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Abstract

We describe an R package for determining the optimal price of an asset which is
“perishable” in a certain sense, given the intensity of customer arrivals and a time-varying
price sensitivity function which specifies the probability that a customer will purchase
an asset offered at a given price at a given time. The package deals with the case of
customers arriving in groups, with a probability distribution for the group size being
specified. The methodology and software allow for both discrete and continuous pricing.
The class of possible models for price sensitivity functions is very wide, and includes
piecewise linear models. A mechanism for constructing piecewise linear price sensitivity
functions is provided.

Keywords: perishable assets, price sensitivity, elasticity of demand, airline seats, arrival
intensity, group arrivals, discrete pricing, continuous pricing, piecewise linear functions.

1. Introduction

It is a familiar (and potentially infuriating) phenomenon that people traveling on the same
flight (in the same class or cabin) will often have paid very different fares. Generally the closer
to departure time that one purchases one’s ticket, the more one pays. This characteristic of
airline ticket prices can be modeled in terms of time varying “elasticity of demand” or “price
sensitivity”. As a rule, demand is more elastic (more sensitive to price) a long time prior to
departure, and is less elastic (less sensitive) immediately before departure. To take advantage
of cheap fares, trips must be planned, and prior arrangements made. People who “fly at
the last minute” often have to fly, irrespective (to a large extent) of what it costs. Or their
company is paying for the ticket, whence cost is no object.

Airline seats on a given flight form the prototypical example of a “perishable asset” – one
whose value drops to zero after a given deadline or “expiry time” (i.e., when the flight takes
off). Those selling the assets are assumed to be free to vary the price quoted for an item to
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any desired value, at any time. The vendor’s objective is (presumably) to choose the pricing
policy in such a way as to optimize, i.e., maximize, (expected) revenue. In particular the
vendor does not want to be left holding a stock of valueless items that could possibly have
been sold at some non-zero price.

Problems of the sort alluded to above constitute part of the class of optimization problems
termed “asset selling” or “asset pricing” problems which was introduced by Karlin (1962). In
such problems a vendor has a stock of a finite number of items which must be sold by a given
deadline, otherwise their value becomes zero (or possibly diminishes to some relatively small
“salvage value”). Examples of such assets include seats on a given airline flight, rooms in a
hotel for a given night, and advertising slots on a particular television program. In Karlin’s
initial formulation of the problem, customers arrive at the point of sale according to a given
stochastic process and make offers to buy a certain number of items. The analyst’s objective
is to determine if the customer’s offer is acceptable or not.

Since Karlin’s initial work many versions and extensions of this idea have been studied.
Particular emphasis has been given to the problem of pricing airfares. See Gerchak, Parlar,
and Yee (1985), Wollmer (1985), Mamer (1986), Belobaba (1989), Feng and Xiao (1999), and
Slyke and Young (2000).

In reality, especially in the airfare context, it is rare for customers to make offers to the
vendor. Instead a customer arriving at the point of sale is quoted a price by the vendor. The
probability that the customer will choose to purchase the asset in question depends upon the
quoted price and the time that the customer arrives at the point of sale. Thus instead of
determining a policy for the acceptance of offers from customers, the vendor must decide on a
policy of what prices to quote to customers. Restructuring the problem in this way alters the
form of its solution remarkably. This version of the problem was addressed in the paper by
Banerjee and Turner (2012). Other recent and important work on this more realistic variant
of the asset selling problem includes that of Feng and Xiao (2000a,b), and of Zhao and Zheng
(2000).

In the newer and more realistic version of the problem, the objective of the vendor is to choose
a price, dependent on time and stock-level, so that the resulting pricing policy maximizes
expected revenue. The R (R Core Team 2014) AssetPricing package (Turner 2014) permits
the vendor to work out, under suitable assumptions, the optimal pricing policy. The suitable
assumptions are that:

(a) groups of customers arrive according to an (inhomogeneous) Poisson process, with known
intensity λ(t),

(b) the size j of a customer group is determined by a known probability function π(j),

(c) the probability that a group of size j, arriving at time t, will purchase items offered at
price x is given by a price sensitivity function Sj(x, t).

In the simplest case, where the customers always arrive singly, there is a single price sensitivity
function (denoted simply by S(x, t)) and the group size probability function is just π(1) = 1
(π(j) = 0 for j > 1).

We remark that in work of this nature it is conventional to let t represent residual time, i.e.,
the time remaining until the “expiry date”. Consequently the expiry date is at t = 0.
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In the remainder of this paper we give (Section 2) a brief summary of the background on how
optimal prices are calculated, referring in part to Banerjee and Turner (2012). The calculation
procedure differs depending on whether prices are considered to be discrete or continuous.

In Banerjee and Turner (2012) it was assumed, in the context of continuous prices, that the
price sensitivity function is smooth, i.e., twice differentiable. In Section 3 we discuss how
the package is used to determine optimal pricing policies both for discrete prices and for
continuous prices when the price sensitivity function is smooth.

In Section 4 we describe a new method for determining an optimal pricing policy when price is
continuous and the price sensitivity function is piecewise linear in price. Constructing a valid
piecewise linear price sensitivity function can be a rather delicate task so the AssetPricing
package provides a function buildS() which builds such functions in an automatic manner,
and likewise automatically does all of the required checking to assure the validity of the
result. We provide details about the use of buildS() and the use of the AssetPricing package
to calculate an optimal pricing policy given a valid piecewise linear price sensitivity function.

In Section 5 we give several illustrative examples in both the discrete and continuous price
cases and show how the plot() method provided by the AssetPricing package can be used
to plot the solutions. A detailed example of the construction and use of piecewise linear price
sensitivity functions is also given. We again provide (in this last context) illustrations of
displaying the results of the calculations graphically. We also compare the results from using
the piecewise linear model with those from a discrete price approximation to the problem.

A brief summary and some discussion are given in the concluding section (Section 6).

2. Some theoretical background

Denote by vq(t) the expected revenue from a stock of size q (items) at time t. A pricing policy
consists of a collection of functions xq(t) where x = xq(t) is the price offered to customers
arriving at the point of sale at time t when there are q items remaining in stock. We might
also wish to allow the price offered to depend on the size of the arriving customer group. In
this case the pricing policy is a doubly indexed collection of functions xqj(t) giving the price
offered to a group of size j at time t when there are q items remaining in stock.

Given a pricing policy, we can derive a system of differential equations which can be solved
for the expected revenue functions vq(t). The key to deriving these differential equations
is a basic property of Poisson processes: the probability of an arrival in a (small) interval
(t, t+ h] is equal to λ(t)h+ o(h), and the probability of more than one arrival is o(h). Define
Rq(x, t) to be the conditional expected revenue from a stock of size q at time t when the
quoted price is x, given an arrival at time t. In the single arrivals setting, Rq(xq(t), t) =
(xq(t)+vq−1(t))S(xq(t), t)+vq(t)(1−S(xq(t), t)). It is more complicated in the group arrivals
setting. For convenience, set V equal to the expected revenue from the stock when there is
more than one arrival between t + h and t. Observe that V is bounded by q × xmax where
xmax is the maximum of all prices under consideration.

We can work out that

vq(t+ h) = (1− λ(t)h+ o(h))vq(t) +

(λ(t)h+ o(h))×Rq(xq(t), t) +

o(h)× V, (1)
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when the offered price is xq(t). Rearranging Equation 1 and dividing by h we get:

vq(t+ h)− vq(h)

h
= λ(t)(−vq(t) +Rq(xq(t), t))

+ (vq(t) +Rq(xq(t), t) + V )× o(h)

h

In the limit, using o(h)/h → 0 as h → 0, the forgoing equation becomes the differential
equation:

v̇q(t) = λ(t)[−vq(t) +Rq(xq(t), t)] (2)

Observe that the resulting system is “coupled” since Rq(xq(t), t) depends on vq−1(t). The
system can be solved readily via numerical methods. The AssetPricing package uses the
ode() function from the deSolve package (Soetaert, Petzoldt, and Setzer 2010). By default
the "lsoda" method is used.

In a setting in which prices take values in a (small) discrete set (e.g., a regular price, a sale
price, and a bargain basement price) we can optimize over price in a very straightforward
manner. We simply set xq(t) = that value of x which maximizes (over the small discrete set
of x-values) the expression Rq(x, t), on the right hand side of Equation 2. This can be done
at each step of the numerical solution procedure. The relevant function (xsolve.disc()) in
the AssetPricing package is structured so that the values of the optimal prices as well as the
values of vq(t) and v̇q(t) are returned.

If we model price as varying continuously a different approach is required. We differentiate
Rq(x, t) with respect to x and set this derivative equal to 0 to locate the value of the price
yielding the maximal expected return. We then differentiate both sides of the resulting equa-
tion with respect to t, giving an equation which involves ẋ(t). Solving for ẋ(t), rewritten as
ẋq(t), yields a system of differential equations for xq(t) (the optimal prices). Like the system
for vq(t), this system can be solved numerically. Again the ode() function from the deSolve
package is used to effect the solution.

The details of the differential equations for xq(t) get a bit messy, and are even worse when
the model involves group arrivals. The doubly indexed and singly indexed price structures
must also be allowed for. It is, nevertheless, all feasible to implement. More details are given
in Banerjee and Turner (2012). Note that the procedure discussed there requires that the
price sensitivity functions be smooth, i.e., differentiable – once with respect to t, twice with
respect to x. The mixed partial derivative, with respect to x and t jointly, must also exist.
In the current paper we discuss a technique for handling price sensitivity functions which
are piecewise linear in price (and hence not smooth). The development of this technique is
presented in Section 4.

3. Using the package

The essential components of the package, from the user’s point of view, are the functions
xsolve(), vsolve(), buildS(), and the plot() method for objects of class ‘AssetPricing’.
(This method calls upon an underlying method for objects of class ‘flap’ to do the real work.
The name for class ‘flap’ signifies “function list for asset pricing”.) We discuss xsolve(),
vsolve(), and the plot method for ‘AssetPricing’ objects in the following subsections. The
function buildS() is dealt with in Section 4. The key function is xsolve().
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3.1. Determining optimal prices

The function xsolve() effects the determination of an optimal pricing policy. The major
inputs (arguments) to this function are:

� the price sensitivity function(s) S,

� the arrival intensity function lambda,

� the group size probability function gprob,

� the maximum residual time (time until the deadline) over which the solution procedure
is considered, tmax,

� the number qmax of items available for sale at residual time tmax,

� a vector prices of possible prices to be used in the discrete pricing case.

The function xsolve() examines its arguments and invokes the appropriate solution proce-
dure depending on their nature. In any circumstance the argument S must be an expression,
a function, a list of expressions, or a list of functions. If the argument prices is specified,
discrete pricing is assumed and the work is dispatched to xsolve.disc(). In this case S must
be a function or a list of functions (otherwise an error is given). If prices is not specified, and
if S is an expression or a list of expressions it is assumed that the expression or expressions
determine smooth functions and the work is dispatched to xsolve.cont(). Finally if S is a
function and this function has an attribute funtype which is equal to "pwl" then the work is
dispatched to xsolve.pwl(). Except in very exceptional circumstances piecewise linear price
sensitivity functions should be built using buildS(). We discuss how the package handles
piecewise linear price sensitivity functions in Section 4.

Other inputs to xsolve() are:

� A parameter nout determining the number of (equispaced) points on the interval [0, tmax]
at which the solutions to the differential equation are evaluated. These points and the
solution values are passed to splinefun() or (after some processing) to stepfun(),
thus providing the solutions as functions.

� A parameter type specifying whether the quoted prices are permitted to depend on the
size of the customer group. If not we have singly indexed prices, type = "sip"; if so
then we have doubly indexed prices, type = "dip".

� A parameter alpha (between 0 and 1) determining the outcome when the size of the
customer group exceeds the size q of the remaining stock. In such a situation it is
assumed that the group will, with probability alpha consider an offer at price x as if
the group were of size q (and will purchase the entire remaining stock if the decision is
to accept the offer). With probability 1 - alpha the group will decline to consider an
offer at all, and will simply “walk away”.

� An argument salval specifying the “salvage value” of each item of remaining stock at
residual time 0; this argument defaults to 0.
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Probably the most important, and the most intricate, argument is S. In the case of discrete
prices this must be either a function, or a list of functions, with arguments x (price) and t

(residual time). If S is a single function it is assumed to be the price sensitivity function
S(x, t) for a single customer. It is also assumed that for a group of size j an offer will be
accepted if and only if all members of the group (independently) accept the offer whence the
price sensitivity function for a group of size j is S(x, t)j . If S is a list it is assumed that the
jth entry of that list is the price sensitivity function Sj(x, t) for a group of size j.

In the case of continuous prices, with the price sensitivity function assumed to be smooth,
the argument S must be an expression or list of expressions. These expressions must in
effect specify functions with arguments x and t and must be amenable to differentiation with
respect to these arguments via the R function deriv3(). If S is a single expression it is
assumed to yield the price sensitivity function S(x, t) for a single customer. In this case the
price sensitivity function for a group of size j is taken to be S(x, t)j . If S is a list of expressions
the jth entry of that list is an expression giving the price sensitivity function Sj(x, t) for a
group of size j.

Note that the expressions in S may depend on any number of parameters in addition to their
arguments x and t but these parameters are not passed as function arguments. The values of
the parameters are given in an attribute, called "parvec", of the expression. This attribute
is a named vector (the names being the parameter names) and the parameters are assigned
in the environments of the price sensitivity functions and their derivatives (rather than being
passed as function arguments).

If prices are assumed to be continuous and the price sensitivity to be piecewise linear, then
S is only permitted to be a single function (not a list). In this situation the price sensitivity
function for a group of size j is taken to be S(x, t)j .

The object returned by xsolve() is a list with three components:

� x, giving the optimal pricing policy,

� v, giving the expected values of stocks under this policy,

� vdot, the derivatives (with respect to residual time) of v.

Each of these components is an object of class ‘flap’, and is fundamentally a list of functions.
The functions in x are returned by splinefun() in the case of continuous prices and by
stepfun() in the case of discrete prices. The functions in v and vdot are always returned by
splinefun().

If type is equal to "sip" then x is of length qmax and x[[q]](t) is the optimal price to
charge at residual time t when the stock size is q. If type is equal to "dip" then x is of length
(jmax - 1) * (qmax - jmax/2) + qmax, where jmax is the maximum possible size of a
customer group. We remark that as a matter of convenience it is assumed in the code that
the largest possible group size is less than or equal to qmax. Thus jmax is taken to be the
minimum of qmax and the largest value of j such that the probability of a group of size j (as
determined by gprob) is numerically distinguishable from 0.

Also, if type is equal to "dip", x[[i]](t) is the optimal price to charge at residual time t

when the stock size is q and the size of the arriving customer group is j, where
i = (j - 1) * (qmax - j/2) + q.



Journal of Statistical Software 7

The v and vdot lists are always of length qmax. The value of v[[q]](t) is the expected value
(under pricing policy x) of a stock of size q at residual time t, and the value of vdot[[q]](t)
is the derivative of v[[q]] at residual time t.

3.2. Determining expected values for given prices

It is sometimes of interest to consider a given pricing policy and to determine the expected
value of various stock sizes at various times, under the given policy. The means of doing so
is provided by vsolve(). This function has an argument list similar to that of xsolve(), a
notable difference being that vsolve() has an argument x, the given pricing policy, and does
not have arguments qmax, or type, the values of these being determined by x.

The argument x must be an object of class ‘flap’ (such as the price component of an object
returned by xsolve()). In particular x must be a list of functions and must have attributes
tlim, ylim, qmax, and jmax. The function or functions specified by S must be capable of
being evaluated at all points in [0, ylim] × [0, tlim]. Note that S may be an expression or
list of expressions as is the case with xsolve() and that such expressions must be amenable
to differentiation by deriv3(). The differentiability is not actually used by vsolve(); the
requirement is imposed because the expressions are turned into functions by deriv3() in the
same manner as when they are used by xsolve().

The argument tmax, if specified, must be less than or equal to the upper endpoint of the
tlim attribute of x, otherwise an error is given. If the prices specified by x depend upon
customer group size as well as upon the number of items remaining to be sold (effectively
if x was created with type set equal to "dip") then the largest possible size for an arriving
group of customers, as determined by the gprob argument, must be less than or equal to the
jmax attribute of x. The calculations involved in solving the system of differential equations
require the evaluation of xqj(t) where xqj(·) is given by one of the entries of x, for all q and
j. If j exceeds the jmax attribute of x then xqj(·) does not exist.

The object returned by vsolve() is essentially of the same nature as that returned by
xsolve() except that the x component does not consist of optimal prices but is rather the
x argument provided to vsolve(). This argument may have been modified to have a tlim

attribute with upper endpoint equal to tmax if the tmax argument was specified and was
smaller than the original upper endpoint of the original tlim attribute.

3.3. Plotting

The nature of the function lists returned by xsolve() and vsolve() is often best exam-
ined through graphical methods. However these lists are usually long and intricate, and
creating a perspicuous graphical display can be difficult and tedious. The plot method for
‘AssetPricing’ objects is provided to make the task of creating useful and informative plots
much easier.

The basic argument x to the plot method for objects of class ‘AssetPricing’ should be an
object returned by xsolve() or vsolve(). The specification of which of the components (x,
v, or vdot) of the object in question should be dealt with is effected by the witch argument of
the function. This argument may take values "price", "expVal" or "vdot". These character
strings may be abbreviated (e.g., to "p", "e", or "v").

The argument to the plot methods for ‘AssetPricing’ objects which is most important in
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facilitating the creation of useful and informative plots is groups. This argument specifies
which of the entries of the basic argument x are to be plotted, and how they are to be grouped
together (in panels of multi-panel figures). The argument groups is a data frame with columns
group, q, and possibly j.

Each row of groups specifies a trace to be plotted. The entries of the group column should
be positive integers running from 1 to some maximal value. The traces are specified by the
entries of the q and j columns. Those traces corresponding to each unique entry of the group

column will all be plotted in a single panel. The value of j can differ from 1 only if the object
being plotted is the price component of the object returned by xsolve() or vsolve() and
then only if the type is equal to "dip". If the j column is not present then an error is given
unless the maximal possible value of j is 1, in which case the j column is internally set equal
to a vector of 1’s.

There is also a facility for adding a “marginal gloss” to be plotted at the right hand endpoint
of each one (or some) of the traces, so as to identify these traces. The gloss consists by default
of the value of q and possibly of j if the maximal value of j is greater than 1. The gloss may
however consist of arbitrary character strings from a vector of length equal to the number of
rows of groups.

If gloss is constructed in an automated manner (as it is in the default case) then it may be
convenient to specify that only a subset of the traces have their corresponding gloss plotted.
This prevents cluttering and over-plotting of the gloss. The facility for doing this is provided
by the glind (“gloss index”) argument which is a logical vector, of length equal to the number
of rows of groups. A trace has its gloss plotted only if the corresponding entry of glind is
TRUE.

The plotted traces are grouped together in panels as specified by the groups argument. To
obtain a single plot showing all traces the group column of groups should be set to be
identically equal to 1. Clearly setting group to be identically 1 (this is the default when the
argument groups is not specified) is sensible only if a relatively small number of traces is
being plotted. At the other extreme, to get traces plotted in individual panels (one trace per
panel) the group column should be set to be the sequence from 1 to n where n is the total
number of traces being plotted (equal to nrow(groups)).

The dimensions of the array(s) of panels to be plotted is determined by the mfrow argument.
This defaults to either c(1, 1), c(2, 2), or c(3, 2) depending on the total number of
groups. The user however may set these dimensions to be anything he or she chooses.

4. Piecewise linear price sensitivity functions

The procedure implemented by the AssetPricing package, for determining an optimal pricing
policy, requires that the arrival intensity and the price sensitivity function or functions be
known functions. Translating informal knowledge about customer characteristics into an
arrival intensity, and even more so, into a price sensitivity function is in general difficult.
There are however certain scenarios in which such translation is reasonably simple.

These scenarios lead to price sensitivity functions which are piecewise linear in price. For
such functions, the differentiability conditions previously assumed in the context of continuous
prices do not hold. A different approach to determining the optimal pricing policy must be
taken. A broadly applicable approach has been implemented in the AssetPricing package.
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This approach is capable of dealing with functions which are piecewise linear in price but
more or less arbitrary with respect to time. That is, it can be applied to functions of the form

S(x, t) = αk(t) + βk(t)x (3)

(where x represents price and t represents residual time) for xk−1 ≤ x ≤ xk. In the forgoing
0 = x0 < x1 < . . . < xK are the “knots” (change points) of the piecewise linear function of
price, whose coefficients are time dependent. The optimization which is involved in dealing
with such functions circles back, to some extent, to the discrete price scenario.

In order to be sure that it makes sense, we require the function S(x, t) to be:

(a) Continuous in x (i.e., αk(t) + βk(t)xk = αk+1(t) + βk+1(t)xk
for k = 1, . . . ,K − 1 and all t).

(b) Non-increasing in x (i.e., βk(t) ≤ 0 for all k and all t).

(c) Equal to 1 at x = 0 (i.e., α1(t) ≡ 1 for all t).

(d) Non-negative (i.e., αK(t) + βK(t)xK ≥ 0 for all t).

Aside from that, the coefficient functions αk(t) and βk(t) may be more or less arbitrary,
although in practice we would probably want them to be continuous.

4.1. Constructing the functions

Building a function such as is described by Equation 3 is not completely straightforward and
checking that it is “valid” (satisfies the four conditions listed above) is a bit delicate. The
AssetPricing package contains a function buildS() which helps to alleviate this problem. This
function returns as its value a legitimate (checked) price sensitivity function. The function
buildS() takes as its input (arguments) lists of coefficient functions alpha and beta, the
knots kn, and the maximal value of t, tmax. This last is needed in respect of the “for all t”
conditions that S must satisfy. In effect this means “for all t such that 0 ≤ t ≤ tmax”.

The value returned by buildS() is a function of two arguments x (price) and t (residual
time). Note that the arguments alpha, beta, kn, and tmax to buildS() are assigned in the
environment of the function returned by buildS. Thus the returned price sensitivity function
“carries these objects around with it” so that it can make use of them, although they are not
directly visible to the user.

In the sort of scenario which originally motivated the implementation of piecewise linear price
sensitivity functions, customers are divided into a number of types. Each type has a (time
invariant) price sensitivity, about which informal knowledge might yield sufficient insight to
represent it as a piecewise linear function of price. Similarly each type has a different arrival
intensity. Again informal knowledge might be sufficient to construct reasonable representa-
tions of these intensities.

In such a scenario we would assume that customer class ` has a (time invariant) price sensitiv-
ity function S`(x) = ak` +bk`x for xk−1 ≤ x ≤ xk, where the xk are “change points” or “knots”
(without loss of generality we may assume that the knots are the same for all `). We would
also assume that customers from class ` arrive according to a Poisson process with intensity
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λ`(t). The overall intensity would then be λ(t) =
∑

` λ`(t) and the overall price sensitivity
function would be:

S(x, t) =
1

λ(t)

∑
`

λ`(t)(ak` + bk`(t)x) for xk−1 ≤ x ≤ xk .

This function is of the required form (Equation 3) with

αk(t) =

(∑
`

ak`λ`(t)

)
/λ(t) and βk(t) =

(∑
`

bk`λ`(t)

)
/λ(t) .

4.2. Maximizing expected revenue

For a piecewise linear price sensitivity function, price varies continuously but such a function is
not smooth. (There are discontinuities in the first derivative with respect to x.) Consequently
the maximization technique previously applied when price is continuous is not applicable.
Instead we implement a procedure which rests upon recognizing that the conditional expected
value of a stock of size q, offered at price x at residual time t (denoted Rq(x, t)) is a piecewise
polynomial in x.

These piecewise polynomials are quadratic in the setting in which customers arrive singly.
They are of degree jmax+1 in the setting in which customers arrive in groups, where jmax is the
maximal customer group size. The maximum of Rq(x, t) will therefore occur at either a zero
of the derivative of one of these piecewise polynomials, or at one of the knots. Consequently
there is a finite number of possible maxima. After determining the relevant zeroes (throwing
away any such which do not fall between the appropriate pair of knots) it is possible to go
back to the technique used in the discrete price setting and do a discrete maximization.

It turns out that the polynomial components of Rq(x, t) can be built up as sums, in terms
of “binomials” raised to a power: (cr + drx)(a + bx)r, with r running from 1 to a certain
value rmax. We can thereby apply the facilities of the polynom package (Venables, Hornik,
and Maechler 2014) to put together each such polynomial. The code (part of the turnPts()

function in the AssetPricing package) looks like this:

R> vq <- v[q]

R> ply <- 0

R> for (r in 1:rmax) {

+ vqmr <- if (r < q) v[q - r] else 0

+ p1 <- polynomial(c(vqmr - vq, r))

+ p2 <- polynomial(c(a, b))

+ # a and b are arguments to turnPts()

+ ply <- ply + Kpa[r] * p1 * p2^r

+ }

The resulting polynomial can be differentiated via:

R> dply <- deriv(ply)

and its zeroes found via:
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R> zzz <- polyroot(dply)

It is necessary to check that there are any zeroes – it can turn out that dply is a constant. It
is also necessary to discard zeroes with a non-trivial imaginary part and zeroes that do not
fall between the relevant pair of knots. All this is reasonably straightforward to accomplish.

5. Examples

Example 1: Suppose that the possible prices in a discrete price setting are $60 (bargain-
basement price), $150 (sale price) and $200 (regular price). Assume that the price sensitivity
function is given by

S(x, t) =


1 if x = 60
e−2t if x = 150
e−4t if x = 200

and that customers arrive according to a constant intensity Poisson process with intensity
λ = 100. Suppose that time to departure is 1 time unit (month, say). Assume here that
customers always arrive singly. We calculate the optimal pricing policy using AssetPricing as
follows:

R> S <- function(x, t)

+ ifelse(x == 60, 1, ifelse(x == 150, exp(-2 * t), exp(-4 * t)))

R> optPrice01 <- xsolve(S = S, lambda = 100, tmax = 1, gprob = 1,

+ qmax = 100, prices = c(60, 150, 200), alpha = 1, type = "sip")

Traces of the optimal prices may be plotted using the plot method for ‘AssetPricing’ objects.
Since the prices are discrete, these traces are step functions whence plotting them all at once
yields an incomprehensible tangle. Therefore we must specify a groups argument in the call
to the plot method. Since there are 100 traces it is not feasible to plot all of them. Moreover
many traces are identical to each other. We have picked out six reasonably representative
(and interesting) traces to plot; these traces are shown in Figure 1. The call to produce this
figure is:

R> grps <- data.frame(group = 1:6, q = c(10, 20, 40, 45, 50, 90))

R> mp <- paste("stock size =", grps$q)

R> plot(optPrice01, witch = "p", groups = grps, main.panel = mp)

As discussed in Section 3.3, the plot method for class ‘AssetPricing’ chooses the dimensions
of arrays of plots to be either (1, 1), (2, 2) or (3, 2) according to the total number of groups.
Consequently we got the 3×2 array shown in Figure 1. If one wanted, say a 2×3 array rather
than a 3× 2 array, one would add the argument mfrow = c(2, 3) to the call to plot().

The traces that appear in Figure 1 may seem rather counter intuitive (particularly that short
sharp notch in the trace for q = 40) but they are correct. A plot of the expected values of
stocks of various sizes, versus residual time, is shown in Figure 2.

It is interesting to compare the expected values for the optimal pricing policy with those for a
suboptimal policy such as would be given by using the price function for q = 90 for all values
of q:
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Figure 1: Traces of optimal prices for Example 1.

R> y <- rep(optPrice01$x[90], 100)

R> attributes(y) <- attributes(optPrice01$x)

R> comment(y) <- "Prices constant over q."

R> Cmpre <- vsolve(x = y, S = S, lambda = 100)

A comparison of some of the expected value traces under the optimal and suboptimal pricing
policies is shown in Figure 3. We see that the traces for the maximal stock size, i.e., 100,
are visually indistinguishable. Note that these traces give the expected value of the original
stock size at each residual time value, i.e., the expected value that would pertain if no items
of stock had been sold.

However suppose that you had sold half of the original number of items of stock by (for
example) residual time 0.8. Under the suboptimal policy, the expected value of the remaining
50 items is

R> Cmpre$v[[50]](0.8)

[1] 4465.987
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whereas under the optimal policy we get

R> optPrice01$v[[50]](0.8)

[1] 6423.743

almost a 44% increase over the suboptimal expected value.

Note that if the original stock size were 50, and if the pricing policy were to use the price
function for q = 90 for all values of q, then there would be a 120% increase, at residual time
= 1, when using the optimal policy:

R> EVOP <- optPrice01$v[[50]](1)

R> EVSOP <- Cmpre$v[[50]](1)

R> 100 * (EVOP - EVSOP)/EVSOP

[1] 120.576

Example 2: Let us consider an example in which the price sensitivity function is smooth:

S(x, t) =
exp(−κx)

1 + γ exp(−βt)
,

where κ, γ and β are positive parameters. Observe that this function is infinitely differentiable
with respect to both x and t. The probability of purchase decreases as x increases and
diminishes to zero as x tends to infinity. Its derivative with respect to x (price) increases
in absolute value as t increases – demand is more elastic at times which are distant from
departure time.

For this example we shall consider an arrival intensity which increases as t tends to 0: λ(x) =
84(1 − t). We shall assume that groups arrive in sizes determined by a Poisson distribution
with mean equal to 5. In this example we shall take κ = 10, γ = 5 and β = 3.

The code to fit this model is as follows:

R> S <- expression(exp(-kappa * x/(1 + gamma * exp(-beta * t))))

R> attr(S, "parvec") <- c(kappa = 10, gamma = 5, beta = 3)

R> Lam <- function(t) 84 * (1 - t)

R> Gpr <- function(n) dpois(n, 5)

R> optPrice01 <- xsolve(S = S, lambda = Lam, tmax = 1, gprob = Gpr,

+ qmax = 100, alpha = 0.5, type = "dip")

Note that since S is a single expression (not a list of such) it is assumed that the price
sensitivity function for a group of size j is S(x, t)j . Plots of some of the optimal prices are
shown in Figure 4. Salient features are the tendency of the optimal prices to decrease as the
group size increases and to increase as the number of remaining items of stock decreases.

The code to produce Figure 4 is:
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Figure 4: Traces of optimal prices for Example 2.

R> grps <- data.frame(group = rep(1:4, each = 5),

+ q = c(1, 21, 51, 71, 91, 11, 31, 51, 71, 91, 21, 31, 41, 61,

+ 91, 21, 31, 41, 61, 91), j = rep(c(1, 10, 15, 20), each = 5))

R> glnd <- rep(c(TRUE, FALSE, FALSE, FALSE, TRUE), 4)

R> plot(optPrice02, witch = "p", groups = grps, gloss = TRUE, glind = glnd,

+ xlab = "residual time", ylab = "asking price", extend = 0.4,

+ main.panel = "", col.gloss = "red")

Some plots of expected values of stocks of various sizes, versus residual time, are shown in
Figure 5. The code to produce Figure 5 is:

R> grps <- data.frame(group = 1, q = 5 + 10 * (1:9))

R> glnd <- rep(TRUE, 9)

R> glnd[7:8] <- FALSE

R> plot(optPrice02, witch = "e", groups = grps, glind = GLND,

+ col.gloss = "red", gloss = TRUE)
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Figure 5: Traces of expected revenue for Example 2.

Example 3: Often there is likely to be a strong periodic effect in the arrival intensity. For
instance there may well be a weekly periodicity in customer behavior. A somewhat artificial
example of such a periodic intensity (based on“Model A”from Kutoyants 1998, Equation 2.67,
p. 78) is:

λ(t) =
a

2
[1 + cos(ωt+ φ)] + λ0 .

To produce an explicit example we take a = 74, ω = 8π, φ = 6π/7 and λ0 = 5. This would
roughly correspond to a weekly periodicity over a sales period of four weeks starting on a
Wednesday (i.e., 3/7 of a week). The total expected number of arrivals over a sales period
is 42. Using the same price sensitivity function and the same group size probability function
as in Example 2, and setting type = "sip" for simplicity, we obtain plots of optimal prices
and corresponding expected values as shown in Figures 6 and 7. We omit the code for the
calculation and plotting, since it is similar to that used in Example 2, but it is available in
the supplementary material. The periodicity of the arrival intensity has a readily apparent
impact upon the resulting optimal prices and corresponding expected values, which manifests
itself in the undulating nature of the curves. The impact is more apparent for the optimal
prices when the number q of items available for purchase is small and for the corresponding
expected values when the number of items is large.

Example 4: Consider a setting in which the assets under consideration are seats on airline
flights and in which customers may be divided into three types: (1) “Bargain hunters”, (2)
“Tourists”, and (3) “Business travelers”. Business travelers’ arrival times will tend to be
concentrated relatively close to the departure time of the flight. Tourists (who need to plan
holidays well in advance) will arrive at times concentrated earlier in the sales period. Bargain
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hunters may be assumed to arrive more “uniformly” but with a tendency to be sparse toward
departure time. Bargain hunters will be relatively sensitive to the offered price. Tourists will
be less, but still substantially, sensitive to price. Business travelers will be the least sensitive.

Explicitly we assume price sensitivity functions for the various customer classes as follows:

SBhnt(x) =


1 for 0 ≤ x ≤ 2
1.495− 0.2475x for 2 ≤ x ≤ 6
0.01 for 6 ≤ x ≤ 10
0.01 for 10 ≤ x ≤ 14

STour(x) =


1 for 0 ≤ x ≤ 2
1 for 2 ≤ x ≤ 6
2.485− 0.2475x for 6 ≤ x ≤ 10
0.01 for 10 ≤ x ≤ 14

SBusi(x) =


1 for 0 ≤ x ≤ 2
1 for 2 ≤ x ≤ 6
1 for 6 ≤ x ≤ 10
3.475− 0.2475x for 10 ≤ x ≤ 14

We assume the arrival intensities for the customer classes are:

λBhnt(t) =


12t for 0 ≤ t ≤ 1
12 for 1 ≤ t ≤ 2
12 for 2 ≤ t ≤ 3
12 for 3 ≤ t ≤ 4

λTour(t) =


0 for 0 ≤ t ≤ 1
16(t− 1) for 1 ≤ t ≤ 2
16 for 2 ≤ t ≤ 3
64− 16t for 3 ≤ t ≤ 4

λBusi(t) =


20 for 0 ≤ t ≤ 1
10(3− t) for 1 ≤ t ≤ 2
10(3− t) for 2 ≤ t ≤ 3
0 for 3 ≤ t ≤ 4

These intensity functions are also piecewise linear, but this is of no particular consequence
in respect of the ideas being developed. Plots of the price sensitivity functions are shown in
Figure 8 and of the arrival intensity functions in Figure 9. A plot of the resulting overall price
sensitivity function is shown in Figure 10.

Initially we took the minimum values of the price sensitivity functions to be 0 rather than
0.01 (with the consequently simpler value of −0.25 for the slope coefficients and 1.5, 2.5, and
3.5 for the respective intercept coefficients of the non-constant segments). However the 0
values induced a “flat spot” in the overall price sensitivity function whereby the probability
of any purchase was 0 for t > 3 and x > 10. As a consequence the optimum price became
indeterminate for t > 3 which induced a numerical instability in the system. We therefore
adjusted the minimal value up to 0.01 so as to alleviate this instability. The code has since
been revised to cope with the indeterminacy, but we have retained the example which has
the slightly more complicated coefficients. In this example the maximum number of assets
(seats) for sale was set equal to 30, and single arrivals were assumed, to keep things simple.
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We found that we had to increase the value of nout from its default value of 300 in the call to
ode(), otherwise some anomalous “jagged” fluctuations appeared in the traces of the optimal
prices.

To produce the traces of optimal prices shown in Figure 11 we set nout = 1000. (This had
a substantial impact on the computing time, increasing it from 2.6 minutes to about 7.5
minutes.) Traces of the corresponding expected values of stocks are shown in Figure 12.
We remark that increasing the value of nout had no visually discernible impact on these
latter traces. As a check the model was fitted using the discrete pricing paradigm, with the
“discrete prices” taken to be an equispaced sequence (of 51 points) on [0, 14]. The prices from
the discrete model, corresponding to those shown in Figure 11, are shown in Figure 13 and the
corresponding expected values are shown in Figure 14. The optimal prices from the discrete
pricing approximation agree well with those from the piecewise linear model. The expected
values from the two models are virtually indistinguishable.

6. Discussion

The AssetPricing package provides a convenient facility for determining the optimal pricing
policy for a number of“perishable”assets (assets with a fixed expiry date). The optimal policy
is determined by solving a coupled system of differential equations. The solution is effected
numerically using the ode() function from the deSolve package. The AssetPricing package
also has the capability to determine the expected value of a number of assets given a specified
(not necessarily optimal) pricing policy. Determination of the expected value is also effected
via the solution of a system of differential equations (using the ode() function). Finally, the
package provides means of producing useful and informative plots of the calculated results in
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Figure 11: Optimal prices from a piecewise linear model.

stock size = 14

residual time

ex
pe

ct
ed

 r
ev

en
ue

0
10

0
20

0
30

0

0 1 2 3 4

stock size = 19

residual time

ex
pe

ct
ed

 r
ev

en
ue

0
10

0
20

0
30

0

0 1 2 3 4

stock size = 25

residual time

ex
pe

ct
ed

 r
ev

en
ue

0
10

0
20

0
30

0

0 1 2 3 4

stock size = 28

residual time

ex
pe

ct
ed

 r
ev

en
ue

0
10

0
20

0
30

0

0 1 2 3 4

Figure 12: Expected revenue from a piecewise linear model.
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Figure 13: Optimal prices from the discrete price approximation.
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Figure 14: Expected revenue from the discrete price approximation.
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a simple and convenient manner.

The techniques used in the package are largely based on the theoretical foundations described
in Banerjee and Turner (2012). However a new methodological feature is also involved, and
this is developed in the current paper. It permits dealing with price sensitivity functions
(for continuous prices) which are piecewise linear in price and consequently not smooth. It
is likely to be much easier to specify a piecewise linear price sensitivity function in terms of
“informal knowledge” than it is to specify a smooth one. Given this capacity to construct and
handle piecewise linear price sensitivity functions, the proposed technique for determining
optimal pricing policies should be reasonably simple for users to apply to real problems and
the technique should be able to deliver genuinely useful results in a practical and convenient
manner.

When the price sensitivity function is piecewise linear, optimizing with respect to price re-
quires constructing piecewise polynomials and finding the zeroes of their derivatives. This can
be done surprisingly easily using the polynom package. The results of applying the technique
agree well with a “discrete price” approximation.

The package is entirely written in “raw R” and hence runs somewhat slowly. It should be
possible to recode the software in Fortran or C and thereby achieve a considerable increase in
speed. Such an improvement to AssetPricing is planned for a future release of the package.
The coding is likely to be somewhat intricate however, hence effecting the improvement will
probably take some time.

It is of interest to remark here on a technical issue pertaining to the coding of the functions
in the AssetPricing package. The differential equations to be solved take the form:

ẋ(t) = G(x, t) (optimal prices)

and

v̇(t) = F(v, t) (expected values) .

In the code, the functions G(·, ·) and F(·, ·) (and other functions as well) depend on a number of
other“auxiliary”arguments. It turned out to be expedient to assign these auxiliary arguments
in the environments of the relevant functions, rather than making them members of the
argument lists of the functions. Example:

R> assign("alpha", alpha, envir = environment(scrG))

Applying this idea resulted in code that was much cleaner and simpler than would otherwise
have been the case.
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