps of Algorithm 1, where the x axis indicates the real part of the

complex reflection coefficient, and the y axis shows its imaginary part. The resulting

estimates are compared with their ground truth values. Also, the ± standard deviation

of Cramér-Rao bound (CRB), ±σCRB, (see, CRB in Appendix A.2) are given for

101



Detection via simultaneous trajectory estimation and long time integration

Number of transmitted pulses
0 5 10 15 20 25 30

R
ea

l(
α

1,
k)

0

0.005

0.01

0.015

0.02
Var(Real(α

1,k
))

CRB
real

(a) Variance versus CRB in real part of α1,k

Number of transmitted pulses
0 5 10 15 20 25 30

Im
ag

(α
1,

k)

0

0.005

0.01

0.015
Var(Imag(α

1,k
))

CRB
imag

(b) Variance versus CRB in imaginary part of α1,k

Real(α
1,k

)

0 0.1 0.2 0.3 0.4 0.5

Im
ag

(α
1

,k
)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
Ground truth

STD of CRB: σ
CRB

STD of α
1,k

estimates

Estimated α
1,k

(c) Reflection coefficient for local channel

Real(α
2,k

)

-0.4 -0.3 -0.2 -0.1 0 0.1

Im
ag

(α
2
,k

)

0

0.1

0.2

0.3

0.4

0.5

0.6
Ground truth

STD of CRB: σ
CRB

STD of α
2,k

estimates

Estimated α
2,k

(d) Reflection coefficient for remote channel

Figure 3.18: Complex reflection coefficient estimation with −6dB reflections: (a) Estimation
performance of the real part of the complex reflection coefficient regarding the variance of 100
realisations by increasing the number of transmitted pulses. (b) Estimation performance of the
imaginary part of (a). (c) A typical estimate of the complex reflection coefficient for the local channel by
using the proposed algorithm. The blue line indicates typical estimates of the local reflection coefficient
by using Algorithm 1 within Algorithm 3. The blue circle shows ± standard deviation of 100 estimates
using the proposed scheme. The blue dots show i = 3 iterations for finding it. The resulting estimate
is compared to the ground truth value (red dot) with the ± standard deviation of Cramér-Rao bound
(CRB), i.e., ±σCRB (dashed red ellipse). The x axis denotes the real part of the complex reflection
coefficient, and the y axis is its imaginary part. (d) A typical estimate of the complex reflection
coefficient for the remote channel by using Algorithm 1 within Algorithm 3 with the same colour codes
in (c).

comparison. In Figure 3.18(c), the estimated reflection coefficient (blue line) for the

local channel stays within ±σCRB (solid red ellipse) after only a few iterations (blue

dots), where the blue dots indicate the number of i iterations for finding the reflection

coefficient in Algorithm 1. The resulting estimate is close to its ground truth value (red

dot). For the remote channel, Figure 3.18(d) presents the typical estimate of the remote

complex reflection coefficient. The resulting estimate for the remote channel (solid blue

line) stays within ±σCRB (solid red ellipse), and is reasonably close to the ground truth

value (red dot). It also provides ± standard deviations (solid blue circle) obtained by

the 100 realisations of both the real part and imaginary part of the complex reflection
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Figure 3.19: Synchronised term estimation: Averaged synchronised term (solid blue line) estimated
by using the proposed estimator versus the ground truth value (solid red line) with the bound the ±Tp
bound (dashed black lines) of a preliminary search over the grids.

coefficient estimates, respectively. These values are larger than the CRB due to the

estimation errors of both the object state and the synchronisation term.

Let one consider the estimation of the time shift, ∆t, in the remote channel. For this

purpose, Algorithm 2 within Algorithm 3 is used for the 100 realisations. Figure 3.19

presents the averaged estimates (solid blue line) with ±σ bounds (dotted blue lines).

These resulting values are compared with the true value of ∆t (red solid line). Also, the

±Tp bounds (dashed black lines) are given for comparison. It is seen that the estimation

error stays within a small fraction of the total pulse width Tp.

The benefits of the propsed scheme come with some additive cost of computations

compared to the conventional scheme. The computational complexity of the proposed

detector for the cell under test for K CPIs is O(PNI), whereas the conventional

coherent detector requires O(K). Here, P indicates the number of particles, and

NI denotes the number of iterations for the EM algorithm in Algorithm 1. This is

detailed in Appendix A.3. Table 3.2 shows the processing time (average time for

100 measurements) measured from the proposed detector using Algorithm 3 when the
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Table 3.2: Computational cost

Time Proposed detector:
O(PNI)

Conventional
detector: O(K)

Processing time (K = 100
CPIs)

2980s for P = 400
4463s for P = 600
5982s for P = 800

8.6s

Processing time for each
CPI (K = 1 CPI)

29.89s for P = 400
44.59s for P = 600
58.44s for P = 800

0.083s

number of particles used are P = 400, P = 600, and P = 800, respectively. It is also

shown that the processing time is obtained by the conventional detector using (3.76).

The computer used for these measurements has i7 6500U CPU without a graphics

processing unit (GPU). Here, it is clearly shown that the conventional detector takes

8.6s, whereas the proposed detector takes the much longer processing time (i.e., 2980s

for P = 400, 4463s for P = 600, and 5982s for P = 800) required.

3.7 Summary

This chapter has proposed the detection algorithm that performs the most efficient

statistical test in order to detect manoeuvring and low SNR objects with an arbitrarily

long time window of measurements in the multistatic configuration. This test is carried

out by simultaneous trajectory estimation and long time integration. This approach

has the capability of collecting the entire evidence on the object’s presence at the

receiver by i) coherently integrating both the monostatic channel and the bistatic channel

within a CPI, ii) performing non-coherent integration across different channels, and

iii) continuing integration for an arbitrarily long interval that contains many CPIs. It is

also demonstrated that the proposed approach can provide the integration that is close

to the best achievable by the clairvoyant integrator. As a result, this approach enables

one to detect manoeuvring and very low SNR objects, which cannot be detected by

using other techniques.

For slowly manoeuvring objects such as hovering drones, the proposed detector might
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not detect such objects because it cannot discriminate them from stationary objects.

There are additional signal features, which can be explored in improving detection

performance. In general, manoeuvring objects have propulsion devices, for example,

rotating wheels or rotating rotor blades. Such devices generate additional frequency

modulation around the main Doppler shift. This is referred to as the micro-Doppler shift,

which provides information on the characterisation of objects. Chapter 4 will introduce

an algorithm, which can estimate micro-Doppler shifts from rotary-wing aircraft such

as unmanned aerial vehicles (UAVs) or drones before the detection decision is made.
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Chapter 4
Joint micro-Doppler signature

estimation and track-before-detect
in an array receiver

4.1 Introduction

This chapter considers the micro-Doppler signature estimation in order to

identify/classify objects detected. This is important regarding the detection of small

objects to discriminate objects of interest from natural objects. The objects of interest

in this chapter consider small rotary-wing aircraft such as drones or unmanned aerial

vehicles (UAVs). Such aircraft consist of a less than 1m2 sized fuselage and multiple

rotor blades (see, for example, the specifications of commercial UAVs in [35]). Unlike

fixed-wing aircraft, these rotary-wing aircraft can hover above ground with very low

speed and can easily be masked by/confused with background objects such as birds,

trees, or buildings. Thus, the detection needs to discriminate these aircraft from the

radar clutter by using information on specific signal features they admit. Reflections

from these aircraft, when illuminated by consecutive radio-frequency (RF) waveforms,

are characterised by the object reflectivity, location, and velocity. In particular, the

radial component of the velocity induces a frequency shift which is known as the Doppler.

The rotating and/or moving components manifest themselves as additional frequency

shifts centred at the Doppler frequency and constitute a micro-Doppler signature. For

example, rotary-wing aircraft induce a line spectra of micro-Doppler shifts. These shifts
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Figure 4.1: Sensing scenario: A radar with a UPA receiver collects reflections from a small
rotary-wing aircraft’s body and multiple rotating blades with the corresponding rotation frequencies
(i.e., ω1, . . . , ωM ). This aircraft is located at [x, y, z]T and has a velocity of [ẋ, ẏ, ż]T in the
tree-dimensional (3D) volume.

are specified by the rotation frequency, the number of rotating blades, and the blade

lengths as discussed in Section 2.4.

In this chapter, a problem scenario is motivated from demands for preventing

drone-misuse (or drone-attack) resulting from the abuse of civilian drones or military

UAVs (see, for example, [107, 108]). A radar system is also motivated by a recently

developed staring radar that can continuously observe the three-dimensional (3D)

volume of a surveillance region based on reflections through the monostatic channel [109].

In simulation, the system parameters of this radar are used to perform an algorithm

which is developed in this chapter. The radar system considered here is a monostatic

radar with a uniform planar array (UPA) receiver in order to observe drones in the (3D)

volume. This receiver structure has mainly two advantages compared to the uniform

linear array (ULA) receiver used in Chapter 3: i) The combination of vertical and

horizontal elements in the array allows the receiver to separate/filtering out reflections

from the ground clutter using the digital beam-forming techniques. ii) This combination

enables the receiver to estimate azimuth and elevation angles of drones. The front-end

signals at the array elements are the superposition of all the reflections from the entire

drone and noise background. This is illustrated in Figure 4.1.
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In this problem setting, the coherent track-before-detect scheme, proposed in

Chapter 3, is employed/extended to estimate micro-Doppler signatures for object

identification/classification. It is assumed that the number of rotor hubs and rotor

blades is known. This estimation is only concerned with the monostatic channel

measurement and measures its performance. In particular, the proposed estimation

scheme uses a maximum likelihood (ML) approach that finds the rotation rate of rotor

blades (i.e., rotation frequency) to maximise a likelihood function conditioned on the

object kinematics, the rotation frequency, and the reflection coefficient. In order to solve

this ML problem that involves latent variables such as the object kinematics and the

reflection coefficient, a joint Bayesian recursive filtering and expectation-maximisation

(EM) approach is proposed. The measurement model in this filtering captures the radar

ambiguity function parametrised on the reflection coefficient together with the rotation

frequency as the micro-Doppler signature of interest. These parameters are found by the

proposed (EM) algorithm within the Bayesian recursive filtering. Here, the detection

scheme is the same used in Section 3.5 of Chapter 3: It first evaluates the long time

likelihood ratio as the pulse integration. This value is used in a Neyman-Person test

against a constant false alarm rate (CFAR) threshold. Therefore, this chapter mainly

focuses on the micro-Doppler signature estimation only.

This chapter is organised as follows: Section 4.2 details the problem scenario, and

Section 4.3 introduces the mathematical expression of reflections from small rotary-wing

aircraft at the array receiver. Section 4.4 explains the trajectory estimation with the

radar data cube and details the empirical Bayes update within the Bayesian recursive

filtering. Section 4.5 proposes an EM algorithm, which estimates the rotation frequency

and the reflection coefficient. Section 4.6 combines this estimation approach together

with the detection scheme explained in Chapter 3. Section 4.7 demonstrates the efficacy

of the proposed scheme through an example in comparison to other techniques, and

Section 4.8 summarises the proposed scheme.

108



Joint micro-Doppler signature estimation and track-before-detect in an array receiver

4.2 Problem statement

Let this section detail the problem scenario as illustrated in Figure 4.1. A radar with a

UPA receiver utilises the pulse waveform used in Section 2.3 (i.e., ũ(t) in (2.16)). This

waveform is characterised by a pulse duration of Tp and a bandwidth of Bw to modulate

a carrier with an angular frequency of ωc. In a coherent processing interval (CPI), the

radar transmitter emitsN consecutive waveforms separated by a pulse repetition interval

(PRI) of T . The UPA consists of Nv vertical and Nh horizontal elements, which are

spaced with a distance that selects half of the carrier wavelength, λc. In this scenario,

the reflector of interest is a small rotary-wing aircraft such as a drone. Typically, a

drone has M rotor hubs with L̃ blades at each hub. These rotating components when

illuminated by the transmitted waveforms induce a micro-Doppler signature on the

reflections. Each array element in the UPA receiver collects the superposition of noise,

background reflections, and the reflections from both the aircraft’s body and blades as

the front-end input.

4.2.1 Received signal model and baseband processing

The front-end processing chain begins with demodulation followed by matched filtering

(MF) with the probing waveform, ũ(t), without loss of generality. This processing

chain is illustrated in Figure 4.2. Let one consider an object (or drone) at the state,

X = [x, y, z, ẋ, ẏ, ż]T , where the first three variables are the coordinates of the position,

and the last three variables are the coordinates of the velocity, respectively. The

reflections from this object is modelled by a complex reflection coefficient, α0, that

signifies reflections from the body, a second coefficient, α1, that is associated with the

superposition of existing rotor hubs, and ω denoting the rotation frequency of the blades

at the hubs (see, Figure 4.1). The (vector valued) MF stage output, in this setting, is
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Figure 4.2: Radar data acquisition reproduced from Figure 2.7: Array elements are matched filtered
and sampled with Tp sampling period. Samples are arranged in array index, fast time and slow time.
z(t) and Z̃(r) denote the MF output and its sampled version, respectively.

modelled by

z(t) = ss (φ(X), θ(X)) e−jωcτ(X)

×

(
α0

N−1∑
n=0

ejΩ(X)nT × Λ (t− τ(X)− nT )

+α1

N−1∑
n=0

ejΩ(X)nTCn(ω,X)× Λ (t− τ(X)− nT )

)
+ η(t),

(4.1)

where η is the nuisance terms at the filter output, and Λ(·) is the auto-correlation

function of the probing waveform, ũ(t), which is given in (2.21).

In this output of the matched filter, τ(X) = R(X)
2 is the pulse time of flight in (2.5),

where R(X) is the radial distance of X to the receiver:

R(X) =
√
x2 + y2 + z2, (4.2)

and the velocity of X induces the angular Doppler shift in (4.1), which contains the
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elevation and the azimuth of X, and is given by

Ω(X) = −4π

λc
V (X), (4.3)

V (X) =
(
ẋ× cosφ(X) cos θ(X) + ẏ × cosφ(X) sin θ(X) + ż × sinφ(X)

)
, (4.4)

where φ(X) and θ(X) are the elevation and the azimuth, respectively:

φ(X) = arctan

(
z√

x2 + y2

)
,

θ(X) = arctan
(y
z

)
. (4.5)

Now, Cn in (4.1) captures the micro-Doppler modulations induced by the rotating

components and is the main different term in comparison with the MF output in (2.20).

This term is given by

Cn(ω,X) ,
+∞∑
i=−∞

+∞∑
ĩ=0

ej×L̃i×ω×nT
2(−1)L̃iL̃

4π
λc

cos (φ(X))
× JL̃i+2̃i+1

(
B

4π

λc
cos (φ(X))

)
, (4.6)

where L̃ is the number of blades, B is the blade length, and Ji is the Bessel

function [110] of the 1st kind and ith order. Section 4.3.1 will introduce explicit formulae

for this derivation. Note that ss in (4.1) is the spatial steering vector characterised by

the combination of vertical and horizontal spatial steering vectors [48, Chp.3], which

differs from the spatial steering vector in (2.18): With the common distance, d, between

two consecutive array elements, the vertical steering vector with Nv vertical elements is

given by

sv(φ, θ) =
[
1, e−jωc

d
c

cosφ sin θ, . . . , e−jωc(Nv−1) d
c

cosφ sin θ
]T
,

and the horizontal spatial steering vector with Nh horizontal elements is given by

sh(φ, θ) =
[
1, e−jωc

d
c

cosφ cos θ, . . . , e−jωc(Nh−1) d
c

cosφ cos θ
]T
,

where d is selected as half of the carrier wavelength (i.e., d = λc
2 ). The spatial steering

vector, ss, is hence given by

ss(φ, θ) = sv(φ, θ)⊗ sh(φ, θ), (4.7)

where the size of ss ∈ CNvNh×1 is an NvNh × 1 vector.
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As discussed Section 2.3 and 3.2, in the baseband processing chain, the MF output

is sampled with the pulse duration of Tp. The resulting output consists of Γ samples

collected for each of the N pulses at each of the NvNh array elements. These samples

are arranged and form an NvNh × N × Γ cube known as the radar data cube (see, Z̃

as the sampled version of the MF output in Figure 4.2). Here, the axes of this data

cube are the array index from 0 to NvNh − 1, the pulse index from 0 to N − 1, and the

range index from 0 to Γ−1, respectively. In the range axis (i.e, the fast time axis), each

sample is associated with a time delay of the reflected signal and can easily be converted

to range values. In the pulse axis (i.e., the slow time axis), N samples separated by

a PRI of T are indexed. These complex valued samples embody both a main Doppler

shift and micro-Doppler shifts due to rotating components in their phase. Thus, the

superposition of all reflectors in the rth range bin is captured in the column stack of the

radar data cube that forms an NvNhN × 1 data vector:

Z(r) =


H(r,X, ω)α+ n(r) , H1 holds,

n(r) , H0 holds,
(4.8)

where H = H1 denotes the case in which an object exists at X with a complex reflection

coefficient vector,

α , [α0, α1]T , (4.9)

and rotating rate with the angular frequency, ω. The matrix valued function H ∈

CNvNhN×2 will be introduced in Section 4.3.2. Here, H = H0 denotes the nuisance-only

hypothesis with n modelling sampler output due to the nuisance term η in (4.1). This

term is the superposition of the background and the receiver noise. In this chapter, n is

a circularly symmetric complex Gaussian random vector with zero mean and covariance

σ given in (2.51).

Note that it is possible to accommodate structured noise with a non-zero mean in (4.8)

and use sample estimators to learn these parameters from data in the absence of objects

of interest, in practice. Further elaboration on these aspects remains as future work.

112



Joint micro-Doppler signature estimation and track-before-detect in an array receiver

4.2.2 Problem definition

This chapter aims to algorithmically perform a statistical test that takes into account

multiple consecutive data cubes collected over a time window spanning K CPIs: This

processing is equivalent to long time integration with coherent integration within a CPI

and non-coherent integration across CPIs. This facilitates the detection of faint/small

objects. Let these radar data cubes denote:

Z1:K , {Z1, . . . ,Zk, . . .ZK},

Zk , [Zk(0), . . . , Zk(Γ− 1)], (4.10)

where Zk is an NvNhN × Γ matrix, which is the rearranged version of the radar data

cube based on (4.8) at the kth CPI. Here,

α1:K , {α1, . . . ,αK}

is also denoted as a set of the complex reflection coefficient vectors over K CPIs.

Detection with unknown trajectory and Doppler signature

Let one consider a composite hypothesis test with a set of unknowns. The hypothesis

variable, H, takes the value, H1, for modelling an object which at time step k = 1 has

its kinematic state from a set, B, which captures, for example, the volume under test

and admissible velocity values. Typically, B is a bounded set and might be selected as

the Cartesian product of a cubical grid cell in the surveillance volume (i.e., an l1 ball in

the surveillance region) and an l2 ball in C3 centred at the origin.

Let Xk denote the object kinematic state at the time step k. This time step is equivalent

to the kth CPI. The object trajectory associated with H = H1 is thus represented by

X1:K , {X1, . . . ,XK},

where X1 ∈ B. The reflections at the kth CPI are captured by αk and remain the same
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within this CPI. The (angular) rotation frequency, ω, of the rotor blades is also assumed

to be constant during the K CPIs of concern.

This chapter addresses two sets of problems under a single framework that are detailed

in the rest of this chapter. The first set is the estimation of the state trajectory, X1:K ,

the reflection coefficients, α1:K , and the rotation angular frequency, ω, given K radar

data cubes, Z1:K , and a region under test, B. This estimation is a core difference in

comparison to Chapter 3.

The second set is the problem on the evaluation of sufficient statistics for the likelihood

ratio:

L(Z1:K |X̂1:K , α̂1:K , ω̂) ,
l(Z1:K |X̂1:K , α̂1:K , ω̂,H = H1)

l(Z1:K |H = H0)
, (4.11)

where X̂1:K , α̂1:K , and ω̂ are the estimates of X1:K , α1:K , and ω, respectively, and

H0 is the null hypothesis. The computation of a constant false alarm (CFAR) decision

threshold, TK , followed by the Neyman-Pearson test [18, Chp.3] is hence given by

L(Z1:K |X̂1:K , α̂1:K , ω̂)
H1

≷
H0

TK . (4.12)

for the detection of a small object in B.

4.2.3 Sufficient statistics of the likelihood functions

Let one focuse on the likelihood functions underlying the estimation and detection

problems stated in Section 4.2.2 following the signal model in (4.8) under the two

hypotheses. Here, the same assumptions in Section 3.2.4 hold: The likelihood ratio

in (4.11) factorises over measurement likelihood ratios for individual data cubes over

K CPIs as the noise samples and the parameters for different CPIs are independent,

respectively. The measurement likelihood is also decomposed by using a locality

property that satisfies the number of range bins associated with Xk. These bins are

limited by the support of duration 2Tp due to the output of auto-correlation at the MF
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stage (see, for example, Figure 3.4). This set of the range bins is defined:

E(Xk) =


{r, r + 1}, rTp < τ(Xk)

{r}, rTp = τ(Xk)

{r − 1, r}, rkTp > τ(Xk)

, r ,
⌊τ(Xk)

Tp

⌋
, (4.13)

where b·c denotes the nearest integer function, and τ(Xk) is the pulse time of flight

in (4.2). The numerator term in (4.11) is the measurement likelihood when H = H1

holds. The locality of the measurements Zk(r) ∈ E(Xk) to Xk at the kth CPI is given

by

l(Zk|Xk,αk, ω,H = H1) =
∏

r∈E(Xk)

l(Zk(r)|Xk,αk, ω,H = H1)
∏

r′∈Ē(Xk)

p(Zk(r
′)),

(4.14)

where Ē(Xk) , {1, 2, · · · ,Γ} \ E(Xk) denotes the complement of E in the set of range

bins. Similarly, the denominator term in (4.11) is the likelihood for the null hypothesis

for K CPI. The locality of the measurements at the kth CPI factorises as

l(Zk|H = H0) =
∏

r∈E(Xk)

l(Zk(r)|H = H0)
∏

r′∈Ē(Xk)

p(Zk(r
′)), (4.15)

Thus, the likelihood ratio in (4.11) with the set of range bins in (4.12) over K CIPs is

found as

L(Z1:K |X1:K ,α1:K , ω) ∝
K∏
k=1

∏
r∈E(Xk)

L(Zk(r)|Xk,αk, ω), (4.16)

where the likelihood ratio on the right hand side denotes the instantaneous ratio given

the rth range bin:

L(Zk(r)|Xk,αk, ω) ,
l(Zk(r)|Xk,αk, ω,H = H1)

l(Zk(r)|H = H0)
. (4.17)

As discussed Section 3.2.4, the numerator term in (4.17) is the measurement likelihood

when H = H1 holds. This can easily be found using the distribution of the noise in (4.8),

and the denominator corresponding to the null hypothesis when H = H0 holds is the
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noise density. The instantaneous likelihood ratio in (4.17) is hence found as

L(Zk(r)|Xk,αk, ω) =
CN
(
Zk(r);H(r,Xk, ω)αk),Σ

)
CN
(
Zk(r);0,Σ

)
= e2Re

{
(H(r,Xk,ω)αk)HΣ−1Zk(r)

}
×e−(H(r,Xk,ω)αk)HΣ−1H(r,Xk,ω)αk . (4.18)

Note that ω in (4.16) is associated with both the trajectory, X1:K , and the complex

reflection coefficients, α1:K , as unknowns forK CPIs. In order to perform the hypothesis

test in (4.12) through the evaluation of (4.16)–(4.18), ω needs to be estimated along

with the estimation of both X1:K and α1:K .

4.3 Spatio-temporal signal model components

This section first explicitly shows the derivation of the micro-Doppler model Cn(ω,X)

in (4.6). Then, it specifies the sampled signal model, H ∈ CNvNhN×2, in (4.8).

4.3.1 MF Output due to rotating blades: The micro-Doppler model

Let one consider the geometry of reflected signals from rotating blades in Figure 4.1 and

detail the superposition of them. Figure 4.3 illustrates the top view of a single rotating

component with the rotation axis in the z-direction and the UPA placed on the x − z

plane. Here, the radial distance of the centre (i.e., X) to the mth rotor hub denotes dm.

The distance of the mth rotor hub to the receiver is hence found by using the law of

cosines:

Rm(X) =
√
R2(X) + d2

m − 2R(X)dm cos (θm), (4.19)

where R(X) is the radial distance of the object to the receiver given in (4.2), and θm

denotes an angle between the R(X) and themth rotor hubs, which assumes to be known.
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Figure 4.3: Top view of Figure 4.1 with the mth rotor hub together with a single blade in the
2D (x,y) plane: The rotation of the rotor blade at the mth rotor hub generates an angular rotation
frequency depicted by ωm.

The corresponding time of flight is also found using (4.19):

τm(X) =
2Rm(X)

c
. (4.20)

The rotor blade at the mth hub when rotating with an angular rotation of ωm = 2πfm

modulates an additional frequency shift centred at the main Doppler shift. This quantity

also varies with the blade length. Let B′ denote a unit reflector patch along the

blade length. The corresponding shift when the receiver collects the nth pulse is hence

found [62] as

µ
(m,n)
D (X,Θ0) , −4π

λc
B
′
cos(φ(X)) sin (ωmnT + Θ0) . (4.21)

where φ(X) is the elevation angle in (4.5), and Θ0 denotes an initial rotating angle of the

blade. Multiple rotor blades when L̃ > 1 on a single rotor hub are uniformly separated

with an angle, leading to angle-based indexing, where the lth blade is associated with

Θl ,
2π (l − 1)

L̃

for l = 1, . . . , L̃ (see, for example, [66, 111]). The corresponding micro-Doppler shift is
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found using (4.21):

µ
(m,n)
D (X,Θl) = −4π

λc
B
′
cos(φ(X)) sin

(
ωmnT +

2π (l − 1)

L̃

)
, (4.22)

where µ(m,n)
D (X,Θl) denotes the micro-Doppler shift induced by the lth rotating blade

on the mth hub for the nth received pulse. In comparison to the micro-Doppler shift

of (2.54) in Section 2.4, (4.22) contains the cosine term of the elevation angle of X.

Note that, in this problem setting, the reflector of interest is a small drone. Because of

the small sized body, the radial distance of R(X) in (4.2) is very close to that of Rm(X)

in (4.19) due to dm � R(X). In other words, the corresponding time of flight is very

close to that of Rm(X) (i.e., τ(X) ≈ τm(X)). The front-end input hence approximates

to the superposition of the reflections with the same times of flight from both the aircraft

body and its rotating blades.

After the demodulation and MF, the MF output of the array reflections from the mth

rotor hub associated with the L̃ > 1 rotating blades is found by using (4.22) and a

Bessel series [110]:

s̃(r)
m (t) , α̃mss (φ(X), θ(X)) e−jωcτ(X)

N−1∑
n=0

ejΩ(X)nT

×
L̃∑
l=1

ejµ
(m,n)
D (X,Θl) × Λ (t− τ(X)− nT )

= α̃mss (φ(X), θ(X)) e−jωcτ(X)
N−1∑
n=0

ejnΩ(X)

×
+∞∑
i=−∞

Ji

(
−4π

λc
B
′
cos (φ(X))

)
ej×iωmnT

×
L̃∑
l=1

ej×i
2π(l−1)

L̃ Λ (t− τ(X)− nT ) (4.23)

where α̃m is the reflection coefficient associated with L̃ rotating blades of the mth

hub, and Ji is the Bessel function of the 1st kind and ith order in (4.6). Here, the

reason for the use of the Bessel function combines all influences on the micro-Doppler

modulations of individual rotating blades and provides a single function that contains
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the micro-Doppler components and acts as the Fourier coefficient for them. This will

be shown through the derivation for the rest of this section.

It is emphasized that (4.23) is the reflection from the unit reflector patch, B′ , along the

blade length, B. In order to obtain the micro-Doppler shift along the total blade length,

B, (4.23) needs to take the integral over the total blade length:

s(r)
m (t) ,

B
′
=B∫

B′=0

s̃(r)
m (t)dB

′
,

and the resulting expression obtained by using the integral of Bessel series [110, Chp.3]

is found as

s(r)
m (t) = α̃mss (φ(X), θ(X)) e−jωcτ(X)

N−1∑
n=0

ejnΩ(X) (4.24)

×
+∞∑
i=−∞

+∞∑
ĩ=0

2(−1)L̃i

4π
λc

cos (φ(X))
JL̃i+2̃i+1

(
B

4π

λc
cos (φ(X))

)

×ej×iωmnT
L̃∑
l=1

ej×i
2π(l−1)

L̃ Λ (t− τ(X)− nT ) .

Here, the summation term on the last line of (4.24) is the sum of roots of unity given

by
L̃∑
l=1

ej×i
2π(l−1)

L̃ =


0 if i 6= 0,±L̃,±2L̃, . . .

L̃ if i = 0,±L̃,±2L̃, . . .

. (4.25)

After substituting (4.25) into the micro-Doppler reflection in (4.24), one obtains

s(r)
m (t) = α̃mss (φ(X), θ(X)) e−jωcτ(X)

N−1∑
n=0

ejΩ(X)nT × Cn(ωm,X)Λ (t− τ(X)− nT ) ,

(4.26)

where Cn is a function of the mth rotation frequency and X capturing the summation

over all the Bessel functions in (4.24) and is given in (4.6).

Let one consider the computation of (4.6). This function has two infinite summation

terms, which are not straightforward to be evaluated. Here, this function is divided into

inner and outer summation. The outer summation that contains the inner summation
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Table 4.1: Cn function parameters

Parameter Value

Wavelength, i.e., λc 0.3 m

Pulse repetition interval (PRI), i.e., T 133 µs

Number of rotor blades, i.e., L̃ 2

Elevation angle, i.e., φ(X) 0

Rotation frequency, i.e., ω 2π × 68Hz

Blade length, i.e, B 0.16 m

(a) CL̃(i,X) with ĩ = 100 (b) CL̃(i,X) with ĩ = 10

Figure 4.4: Empirical resulting value of CL̃ in (4.28): (a) CL̃(i,X) with ĩ = 0, . . . , 100. (b) CL̃(i,X)
with ĩ = 0, . . . , 10. CL̃ is converged to 0.33 at ĩ = 3.

is given by:

Cn(ω,X) ,
+∞∑
i=−∞

CL̃(i,X)× ej×L̃i×ω×nT , (4.27)

where CL̃ is the inner summation and is given by

CL̃(i,X) ,
+∞∑
ĩ=0

2(−1)L̃iL̃
4π
λc

cos (φ(X))
× JL̃i+2̃i+1

(
B

4π

λc
cos (φ(X))

)
(4.28)

Regarding (4.28) and (4.27), Figure 4.4 illustrates empirical resulting values of the inner

summation in (4.28). The parameters used in this experiment is listed in Table 4.1. Here,

Figure 4.4(a) shows the empirical resulting value of (4.28) in the range of ĩ = 0, . . . , 100,

and Figure 4.4(b) illustrates its resulting value for ĩ = 0, . . . , 10, respectively. As

shown in Figure 4.4, CL̃ is converged to 0.33 at ĩ = 3 in both cases. Similarly,
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(a) Cn(ω,X) with i = ±100 and ĩ = 3 (b) Cn(ω,X) with i = ±10 and ĩ = 3

Figure 4.5: Empirical resulting value of Cn with n = 1 in(4.27): (a) Cn with i = −100, . . . , 100 and
ĩ = 0, . . . , 3 (b) CL̃ with i = −10, . . . , 10 and ĩ = 0, . . . , 3. Cn(ω,X) is converged to 2 at i = ±5.

Figure 4.5 presents empirical resulting values of (4.27) with the same parameter values

used in Figure 4.4. The inner summation term sets the range of ĩ = 0, . . . , 3 due

to its convergence. Figure 4.5(a) and (b) show the resulting values in the range of

i = −100, . . . 100 and of i = −10, . . . 10, respectively. Both values are converged to 2 at

i = 5. Regarding these experiments, it is concluded that the computation of Cn requires

the minimum range of ĩ = 0, . . . , 3 for the inner summation and of i = −5, . . . , 5 for

the outer summation, respectively, in order to find this coefficient. For the rest of this

chapter, these summation terms set ĩ = 0, . . . , 3 and i = −5, . . . , 5 to compute Cn for

each of N pulses in a CPI.

In the case of M > 1 rotor hubs, rotation frequencies of blades on separately located

rotor hubs are very close during flight. There are experimental results on the power

spectrum of radar measurements on a commercial quad-rotor drone when flying. These

results show harmonics of a single fundamental frequency as the rotating blades (see,

for example, [112]). In other words, all the (angular) rotation frequencies of rotating

blades at M rotor hubs can be represented with one degree of freedom:

ωm ≈ ω, m = 1, . . . ,M.

As a result, the MF output of reflections from all rotating blades at M rotor hubs, each
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of which considers the same position and velocity of the aircraft’s body, becomes

s(r)(t) = α1ss (φ(X), θ(X)) e−jωcτ(X)
N−1∑
n=0

ejΩ(X)nT × Cn(ω,X)Λ (t− τ(X)− nT ) ,

(4.29)

where

α1 ,
M∑
m=1

α̃m

is the sum ofM reflection coefficients that captures the reflectivity of the hubs as well as

the reflectivity of the blades. It is straightforward to identify this term in the matched

filter output model in (4.1). It is also emphasised that this resulting expression is a new

mathematical expression for small drones.

4.3.2 Measurement model

This subsection provides explicit formulae for the measurement model in (4.8) starting

from the radar data cube. As explained in Section 4.2.1, Z̃ is the radar data cube that

contains NvNh × N × Γ data samples from the array index, the pulse index, and the

range index, respectively, as illustrated in Figure 4.2. Before specifying Z̃, let one denote

a temporal matrix by st (X,Ω, ω) ∈ CN×2 that captures the micro-Doppler components

in (4.27) induced by the (angular) rotation frequency, ω, when the receiver collects the

N pulses:

st (X,Ω, ω) , e−jωcτ(X) ×


1 C0 (ω,X)
...

...

ejΩ(N−1)T CN−1 (ω,X) ejΩ(N−1)T

 . (4.30)

For the rth range bin, NvNh ×N array measurements are hence a slice along the pulse

index. This is given by

Z̃(r) = ss (φ(X), θ(X))×
{
st (X,Ω(X), ω)×α

}T × Λ (rTp − τ(X)

+ss (φ(X), θ(X))× ñT (r), (4.31)

ñ(r) , [η(rTp),η(rTp + T ), . . . ,η(rTp + (N − 1)T )]T , (4.32)
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where ñ is the sampler output due to the nuisance term, η, in (4.1) and is the

superposition of the background and the receiver noise.

As explained in Section 4.2.1, it stacks columns of Z̃(r) and forms an NvNhN × 1 data

vector. As a result, H ∈ CNvNhN×2 in (4.8) is identified and is a function of the object

kinematic state, X, and the (angular) rotation frequency, ω:

H(r,X, ω) , ss (φ(X), θ(X))⊗ st (X,Ω(X), ω)× Λ (rTp − τ(X)) , (4.33)

where ⊗ denotes the Kronecker product operator.

4.4 Trajectory estimation with Bayesian filtering of the
radar data cubes

Let this section consider tracking X1:K with the radar data cubes collected for the time

window K. As discussed in Section 3.3 a Markov state-space model [24, Chp.3] is used

and models X1:K as a sequence of kinematic states in (3.16). The initial distribution is

selected as the uniform distribution in (3.19) due to no prior knowledge of the position

and the velocity of the reflector at an initial state. This uniform distribution uses

a bounded set, B, of the range-angle (i.e., the position) and the Doppler (i.e., the

velocity) intervals, which often correspond to radar specific resolution bins. The Markov

transition density in this section is selected as

p (Xk|Xk−1) = N (Xk;FXk−1,Q) , (4.34)
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where F models constant velocity motion with the time interval of ∆ between two

consecutive pulse train transmissions (or the illumination period) given by

F =



1 0 0 ∆ 0 0

0 1 0 0 ∆ 0

0 0 1 0 0 ∆

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (4.35)

and Q is the covariance matrix specifying the level of the process noise modelling

unknown manoeuvres. For example, a variance of σ2
v in each direction of the velocity

vector is modelled with

Q = σ2
v ×



∆3

3 0 0 ∆2

2 0 0

0 ∆3

3 0 0 ∆2

2 0

0 0 ∆3

3 0 0 ∆2

2

∆2

2 0 0 ∆ 0 0

0 ∆2

2 0 0 ∆ 0

0 0 ∆2

2 0 0 ∆


. (4.36)

Sequential estimate, Xk, uses the measurement likelihood of the signal model, which is

found using (4.8) for H = H1, and using (4.14):

l(Zk|Xk,αk, ω) ∝
∏

r∈E(Xk)

l(Zk(r)|Xk,αk, ω,H = H1). (4.37)

In particular, a bootstrap filtering approach is used for this purpose: For the prediction

stage at time step k = 1, a regular grid of P samples (or particles) over B is generated

from the initial state distribution in (3.19). These samples constitute an equally weight

set denoted by {
X

(p)
1 , ζ

(p)
1 ← 1

P

}P
p=1

.

For time step k > 1, suppose that a set of weighted particles is available, represents the
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state posterior in the previous step and denote this set by{
X

(p)
k−1, ζ

(p)
k−1

}P
p=1

.

The prediction stage with this set is realised by using the Markov transition in (4.34):

X
(p)
k|k−1 ∼ p(·|X

(p)
k−1), p = 1, . . . , P. (4.38)

The corresponding weights are used as the previous weights:

ζ
(p)
k|k−1 ← ζ

(p)
k−1. (4.39)

Now, the prediction stage obtains a new set of P samples (or particles):{
X

(p)
k|k−1, ζ

(p)
k|k−1

}P
p=1

. (4.40)

As explained in Section 3.3, for the update stage, P state variables are used as the state

variables from the prediction stage:

X
(p)
k ← X

(p)
k|k−1, p = 1, . . . , P. (4.41)

The corresponding weights are updated by using the measurement likelihood in (4.37)

together with the given (hypothesised) reflection coefficients, αk, and the rotation

frequency, ω:

ζ
(p)
k =

ζ̃
(p)
k∑P

p′=1 ζ̃
(p′)
k

, (4.42)

ζ̃
(p)
k = ζ

(p)
k|k−1l(Zk|X

(p)
k ,αk, ω). (4.43)

After finding the normalised weights ζ(p)
k in (4.42), the degeneracy is tested using (3.32)

to find the number of the effective particles and comparing this value to a pre-defined

threshold of Teff . When Neff < Teff , perform the re-sampling using (3.33) and the

post-regularised step using (3.34), which provides a new set of the particles. Afterwards,

continue filtering with this new set of equally weighted particles.

After the degeneracy test, the re-sampling, and the post-regularised step, the object
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state at the kth CPI is estimated by using the weighted average:

X̂k =
P∑
p=1

ζ
(p)
k X

(p)
k . (4.44)

where X̂k denotes the estimated object state Xk.

4.5 Maximum likelihood estimation of the micro-Doppler
shift and the reflectivity

The previous section details a particle filter for generating weighted samples from

filtering distributions that facilitate the estimation of the state variable. Let this

section consider estimating ω and α1:K in order to evaluate the hypothesis test in (4.12)

through (4.14)–(4.18).

In the signal model derived from Section 4.3.1, ω is a frequency shift characterising

micro-Doppler signature captured by Cn(X, ω) in (4.6). In the literature, micro-Doppler

signatures (or shifts) are often found by using time-frequency analysis (TFA) techniques

after the detection processing is completed (see, for example, [113, 114]). These

techniques often require long dwell times to collect sufficient data samples in a CPI so

that the TFA can achieve a favourable frequency resolution. In the case of manoeuvring

and small reflectors, these conditions cannot be easily achieved due to the low reflectivity,

which delivers difficulties in detecting such objects in the first place, and the manoeuvres,

which limit the length of a CPI and the number of reflections collected during this

interval.

Unlike the TFA approaches, the proposed scheme is interested in evaluating the sufficient

statics of ω using the radar data cubes collected during the time window of K CPIs.

Each data cube is the complex number and parametrised on the reflector kinematic state,

the complex reflection coefficients, and the (angular) rotation frequency (see, (4.31)).

As discussed in Section 3.4.1, an exaptation-maximisation (EM) algorithm is proposed

due to latent variables such as X1:K and α1:K . It is emphasised that even though the
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proposed scheme is the same used in Section 3.4.1, the problem setting here differ from

that in Section 3.4.1: The previously proposed EM just solved the estimation problem

of αk considering the likelihood that takes the measurements collected at time step k (,

equivalently the kth CPI) and has no considerations for previous measurements due to

the change of the reflectivity from one CPI to another. The problem here, on the other

hand, considers all the measurements during the time window of K CPIs in the range of

k = 1, . . . ,K in order to estimate ω, and the number of latent variables in the proposed

EM have two variables as unknowns. For the problem at hand, the EM iterations to

solve the optimisation problem for j = 1, 2, . . . is given by

ω(j) = arg max
ω

Q
(
ω, ω(j−1)

)
, (4.45)

and

Q
(
ω, ω(j−1)

)
, E

{
log p(X1:K ,α1:K ,Z1:K |ω);Z1:K , ω

(j−1)
}

(4.46)

=

∫
X1:K

∫
α1:K

log p (X1:K ,α1:K ,Z1:K |ω)

×p(X1:K ,α1:K |Z1:K , ω
(j−1))dX1:Kdα1:K

where E{·} is the expectation, and the density underlying the expectation above is

conditioned on Z1:K and the previously found value, ω(j−1).

The first term inside the integral of (4.46) is expressed by using the Bayes’ rule and the

chain rule of probabilities:

log p(X1:K ,α1:K ,Z1;K |ω)

= log{l(Z1:K |X1:K ,α1:K , ω)× p(X1:K |α1:K , ω)× p(α1:K |ω)}

= log l(Z1:K |X1:K ,α1:K , ω) + log p(X1:K |α1:K , ω) + log p(α1:K |ω). (4.47)

As discussed in Section 4.2.3, it is assumed that all variables, which the likelihood is

conditioned on, are independent because one parameter has no influences on the change

of the other parameters. In other words, X1:K and α1:K are not affected by ω. Here,

another assumption holds as the conditional independence of the measurement variable,
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Zk at time k given Xk, αk, and ω. Regarding these assumptions, (4.47) is rewritten by

log p(X1:K ,α1:K ,Z1;K |ω)

=

K∑
k=1

log l(Zk|αk,Xk, ω) + log p(X1:K) + log p(α1:K). (4.48)

The second term inside the integral of (4.46) also expends using the chain rule of

probabilities with the conditional independence:

p(X1:K ,α1:K |Z1:K , ω
(j−1)) =

K∏
k=1

p(Xk,αk|Z1:K , ω
(j−1)). (4.49)

As a result, the EM objective (i.e., Q function) in (4.46) through (4.47)–(4.49) is

rewritten by

Q
(
ω, ω(j−1)

)
=

∫
X1:K

∫
α1:K

K∑
k=1

log l(Zk|αk,Xk, ω)
K∏
k=1

p(Xk,αk|Z1:K , ω
(j−1))dX1:Kdα1:K

+

∫
X1:K

∫
α1:K

log p(X1:K)

K∏
k=1

p(Xk,αk|Z1:K , ω
(j−1))dX1:Kdα1:K

+

∫
X1:K

∫
α1:K

log p(α1:K)
K∏
k=1

p(Xk,αk|Z1:K , ω
(j−1))dX1:Kdα1:K

∝
K∑
k=1

∫
Xk

∫
αk

log l(Zk|αk,Xk, ω)p(Xk,αk|Z1:K , ω
(j−1))dXkdαk. (4.50)

Here, the second and third lines are not dependent on ω as explained through (4.47)

and (4.48). Thus, the Q function is only considered with the likelihood term that

is conditioned on Xk, αk, and ω. Also, the Q function is proportional to the last

line in (4.50). Furthermore, the evaluation of (4.50) involves smoothing [115] over K

radar data cubes (i.e., Z1:k). The smoothing differs from the filtering: The filtering in

Bayesian framework computes (or finds) the distribution of variables based on sequence

of observations. On the other hand, the smoothing requires all observations up to time

K and computes the distribution of variables based on these observations. This, hence,

needs to have more computation effort than the use of sequential filtering. In order to

facilitate the sequential filtering, the smoothing density in (4.50) is replaced with the
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filtering density, and the correspondence is given by

Q̃K

(
ω, ω(j−1)

)
,

K∑
k=1

∫
Xk

∫
αk

log l(Zk|Xk,αk, ω)p(Xk,αk|Z1:k, ω
(j−1))dXkdαk, (4.51)

where the right hand side is an approximation to the right hand side in the last line

of (4.50). This objective can make a recursive form, which is given by

Q̃k

(
ω, ω(j−1)

)
= Q̃k−1

(
ω, ω(j−1)

)
+ R̃k

(
ω, ω(j−1)

)
, (4.52)

for k = 1, . . . ,K with the initial Q̃0 = 0, and

R̃k

(
ω, ω(j−1)

)
,
∫
Xk

∫
αk

log l(Zk|Xk,αk, ω)p(Xk,αk|Z1:k, ω
(j−1))dXkdαk, (4.53)

The filtering density as discussed above is the second term inside the integral of (4.53)

and is still complex to be evaluated. This density involves both the state variable and

the complex reflection coefficients. This term further decomposes using the chain rule

of probabilities:

p(Xk,αk|Z1:k, ω
(j−1)) = p(Xk|αk,Z1:k, ω

(j−1))× p(αk|Z1:k, ω
(j−1)) (4.54)

Here, the first term on the right hand side is the filtering density on the kinematic state,

Xk, at time k conditioned on the radar data cubes collected up to k CPIs and the signal

model parameters. Computation of this density can be viewed as track-before-detect as

discussed in Chapter 3. The second term in (4.54) is the density of the complex reflection

coefficients conditioned on the measurements, Z1:k, and the rotation frequency, ω. Note

that it is desirable to use a sufficiently flat (or non-informative) prior for these reflection

coefficients. Here, the conditioning on the measurements places more probability mass

in the posterior concentrated in the vicinity of the ML estimate of αk given ω(j−1).

Thus, the following approximation to this density is considered:

p
(
αk|Z1:k, ω

(j−1)
)
← δα̂k(ω(j−1)) (αk) , (4.55)

α̂k

(
ω(j−1)

)
= arg max

αk
l
(
Z1:k|αk, ω(j−1)

)
, (4.56)

where δ is Dirac’s delta distribution, and ← denotes assignment that the distribution
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on the left hand side is asserted to be the Dirac’s delta on the right hand side. Here,

the ML estimate of αk is dependent on ω(j−1) and becomes a function of ω(j−1). This

is an instance of empirical Bayes as discussed in Section 3.3.

As a result, after substituting (4.54) and (4.55) from time step 1 to k into (4.53), this

leads to the objective function component at the time step k:

R̃k

(
ω, ω(j−1)

)
≈

∫
Xk

log l
(
Zk|Xk, α̂k

(
ω(j−1)

)
, ω
)

×p
(
Xk|Z1:k, α̂k

(
ω(j−1)

)
ω(j−1)

)
dXk. (4.57)

Let one focus on the evaluation of (4.57). For this purpose, the Monte Carlo

integration [101] is used with a set of particles representing the filtering distribution with

the density p
(
Xk|Z1:k, α̂k

(
ω(j−1)

)
, ω(j−1)

)
. This set is obtained/computed through

(4.40)–(4.43) using the steps detailed in Section 4.4. Thus, a Monte Carlo approximation

to (4.57) with the set of
{
X

(p)
k , ζ

(p)
k

}P
p=1

is given by

R̂k

(
ω, ω(j−1)

)
≈

P∑
p=1

ζ
(p)
k × log l

(
Zk|Xk = X

(p)
k , α̂k

(
ω(j−1)

)
, ω
)

(4.58)

Thus, (4.52) approximates:

Q̂k

(
ω, ω(j−1)

)
≈ Q̂k−1 + R̂k

(
ω, ω(j−1)

)
, (4.59)

Q̂k−1 ≈
k−1∑
k=1

R̂k

(
ω, ω(j−1)

)
, (4.60)

and (4.51) approximates:

Q̂k=K

(
ω, ω(j−1)

)
≈

k=K∑
k=1

R̂k

(
ω, ω(j−1)

)
, (4.61)

The formula above facilitates the gradient-free methods such as one-dimensional

line search techniques to solve the maximisation problem in (4.45). As discussed

in Section 3.4.2, the golden section search algorithm that iteratively finds ω

maximising the Monte Carlo approximation to the EM objective in (4.50) evaluated

through (4.51)–(4.60). This evaluation relies on being able to solve the second nested
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ML problem that involves the estimation of the reflection coefficients in (4.56). This

problem differs from that of Chapter 3. In the next section, the explicit formulae

for solving (4.56) and extend the coherent track-before-detect algorithm in Chapter 3

together with the signal model in Section 4.3 that captures the micro-Doppler shift term.

4.5.1 ML estimation for the reflection coefficients

Let this subsection consider the ML estimation problem in (4.56). The empirical Bayes

approximation asserted from 1 to k estimates the reflection coefficients at all time

steps and is conditioned on the filtering density in(4.58). This operation leads to the

sequence of αk′ estimation for k′ = 1, . . . , k time steps. This approach requires another

EM iterations inside the above EM algorithm in order to find ω̂. Here, for the sake

of simplicity in notion, the dependence of the reflection coefficient estimates to the

micro-Doppler shift (i.e., α̂k′
(
ω(j−1)

)
) is not used for the rest of this section. Thus, EM

iterations to estimate αk′ are given for i = 1, 2, . . . by solving the problem:

α
(i)

k′
= arg max

α
k
′
Sω(j−1)(αk′ ,α

(i−1)

k′
), (4.62)

where

Sω(j−1)(αk′ ,α
(i−1)

k′
) , E{log p(Xk′ ,Zk′ |αk′ , ω

(j−1))|Zk′ ,α
(i−1)

k′
, ω(j−1)} (4.63)

=

∫
X
k
′

log p(Xk′ ,Zk′ |αk′ , ω
(j−1))× p(Xk′ |Zk′ ,α

(i−1)

k′
, ω(j−1))dXk′ .

∝
∫

X
k
′

log l(Zk′ |Xk′ ,αk′ , ω)× p(Xk′ |Zk′ ,α
(i−1)

k′
, ω(j−1))dXk′ .(4.64)

Note that as discussed in Section 3.4.1, this objective is obtained by using the same steps

through (3.37)–(3.41). The second term inside the integral in (4.64) is the prior density

for the object state, Xk′ , conditioned on the reflection coefficient estimates given value

at (i− 1) and the fixed micro-Doppler shift, ω(j−1). The density can also be expressed

using Bayes’ rule:

p(Xk′ |Zk′ ,α
(i−1)

k′
, ω(j−1)) ∝ l(Zk′ |Xk′ ,α

(i−1)

k′
, ω(j−1))× p(Xk′ |α

(i−1)

k′
, ω(j−1)). (4.65)
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Here, α(i−1)

k′
and ω(j−1) are given. p(Xk′ |·) is a prior density, where Xk′ is independent

to the other variables and is selected as the prediction density which is already defined

in Section 4.4:

p(Xk′ |α
(i−1)

k′
, ω(j−1))← p(Xk′ |Z1:k′−1), (4.66)

Thus, the Monte Carlo approximation to (4.63) is readily available when the sequence of

problems until k′−1 have been solved to obtain α̂1:k′ , and a particle set that represents

the prediction density is generated.

When k
′

= k, α̂1:k−1 have been estimated for a hypothesised micro-Doppler shift

value of ω, and the set of
{
X

(p)
k|k−1, ζ

(p)
k|k−1

}
has been obtained using the steps

through (4.38)–(4.40) detailed in Section 4.4. Then, the MC approximation is given

by

Ŝω(αk,α
(i−1)
k ) ∝∼

P∑
p=1

ξ
(p,i−1)
k log l(Zk|Xk = X

(p)
k|k−1,αk, ω), (4.67)

ξ
(p,i−1)
k =

l(Zk|Xk = X
(p)
k|k−1,α

(i−1)
k , ω)ζ

(p)
k|k−1∑P

p′=1 l(Zk|Xk = X
(p′)
k|k−1,α

(i−1)
k , ω)ζ

(p′)
k|k−1

, (4.68)

For solving (4.62), it takes the first order partial derivative of (4.67) with respect to αk.

The resulting expression is given by

∂Ŝω

(
αk,α

(i−1)
k

)
∂αk

=

∂Ŝω
(
αk,α

(i−1)
k

)
∂α0,k

∂Ŝω
(
αk,α

(i−1)
k

)
∂α1,k

 (4.69)

=

P∑
p=1

∑
r∈E

(
X

(p)
k|k−1

) ξ(p,i−1)
k

{
2HH

(
r,X

(p)
k|k−1, ω

)
Σ−1Zk (r)

−2HH
(
r,X

(p)
k|k−1, ω

)
Σ−1H

(
r,X

(p)
k|k−1, ω

)}
,

where ξ
(p,i−1)
k is given in (4.68). After setting this expression to zero, the ML

estimate of the reflection coefficients at the kth CPI is found as a closed-form
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Algorithm 4 Particle filtering and EM iterations for the estimation of reflection coefficients

1: Input: Z1:K . Radar data cubes for K CPIs
2: Input: ω . A micro-Doppler shift value
3: Input: α̂0 ←∞
4: for k = 1, . . . , K do . Particle filtering and EM
5: Find {X(p)

k|k−1, ζ
(p)
k|k−1}

P
p=1 through (4.38)– (4.40) with ω and α̂1:k−1 . Prediction

stage in Section 4.4
6: Find α̂k using Algorithm 5 with {X(p)

k|k−1, ζ
(p)
k|k−1}

P
p=1 and ω . Reflection

coefficient estimation in Section 4.5.1
7: Find {X(p)

k , ζ
(p)
k }

P
p=1 through (4.41)–(4.43) with {X(p)

k|k−1, ζ
(p)
k|k−1}

P
p=1, ω, and α̂k

. Update stage in Section 4.4
8: end for
9: Return α̂1:K and {X(p)

1:K , ζ
(p)
1:K}Pp=1

solution for given α(i−1)
k :

α
(i)
k =


P∑
p=1

∑
r∈E

(
X

(p)
k|k−1

) ξ(p,i−1)
k HH

(
r,X

(p)
k|k−1, ω

)
Σ−1H

(
r,X

(p)
k|k−1, ω

)
−1

×
P∑
p=1

∑
r∈E

(
X

(p)
k|k−1

) ξ(p,i−1)
k HH

(
r,X

(p)
k|k−1, ω

)
Σ−1Zk (r) . (4.70)

Note that the ML estimator in (4.70) takes the inner product of the measurements with

the signal model, H, in (4.33) given the angular rotation frequency, ω. This operation

effectively performs the digital beam-forming towards the reflector position encoded

in the state, X(p)
k|k−1, by substituting P state variable particles into the signal model

H. In contrast, other beam-forming techniques require to find the reflector position

by scanning all the surveillance region. The proposed estimator also simultaneously

matches the Doppler frequency encoded in the signal model, H, with its true value by

using these P state particles. Therefore, this estimator will be rejecting interference

with other objects, unless their state values are very close to the target state value in

the achievable spatial and Doppler bandwidths.

The discussion above specifies Algorithm 4 and 5. The EM iterations are called during

the iterations of particle filtering which was detailed in Section 4.4. These steps are

given in Algorithm 4 for a hypothesised micro-Doppler shift of ω. The EM iterations

are called at Step 6 and captured in Algorithm 5. Remind that these estimates are
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Algorithm 5 Particle EM algorithm for the estimation of the reflection coefficients
1: Input: ω . The hypothesised micro-Doppler shift
2: Input: α(0)

k and ε . Initial value and termination threshold
3: Input:{X(p)

k|k−1, ζ
(p)
k|k−1} . Prediction stage in Section 4.4

4: Input: i← 0 . Initialisation for the EM iterations
5: repeat
6: i← i+ 1
7: Find weights {ξ(p,i−1)k }Pp=1 using (4.68) with α(i−1)

k and ω . E− step

8: Find α(i)
k using (4.70) . M− step

9: until ||α(i)
k −α

(i−1)
k || < ε . Test convergence

10: Return α̂k ← α
(i)
k

substituted into the EM objective (4.58) and (4.60) when finding the ML estimate of

the micro-Doppler shift, ω̂.

4.5.2 ML estimation for the angular rotation frequencies

The EM iterations in (4.45) with the Monte Carlo approximation through (4.58) - (4.61)

lead to the particle EM algorithm for the ML estimation of ω. These steps are given

in Algorithm 6 and 7. An initial value, ω(0), is improved in terms of likelihoods in the

iterations Algorithm 6 in which the complex reflection coefficients are estimated in Step

7 using the numerical procedures introduced in Section 4.5.1 and in Algorithm 5. Then,

these estimates and the particles generated during their estimation is used in Algorithm 6

to find the micro-Doppler shift that maximises the Monte Carlo approximation to the

expectation of concern given in (4.58) and (4.61). In particular, the golden section

search algorithm is used. This algorithm only requires the evaluation of and iteratively

reduces an initially selected interval of uncertainty as discussed in Section 3.4.2.

In order to improve convergence properties, the initial value of ω is searched by an initial

search processing, and Algorithm 6 takes this value as ω(0). For this search, it uses only

Z1 and directly evaluate the logarithm of the likelihood conditioned on the reflection

coefficients estimated using Algorithm 4 and 5. Then, the maximising value is selected

as the initial point, ω(0), in Algorithm 6. The initial search is specified over a uniform

grid of values in the range of minimum and maximum angular rotation frequencies.

This minimum value is selected by using 25% of the maximum possible angular rotation
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Algorithm 6 EM iterations for the estimation of ω together with α1:K and X1:K

1: Input: ω(0) . Initial value
2: Input: εω . Termination threshold
3: Input: Z1:K . Radar data cubes for K CPIs
4: Input: j ← 0 . Initialisation for the EM iterations
5: repeat
6: j ← j + 1

7: Find α̂1:K

(
ω(j−1)) and {X(p)

1:K , ζ
(p)
1:K}Pp=1 by using Algorithm 5 within Algorithm 4 with

ω ← ω(j−1)

8: Find ω∗ that maximises QK

(
ω, ω(j−1)) by using Algorithm 7 . EM− step

9: ω(j) ← ω∗

10: until ||ω(j) − ω(j−1)|| < εω . Test convergence
11: Find α̂1:K

(
ω(j)

)
and {X(p)

1:K , ζ
(p)
1:K}Pp=1 by using Algorithm 5 within Algorithm 4 with

ω ← ω(j)

12: Find X̂1:K using {X(p)
1:K , ζ

(p)
1:K}Pp=1 by using (4.44) for k = 1, . . . ,K

13: Return ω̂ ← ω(j), α̂1:K ← α̂1:K

(
ω(j)

)
, and X̂1:K

frequency (see, for example, [66]), and the total number of angular frequencies uniformly

separated by using a pre-defined resolution, ∆ω, is determined by

Nmax ,
⌊ωmax − ωmin

∆ω

⌋
, (4.71)

where ωmin and ωmax denote minimum and maximum angular rotation frequencies,

receptively, and b·c denotes the nearest integer function.

4.6 Detection via long time integration using the proposed
estimator

The proposed estimators above enable one to evaluate the statistical hypothesis test

through (4.11) and (4.14)–(4.18). This test realises the sum of the instantaneous

likelihood ratios along an object’s trajectory, X1:K , thereby long-time integrating their

reflections. As discussed in Section 3.5, this test is following steps through (3.52)–(3.54).

After using Algorithm 4 and 5 within Algorithm 6 and 7, the resulting estimates obtain

ω̂, α̂1:K and X̂1:K . With these estimates, the logarithm of the likelihood ratio in (4.16)
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Algorithm 7 Maximisation step of EM algorithm via golden section line search as detailed
in Section 4.5.2.

1: Input: Radar data cubes Zk′ for k
′

= 1, 2, . . . , k CPIs . see (4.8)
2: Input: {X(p)

k′ |k′−1, ζ
p

k′ |k′−1}
P
p=1 for k

′
= 1, 2, . . . , k CPIs . see Section 4.4

3: Input: ω(j−1)
k . Previously found values using the EM algorithm

4: Input: ∆ω . Initial interval of uncertainty
5: Input: εg . Termination threshold
6: ω1 ← ω(j−1) −∆ω
7: ω2 ← ω(j−1) + ∆ω
8: αg ← 0.618 . Golden ratio
9: ω̃1 ← ω1 + (1− αg)(ω2 − ω1) . Evaluation point 1
10: ω̃2 ← ω1 + αg(ω2 − ω1) . Evaluation point 2
11: Compute Q̂k

(
ω̃1,ω

(j−1)
k

)
and Q̂k

(
ω̃2,ω

(j−1)
k

)
. see,(4.58) and (4.61)

12: Q1 ← Q̂k

(
ω̃1,ω

(j−1)
k

)
, Q2 ← Q̂k

(
ω̃2,ω

(j−1)
k

)
13: while |ω2 − ω1| > ε do . Until ε accuracy is reached
14: if Q1 > Q2 then
15: ω2 ← ω̃2 . New interval:[ω1, ω̃2]
16: ω̃2 ← ω̃1, Q2 ← Q1 . Assignments
17: ω̃1 ← ω1 + (1− αg)(ω2 − ω1)

18: Compute Q̂k

(
ω̃1,ω

(j−1)
k

)
, Q1 ← Q̂k

(
ω̃1,ω

(j−1)
k

)
. New evaluation

19: else
20: ω1 ← ω̃1 . New interval:[ω̃1, ω2]
21: ω̃1 ← ω̃2, Q1 ← Q2 . Assignments
22: ω̃2 ← ω1 + αg(ω2 − ω1)

23: Compute Q̂k

(
ω̃2,ω

(j−1)
k

)
, Q2 ← Q̂k

(
ω̃2,ω

(j−1)
k

)
. New evaluation

24: end if
25: end while
26: if Q1 > Q2 then
27: Return ω(j)

k ← ω̃1
28: else
29: Return ω(j)

k ← ω̃2

30: end if

is evaluated:

logLK ,
K∑
k=1

logLk (4.72)

logLk ,
∑

r∈E(X̂k)

logL(Zk(r)|X̂k, α̂k, ω̂) (4.73)

=
∑

r∈E(X̂k)

(
2Re

{(
H(r, X̂k, ω̂k)α̂k

)H
Σ−1Zk(r)

}
−
(
H(r, X̂k, ω̂k)α̂k

)H
Σ−1H(r, X̂k, ω̂k)α̂k

)
.

Here, (4.73) is the logarithm of the instantaneous likelihood ratio and admits the

interpretation of being the contribution of the radar data cube at time k into the

integration in (4.72). Note that this summation corresponds to the coherent integration
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of E(X̂k) × Nh × Nv × N samples at the MF output during a CPI and non-coherent

integration across consecutive CPIs. The decision on the object’s presence is thus made

by comparing the output of (4.72) to a detection threshold:

logLK
H1

≷
H0

log TK . (4.74)

where log TK is the detection threshold for a given constant false alarm rate (CFAR) for

K steps of integration. The selection of this threshold value is discussed in Section 3.5.1,

and can be found using (3.59) for a single transmitter case. The next section defines a

signal to noise ratio (SNR) for the radar data cubes to be used later in the demonstration

of the proposed scheme in Section 4.7.

4.6.1 Signal to noise ratio (SNR) in the radar data cube

Let this subsection provide explicit formulae for the signal to noise ratio (SNR)

of the radar data cube in (4.8). The steps to find this SNR is following steps

through (3.62)–(3.66) and, all the same assumptions in Section 3.5.2 hold to find the

SNR. Thus, the SNR at the kth CPI is found as a function of the object state Xk at

the rth range bin:

SNRk(r,Xk) ,
E{(H(r,Xk, ω)αk)

T (H(r,Xk, ω)αk)}
E{n(r)Tn(r)}

=
E{αTkH(r,Xk, ω)TH(r,Xk, ω)αk}

tr{Σ}
, (4.75)

where αk ∈ C2×1 is a vector of the reflection coefficients, H ∈ CNhNvN×2 is the signal

model associated with the range bin r and the reflector state, Xk, as given in (4.33),

and tr{Σ} denotes the trance of Σ. Here, n ∼ CN(.;0,Σ) models the noise background

and is a complex random variable with zero mean and covariance of Σ as discussed in

Section 4.2.

Now, consider the SNR associated with the reflector state, Xk, over the range bins in
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Figure 4.6: Example with a UPA receiver: (a) Problem scenario. A transmitter (red triangle)
co-located with a UPA receiver (red dots) emits N = 40 modulated pulses (solid red line). The receiver
collects −3dB reflections (dashed red line) from a single UAV (black dot). (b) A typical trajectory
(solid red line) of the UAV

which, due to the auto-correlation output Λ in (4.33), the nominator of (4.75) yields

E
{
αTkH(r,Xk, ω)TH(r,Xk, ω)αk

}
= NhNvN × 2× Λ(E(XXk))E{αTkαk} (4.76)

Λ(E(Xk)) ,
∑

r∈E(Xk)

Λ∗(rTp − τ(Xk))× Λ(rTp − τ(Xk)), (4.77)

where NhNv indicates the number of array elements, and N is the number of transmitted

pulses in a CPI. Thus, the SNR for the radar data cube at the kth CPI through

(4.75)–(4.77) is given by

SNRk =
2NhNvNΛ(E(Xk))E{αTkαk}

tr{Σ}
(4.78)

SNRk
dB = 10 log10 (SNRk) , (4.79)

where SNRk
dB denotes SNRk in the decibels (dB).

4.7 Example

This section demonstrates the efficacy of the proposed approach in comparison

with other techniques through two examples: Section 4.7.1 uses simulated data to

demonstrate the proposed scheme. Section 4.7.2 demonstrates the proposed approach

with real measurements collected from a Thales/Aveillant Gamekeeper system [109,112].
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For the system parameters, both sections use common system parameters, which follows

the system parameters used in the Thales/Aveillant Gamekeeper system [109] except for

modulation schemes.

4.7.1 Simulation result

This subsection considers a scenario in which a transmitter (red triangle) co-located

with a UPA receiver (red dots) is located at the origin of the 3D volume and emits

N = 40 linear frequency modulated (i.e., up-chirp) waveforms (solid red line) towards

a surveillance region. This illumination pattern is repeated with a time interval of 0.1s.

This scenario is illustrated in Figure 4.6(a).

In the surveillance region, there is a small rotary-wing aircraft (black dot), which consists

of M = 1 rotor hub with L̃ = 2 rotor blades. The blade length is B = 0.16m, which

is shorter than the carrier wavelength λc = 0.25m. This complicates micro-Doppler

feature extraction using common techniques such as the Short Time Fourier Transform

(STFT) analysis, which is explained later, in this section. This UAV with an initial state

of X0 = [300m, 300m, 300m, 50m/s, 50m/s, 50m/s] flies along an unknown trajectory

(solid red line) generated from the object dynamic model in (4.35) as illustrated in

Figure 4.6(b).

The UPA receiver is comprised of Nv = 16 vertical elements and Nh = 4 horizontal

elements in the array and collects measurements in accordance with the signal model

defined in (4.8). The front-end signals at the receiver are the superposition of background

noise, reflections from the object’s body and the rotor blades. The parameters used in

the aforementioned transmissions are listed in Table 4.2. In this setting, the rotation

frequency, i.e., fr , ω
2π , is selected randomly in the range of fmin ≤ fr ≤ fmax and is

used for all experiments. Here, it sets fmax = 233 Hz (see, [66]), which is the maximum

possible rotation frequency, and fmin = 58.25 Hz obtained by 25% of fmax denotes the

minimum rotation frequency.
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Table 4.2: Transmitted signal parameters

Parameter Value

Carrier frequency, i.e., fc 1.2 GHz

Probing waveform bandwidth, i.e., Bw 1 MHz

Probing waveform duration, i.e., Tp 1 µs

Pulse repetition interval (PRI), i.e., T 133 µs

Number of range bins, i.e., Γ 200

Number of pulses, i.e., N 40

Number of vertical elements in the UPA, i.e., Nv 16

Number of horizontal elements in the UPA, i.e., Nh 4

Length of the coherent processing interval (CPI) 5.32 ms

Illumination period (∆ in (4.35)) 0.1 s

Number of rotor hubs, i.e., M 1

Number of rotor blades, i.e., L̃ 2

Blade length, i.e, B 0.16 m

For experiments, 100 independent sets of the object trajectories and array measurements

are generated: When H = H1 hypothesis holds, the array measurement at the kth CPI

associated with the reflector state, Xk, the complex reflection coefficients, αk, and the

angular rotation frequency, ω, is generated from a complex Gaussian using

Zk(r) ∼ CN (.;H(r,Xk, ω)αk,Σ) , r ∈ E(Xk), (4.80)

where αk = [α0,k, α1,k]
T is a vector of the complex reflection coefficients, and E(Xk) is

a set of range bins associated with Xk given in (4.13). Otherwise, the measurement is

generated from

Zk(r) ∼ CN (.;0,Σ) , r ∈ Γ\E(Xk), (4.81)

where Γ is the length of range bins given in Table 4.2. The expected SNR of the

measurement at the kth CPI is −3dB. This quantity is found by using SNRk
dB in (4.79).

After mapping the array measurements over a grid of angle bins and Doppler bins, these

bins correspond to resolution cells which are calculated by using the parameters used

in the transmissions of the example system (see, Table 4.2): The angle consists of an

azimuth angle and an elevation angle. The azimuth resolution is found as ∆θ = 11.81◦

using (2.30) with Nh. The elevation resolution is found as ∆φ = 2.93◦ using (2.30)
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with Nv (see, Section 2.3.1). The range resolution, corresponding to the sample version

of the MF output, is found as ∆R = 75m using (2.25). The velocity resolution of the

conventional processing is found as ∆V = 23.5ms−1 using ∆V = λc
2NT (or, equivalently,

the Doppler resolution of ∆Ω = 0.05πrads−1 using ∆Ω = 2π 2∆V
λc

T ).

Algorithm 4 is used for K = 50 CPIs which spans 5 s. Each CPI indicates an array

measurement collected in a CPI as a radar data cube. This algorithm is initiated with

P = 400 particles such that a 20 × 20 uniform grid over a bounded region of known

initial location and velocity vectors in each resolution cell. These particles evolve to

converge to the true state of the object by simultaneously estimating the reflection

coefficients and the rotation frequency as the particle filtering iteratively estimates the

object trajectory.

Performance in estimating unknowns

Here, it demonstrates the inner workings of the proposed algorithm in which the

estimation accuracy of the object trajectory, the complex reflection coefficients, and

the rotation frequency is compared to the conventional processing. In order to initiate

Algorithm 6, it selects the initial guess as one that maximises the likelihood for the

first radar data cube only over a grid of rotation frequencies. The likelihood evaluation

follows the estimation of X1 and α1 using Algorithms 4 and 5 with the points in the

ω grid over the range of fmin and fmax uniformly divided by ∆f = 10Hz. Figure 4.7

illustrates outputs of the initial searches given N = 20, N = 40, N = 60, and N = 80

transmitted pulses in a CPI, where the true vale of the rotation frequency is depicted by

the red lines, and the blue lines indicate the outputs of Qk=1 in (4.61). It is shown that

the peak values obtained by the preliminary search become narrower when increasing

N pulses, and the relation between the objective function, Qk=1, and ω = 2πfr is a

concave when ω is close to the true value.

Now, consider the estimation performance in finding the rotation frequency in −3dB

radar data cubes over K = 50 CPIs when the transmitter emits N = 40 pulses in
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Figure 4.7: Initial search for the rotation frequency (i.e.,fr = ω
2π

) with −3dB reflections: (a) Initial
search for the rotation frequency with N = 20 pulses. (b) Initial search for the rotation frequency with
N = 40 pulses. (c) Initial search for the rotation frequency with N = 60 pulses. (d) Initial search for
the rotation frequency with N = 80 pulses. All solid blue lines shows the output of the initial search
with the ground truth value of the rotation frequency as solid red lines.

a CPI. For this purpose, Algorithm 4 and 5 within Algorithm 6 and 7 are used for

100 realisations. Figure 4.8 shows a typical estimate output via the golden section

search using the radar data cubes over k = 10 CPIs. Here, the true value is depicted

by the red line, and the estimated value is the blue line. The resulting estimate is

reasonably close to the true value and is found after only ig = 8 iterations (black

crosses). Figure 4.9 presents estimates of the rotation frequency using the radar

data cubes over K = 50 CPIs, where x axis indicates the number of the radar data

cubes. These values (blue line) are compared with the true value (red line). Also,

the ±∆fr = ±3.6Hz found as a resolution of Fourier transform 2
PRI×N when using

N = 2048 pulses are given for comparison. Figure 4.9(a) shows the typical estimate of

the rotation frequency (blue line), where the estimation error has considerately large at

the initial estimate and stays small after k = 10 data cubes used. The averaged estimate
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Figure 4.8: Typical rotation frequency estimation via the golden section search: A typical rotation
frequency (blue dot) is estimated by using Algorithm 7 within Algorithm 6 in comparison with the
true value (red dot). The black crosses indicates ig = 8 iterations for finding the rotation frequency
in Algorithm 7

of the rotation frequency (blue line) with ±σ bounds (dashed blue lines) is illustrated

in Figure 4.9(b). It is seen that the estimation error stays within a small fraction of

the ∆fr. For further comparison, Figure 4.9(c) gives the short-time Fourier Transform

(STFT) of the estimated reflection coefficients obtained by using the algorithm proposed

in Chapter 3. For this purpose, the EM algorithm in Section 3.4 is used with the same

array measurements and then finds reflection coefficients based on the ground truth

trajectory. The STFT result of the complex reflection coefficient estimates is illustrated

in Figure 4.9(c). It is complicated to analyse/recognise the micro-Doppler components in

the STFT. In order to further analyse this STFT result, a singular value decomposition

method [116] is employed, and its results are illustrated in Figure 4.10. This method

is the factorisation of a rectangular matrix, in which the matrix is factorised into left

singular vectors, a diagonal matrix of singular values, and right singular vectors, and

a higher singular value indicates a more dominant element in the data. Figure 4.10(a)

shows the first three dominant frequencies selected by using the first three singular

values. All the singular values are illustrated in Figure 4.10(b). It is shown that the

second (red line) and the third (yellow line) dominant frequencies are not matched to the

true rotation frequency, whereas the proposed estimator provides the correct estimate

with fine accuracy (see, Figure 4.9).
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Figure 4.9: Rotation frequency estimation with the radar data cubes over k CPIs: (a) Typical
estimate (blue solid line) of the rotation frequency using Algorithm 6. (b) Averaged estimates (blue
solid line) with ±σ bounds (blue dashed lines) of the rotation frequency obtained by using Algorithm 6
for the 100 realisations. The red solid and dashed lines indicate the true value of the rotation frequency
fr and ±∆fr bounds in conventional processing, respectively. (c) Short time Fourier transform (STFT)
of the reflection coefficients estimated by the proposed scheme in Chapter 3

Next, consider the estimation performance in finding the complex reflection coefficients

in the radar data cube. For this purpose, Algorithm 5 within Algorithm 4 is used.

Figure 4.11 shows typical estimates of the complex reflection coefficients for the typical

steps of Algorithm 5, where the x axis indicates the real part of the complex reflection

coefficient and the y axis shows its imaginary part. The resulting estimates are compared

with their ground truth values. Also, the ± standard deviations of Cramér-Rao bound

(CRB), ±σCRB, are given for comparison. This quantity is obtained by using the

ground truth values of the kinematic state and the angular rotation frequency (see, for

example, [90, Chp.3]. In Figure 4.11(a), the estimated reflection coefficient (blue line)

for the object body stays within ±σCRB (dashed red ellipse) after only a few iterations
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(a) SVD of (c) in Figure 4.9 (b) Singular value of (a)

Figure 4.10: Singular value decomposition (SVD) of (c) in Figure 4.9: (a) Outputs of the first three
singular values from the result of SVD. (b) Singular values of SVD.
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(b) Reflection coefficient from the rotor blades

Figure 4.11: Complex reflection coefficient estimation with −3dB radar data cube: (a) A typical
estimate of the complex reflection coefficient for the object body by using the proposed algorithm. The
blue line indicates typical estimates of the object body reflection coefficient by using Algorithm 5 within
Algorithm 4. The blue circles show i = 5 iterations for finding it. The resulting estimate is compared
to the ground truth value (red dot) with the ± standard deviation of Cramér-Rao bound (CRB), i.e.,
±σCRB (dashed red ellipse). The x axis denotes the real part of the complex reflection coefficient and
the y axis is its imaginary part. (b) A typical estimate of the complex reflection coefficient for the rotor
blades by using Algorithm 5 within Algorithm 4 with the same colour codes in (a).

(solid blue circles), where the solid blue circles indicate the number of i = 5 iterations

for finding the reflection coefficient in Algorithm 5. The resulting estimate is close to its

ground-truth value (red dot). For the rotor blade reflection coefficient, Figure 4.11(b)

presents the typical estimate of the complex reflection coefficient for the rotor blades.

The resulting estimate (solid blue line) stays within ±σCRB (dashed red ellipse) and

is close to the ground truth value (red dot). Note that both the body and the rotor

blade reflection coefficients estimated by the proposed algorithm are close to the ground

truth values. It is also seen that these estimation errors stay within ±σCRB after a few

iterations.

145



Joint micro-Doppler signature estimation and track-before-detect in an array receiver

600
500

Distance (m)

400
300

200200
Distance (m)

400

400

200

600

600

D
is

ta
n
c
e
 (

m
)

True trajectory

Estimated trajectory

Figure 4.12: Typical trajectory estimation: The estimated trajectory by using Algorithm 4 is
depicted as the blue solid line. This output is compared to its ground truth (red solid line).

For estimation performance in finding the object trajectory by using Algorithm 4.

Figure 4.12 illustrates a typical trajectory (red line) which would lead to resolution

bin migrations in conventional processing. The trajectory estimate output by the

proposed algorithm is depicted as the blue solid line. Figure 4.13(a) shows the root

mean squared error (RMSE) of the corresponding range estimate in comparison with

the range resolution of ∆R (dashed red line). Note that the error reduces to the 10.6%

of the range resolution after 3.3 s. Figure 4.13(b) presents the RMSE of the velocity

component of the trajectory estimate in Figure 4.12. This estimate error is below the

velocity resolution bin of ∆V (dashed red line), where the error between 0.5 s and 1.5 s

shows a relatively large value due to the object’s manoeuvres. Figure 4.13(c) illustrates

the RMSE of the azimuth angle component of the trajectory estimate in Figure 4.12.

The estimate error is a very small value compared to the azimuth resolution of ∆θ

(dashed red line). Figure 4.13(d) illustrates the RMSE of the elevation angle component

of the trajectory estimate in Figure 4.12. Here, the estimate error shows a small error

compared to the elevation resolution of ∆φ (dashed red line). Note that the resolution

bins of the system provides only a coarse view of the trajectory, whereas the proposed

algorithm yields a super-resolution effect as discussed in Section 4.4.
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Figure 4.13: Root mean square error (RMSE) of the typical trajectory estimation: (a) RMSE of the
range estimation obtained in Figure4.12. (b) RMSE of the velocity estimation obtained in Figure4.12.
(c) RMSE of the azimuth angle estimation obtained in Figure4.12. (d) RMSE of the elevation
angle estimation obtained in Figure4.12. The red dashed lines in all these figures indicate the range
resolution (∆R = 75m) in (a), the velocity resolution (∆V = 23.5ms−1) in (b), the azimuth resolution
(∆θ = 11.81◦) in (c), and the elevation resolution (∆φ = 2.93◦) in (d), respectively.

Detection performance via the proposed scheme

Here, consider the hypothesis test for detection using the sufficient statistics of the

likelihood ratio with an arbitrarily long time window as discussed in Section 4.6. For

this purpose, Algorithm 4 and 5 within Algorithm 6 and 7 are used with 100 scenario

realisations. The resulting long time integration performance is compared with those of

the clairvoyant detector and the conventional one:

1. The clairvoyant detector: This detector uses the ground truth values of the

unknown parameters (i.e., the object trajectory, the reflection coefficients, and

the rotation frequency) when evaluating the logarithm of the likelihood ratio
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Figure 4.14: Detection performance of the proposed detector in comparison with the clairvoyant
detector and the conventional detector: (a) Long-time integration using the proposed scheme, the
clairvoyant integrator, and the conventional coherent integrator. The integrated sufficient statistics
from the proposed integration averaged over 100 experiments is depicted by the solid blue line with ±σ
(blue dashed lines). The integrated value from the clairvoyant integrator is the dashed red line and
the clairvoyant (CFAR) threshold for Pfa = 10−6 (averaged for 100 experiments) is the solid magenta
line. The conventional scheme leads to the solid black line. (b) Probability of detection (Pd) for the
proposed scheme compared to those of the clairvoyant detector and the conventional detector with the
same colour codes in (a).

test in (4.74). The CFAR threshold, i.e, log Tk, for this detector is found using

(3.56)–(3.59) for M = 1 transmitter case as discussed in Section 3.5.1.

2. Conventional coherent detector: This detector processes the measurements after

mapping them over a grid of angles and Doppler bins. These corresponding

resolution cells are defined in Figure 4.13. This detector integrates the mapped

complex values for the same “cell under test” across time without taking account

object manoeuvres [1]. This detector is defined in (3.76).

In Figure 4.14(a), the integration values are given as a function of time. The clairvoyant

integrator sets an upper bound for the integrated sufficient statistics, the average of

which is depicted by the dashed red line. Long time integration accuracy of the proposed

algorithm is coupled to the trajectory estimation performance through the EM iterations

for finding the reflection coefficients and the rotation frequency. Here, the proposed

scheme’s performance is very close to the clairvoyant detector bound (solid blue line

rendering the average with ±σ bounds shown with dotted blue lines). The proposed

integration reaches to 27 at t = 5s, which is relatively close to 31 achieved by the

clairvoyant integration. This indicates that the estimation errors of unknowns are very
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Figure 4.15: Receiver operating characteristic (ROC) curves: ROC curve of the proposed detector
(blue solid line) is compared to ROC curve of the conventional coherent detector (black solid line).

small. The conventional scheme fails to continue the integration after the object leaves

at the initial cell under test. This integration is shown with the solid black line in

Figure 4.14(a). The clairvoyant CFAR detection threshold for Pfa = 10−6 is depicted

as the solid magenta line (averaged for the 100 experiments) in Figure 4.14(a). The

detection for each detector is made by comparing its integration value against this

threshold. The proposed scheme exceeds the CFAR threshold and enables one to decide

on the object existence hypothesis (H = H1) after t = 3.5s, whereas the conventional

scheme stays in the region for the noise only signal hypothesis (H = H0).

Next, consider the probability of detection, Pd, as a function of the integration time

in Figure 4.14(b). Here, the Pd of the proposed scheme is found using 3.60 and is

averaged over the 100 experiments. The Pd of the clairvoyant detector (dashed red line)

sets the upper performance bound. The Pd of the proposed scheme is drawn by the solid

blue line in Figure 4.14(b). This quantity increases with time and reaches Pd = 0.83

at t = 5s, which is relatively close to the Pd = 0.92 of the clairvoyant detector. The

Pd of the conventional detector fails to detect the object in an overwhelming majority

of the experiments (solid black line) in Figure 4.14(b) Furthermore, the probability of

detection, Pd, is considered as a function of different false alarm (Pfa) values in the

range of Pfa = 10−6 to Pfa = 10−1. This is illustrated in Figure 4.15 and referred to
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Figure 4.16: Experiment scenario: (a) Gamekeeper Thales/Aveillant radar system emits
consecutive modulated pulses towards the surveillance region (light coloured region) and
collects reflections from a DJI inspire 1 UAV with trajectory depicted by the solid red line.
(b) UAV trajectory in the three-dimensional volume.

as the receiver operating characteristic (ROC) curve [18, Chp.3]. For this purpose, the

integration value at t = 5s is used for ROC calculation using (3.61). The ROC obtained

by proposed scheme (solid blue line) is compared with that of the conventional coherent

detector (solid black line). The ROC of the proposed detector provides almost Pd = 1

after Pfa = 10−5, whereas the conventional coherent integration provides Pd = 1 after

Pfa = 10−2.

4.7.2 Real experiment result

This subsection demonstrates the efficacy of the proposed algorithm using real

measurements. These measurements are collected by a recently developed

Thales/Aveillant Gamekeeper system [109, 112]. In this experiment, the radar system

is located at [0m, 0m, 106m]T . This system continually emits fixed frequency pulse

waveforms with the pulse duration of 1 µs towards the surveillance region as illustrated

in Figure 4.16(a). N = 40 pulses are considered with a PRI of 133us and an illumination

period is 0.2785s between two consecutive CPIs.

In the surveillance region, a small rotary-wing drone (a DJI inspire 1, in this experiment)
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Figure 4.17: Typical rotation frequency estimation via the golden section search: (a) Initial
search for the rotation frequency (i.e.,fr = ω

2π ). (b) Typical rotation frequency estimation
via the golden section search when k = 122 CPIs. A typical rotation frequency (blue dot) is
estimated by using Algorithm 7 within Algorithm 6 in comparison with the true value (red
dot) based on the GPS ground truth. The black crosses indicates ig = 8 iterations for finding
the rotation frequency in Algorithm 7.

is flown. This drone consists of M = 4 rotor hubs and L̃ = 2 blades on each rotor hub.

The blade length is B = 0.16m, which is shorter than the carrier wavelength λc = 0.25m.

The drone’s initial state is X0 = [847m, 103m, 119m,−0.22m/s, 0.06m/s, 0.48m/s]T

and it follows the ground truth drone trajectory depicted with the solid red line in

Figure 4.16(b). Here, the ground truth drone trajectory is recorded by using the global

positioning system (GPS) recordings. The other parameters and the algorithm setting

are the same used in Section 4.7.1.

Performance in estimating unknowns

Here, demonstrate the inner workings of the proposed algorithms and show the

estimation accuracy of unknowns using the real measurements. For the initial guess

of the rotation frequency in Algorithm 6, Figure 4.17(a) illustrates the output of the

initial searches. For comparison, the ground truth value is obtained by using the initial

search with the GPS ground truth trajectory. The rotation frequency found using the

GPS data is depicted with the red in Figure 4.17(a). The blue line indicates the output

of the proposed scheme. Note that the outputs obtained by the initial search become

narrower around the turn value.
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Figure 4.18: Rotation frequency estimation with the radar data cubes over k CPIs: (a)
Short time Fourier transform (STFT) of the estimated reflection coefficients using the EM
algorithm Section 3.4 (b) Typical estimate (blue solid line) of the rotation frequency using
Algorithm 6. (c) Root mean square error (RMSE) of the estimated rotation frequency in
(b).

Now, consider the estimation performance in finding the rotation frequency.

Figure 4.17(b) illustrates the typical output from Algorithm 7 with K = 122 radar

data cubes. The GPS ground truth, found as explained above, and the estimated values

are depicted by the solid red and the solid blue lines, respectively. Here, the resulting

estimate (blue line) is reasonably close to the GPS true value and is found after only

ig = 8 iterations (black crosses) in the golden section search.

Figure 4.18 shows the estimates of the rotation frequency obtained by using the proposed

estimation scheme over K = 122 CPIs. These estimated values (blue line) are compared

with the GPS true value (red line) obtained by using the GPS ground truth of the
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Figure 4.19: Typical estimate of complex reflection coefficients using our estimation
scheme: (a) Typical estimate of the body reflection coefficient. (b) Typical estimate of
the blade hub reflection coefficient. The blue circles show i = 4 iterations for finding these
estimates. The resulting estimates are compared to the true value (red dot) based on GPS
ground truth and with the ± standard deviation of Cramér-Rao bound (CRB), σCRB (solid
red ellipse).

drone kinematic state. Also, the short-time Fourier Transform (STFT) of the estimated

reflection coefficients using the GPS ground truth is given. For this purpose, the EM

algorithm in Section 3.4 is used with the same array measurements and then finds

reflection coefficients based on the GPS ground truth trajectory. These reflections

contain micro-Doppler signatures of the drone and are used for STFT. This output is

illustrated in Figure 4.18(a). It is seen that the STFT output does not reveal the rotation

frequency. Also note that when the blade length is less than the carrier wavelength, its

STFT output does not produce frequency changes within a short time interval and is

difficult to analyse/recognise micro-Doppler signatures from rotating blades.

Figure 4.18(b) shows the estimates of the rotation frequency (blue line) over K = 122

radar data cubes, where x axis indicates the number of the radar data cubes used for

the estimation. Figure 4.18(c) illustrates the root mean square error (RMSE) of the

estimated rotation frequency in (b). Here, the estimation error has considerately large

at the initial estimate and stays small after k = 68 radar data cubes used. It is clearly

seen that the estimation error stays within < 2Hz after k = 68 radar data cubes used.

Next, consider the estimation performance in finding the complex reflection coefficients
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Figure 4.20: Trajectory estimation: The estimated trajectory obtained by using
Algorithm 4 is depicted as the solid blue line. This output is compared to its ground truth
depicted as the solid red line.

in the radar data cube. Figure 4.19 shows typical estimates of the complex reflection

coefficients for the typical steps of Algorithm 5, where the x axis and the y axis indicate

the real part of the complex reflection coefficient and its imaginary part, reflectively.

The resulting estimates are compared with their GPS ground truth. Also, the ±

standard deviation of Cramér-Rao bound (CRB), ±σCRB, are given for comparison.

In Figure 4.19(a), the estimate of the body reflection coefficient (blue line) stays within

±σCRB (solid red ellipse) after i = 4 iterations (solid blue circles), where the solid

blue circles indicate the number of i iterations for finding the reflection coefficient

in Algorithm 5. Here, the resulting estimate is close to its GPS ground truth value

(red dot). For the estimate of the blade hub reflection, the resulting estimate (solid blue

line) stays within ±σCRB (solid red ellipse) and is close to the GPS ground truth value

(red dot) as illustrated in Figure 4.19(b). Note that both the body and the blade hub

reflection coefficients estimated by the proposed scheme are close to the ground truth

values. It is also shown that these estimation errors stay within ±σCRB after a few

iterations.

For estimation performance in finding the drone trajectory by using Algorithm 4.
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Figure 4.20 illustrates the GPS ground truth trajectory (red line) which would lead

to resolution bin migrations in conventional processing. The trajectory estimate output

by the proposed algorithm is depicted as the solid blue line. Figure 4.21(a) shows the

RMSE of the corresponding range estimate in comparison with the range resolution of

∆R (dashed red line). Note that the maximum error of the range estimation yields

the 6.67% of the range resolution. Figure 4.21(b) presents the RMSE of the velocity

component of the trajectory estimate in Figure 4.20. This estimation error is much lower

than the velocity resolution bin of ∆V (dashed red line), where the maximum estimation

error yields the 34% of the velocity resolution at the initial and is reduced to the 12.7%

after 26 s. Figure 4.21(c) illustrates the RMSE of the azimuth angle component of the

trajectory estimate in Figure 4.20. The estimation error is a very small value compared

to the azimuth resolution of ∆θ (dashed red line). Figure 4.21(d) shows the RMSE

of the elevation angle component of the trajectory estimate in Figure 4.20. Here, the

estimation error shows a small error compared to the elevation resolution of ∆φ (dashed

red line).

Detection performance via the proposed scheme

Here consider the hypothesis test for detection using the sufficient statistics of the

likelihood ratio with an arbitrarily long-time window using the real measurements.

In Figure 4.22, the integration values are given as a function of time. Here, the proposed

integration reaches to 27 at t = 34s, which is much higher than 15 achieved by the

conventional integration. This also indicates that the estimation errors of unknowns are

very small. For detection, the CFAR detection threshold for Pfa = 10−7 is depicted

by the red line in Figure 4.22. Detection for each detector is made by comparing

its integration value against this threshold. The proposed scheme exceeds the CFAR

threshold and enables one to decide on the object existence hypothesis (H = H1) at

t = 5s, whereas the conventional scheme stays in the region for the noise only signal

hypothesis (H = H0).
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4.8 Summary

This chapter has focused on the micro-Doppler estimation of manoeuvring and small

rotary-wing aircraft using the monostatic radar. The micro-Doppler signature is

considered as the rotation frequency generated by rotating rotor blades of the aircraft. In

order to find this, the short-time Fourier transform (STFT) of a radar data cube collected

in a CPI is commonly used as the time-frequency analysis technique. However, when

the carrier wavelength is smaller than the blade length, the micro-Doppler signature

is very close to the main Doppler shift, and this approach cannot discriminate this

micro-Doppler signature from the main Doppler shift due to the limited frequency

resolution. In order to achieve the fine resolution, this approach often require more

samples than those collected in a CPI.

In order to tackle this challenge, this chapter has proposed an algorithm capable of

simultaneously tracking the object trajectory and estimating the rotation frequency

before the detection decision is made. In particular, the expectation-maximisation (EM)

approach is used: The expectation is approximated by using the state distributions

generated from Bayesian recursive filtering for the trajectory estimation. The reflection

coefficients and the rotation frequency are estimated by maximising this approximated

expectation. It is demonstrated that the proposed scheme enables one to estimate the

micro-Doppler shifts with high accuracy using simultaneously tracking the trajectory

before the detection decision is made in both the simulated data and the actual

measurements on manoeuvring and small rotary-wing aircraft, whereas the typical

approach cannot find it. It is also shown that the detection scheme, which combines

the proposed estimator and the coherent integration scheme proposed in Chapter 3, is

proposed in order to detect manoeuvring and small rotary-wing aircraft.
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Figure 4.21: Root mean square error (RMSE) of the typical trajectory estimation: The
trajectory estimation is obtained in Figure4.20. (a) RMSE of the range estimation. (b)
RMSE of the velocity estimation. (c) RMSE of the azimuth angle estimation. (d) RMSE
of the elevation angle estimation. The red dashed lines in all these figures indicate the
range resolution (∆R = 75m) in (a), the velocity resolution (∆V = 23.5ms−1) in (b), the
azimuth resolution (∆θ = 11.81◦) in (c), and the elevation resolution (∆φ = 2.93◦) in (d),
respectively.
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Figure 4.22: Detection performance of the proposed detector in comparison with
the conventional detector: Long-time integration using the proposed scheme, and the
conventional coherent integrator. The integrated sufficient statistics from the proposed
integration is depicted by the blue line. The CFAR threshold for Pfa = 10−7 is the red line,
and, the conventional scheme is depicted by the black line.

158



Chapter 5
Conclusion

This thesis has addressed the problems in detecting manoeuvring and small objects in

high noise background and estimating their micro-Doppler features. This is challenging

because the level of reflected signals from such objects collected in a coherent processing

interval (CPI) is less than that of noise only signals, and their reflections vary with the

range-bearing and Doppler values over time. Conventional detectors and estimators are

likely to fail in collecting sufficient evidence on the objects’ presence and their relative

parameters for a long time due to not taking into account their manoeuvres.

In order to tackle these challenges, this thesis provides a series of novel approaches

that can detect manoeuvring and small objects by simultaneously performing long time

integration and estimating their micro-Doppler signatures in order to achieve reliable

detection and characterisation of them. Section 5.1 gives a summary of this thesis and

highlights the contributions. The possible directions for future research that can further

improve these contributions are provided in Section 5.3.

5.1 Summary

Chapter 1 has provided the brief introduction to the challenges and the limitations of

object detection and micro-Doppler estimation for the manoeuvring and small objects.

These give the motivation and identify the problems, which need to be solved in this

thesis. The contributions and the thesis outline are presented at the end of this chapter.
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Chapter 2 has reviewed the background materials, which are related to Chapter 3

and Chapter 4. This chapter introduces the advantages and disadvantages of radar

configurations, which define the monostatic configuration, the bistatic setting, and the

multistatic configuration. This also introduces the conventional detection processing

chains, including beam-forming and Doppler processing, with the limitation of detection

in manoeuvring and small objects. Then, it provides the brief introduction to

time-frequency analysis methods for the micro-Doppler signatures and gives the overview

of track-before-detect including the recent advanced in this topic.

Chapter 3 has presented the first major contribution: This chapter provides the

new approach to a long-time coherent integration for detection of manoeuvring and

small objects in the multistatic setting. The main differences compared to existing

TBD algorithms are i) the evaluation of the complex likelihood ratio conditioned on

object-related parameters, complex reflection coefficients, and synchronisation therms

based on Bayesian recursive filtering in order to achieve the coherent processing, and

ii) the detection test, which uses the coherent integration obtained by the resulting

values of the complex likelihood ratios for an arbitrarily long time instead of the

use of the probability of target existence used in the existing TBD algorithms. In

particular, the long time integration is determined by evaluating the long time likelihood

ratio test conditioned on a trajectory, reflection coefficients, and synchronisation terms

as unknowns. The proposed scheme uses the Markov state-space model to find the

unknown trajectory, which contains the object kinematics. The measurement model

in this state-space model involves the radar ambiguity function parametrised on the

aforementioned reflection coefficients. The reflection coefficients estimation is evaluated

using the expectation-maximisation (EM) algorithm within the Bayesian filtering

recursions for state trajectory estimate. For synchronisation, the proposed approach

uses the digital beam-forming technique to simultaneously divert beams towards both

the test points of detection and the locations of the separately located transmitters in

order to find the respective time reference shifts in the bistatic channels. The resulting

algorithm hence enables one to collect the entire evidence of the object’s presence at

the receiver by i) performing the coherent integration in both the monostatic channel
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and the bistatic channels within a CPI, ii) non-coherently integrating across different

(non-coherent) channels, and iii) continuing integration for an arbitrarily long interval

that contains many CPIs. As a result, the proposed approaches enable one to detect

manoeuvring and low SNR objects which cannot be detected using other detection

techniques.

Chapter 4 has presented the second major contribution: This chapter provides the

novel approach to the micro-Doppler estimation of manoeuvring and small rotary-wing

unmanned aerial vehicles (UAVs) in the co-located transmitter/uniform planar array

(UPA) receiver pair. The rotation frequency of rotor blades is considered as the

micro-Doppler feature. This chapter proposes the estimation scheme that can estimate

the rotation frequency by simultaneously tracking a single UAV and estimating

its reflection coefficients from both the fuselage and the rotor blades before the

detection decision is made. In particular, the proposed estimator uses the maximum

likelihood (ML) approach that finds the rotation frequency to maximise the likelihood

function conditioned on a trajectory, a rotation frequency, and reflection coefficients

as unknowns. In order to evaluate this ML, the joint Bayesian recursive filtering and

expectation-maximisation (EM) approach is proposed. This approach uses Bayesian

recursive filtering with the Markov state-space model for estimating the trajectory. The

measurement model in this state model captures both the reflection coefficients and the

rotor rotation frequency together with the radar ambiguity function. The EM finds

these parameters within the Bayesian recursive filtering. Hence, the resulting algorithm

enables one to estimate the rotor rotation frequency with a favourable accuracy while

simultaneously estimating both the trajectory and the reflection coefficients before

deciding on the object’s presence. Then, the detection scheme that utilises these

estimates is proposed.
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5.2 Limitations

In this thesis, the radar system is a ground-based security surveillance system for the

small aircraft detection, where multiple transmitters and a single receiver are located

at different regions on the ground and observe small aircraft in the sky. Regarding this

system, Chapter 3 and 4 develop the algorithms in order to detect the small aircraft.

These algorithms have the following limitations:

1. Multipath interference at the receiver is not considered.

2. Jammers are not considered.

3. Multiple target scenario is not considered

4. Radar clutter is not considered.

5. Noise samples are statistically independent.

6. For the micro-Doppler estimation, a rotary-wing aircraft is only considered.

5.3 Possible directions for future work

The overall detection and estimation approaches proposed in this thesis are developed

regarding the assumptions and the problems given in Chapter 1. One important

consideration is the multiple object detection and their micro-Doppler feature

estimation. In this thesis, the proposed algorithms are developed regarding a single

low SNR object presented in a surveillance region. The evaluation of the likelihood

used for the object detection and the micro-Doppler estimation provides an accurate

approximation. This benefit comes with an additional computational cost in comparison

with the conventional methods. In the case of multiple objects presented in a surveillance

region, the proposed schemes need to have a bank of the Bayesian filters, each of
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which processes reflected signals from each object in order to detect it and estimate its

micro-Doppler features. This can lead to high computational cost. Thus, one possible

direction of adopting the proposed schemes for the multiple object case would be finding

approaches that can improve computational efficiency.

For micro-Doppler estimation, the proposed estimator presented in Chapter 4 is

developed in the monostatic radar configuration. It is interested in extending this

approach in the bistatic configuration and the multistatic setting. In order to achieve

this goal, the signal model used in Chapter 4 needs to adopt the signal model used in

Chapter 3 and has extra unknowns as the synchronisation terms in the bistatic channels.

This requires to solve an optimisation problem with many unknowns, which comes with

its own set of challenges. Finding a solution to this problem can be a direction of further

improving the proposed estimator using the bistatic/multistatic configurations.
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Appendix A
The likelihood locality, Cramér-Rao

bound, and computational
complexity of the proposed detector

This appendix provides the derivations of likelihood locality, Cramér-Rao bound for

the reflection coefficients, and computational complexity used in the proposed detection

scheme in Chapter 3. This appendix starts with introducing the likelihood locality

in Section A.1. Then, Section A.2 provides the Cramér-Rao bound for the reflection

coefficients. Section A.3 details the computational complexity of the proposed detector.

A.1 The likelihood locality

This section explains the likelihood ratio test with the locality of the measurements.

When a single object exists in the surveillance region, the mth channel measurement

contains the reflections, Zm,k(r) ∈ Em(Xk), from the obejct state, Xk. Let one define

the complement of Em in the set of range bins, which is found as

Ēm(Xk) , {1, 2, · · · ,Γ} \ Em(Xk)
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. The numerator terms in (3.13) can be found using Em(Xk) and Ēm(Xk):

l(Zm,k|Xk, αm,k,∆tm, H = H1) =∏
r∈Em(Xk)

l(Zm,k(r)|Xk, αm,k,∆tm, H = H1)
∏

r′∈Ēm(Xk)

p(Zm,k(r
′)).

(A.1)

Similarly, the likelihood for the noise-only signal hypothesis factorises as

l(Zm,k|Xk, H = H0) =
∏
r∈Em

l(Zm,k(r)|H = H0)
∏
r′∈Ēm

p(Zm,k(r
′)), (A.2)

which, after substituting into (3.10) with (A.1) leads to (3.13).

A.2 Cramér-Rao bound (CRB) for complex reflection
coefficients

Let this section consider the Cramér-Rao bound (CRB) for the complex reflection

coefficient estimated by Algorithm 1. The CRB provides the theoretical minimum

variance for an unbiased estimator and is found by using inverse Fisher

information [90, Chp.3]. In the problem setting considered in Chapter 3, the Fisher

information is found by taking the second order partial derivative of the logarithm

of the likelihood with respect to the reflection coefficient. This processing is followed

through Equation (3.6) and (3.7) in [90, Chp.3]:

I(αm,k) = −E

{
∂2 log l(Zk|αk)

∂α2
m,k

}
, (A.3)

log l(Zk|αk) = log
{ ∫
Xk

∫
∆t

l(Zk|Xk,∆t,αk)× p(Xk,∆t|αk)dXkd∆t
}
, (A.4)

where I(αm,k) denotes the Fisher information of the mth reflection coefficient at the kth

CPI, and E{·} is the expectation of its input argument.

In order to evaluate log l(.) in (A.4), the ground truth values of the object state, Xk, and

the synchronisation term, ∆t, are used. After substituting these true values into (A.4),
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the resulting expression is found as

log l(Zk|αk) = log l(Zk|Xk = Xtrue,k,αk,∆t = ∆ttrue) (A.5)

=
∑

r∈Em(Xtrue,k)

(
− log

(
πLN det(Σm)

)
− ZHm,k(r)Σ

−1
m Zm,k(r)

+2 Re{α∗m,ksHm(r,Xtrue,k,∆ttrue)Σ
−1
m Zm,k(r)}

−|αm,k|2sHm(r,Xtrue,k,∆ttrue)Σ
−1
m sm(r,Xtrue,k,∆ttrue)

)
,

∂2 log l(Zk|αk)
∂α2

m,k

= −2× sHm(r,Xtrue,k,∆ttrue)Σ
−1
m sm(r,Xtrue,k,∆ttrue)

)
, (A.6)

where Xtrue,k and ∆ttrue are the true values of Xk and ∆t, respectively. As a result,

the Fishier information of I(αm,k) in (A.3) is given by

I(αm,k) =
∑

r∈Em(Xtrue,k)

2sHm(r,Xtrue,k,∆ttrue,m)Σ−1
m sm(r,Xtrue,k,∆ttrue,m), (A.7)

and the CRB for the mth reflection coefficient at the kth CPI is found by using the

inverse I(αm,k):

σ2
CRB , I(αm,k)

−1. (A.8)

This quantity is the lower bound of the variance of the complex reflection coefficient:

Var(α̂m,k) ≥ σ2
CRB, (A.9)

where Var(α̂m,k) = E{|αm,k − α̂m,k|2} is the variance.

Note that Σm is Hermitian and positive definite. Therefore, the CRB for the real part

of the complex reflection is equivalent to that for the imaginary part [90, Chp.15].

A.3 Computational complexity of the proposed detector

This section gives the computational complexity of the proposed detector compared to

that of the conventional coherent detector. In order to find the computational complexity

of the proposed algorithm for the cell under test at the Kth CPI, let one consider
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Table A.1: Computational cost of the cell under test at the kth CPI

Equation multiplications additions Algorithm

(3.30) 2PNr(X)M(LN)2 2PNr(X)MLN(LN − 1) Algorithm 3

(3.32) P (P − 1) Algorithm 3

(3.35) PNX (P − 1)NX Algorithm 3

(3.53) 4Nr(X)M(LN)2 4Nr(X)MLN(LN − 1) Algorithm 3

(3.43) 2NI1PNr(X)M(LN)2 2NI1PNr(X)MLN(LN − 1) Algorithm 1

(3.45) 4NI1PNr(X)M(LN)2 4NI1PNr(X)MLN(LN − 1) Algorithm 1

(3.51) kNI2Nr(∆t) NI2(kNr(∆t) − 1) Algorithm 2

the total number of multiplications and addictions for Algorithm 1, Algorithm 2, and

Algorithm 3.

Table A.1 shows the number of multiplications and addictions for each step of

Algorithm 1, Algorithm 2, and Algorithm 3, respectively, where NX denotes the

dimensionality of the object state in (3.17), and Nr(X) and Nr(∆t) indicate the length

of E(Xk) and E(∆t). Here, NI1 and NI2 denote the number of iterations for the EM

algorithm in Algorithm 1 and the golden section search in Algorithm 2, respectively.

The total cost at the Kth CPI is hence found by using the sum of all multiplications

and additions in Table A.1: The total multiplications are

2PNr(X)M(LN)2(3NI1 +
NX

2
+ 3) + P + kNI2Nr(∆t),

and the total additions are

2PNr(X)M(LN + 1)(3NI1 + 2) + (P − 1)

+(P − 1)NX +NI2(kNr(∆t)−1).

The conventional coherent detector over a grid of bearing and Doppler bins is found

in [18, Chp.13]:

TK(r,X(i, j)) =
K∑
k=1

M∑
m=1

Re{sm(r,X(i, j))Σ−1
m Zm,k(r)}

H1

≷
H0

log Tk. (A.10)

Here, X(i, j) denotes a location (i.e., range and bearing) and velocity associated with
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the ith bearing bin and the jth Doppler bin at the rth range bin. The computational

cost of this conventional detector for the cell under test at the Kth CPI hence has

2KM(LN)2 multiplications and 2LN(LN − 1)(KM −K −M) additions.

As a result, the computational complexity of the proposed detector for the cell under

test for K CPIs is O(PNI), whereas the conventional coherent detector requires O(K).
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• K. Kim, M. Uney, and B. Mulgrew, “Detection of manoeuvring low SNR objects

in receiver arrays,” 2016 Sensor Signal Processing for Defence (SSPD), Sept 2016,

pp. 1− 5.

• K. Kim, M. Uney, and B. Mulgrew, “Simultaneous tracking and long time

integration for detection in collaborative array radars,” 2017 IEEE Radar

Conference (RadarConf), May 2017, pp. 0200− 0205.

• K. Kim, M. Uney, and B. Mulgrew, “OPPORTUNISTIC SYNCHRONISATION

OFMULTI-STATIC STARING ARRAY RADARS VIA TRACK-BEFORE-DETECT,”

2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), April 2018, pp. 3320− 3324.

• K. Kim, M. Uney, and B. Mulgrew, “ESTIMATIONOF DRONEMICRO-DOPPLER

SIGNATURES VIA TRACK-BEFORE-DETECT IN ARRAY RADARS,”

International Radar Conference (Radar 2019), Sep 2019.

• K. Kim, M. Uney, and B. Mulgrew, “Coherent track-before-detect with

micro-Doppler signature estimation in array radars,” IET Radar, Sonar and

Navigation, accepted Feb 2020.
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