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Abstract

Generalized linear mixed models (GLMMs) comprise a class of widely used statistical
tools for data analysis with fixed and random effects when the response variable has a
conditional distribution in the exponential family. GLMM analysis also has a close rela-
tionship with actuarial credibility theory. While readily available programs such as the
GLIMMIX procedure in SAS and the lme4 package in R are powerful tools for using this
class of models, these progarms are not able to handle models with thousands of levels
of fixed and random effects. By using sparse-matrix and other high performance tech-
niques, procedures such as HPMIXED in SAS can easily fit models with thousands of factor
levels, but only for normally distributed response variables. In this paper, we present the
%HPGLIMMIX SAS macro that fits GLMMs with large number of sparsely populated design
matrices using the doubly-iterative linearization (pseudo-likelihood) method, in which the
sparse-matrix-based HPMIXED is used for the inner iterations with the pseudo-variable con-
structed from the inverse-link function and the chosen model. Although the macro does
not have the full functionality of the GLIMMIX procedure, time and memory savings can be
large with the new macro. In applications in which design matrices contain many zeros
and there are hundreds or thousands of factor levels, models can be fitted without ex-
hausting computer memory, and 90% or better reduction in running time can be observed.
Examples with a Poisson, binomial, and gamma conditional distribution are presented to
demonstrate the usage and efficiency of this macro.

Keywords: GLMM, REPL, pseudo-likelihood, SAS.

1. Introduction

Mixed models comprise a class of important statistical tools to estimate variance and co-
variance parameters, account for repeated measurements and other features of experimental
designs, and adjust for over-dispersed data (Stroup 2012). Mixed models extend the clas-
sic fixed effect models by including random effects and best linear unbiased predictors for
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subjects. The random effect represents a random sample from a hypothetical distribution,
and serves as a mechanism to link observations with the same level of random effect via a
covariance matrix, so that information from similar observations can be utilized in estima-
tion. Mixed modeling also has a close relationship with actuarial credibility theory. The
generalized linear mixed model (GLMM) has attracted considerable attentions during the
past two decades, because it extends the linear mixed model to a general framework that
accommodates a rich set of distributions from the exponential family, so that non-normally
distributed data such as counts and binary observations can be modeled appropriately. Read-
ily available commercial or free software packages, such as the GLIMMIX procedure from SAS
Institute Inc. (2011a) and the lme4 package (Bates, Maechler, Bolker, and Walker 2014) in R
(R Core Team 2014) make GLMMs increasingly popular to the research community. GLMMs
have been widely applied in areas such as biology (Vergara, Aguirre I, and Fernandez-Cruz
2007), ecology (Milsom, Langton, Parkin, Peel, Bishop, Hart, and Moore 2000), small area
estimation (Maiti 2001), genetic research (Kerr, Martin, and Churchill 2000), and actuarial
science (Antonio and Beirlant 2007; Frees, Young, and Lou 1999; Kaas, Dannenburg, and
Goovaerts 1997), to name a few. In many of these applications, however, model fitting is
a challenging task because the fixed and random effects may have a large number of levels.
This is especially true with molecular biology studies as indicated by Wolfinger et al. (2001).
Here, we present a macro in SAS for fitting GLMMs to data with large numbers of fixed and
random effect levels using sparse-matrix techniques, and compare results with the output of
the GLIMMIX procedure in SAS (which does not use sparse-matrix or other high performance
techniques).

To understand the computational challenge, it is necessary to review the estimation tech-
niques, which fall into either of the two categories:

1. Linearization of the model based on a Taylor series, such as described in Breslow and
Clayton (1993), Wolfinger and O’Connell (1993), Schall (1991).

2. Integral approximation of the GLMM log-likelihood function, such as described in
Wolfinger (1993), Pinheiro and Bates (1995), Raudenbush, Yang, and Yosef (2000),
Pinheiro and Chao (2006).

The linearization method is more general than the integral-approximation method (in terms of
the diversity of models that can be fitted), but may produce more biased variance-covariance
and other parameter estimates than found with integral-approximation methods. Stroup
(2012) shows, however, that the bias problem is usually of concern only under extreme situa-
tions, such as when the number of Bernoulli trials per sampling unit is very small, especially
if the number of subjects is small. The linearization method is the focus of this paper be-
cause of its generality and how this approach can be incorporated into a high performance
computational algorithm.

Schall (1991) and Breslow and Clayton (1993) proposed a method based on the first-order
Taylor-series expansion of the inverse link function around the current estimate of fixed and
random effects, which is known as a quasi-likelihood based method. It is also known as
a so-called penalized quasi-likelihood (PQL) method. Wolfinger and O’Connell (1993) ex-
panded the Taylor-series approach by incorporating a probabilistic approximation based on
the Gaussian distribution. This results in a so-called pseudo-likelihood approach because
the marginal log-likelihood for the approximating function mimics the structure of a Gaus-
sian log-likelihood. Within this structure, iterative mixed-model estimation is achieved using
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likelihood- or restricted-likelihood based methods and iteratively-reweighted-least-squares, es-
sentially coupling and generalizing linear mixed model (LMM) and generalized linear model
(GLM) algorithms (Schabenberger and Pierce 2002). This section basically follows Wolfinger
and O’Connell (1993) and Stroup (2012).

A GLMM can be expressed as:

E(y|γ) = h(Xβ + Zγ) = h(η) = µ|γ

and
VAR(y|γ) = A1/2RA1/2,

where y is the response vector, X is the fixed effects design matrix, Z is the random effects
design matrix, β is the vector of fixed effects parameters, γ is the vector of random effects, µ
is the vector of expected values, η is the vector of linear predictors conditional on the random
effects, and h() is the inverse link function g−1(). It is assumed that γ ∼ N(0,G), where
G is the variance-covariance matrix of the random effects. We are mostly concerned about
variance-component models, which correspond to a diagonal G matrix, but the approach is
applicable to a wider class of models. The variance (or variance-covariance) of y conditional
on the random effects is defined through two matrices. A is a diagonal matrix whose elements
represent the variance function for h(η) (dependent on the assumed conditional distribution,
and calculated at µ), and R is a scaling matrix.

In the nominal situation, R is a diagonal matrix with elements φ, a ”residual-type” scaling
term; for some conditional distributions in the exponential family, such as the binomial and
Poisson, φ ≡ 1. For other conditional distributions (e.g., gamma, normal, negative binomial),
φ is unknown and must be estimated. Over-dispersion with the binomial and the Poisson
distribution can be accounted for by allowing φ to be an unknown parameter that is estimated;
this is equivalent to holding φ fixed at the theoretical value for the conditional distribution
and multiplying it by an over-dispersion parameter. In this over-dispersion situation with
the binomial and Poisson distribution, the estimation becomes a quasi-likelihood method,
because the “likelihood” no longer corresponds to a known distribution (Stroup 2012). R can
also be generalized to a non-diagonal matrix as one approach to account for correlations of
the observations within subjects.

Define the first order derivative of the inverse link function h() evaluated at a given estimate
of linear predictor effects β, γ as: (

∂h(η)

η

)
η=η̂

= h
′
(η̂)

and
D̂ = diag

[
h

′
(η̂)
]
.

Then the first-order Taylor-series expansion of the GLMM at a given estimate of linear pre-
dictor effects is:

h(η) ∼= h(η̂) + D̂(η − η̂).

Here, the hats refer to the current estimate of the parameter (or parameter vector) in an
iterative process. Rearranging terms, we have

Xβ + Zγ = Xβ̂ + Zγ̂ + D̂−1 [h(η)− h(η̂)]
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Following the idea from the iterative re-weighted least squares algorithm with a GLM, the
pseudo-variable is defined as

y∗ = η̂ + D̂−1[y − h(η̂)], (1)

where η̂ = Xβ̂+Zγ̂. It follows that the conditional expected value and variance are given by
Stroup (2012):

E(y∗|γ) = Xβ̂ + Zγ̂ + D̂−1[h(η)− h(η̂)]

and
VAR(y∗|γ) = D̂−1A1/2RA1/2D̂−1.

With the pseudo-likelihood approach, it is assumed that y∗ | γ has a normal distribution.
Using y∗ as the response variable, pseudo-likelihood estimation of a GLMM is achieved within
the framework of a linear mixed model, with weights defined as Ŵ, a diagonal matrix with
elements as A−1D̂2. Under the canonical link function, W = A−1. Estimates of β and
predictions of γ are obtained by solving the GLMM equations:

H

(
β
γ

)
=

(
XŜ−1y∗

ZŜ−1y∗

)
,

where

H =

(
X>Ŝ−1X X>Ŝ−1Z

Z>Ŝ−1X Z>Ŝ−1Z + Ĝ−1

)

and Ŝ = D̂−1Â1/2R̂Â1/2D̂−1 = Ŵ−1/2R̂Ŵ−1/2 .

Note that the ”marginal” variance of y∗ is

VAR(y∗) = V

= ZGZ> + D̂−1A1/2RA1/2D̂−1

= ZGZ> + W−1/2RW−1/2.

Given the probability approximation as above, the objective function is the Gaussian log-
likelihood function for the pseudo-variable y∗:

pl = −1

2
log | V | −1

2
(y∗ −Xβ)>V−1(y∗ −Xβ)− n

2
log(2π) (2)

and the restricted pseudo-log-likelihood function is:

plR = −1

2
log | V | −1

2
log

(
| X>V−1X |

)
− 1

2

(
r>V−1r

)
− n− p

2
log(2π) (3)

where r = (I − X(X>V−1X)X>V−1)y∗, n denotes the sum of the frequencies used in the
analysis and p is the rank of X.

In Wolfinger and O’Connell (1993), the uses of Equations 2 and 3 (with the GLMM equations)
were originally called the PL and REPL algorithms, respectively. In the GLIMMIX procedure of
SAS, the PL algorithm is referred to as MSPL (maximum subject-specific pseudo-likelihood),
while the REPL algorithm is called RSPL (restricted subject-specific pseudo-likelihood). Note
that the elements of R can either be held constant based on the conditional distribution
(consistent with Breslow and Clayton 1993), or be estimated (consistent with Wolfinger and
O’Connell 1993). The GLIMMIX procedure uses the MSPL and RSPL labels for the linearization
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estimation methods whether or not the R matrix is estimated. This is discussed further below.
A general label for all of these approaches in this paragraph is linearization.

Estimation of a linearized GLMM follows a doubly iterative algorithm, as indicated by SAS
Institute Inc. (2011a). In a doubly iterative algorithm, a simpler model, a LMM, is derived
from the original more complex GLMM; here the pseudo-variable (y∗) is calculated and is
fitted to data as a LMM using the above-described pseudo log-likelihood and mixed-model
equations. For most LMMs, this is an iterative process, known as the inner iteration. Using
the parameter estimates and predictions of the random effects obtained after convergence, y∗ is
re-calculated (the outer iteration) and a LMM is again fitted to the data. The outer iterations
continue (with the corresponding inner iterations at each step) until a preset convergence
criterion is met or the maximum number of iterations is attained. The deviance based on the
assumed conditional distribution is then calculated. The algorithm is outlined in Section 2.

When either the fixed effect design matrix X or the random effect design matrix Z has
many columns, solving the mixed model equations will be extremely time consuming and
memory intensive, especially when determining the generalized inverse of the matrices, see
SAS Institute Inc. (2011a). The time complexity will roughly be about O(k3) and the space
complexity will roughly be about O(k2), where k is the rank of the matrix H. What makes the
new macro outperform the GLIMMIX procedure in terms of speed and memory consumption is
the use of sparse-matrix techniques and special optimization methods in the inner iterations
of the doubly iterative algorithm. This is accomplished by calling the new HPMIXED procedure
for the inner-iteration calculations instead of using a more traditional LMM algorithm not
adapted for large scale problems. HPMIXED is specifically developed for linear mixed models
with large numbers of sparsely populated columns in the X and Z matrices.

In a mixed model with fixed and/or random effects that have large number of levels, the
resulting mixed model equation matrices are very large, but often extremely sparse in the
sense that most of the elements are 0. For a typical variance-component mixed model with
many factor levels, close to 99% of the elements may be 0. Sparse-matrix techniques exploit
this fact by representing a matrix not as a complete two dimensional array, but as a set
of nonzero elements and their location (row and column) within the matrix. The HPMIXED

procedure in SAS, in particular, employs the compressed sparse row (CSR) representation of a
sparse matrix, where nonzero elements are stored row by row in (value, col_ind, row_ptr)

format where value is an array of the (left-to-right, then top-to-bottom) non-zero values of
the matrix; col_ind is the column index corresponding to the values; and row_ptr is the list
of value indexes where each row starts. CSR is efficient for row-wise arithmetic operations
which is exactly how the likelihood calculations for mixed model are conducted.

Several optimization methods are possible for the linear mixed model fit, and the default in
HPMIXED is dual quasi-Newton, which only requires first derivatives of the (restricted) pseudo-
log-likelihood. HPMIXED also provides several optional optimization techniques to choose from
when solving the pseudo-log-likelihood function, some of which require the calculation of the
second derivatives. As the default for the %HPGLIMMIX macro, the HPMIXED default is re-
placed with the Newton-Raphson with ridging optimization method. Table 1 shows available
optimization techniques and whether second-order derivatives are required. These are cho-
sen with the TECH= option in the macro (see last example for a demonstration). However,
HPMIXED does not actually calculate the true second derivative (or the observed information
matrix). Instead, the so-called average information matrix is calculated, which is much less
computationally demanding, and can be more stable (Gilmour, Thompson, and Cullis 1995).



6 %HPGLIMMIX: High-Performance GLMM Estimation in SAS

Algorithm Full name Gradient Hessian

LEVMAR Levenberg-Marquardt Yes Yes
TRUREG Trust Region Yes Yes
NEWRAP Newton-Raphson with Line Search Yes Yes
NRRIDG Newton-Raphson Ridge Yes Yes
QUANEW Quasi-Newton Yes No
DBLDOG Double-Dogleg Yes No
CONGRA Conjugate Gradient Yes No
NMSIMP Nelder-Mead Simplex No No

Table 1: List of optimization algorithms and derivatives required.

2. Outline of linearization algorithm for GLMMs

The specific algorithm implemented in this macro as well as the description below follows
that of Wolfinger and O’Connell (1993).

1. Set up variance function and deviance function based on Table 2 according to specified
conditional distribution.

2. Use the original data as initial estimate of µ, µ̂. Adjustment (correction factor), as in
Table 3, may be applied to y in order to apply the link function (e.g., avoid the log of
0). Correction factor is set to 0.5 by default.

3. Compute pseudo-variable y∗ according to Equation 1.

4. Diagonal weight matrix Ŵ = Â−1D̂2 is also computed based on µ̂ and specified distri-
bution.

5. In the inner iterations, use REML to estimate components of covariance matrices G,R
(or just G, if there is not a free scale parameter with the specified distribution and one
does not wish to adjust for over-dispersion after random effects are in the model) and
solve the mixed model equation for fixed and random effects.

6. Obtain the maximum difference of estimates for covariance parameters and fixed effect
parameters between the current and previous outer iteration. Convert the difference to
a relative scale by dividing by the magnitude of the corresponding parameter estimate.

7. If the max (relative) difference is larger than a threshold (e.g., 1E-8), update µ using
the inverse link function with newly estimated fixed and random effects. Then go back
to Step 3.

8. If the max (relative) difference is smaller than the threshold, claim convergence, calculate
deviance, and assemble requested statistics.

3. %HPGLIMMIX macro program

%HPGLIMMIX largely follows the structure of the now obsolete %GLIMMIX macro SAS Insti-
tute Inc. (2007), from which it is derived, and has almost the same set of input parameters.
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Distribution Variance function Deviance

Normal 1
∑
iwi(yi − µi)2

Binary µ(1− µ) 2
∑
iwi [yi log(µi) + (1− yi) log(1− µi)]

Binomial µ(1− µ) 2
∑
iwi

[
yi log(yi/µi) + (1− yi) log

(
yi−µi
µi

)]
Poisson µ 2

∑
i [yi log(yi/µi)]

Gamma µ2 −2
∑
iwi [log(yi/µi)− (yi − µi)/µi]

Inv. Gaussian µ3
∑
iwi

[
(yi − µi)2/(yiµ2i )

]
Geometric µ+ µ2 2

∑
iwi

[
yi log(yi/µi)− (yi + wi) log

(
yi+wi
µi+wi

)]
Table 2: List of variance and deviance functions.

Distribution Apply correction factor (CF)

Binomial or binary (Response+CF)/(1+2 · CF)
Binomial using event/trail (Event+CF)/(Trail + 2 · CF)
All others Response + CF

Table 3: Correction factors.

Some parameters are dropped that do not apply to the HPMIXED procedure (see below), and
some are added (such as one for the optimization method in the inner iterations (TECH=). All
of the above listed items in Section 2 are automatically carried out by the macro.

The %GLIMMIX macro does pseudo-likelihood estimation or restricted pseudo-likelihood es-
timation of GLMMs, which operates by repeatedly calling the MIXED procedure with the
pseudo-variable and weights updated with each call to the MIXED procedure. Later, SAS In-
stitute Inc. put the functionality of this macro, together with many other features, into the
GLIMMIX procedure. However, sparse-matrix techniques are not incorporated into the GLIMMIX
procedure. Thus, we used %GLIMMIX as a template for the development of a new macro that
repeatedly calls HPMIXED procedure instead of calling the MIXED procedure. In addition, many
segments of the data processing code in the macro have been rewritten to achieve the maxi-
mum efficiency in data processing and updating when using big data. HPMIXED only supports
REML estimation; thus, the new macro can only perform restricted pseudo-likelihood meth-
ods (RSPL) to fit GLMMs using the linearization approach. Additionally, the computational
part of the new macro is significantly modified to both accommodate the syntax difference
between HPMIXED and MIXED procedures and improve efficiency, especially for larger data sets
with many observations. The HPMIXED procedure has only a subset of the options available
in the more general MIXED procedure, and default settings are different in some cases (see
below). It is assumed that the user has general familiarity with the syntax of the GLIMMIX

procedure for fititing GLMMs and the MIXED or HPMIXED procedures of SAS for fitting linear
mixed models.

Users can invoke the macro by calling %HPGLIMMIX. The list below explains key parameters in
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Distribution Abbreviation Default link

Binary bi Logit
Binomial b Logit
Normal n Identity
Poisson p Log
Gamma g Reciprocal
Invgaussian ig Power(−2)
Geometric ge Log
User u User-specified

Table 4: Supported distributions and default link functions.

the syntax that will be used most often, while explanation of the full list of parameters is in
the .sas program file and basically follows the instructions for the %GLIMMIX macro in SAS
Sample 25030.

1. DATA= specifies the data set you are using. It can either be a regular input data set
or the _DS data set from a previous call to %HPGLIMMIX. The latter is used to specify
starting values for %HPGLIMMIX and should be accompanied by the INITIAL keyword
option in the OPTIONS= option (see below for description of OPTIONS).

2. STMTS= specifies HPMIXED procedure statements for the analysis, separated by semicolons
and listed as a single argument to the %str() macro function. Statements may include
any of the following: CLASS, MODEL, RANDOM, REPEATED, PARMS, ID, TEST. Syntax
and options for each statement are exactly as in the HPMIXED procedure documentation.
Most aspects of the GLMM specification (in terms of fixed and random effects, con-
tinuous versus categorical [dummy] variables, and over-dispersion) are given with these
statements. Unlike with the GLIMMIX procedure, the link function and conditional dis-
tribution are not given in the MODEL statement but are specified with separate options.
The TEST statement is explained below.

3. ERROR= specifies the distribution of y conditional on the random effects (sometimes
known as the error distribution). When you specify ERROR=USER, you must also provide
the ERRVAR= and ERRDEV= options. The default conditional distribution is binomial.
Valid types and their abbreviations are listed in Table 4.

4. LINK= specifies the link function. Valid types are logit, probit, cloglog, loglog,

identity, power(), log, exp, reciprocal, nlin, and user. The default link func-
tion for each error distribution is listed in Table 4. The user should see the .sas program
for more details.

5. OPTIONS= specifies %HPGLIMMIX macro options separated by spaces. For example, key
word INITIAL specifies that the input data set is actually the _DS data set from a
previous call to %HPGLIMMIX. This allows you to restart a problem that stopped or to
specify starting values. For a full list of available keywords, refer to the .sas program.

6. PROCOPT= specifies the options used by the HPMIXED procedure statement. Refer to the
HPMIXED procedure documentation for more information.
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7. TECH= specifies the optimization algorithm for covariance component estimation, default
is NRRIDG (Newton-Raphson ridge). Available algorithms are listed in Table 1.

There are some important differences between the %HPGLIMMIX macro and the GLIMMIX proce-
dure, even if the same linearization (pseudo-likelihood) algorithm is used for both procedures,
mostly due to the difference between the HPMIXED and the GLIMMIX procedures. Because of
differences between the HPMIXED and the MIXED procedure, there are also a few differences
between the %GLIMMIX and %HPGLIMMIX macros.

First, the syntax between HPMIXED and GLIMMIX procedures has some differences. For example,
the statements COVTEST, LSMESTIMATES, SLICE and FREQ in GLIMMIX are not supported in
HPMIXED (making them, therefore, unavailable in the %HPGLIMMIX macro), while the LSMEANS

and CONTRAST statements in HPMIXED do not provide the same level of functionality as those
in GLIMMIX. On the other hand, HPMIXED does not automatically produce global tests of fixed
effects (main effects or interactions) in order to reduce computational time and memory usage
for big data problems; for situations with huge numbers of factor levels, overall F tests are
often not of value. F tests of main effects and interactions, when desired, are specified with
TEST statements in HPMIXED and in the %HPGLIMMIX macro; these tests are automatically
obtained with GLIMMIX procedure. An example of the TEST statement is given in Section 4.3.

Second, %HPGLIMMIX supports the REPEATED statement in HPMIXED procedure for model-
ing the so-called R-side (residual) variation; in contrast, the GLIMMIX procedure uses the
RANDOM _RESIDUAL_ statement for the same or similar purpose (depending on the type of
GLMM). However, there are some important differences that must be kept in mind between
the macro and the procedure in this regard, depending on the selected conditional distribu-
tion; %HPGLIMMIX follows the same convention as the obsolete %GLIMMIX in this regard. If
one fits a model without a free scale parameter, such as the Poisson, binary, or binomial
conditional distribution, there is no residual variance term in the GLIMMIX procedure (be-
cause the conditional residual variance is fully defined as a function of the mean). In terms
of the GLMM, the R matrix has no unknown parameters, as discussed in the introduction.
But with the HPMIXED (or MIXED) procedure, there is always a residual term. So, in essence,
there is one more variance (or variance-covariance) parameter with the macro than with the
procedure for these conditional distributions. With the macro, one must force the ”last”
variance term (residual variance) to equal 1 in order to perform a pseudo-likelihood analysis
and duplicate the model (and the results) of the GLIMMIX procedure (for those conditional
distributions without a free scale parameter). This difference is demonstrated in Sections 4.1
and 4.2. In Section 4.1, it is shown that if an extra scale parameter is desired with the mod-
els to deal with over-dispersion that is not accounted for with (conditional) random effects,
the statement: RANDOM _RESIDUAL_ has to be explicitly specified in GLIMMIX procedure. In
contrast, with the %HPGLIMMIX macro, this scale parameter is automatically estimated. In
Section 4.2, the opposite case is demonstrated, where there are four variance parameters with
the %HPGLIMMIX macro but with the 4th variance-covariance parameter held at 1 by specifying
HOLD=4 option in the RANDOM statement, and only three explicit variance parameters with the
GLIMMIX procedure with the scale parameter automatically hold at 1.

For other conditional distributions which have a free (residual) scale parameter (e.g., gamma,
inverse Gaussian), nothing special has to be done with the macro (or with the procedure);
that is, the number of variance-covariance parameters match up naturally between the macro
and the procedure.
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Third, HPMIXED uses the residual denominator degrees of freedom (df) for tests of fixed effects.
The only other option is to use an infinite df, which means that t and F tests become z and
chi-square tests, respectively. In the GLIMMIX and MIXED procedures, several df calculation or
estimation methods are allowed, and the residual method is not the default. Thus, for direct
compatibility in denominator df between the new macro and the procedure (or the %GLIMMIX

macro), one needs to use the ddfm=residual option in the GLIMMIX procedure (or in the
%GLIMMIX macro), as shown in the first example below.

Fourth, it is routine in data analysis for models to be fitted with an over-parameterized fixed
effect component (Xβ), which means that there is an infinite number of fixed effect parameters
with the same model fit; only certain linear combinations of the parameters are estimable and
are unique. This happens typically when classification variables (factors) are in the model.
In MIXED, HPMIXED, and GLIMMIX, the generalized inverse used in the mixed-model equations
results in one of the factor levels (the reference level) being ”estimated” as 0. With MIXED and
GLIMMIX procedures, by default, the 0 is obtained for the last factor level, but with HPMIXED,
the order of 0 estimates is almost random and cannot be controlled by the user. Thus, for an
over-parameterized model, the estimates of β from HPMIXED may differ from those in GLIMMIX

or MIXED, although the estimatable functions will be the same (e.g., least squares means,
contrasts).

4. Examples

In this section, several examples are used to demonstrate key features of the new high per-
formance macro. First, in Section 4.1 the new macro is shown to be in agreement with the
now obsolete %GLIMMIX macro for the same model. In Section 4.2, we show how one needs
to fix the residual variance at 1 in the %HPGLIMMIX macro code when fitting a model with
a conditional binomial distribution. In comparison, this is automatically determined in the
procedure. In the third example, we show that the new macro saves tremendous amount
of time when fitting a large-scale GLMM. In this example, a mixed model with a gamma
conditional distribution is used where the fixed effect design matrix has 4513 columns and the
random effect design matrix has 3054 columns, ending up with mixed-model equations with
more than 7500 columns in total. The total running time using the macro is less than 2.5%
compared to the GLIMMIX procedure (67 minutes vs. 2714 minutes). Memory consumption
using the new macro is also a tiny fraction of the procedure in this case.

4.1. Agreement between estimates from GLIMMIX procedure and the macro

In this example, the ship data from McCullagh and Nelder (1989) are used, which are available
online in SAS Knowledge Base sample 25030 from SAS Institute Inc. (2007). For convenience,
the data are listed below. Here, we show that the estimation from %HPGLIMMIX is in agreement
with the GLIMMIX procedure as well as the SAS Institute Inc. provided %GLIMMIX macro using
the restricted pseudo-likelihood algorithm.

data work.ship;

length type $1. year $7. period $8.;

input type year period service y;

datalines;

B 1965-69 1975-79 9.9218 53
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C 1965-69 1975-79 6.5162 1

D 1965-69 1975-79 5.2575 0

E 1965-69 1975-79 6.0799 7

A 1965-69 1975-79 6.9985 4

A 1965-69 1960-74 6.9985 3

B 1965-69 1960-74 10.2615 58

C 1965-69 1960-74 6.6606 0

D 1965-69 1960-74 5.6630 0

E 1965-69 1960-74 6.6708 7

A 1970-64 1960-74 7.3212 6

B 1970-64 1960-74 8.8628 12

C 1970-64 1960-74 6.6631 6

D 1970-64 1960-74 5.8551 2

E 1970-64 1960-74 7.0536 5

A 1970-64 1975-79 8.1176 18

B 1970-64 1975-79 9.4803 44

C 1970-64 1975-79 7.5746 2

D 1970-64 1975-79 7.0967 11

E 1970-64 1975-79 7.6783 12

A 1975-69 1975-79 7.7160 11

B 1975-69 1975-79 8.8702 18

C 1975-69 1975-79 5.6131 1

D 1975-69 1975-79 7.6261 4

E 1975-69 1975-79 6.2953 1

A 1960-64 1960-74 4.8442 0

B 1960-64 1960-74 10.7118 39

C 1960-64 1960-74 7.0724 1

D 1960-64 1960-74 5.5255 0

E 1960-64 1960-74 3.8067 0

A 1960-64 1975-79 4.1431 0

B 1960-64 1975-79 9.7513 29

C 1960-64 1975-79 6.3135 1

D 1960-64 1975-79 4.6540 0

run;

We call the %HPGLIMMIX macro, just like calling %GLIMMIX macro, as:

proc sort data=work.ship;

by descending type;

run;

title "Example 1. Ship data from SAS KB sample 25030";

title2 "Using HPGLIMMIX macro";

%hpglimmix(data=work.ship,

procopt=order=internal,

stmts=%str(

class type year period;

model y = type / solution;
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random year|period;

estimate 'E vs. Others' type -1 -1 -1 -1 4/ divisor=4 cl;

),

error=poisson,

link=log,

offset=service

)

run;

For comparison purpose, we also estimate the same data using the GLIMMIX procedure. Note
that the ddfm=residual option was added to the model statement in the procedure to obtain
the residual denominator degrees of freedom. Without this option, different df would be
obtained with the procedure (the default df method in the procedure depends on the model
structure that is selected) and with the %HPGLIMMIX macro, although the model fits would be
the same.

title2 "Using PROC GLIMMIX";

proc glimmix data=work.ship order=data;

class type year period;

model y = type / solution d=poisson link=log

offset=service ddfm=residual;

random year|period;

estimate 'E vs. Others' type 4 -1 -1 -1 -1

/ divisor=4 cl;

random _residual_;

run;

title;

title2;

The PROCOPT statement can have many purposes for controlling options in the HPMIXED state-
ment called by the macro (see the HPMIXED procedure documentation). For the %HPGLIMMIX

macro, the PROCOPT=ORDER=INTERNAL option is used to specify the order in which to sort
the levels of the classification variables listed in the CLASS statement. The sorted order of
the classification variable levels from the %HPGLIMMIX macro may be different from that from
the GLIMMIX procedure depending on which option you choose. With the %GLIMMIX macro,
one uses the PROCOPT=ORDER=DATA option (because MIXED has a different default ordering
compared to HPMIXED). The ORDER=DATA option is also used with the GLIMMIX procedure,
because the GLIMMIX and MIXED procedures use the same convention for ordering factor lev-
els. It should be pointed out that the ordering of factor levels is often of concern only when
the investigator needs the individual parameter estimates for the over-parameterized model.
Often, only linear combinations of parameters (such as least squares means or contrasts) are
required, and these will not be affected by the parameterization and reference level chosen.

The OFFSET option is used for defining an offset variable in the fixed effect linear predictor
(a predictor variable with a parameter equal to 1). Note that the %HPGLIMMIX macro only
specified one RANDOM statement corresponding to the factors of interests, but GLIMMIX added
another RANDOM statement: RANDOM _RESIDUAL_. This is because, as mentioned previously,
the HPMIXED procedure automatically estimates a scale parameter, but for a Poisson condi-
tional distribution, the scale parameter is fixed at 1 by default for the GLIMMIX procedure,
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and in order to make the GLIMMIX procedure estimate the same statistical model, this second
RANDOM statement is required.

Note that the code for the %GLIMMIX macro is given at http://support.sas.com/kb/25/030.
html. To obtain the same denominator df as with the new macro, one uses ddfm=residual

for the model statement. The results are identical with the results shown below, but are not
shown to save space.

The SAS log shows:

1342 proc sort data=work.ship;

1343 by descending type;

1344 run;

NOTE: Input data set is already sorted, no sorting done.

NOTE: PROCEDURE SORT used (Total process time):

real time 0.00 seconds

user cpu time 0.00 seconds

system cpu time 0.00 seconds

memory 116.18k

OS Memory 15032.00k

Timestamp 03/17/2013 12:49:10 PM

1345 title "Example 1. Ship data from SAS KB sample 25030";

1346 title2 "Using HPGLIMMIX macro";

1347 %hpglimmix(data=work.ship,

1348 procopt=order=internal,

1349 stmts=%str(

1350 class type year period;

1351 model y = type / solution;

1352 random year|period;

1353 estimate 'E vs. Others' type -1 -1 -1 -1 4/ divisor=4 cl;

1354 ),

1355 error=poisson,

1356 link=log,

1357 offset=service

1358 )

The HPGLIMMIX Macro

Data Set : WORK.SHIP

Error Distribution : POISSON

Link Function : LOG

Response Variable : Y

Job Starts at : 17MAR2013:12:49:10

HPGLIMMIX Iteration History

Iteration Convergence criterion

http://support.sas.com/kb/25/030.html
http://support.sas.com/kb/25/030.html
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1 2 <1 sec

2 0.209017514 <1 sec

3 0.037780229 <1 sec

4 0.0012697992 <1 sec

5 0.0001319758 <1 sec

6 0.0000395792 <1 sec

7 0.0000124198 <1 sec

8 3.9708249E-6 <1 sec

9 1.3316894E-6 <1 sec

10 2.0069757E-8 <1 sec

11 2.474803E-13 <1 sec

Output from final Proc HPMixed run:

Job Ends at : 17MAR2013:12:49:14

1359 run;

1360

1361 title2 "Using PROC GLIMMIX";

1362 proc glimmix data=work.ship order=data;

1363 class type year period;

1364 model y = type / solution d=poisson link=log

1365 offset=service ddfm=residual;

1366 random year|period;

1367 estimate 'E vs. Others' type 4 -1 -1 -1 -1

1368 / divisor=4 cl;

1369 random _residual_;

1370 run;

NOTE: Convergence criterion (PCONV=1.11022E-8) satisfied.

NOTE: Estimated G matrix is not positive definite.

NOTE: PROCEDURE GLIMMIX used (Total process time):

real time 0.14 seconds

user cpu time 0.01 seconds

system cpu time 0.04 seconds

memory 1562.10k

OS Memory 15032.00k

Timestamp 03/17/2013 12:49:14 PM

1371 title;

1372 title2;

For this small data set, %HPGLIMMIX takes more outer iterations to converge compared to
the GLIMMIX procedure and compared to the %GLIMMIX macro from SAS (latter output or
log not shown here). This may simply reflect different default starting values for HPMIXED,
GLIMMIX and MIXED. GLIMMIX and MIXED use the MIVQUE0 algorithm for starting values
for random effects, and GLIMMIX uses the GLM solution for the starting values of the fixed
effect parameters; HPMIXED uses the EM-REML algorithm instead for starting values, see SAS
Institute Inc. (2011a). Also, the sparse-matrix methods may not be efficient for small data
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sets with small numbers of fixed or random effects. That is, the increased computational
load of producing the sparse-matrix formulation of the matrices may not be offset until the
number of levels of fixed or random effects reaches a certain minimum value (depending on
the sparseness of the matrices), relative to the calculations made directly with the original
matrices. Examining the results below, we are assured that the estimates of parameters are
identical as reported by SAS on-line for the now obsolete %GLIMMIX macro, as well as from
GLIMMIX procedure.

The section below shows parameter estimates output from %HPGLIMMIX macro:

Parameter Search

Objective

CovP1 CovP2 CovP3 CovP4 Function

0.1174 0.07066 1.11E-10 1.6702 82.307618549

Covariance Parameter

Estimates

Cov Parm Estimate

year 0.1174

period 0.07066

year*period 0

Residual 1.6702

Solution for Fixed Effects

Standard

Effect Type Estimate Error DF tValue Pr>|t| Alpha Lower Upper

Intercept -5.6799 0.3286 29 -17.28 <.0001 0.05 -6.3519 -5.0078

type A 0 . . . . . . .

type B -0.5798 0.2277 29 -2.55 0.0164 0.05 -1.0454 -0.1141

type C -0.6984 0.4248 29 -1.64 0.1110 0.05 -1.5672 0.1704

type D -0.08703 0.3746 29 -0.23 0.8179 0.05 -0.8532 0.6792

type E 0.3301 0.3046 29 1.08 0.2874 0.05 -0.2928 0.9531

Estimates

Standard

Label Estimate Error DF tValue Pr>|t| Alpha Lower Upper

E VS. OTHERS 0.6714 0.2675 29 2.51 0.0179 0.05 0.1243 1.2186

The parameter estimates output from GLIMMIX is shown below, which is the same as the one
from the macro. Because we selected the residual degrees of freedom method with GLIMMIX,
the significance levels from the macro and procedure are also the same.
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Covariance Parameter Estimates

Standard

Cov Parm Estimate Error

year 0.1174 0.1146

period 0.07066 0.1161

year*period 0 .

Residual (VC) 1.6702 0.4690

Solutions for Fixed Effects

Standard

Effect type Estimate Error DF t Value Pr > |t|

Intercept -5.6799 0.3286 1 -17.28 <.0001

type E 0.3301 0.3046 29 1.08 0.2874

type D -0.08703 0.3746 29 -0.23 0.8179

type C -0.6984 0.4248 29 -1.64 0.1110

type B -0.5798 0.2277 29 -2.55 0.0164

type A 0 . . . .

Estimates

Standard

Label Estimate Error DF tValue Pr>|t| Alpha Lower Upper

E vs. Others 0.6714 0.2675 29 2.51 0.0179 0.05 0.1243 1.2186

As can be seen above and verified on the SAS website, %HPGLIMMIX obtains exactly the same
results as both the GLIMMIX and the %GLIMMIX macro. However, with an estimated 0 for the
year × period variance, it is probably advisable to refit the model without this interaction
random effect. That is, one can use the following statement in the above code:

random year period;

4.2. Conditional binomial mixed model

We have already seen that the macro produces the same results as the GLIMMIX procedure
using the linearization RSPL method when the same model structure is used. In this example,
we fit a hierarchical GLMM to data with an assumed conditional binomial distribution, based
on the data sets analyzed in Kriss, Paul, and Madden (2012). The incidence of diseased wheat
spikes (heads) in a three-level hierarchy was analyzed: counties, fields nested within counties,
and sites nested within fields within counties. The number of diseased (y) and total (n) wheat
spikes was determined at each site within each field within each county, and all effects were
assumed to be random. A complementary log-log (CLL) link function was used and it was
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assumed that y had a conditional binomial distribution. The number of counties is set to
62; this is larger than the number used in the original study, but is useful for showing the
advantage of the macro. We used the linearization method to fit a hierarchical GLMM to a
simulated data set that is based on typical data, and set of results, in Kriss et al. (2012).

Here we emphasize the second key difference between the %HPGLIMMIX macro and the GLIMMIX
procedure mentioned in Section 3. When using the %HPGLIMMIX macro to fit a mixed model
for a conditional distribution without free scale parameter, there is an extra variance term,
the residual variance, that must be fixed at 1. GLIMMIX, however, automatically handles this.
So, with this example, there are three variance terms with the procedure and four with the
macro (although the last one is held at 1).

data work.plant;

CALL STREAMINIT(9873123);

do sim = 1 to 1;

inter = -2;

n = 50;

do county = 1 to 62;

varc = 0.65;

uc = rand('normal')*sqrt(varc);

do field = 1 to 10;

varf = .50;

uf = rand('normal')*sqrt(varf);

do site = 1 to 20;

vars = .07;

us = rand('normal')*sqrt(vars);

eta = inter + uc + uf + us;

p = (1-exp(-exp(eta)));

y = rand('binomial',p,n);

output;

end;

end;

end;

end;

run;

The following log pieces show the code and resource usage from the GLIMMIX procedure and
the %HPGLIMMIX macro, respectively, for estimation and comparison purposes. Note that in
the macro, the PARMS statement is used to not only specify the starting value for variance
(or more generally, the variance-covariance) parameters, but also fixes the last (4th in this
example) variance to be 1 using the HOLD=4 option. Because random effects have a nested
structure, we specified the SUBJECT= option in the RANDOM statement to process the data
by subject in order to make the computing more efficient. Note that both GLIMMIX and
%HPGLIMMIX support this option in the RANDOM statement.

2442 title 'PQL ("Penalized Quasi-Likelihood"), 3-level hierarchy, scale=1';

2443 title2 'int=-2, vars: 0.65, .50, .07 [n=50], 16 counties';

2444 /* As described in GLIMMIX manual, with discrete distributions,
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2445 the residual scale is automatically 1. */

2446 proc glimmix data=work.plant ;

2447 class county field site;

2448 model y/n = / dist=binomial link=cll s ;

2449 random int field site(field) /subject=county;

2450 nloptions maxiter=100 tech=QUANEW;

2451 ods output CovParms=Cov_glimmix;

2452 run;

NOTE: Convergence criterion (PCONV=1.11022E-8) satisfied.

NOTE: The data set WORK.COV_GLIMMIX has 3 observations and 4 variables.

NOTE: PROCEDURE GLIMMIX used (Total process time):

real time 5:51.19

user cpu time 5:47.75

system cpu time 1.98 seconds

memory 672046.84k

OS Memory 688696.00k

Timestamp 08/13/2013 06:05:00 PM

2453

2454

2455

2456 /* Now use new %HPGLIMMIX, also with one more level of

2457 of variation (residual), HELD at 1. */

2458

2459 ods select ParmSearch CovParms ParameterEstimates FitStatistics;

2460 title3 'using new %hpglmmix, with fixed residual=1';

2461 %hpglimmix(data =work.Plant,

2462 stmts=%str(

2463 class county field site;

2464 model y/n = / s ;

2465 random int field site(field) /subject=county;

2466 parms (.6) (.5) (.1) (1) / hold=4; *<-- fix "residual" at 1;

2467 ),

2468 error=binomial, maxit=50,

2469 tech=QUANEW,

2470 link=cloglog

2471 );

The HPGLIMMIX Macro

Data Set : WORK.PLANT

Error Distribution : BINOMIAL

Link Function : COMPLEMENTARY LOG LOG

Response Variable : Y/N
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Job Starts at : 13AUG2013:18:05:00

HPGLIMMIX Iteration History

Iteration Convergence criterion

1 0.0969208415 12 sec

2 0.0493967059 11 sec

3 0.0036269351 10 sec

4 0.0001263753 12 sec

5 0.0000110672 10 sec

6 1.3960177E-6 18 sec

7 3.4386804E-9 15 sec

Output from final Proc HPMixed run:

Job Ends at : 13AUG2013:18:07:03

2472 run;

2473 title;title2;title3;

Although the output is not shown, the same variance parameter estimates were obtained with
the macro and the procedure. The GLIMMIX procedure took slightly more than 5 minutes 51
seconds to converge and the %HPGLIMMIX macro took about 2 minutes 3 seconds. For random
effects with nested structure, using the SUBJECT= option to enable processing by subject is
highly encouraged. If the random statement is specified as RANDOM county field(county)

site(field county) , the GLIMMIX procedure would take several hours to finish, whereas
the macro would take less than an hour to finish. In situations where the GLIMMIX procedure
and the %HPGLIMMIX macro have a similar performance, the GLIMMIX procedure should be
preferred since it provides a much wider range of features and covariance types.

4.3. Reduction in running time and memory requirement for large scale
GLMM

In this example, we fit a GLMM to the simulated microarray data from Example 45.4 in SAS
Institute Inc. (2011b) for the HPMIXED procedure, but assume a gamma distribution (condi-
tional on the random effects) instead of a normal conditional distribution as in SAS Institute
Inc. (2011b). The purpose is to push the scale of model to a higher limit and demonstrate
the great advantage of using the macro instead of the procedure for such big data problems.
The data set simulates a so-called loop microarray design structure, which is commonly used
in such studies. There are 500 genes and 6 treatments, each gene occurs in 6 arrays, and each
array has 2 dyes; so-called pins and dips on the arrays give multiple observations. The model
assumes the same structure as in SAS Institute Inc. (2011b), which is also described as case
study 16.12 in Littell, Milliken, Stroup, Wolfinger, and Schabenberger (2006). Fixed effects
are: gene, treatment, dye, gene-treatment interaction, dye-gene interaction, and array pin;
random effects are array, array-gene interaction, dip-within-array, array-pin interaction. This
is a large model with 4513 columns in the design matrix of fixed effects and 3054 columns
in the design matrix of random effects, which makes the mixed model equation having more
than 7500 columns in total, with a sparsity of only 0.14537%. The data generation is given
in the SAS program, and is the same as found in SAS Institute Inc. (2011b), except that
η is a linear function of the fixed and random effects, and that the response variable has a
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conditional gamma distribution with expected value exp(η) and scale parameter of 0.5 (which
was estimated in the model fitting).

The following example used both the GLIMMIX procedure and the %HPGLIMMIX macro to es-
timate the same model and showed the difference in time consumption and memory usage.
Results were stored using the ODS output system, and additional code for a data step were
written to compare key results side-by-side in the SAS log (which is displayed). As shown
below, on a Windows PC equipped with Intel i5-3570K CPU running at 3.8GHz, the macro
took a total of about 67 minutes to finish, while the GLIMMIX procedure took more than 45
hours, a 40-plus folds saving in time. As an aside, we attempted to fit the GLMM using the
Laplace (likelihood approximation) method of the GLIMMIX procedure, but convergence could
not be obtained after 5 days (unpublished).The following log shows the input program code
and information on the model fitting with the linearization method, as well as the execution
time, and a comparison ot the estimates of variance parameters from both the macro and
the procedure. Note that the TEST statement is used in the macro to perform an F test
of the treatment effect with the macro. Also note that the Newton-Raphson with ridging
(NRRIDG) was explicitly chosen for the inner-iteration optimization technique; although it
is the default with the macro, it is shown here to demonstrate its use. As can be seen, the
variance parameter results are identical up to 8 decimal places. The actual ODS output in
the results window are not shown to save space.

5 The SAS System 22:03 Friday, December 28, 2012

1380

1381 %hpglimmix(data=work.microarrayG,

1382 stmts=%str(

1383 class marray dye trt gene pin dip;

1384 model response = dye trt gene dye*gene trt*gene pin;

1385 random marray marray*gene dip(marray) pin*marray;

1386 test trt;

1387 ),

1388 error=gamma,

1389 link=log,

1390 tech=NRRIDG

1391 );

The HPGLIMMIX Macro

Data Set : WORK.MICROARRAYG

Error Distribution : GAMMA

Link Function : LOG

Response Variable : RESPONSE

Job Starts at : 28DEC2012:22:03:36

HPGLIMMIX Iteration History

Iteration Convergence criterion
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1 2 118 sec

2 2 117 sec

3 2 116 sec

4 2 116 sec

5 2 117 sec

6 0.2765015635 117 sec

7 0.1399609947 122 sec

8 0.0666621139 120 sec

9 0.0325548942 117 sec

10 0.0159305151 117 sec

11 0.0077325255 120 sec

12 0.0038101692 118 sec

13 0.0018487198 120 sec

14 0.00091249 119 sec

15 0.0004429375 120 sec

16 0.0002189407 119 sec

17 0.000106098 120 sec

18 0.0000518751 118 sec

19 0.0000251754 120 sec

20 0.0000123817 117 sec

21 5.952897E-6 120 sec

22 2.9335583E-6 120 sec

23 1.4340711E-6 120 sec

24 7.0181653E-7 120 sec

25 3.4342231E-7 120 sec

26 1.6738384E-7 120 sec

27 8.1505387E-8 119 sec

28 3.8524046E-8 119 sec

29 2.9539118E-8 120 sec

30 1.8899534E-8 120 sec

31 8.2400631E-9 119 sec

Output from final Proc HPMixed run:

Job Ends at : 28DEC2012:23:10:02

1392

1393

1394 options notes source;

1395 *ods select none;

1396

1397 ods output ParameterEstimates =beta_glimmix;

1398 ods output CovParms = cov_glimmix;

1399 proc glimmix data=work.microarrayG ;

1400 class marray dye trt gene pin dip;

1401 model response = dye trt gene dye*gene trt*gene pin

1402 / dist=gamma link=log s;

1403 random marray marray*gene dip(marray) pin*marray;

1404 nloptions tech=NRRIDG maxiter=50;
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1405 run;

NOTE: Convergence criterion (PCONV=1.11022E-8) satisfied.

NOTE: The data set WORK.COV_GLIMMIX has 5 observations and 3 variables.

NOTE: The data set WORK.BETA_GLIMMIX has 4513 observations and 10 variables.

NOTE: The PROCEDURE GLIMMIX printed pages 210-314.

NOTE: PROCEDURE GLIMMIX used (Total process time):

real time 45:14:43.46

user cpu time 45:03:50.86

system cpu time 1:29.76

memory 1888794.93k

OS Memory 1898292.00k

Timestamp 12/30/2012 08:24:45 PM

1406 ods select all;

1407

1408 /* Compare results */

1409 data _null_;

1410 set _cov;

1411 put CovParm=;

1412 put @1 '%HPGLIMMIX ' Estimate= best10.9 @@ ;

1413 set cov_glimmix;

1414 put @40 'GLIMMIX ' Estimate= best10.9;

1415 put ;

1416 run;

7 The SAS System 22:03 Friday, December 28, 2012

CovParm=MArray

%HPGLIMMIX Estimate=0.00117475 GLIMMIX Estimate=0.00117475

CovParm=MArray*Gene

%HPGLIMMIX Estimate=0.00277636 GLIMMIX Estimate=0.00277636

CovParm=Dip(MArray)

%HPGLIMMIX Estimate=0.00170539 GLIMMIX Estimate=0.00170539

CovParm=MArray*Pin

%HPGLIMMIX Estimate=0.03140975 GLIMMIX Estimate=0.03140975

CovParm=Residual

%HPGLIMMIX Estimate=0.48076186 GLIMMIX Estimate=0.48076186

NOTE: There were 5 observations read from the data set WORK._COV.

NOTE: There were 5 observations read from the data set WORK.COV_GLIMMIX.

NOTE: DATA statement used (Total process time):

real time 0.00 seconds

user cpu time 0.00 seconds

system cpu time 0.00 seconds
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memory 313.71k

OS Memory 11044.00k

Timestamp 12/30/2012 08:24:45 PM

5. Conclusion

The %HPGLIMMIX macro, based on the %GLIMMIX macro of SAS, provides a convenient way to
fit GLMMs to large-scale data sets with large numbers of fixed or random effects. Depending
on the size and sparseness of the design matrices, considerable time and memory savings can
result, relative to the use of the GLIMMIX procedure. The macro is based strictly on the use of
the doubly iterative linearization method, which is a very general method that can be applied
to a wide range of GLMMs. Although the parameter estimates may be more biased than found
with the likelihood approximation methods, these latter approaches are not computationally
well suited to large-scale problems at this time. The bias problem has been shown by Stroup
(2012) to be an issue with discrete data only under extreme conditions, such as with very
small number of trials per sampling unit.

On the other hand, the %HPGLIMMIX macro is built on the HPMIXED procedure, hence the
limitations of this procedure apply. It is designed for special cases of a mixed model with
large but sparse design matrix and only a few distributions are supported. For GLMMs with
large but dense design matrices, the performance of this macro will be worse than that of
the GLIMMIX procedure. In addition, only a subset of covariance structures of the GLIMMIX

procedure are available as of this writing. Some other limitations include type 3 test results
are not provided by default because dense matrix computation is involved, and degrees of
freedom methods such as the Kenward-Roger method and the Satterthwaite method are not
supported because they require to store and operate on the dense mixed model equation.

Therefore, users that need those features will have to use the GLIMMIX procedure. However,
they can use the %HPGLIMMIX macro for large scale (big data) problems and to accelerate the
GLIMMIX procedure analyses for very large problems. The idea is to maximize the likelihood
and produce parameter estimates more quickly using the %HPGLIMMIX macro, and then to
pass these parameter estimates to the GLIMMIX procedure for some further analysis that is
not available within the %HPGLIMMIX macro, see Example 45.3 in SAS Institute Inc. (2011a)
for details.
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