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Abstract

Researchers are often faced with analyzing data sets that are not complete. To prop-
erly analyze such data sets requires the knowledge of the missing data mechanism. If data
are missing completely at random (MCAR), then many missing data analysis techniques
lead to valid inference. Thus, tests of MCAR are desirable. The package MissMech im-
plements two tests developed by Jamshidian and Jalal (2010) for this purpose. These
tests can be run using a function called TestMCARNormality. One of the tests is valid
if data are normally distributed, and another test does not require any distributional as-
sumptions for the data. In addition to testing MCAR, in some special cases, the function
TestMCARNormality is also able to test whether data have a multivariate normal distribu-
tion. As a bonus, the functions in MissMech can also be used for the following additional
tasks: (i) test of homoscedasticity for several groups when data are completely observed,
(ii) perform the k-sample test of Anderson-Darling to determine whether k groups of
univariate data come from the same distribution, (iii) impute incomplete data sets using
two methods, one where normality is assumed and one where no specific distributional
assumptions are made, (iv) obtain normal-theory maximum likelihood estimates for mean
and covariance matrix when data are incomplete, along with their standard errors, and
finally (v) perform the Neyman’s test of uniformity. All of these features are explained in
the paper, including examples.
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1. Introduction

In practice, often one is faced with analyzing data sets that are incomplete. It is well known
that excluding cases that are incompletely observed from the analysis (complete case analysis)
can lead to inefficient and/or biased inference. On the other hand, care must be taken to
adopt methodologies that incorporate the incomplete cases, as the validity of such methods
depends on the missing data mechanism, the process by which data have become incomplete.
Rubin (1976) coined two popular terminologies of missing completely at random (MCAR)
and missing at random (MAR) for two types of missing data mechanisms. In simple terms,
MCAR is a process in which the missingness of the data is independent of both the observed
and the missing values, and MAR is a process in which the missingness of the data depends
on the observed values, but not on the missing values. When data are neither MCAR nor
MAR, and in particular missingness depends on the missing data themselves, the missing
data mechanism is called missing not at random (MNAR).

If data are MCAR, results from many missing data methods would be valid and complete
case analysis of data will not lead to bias. On the other hand, if data are not MCAR, some
missing data procedures may result in biased inference. Thus, to test for MCAR as a first
step in the analysis of incomplete data is important. Little (1988) lists a number of important
instances where verification of MCAR is important.

This paper reviews a few statistical tests of the MCAR missing data mechanism, and intro-
duces the R (R Core Team 2013) package MissMech (Jamshidian, Jalal, and Jansen 2014)
that implements state-of-the art MCAR tests developed by Jamshidian and Jalal (2010). As
a by-product of the main routine, this package will be able to test for multivariate normality
in some instances, and perform a number of other tests, as will be explained shortly.

Let Y be an n by p matrix of observations on n subjects and p variables with some of its
elements missing. Furthermore, suppose that Y consists of g different missing (observed)
data patterns, with the i-th missing data pattern consisting of ni cases and pi (≤ p) observed
variables, for i = 1, . . . , g; thus n =

∑g
i=1 ni. Letting Σi denote the population covariance

matrix for the i-th missing data pattern, in this paper we consider tests of MCAR that test
the hypothesis

H0 : Σ1 = Σ2 = . . . = Σg ≡ Σ, (1)

namely, they test for homogeneity of covariances (homoscedasticity) between subsets (groups)
of data having identical missing data patterns. The idea of dividing the data into identical
missing data patterns for the purpose of testing MCAR goes back to Little (1988), where he
proposed testing equality of means between the g missing data pattern groups, using a normal-
theory likelihood ratio test. He argued that rejection of this test indicates that data are not
MCAR. Little (1988) also mentioned a likelihood ratio test of homoscedasticity between the
g groups, but noted that a large sample size would be required for this test to work well. In
a simulation study, Kim and Bentler (2002) showed that the Little (1988) test of equality of
means works well, however, their simulation confirmed Little’s doubt that the likelihood ratio
test for testing homoscedasticity fails in that the observed significance levels far exceed the
nominal significance levels unless the sample size is quite large.

To test for MCAR, Kim and Bentler (2002) followed the same approach of testing equality
of means and covariance between the g missing data patterns. Motivated by applications
in structural equation models where covariances are modeled, they expressed importance of
testing homoscedasticity, in addition to test of equality of means. They proposed tests based
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on least squares. Their tests had a few advantages over the likelihood ratio tests of Little
(1988), namely they did not require that ni ≥ pi or that the data be normally distributed.
In a simulation study, Kim and Bentler (2002) showed that their proposed methods perform
better than the likelihood ratio tests of Little (1988), especially in testing homoscedasticity.
Later Bentler, Kim, and Yuan (2004) noted that the Kim and Bentler (2002) test does not
perform well when the nis are small. This was confirmed by a simulation study performed
by Jamshidian and Jalal (2010) who also shed some theoretical light on this shortcoming of
the Kim and Bentler (2002) tests. Moreover, Jamshidian and Jalal (2010) showed that the
Kim and Bentler (2002) test of homoscedasticity performs poorly when data are not normally
distributed. They gave a theoretical argument, reasoning that if the population distribution is
short tailed then the Kim and Bentler (2002) test of homoscedasticity’s observed significance
level would be below the nominal value, and if the population distribution is heavy-tailed
then the observed significance level would be inflated as compared to the nominal value.

In the same vein as Little (1988) and Kim and Bentler (2002) and with the aim of improving on
their tests, Jamshidian and Jalal (2010) proposed a normal-theory test and a nonparametric
test of homoscedasticity to be used for testing for MCAR. The basis of the Jamshidian and
Jalal (2010) tests is to impute missing data and employ complete data methods to test for
homoscedasticity. More specifically, they adopt a test statistic proposed by Hawkins (1981)
for testing homoscedasticity and normality of completely observed multivariate data. Based
on various simulation studies, Jamshidian and Jalal (2010) showed that their proposed tests
work better than those of Kim and Bentler (2002), both in terms of agreement of observed
significance levels with their nominal counter part, and also in terms of power. This paper
also elaborates on these points in Section 4.

As noted above, the MissMech implements the methods proposed by Jamshidian and Jalal
(2010). This package’s main aim is to test data for MCAR. However, as noted earlier, it can
perform a number of other tasks including (i) test of multivariate normality in some instances,
(ii) imputing missing data, (iii) testing for homoscedasticity and normality for complete data,
(iv) performing k-sample test for equality of distribution between k groups of univariate data,
(v) obtaining maximum likelihood estimates of the mean and covariance (including standard
errors) for incomplete data, using the EM algorithm, and (vi) performing Neyman’s smooth
test of goodness of fit. Moreover, as we will see, multiple imputation is also available in the
package as an exploratory tool to validate the result obtained by the MCAR test.

The remaining sections are organized as follows: In Section 2 we describe the two main tests
of homoscedasticity used in the package MissMech, Section 3 gives a detailed account of the
main function in MissMech called TestMCARNormality with several examples of the utility
of this function, Section 4 discusses the performance of the tests in the package in terms of
size and power, Section 5 describes a few important by-product functions in MissMech, and
finally Section 6 gives a general discussion of the methodology and a few related R packages.

2. Tests of homoscedasticity, normality and MCAR

In this section we describe the statistical tests of Jamshidian and Jalal (2010) used to test
MCAR and their implementation in the package MissMech. Let Yi denote the ni by p
matrix of values corresponding to the i-th missing data pattern group in Y, with Yobs,i

and Ymis,i respectively denoting the observed and the missing part of Yi. Moreover, let
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Yij = (Yobs,ij ,Ymis,ij) denote the j-th case in Yi, and rij denote a p by 1 vector of indicator
variables with elements 1 and 0, respectively corresponding to the observed and missing
values of Yij . Assume that given rij , Yij has the density f(Yij ; Σi,θ) parameterized by
the covariance matrix Σi = COV(Yij) that depends on the missing data pattern i, and
other parameters θ that are assumed to be homogenous across missing data patterns. For
example, θ may include the mean or other types of parameters. Jamshidian and Jalal (2010)
showed that under this setting, homogeneity of covariances implies MCAR. This is the premise
underlying tests of MCAR that test homoscedasticity between various missing data patterns,
as proposed by Little (1988), Kim and Bentler (2002), and Jamshidian and Jalal (2010).

The main goals in Jamshidian and Jalal (2010) were to test for MCAR, using tests of ho-
moscedasticity, that worked well for data with small nis as well as data that were not normally
distributed. The former goal motivated them to utilize a test statistics that had been proposed
by Hawkins (1981) and worked well for testing homoscedasticity in complete data when group
sizes ni were small. The Hawkins (1981) test assumes that a set of complete data X (n× p)
from g groups is available, with Xij denoting the j-th case from the i-th group; j = 1, . . . , ni
and i = 1, . . . , g. He further assumes that Xij follow a p-variate normal distribution with
mean µi and covariance Σi. To test the hypothesis (1), he then proposes the use of the
statistic Fij , corresponding to case j in group i, defined by

Fij =
(n− g − p)niVij

p{(ni − 1)(n− g)− niVij}
, where Vij =

(
Xij − X̄i

)>
S−1

(
Xij − X̄i

)
,

with X̄i and S, respectively denoting group i sample mean and the overall pooled sample
covariance. Hawkins (1981) showed that, under (1) and the assumption of normality, the Fijs
follow a Snedecor’s F distribution with degrees of freedom p and n − g − p. He proposed
computing the statistic Aij = P[F > Fij ], the probability that an F-distributed random
variable with degrees of freedom p and n− g − p exceeds Fij . If the model of homoscedastic
normal distribution holds, then Aij is distributed as a uniform random variate over the range
(0, 1). He proposed testing Aij for uniformity as a test of homoscedasticity. Specifically, if
Aij are deemed not to be uniform on (0,1), then the null hypothesis (1) or the normality
assumption are rejected.

Implementation of Hawkins’ test requires complete data. For the problem at hand, where
we are considering incomplete data, Jamshidian and Jalal (2010) proposed imputing the
incomplete data and then applying the Hawkins’ test to the completed data set. Two problems
tacked by Jamshidian and Jalal (2010) for both normally and non-normally distributed data
were first how to impute the data, and second how to utilize the Fij statistics. In Sections 2.1
and 2.2 we will explain their solution to both of these problems and the methods that we
implemented in the package MissMech.

2.1. Test of homoscedasticity under normality assumption

The normal-theory based test of homoscedasticity of Jamshidian and Jalal (2010) assumes
that

Yij =

(
Yobs,ij

Ymis,ij

)
∼ Np(µi,Σi) ≡ Np

[(
µo,i

µm,i

)
,

(
Σoo,i Σom,i

Σmo,i Σmm,i

)]
.
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Thus, from standard multivariate normal theory we have

Ymis,ij |Yobs,ij ,µi,Σi ∼ Np−pi

(
µm,i + Σmo,iΣ

−1
oo,i(Yobs,ij − µo,i),Σmm,i −Σmo,iΣ

−1
oo,iΣom,i

)
.

(2)
As proposed by Jamshidian and Jalal (2010), random draws from this conditional distribution
is used by MissMech to impute missing data. To generate the random draws, values for µi

and Σi are needed. Since the aim is to test the hypothesis (1), Jamshidian and Jalal (2010)
assumed µ1 = . . . = µg ≡ µ and Σ1 = . . . = Σg ≡ Σ and proposed to estimate the common
mean µ and the common covariance Σ using the method of maximum likelihood (see, e.g.,
Jamshidian and Bentler 1999). This method is implemented in MissMech. If the means are
not equal, then ML estimates of µi can be used for each group. The option ImputationMethod

= "Normal" in the function TestMCARNormality within the package MissMech uses the above
method to impute missing data. This is not the default method of imputation in the package,
however.

Once the missing data are imputed, the statistics Aij need to be computed and tested for uni-
formity. In the package MissMech, we follow Jamshidian and Jalal (2010)’s recommendation
of obtaining, for each of the groups i = 1, . . . , g, a p value Pi that is used to test uniformity
of Aij for group i. We then use the Fisher (1932) result

PT =
g∑

i=1

(−2 logPi) ∼ χ2
2g (3)

to combine the Pis to obtain an overall p value for testing uniformity of all Aij .

To compute the Pis, Jamshidian and Jalal (2010) proposed using the Neyman (1937) test for
uniformity. Their recommendation was based on a simulation study that they performed to
compare a few different tests of uniformity, including the Anderson and Darling (1954) test
that was used by Hawkins (1981). The Neyman’s test statistic is

Nik =
k∑

`=1

n−1/2i

ni∑
j=1

π`(Aij)


2

i = 1, . . . , g, (4)

where π1, π2, . . . , πk are normalized Legendre polynomials on (0, 1). As noted by Jamshidian
and Jalal (2010), a value of k = 4 works well in practice and this is the value that we use
in MissMech. Large values of the test statistic in (4) point to rejection of uniformity. To
obtain a Pi, the MissMech package simulates a large number of Niks by simulating a large
number of Aij ∼ Uniform(0, 1), and computes the proportion of simulated Niks that are larger
than the Nik obtained from the data. In cases where nis are large, the statistics Nik have
an approximate χ2 distribution with k degrees of freedom. For these cases, the MissMech
package allows the user to set a threshold value nmin such that if ni ≥ nmin, then the χ2

approximation will be used in place of the simulated distribution for the i-th group. The main
advantage of using the χ2 distribution is that it is much less computationally demanding than
the simulation method. On the other hand, the p values obtained based on the simulation
method are usually more accurate, especially when the nis are small and the number of
simulated Nik is large. We compared the χ2 approximation to the simulation method, using
a simulation study. Based on this study, we recommend using nmin = 30 for the asymptotic
method and using 10,000 simulated values for the simulation-based method. These are the
default values in the MissMech package.
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2.2. The nonparametric test

As noted above, the nonparametric test of homoscedasticity of Jamshidian and Jalal (2010)
assumes that data come from a density of the form f(Yij ; Σi,θ) and tests equality of the
covariances Σi. To perform this test, Jamshidian and Jalal (2010)’s nonparametric test com-
putes the Hawkins test statistic Fij as described above. Obviously, if the data distribution is
unknown, the distribution of Fij is also not known. Jamshidian and Jalal (2010), however,
showed that if the data have a density of the form f(Yij ; Σi,θ) and the nis are equal or large,
then under the assumption of homoscedasticity (1) the distribution of Fij for all the g groups
must be identical. They propose to take advantage of this fact to test for homoscedasticity.
Two things need close attention here: first, and as before, computation of Fij requires im-
putation of the data and this imputation must be done without making any distributional
assumptions about the data. Second, an appropriate k-sample test must be employed to test
equality of distribution of Fij in the g groups.

As proposed by Jamshidian and Jalal (2010), the package MissMech employs a method of
imputation, in the spirit of that proposed by Srivastava and Dolatabadi (2009), that only
assumes independence of observations from case to case and the continuity of their cumulative
distribution function. Details of the imputation method is given by Jamshidian and Jalal
(2010, Section 3.2). In short, imputation values are obtained by adding an appropriate random
error to the best linear predictors of the missing observations. To employ this method,
an estimate of the mean and covariance for the variables is required. For this case, these
estimates are obtained from the completely observed cases. In the package MissMech the
option ImputationMethod = "Dist.Free" triggers this method of imputation, and in fact
this option is the default option for the package. It should be noted that, to obtain a reasonable
estimate of the mean and covariance, one has to have a sufficient number of completely
observed cases. As such, if the number of completely observed cases is less than min(10, 2p),
then MissMech gives a warning and reverts to ImputationMethod = "Normal". The value
min(10, 2p) was set based on our experience, and can be changed within the code, if desired.

Jamshidian and Jalal (2010) discuss various k-sample tests to test equality of distribution of
Fij for the g groups. In the package MissMech, we follow their recommendation and use the
Scholz and Stephens (1987) test, also known as the Anderson-Darling k-sample test. This
test uses a rank statistic of the form T = 1

n

∑g
i=1 Ti with

Ti =
1

ni

n−1∑
j=1

(nMij − jni)2

j(n− j)
, (5)

where Mij is the number of observations in the i-th sample that are not greater than the j-th
order statistic in the pooled sample of Fijs.

In summary, the nonparametric test imputes the missing data using the Srivastava and
Dolatabadi (2009) approach, computes Fij as defined above, and applies the Anderson-Darling
k-sample test for equality of distribution of Fijs amongst groups i = 1, . . . , g. If this test is
rejected, it will be concluded that the covariances are non-homogeneous, and data are not
MCAR.
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3. The MissMech package

The MissMech package consists of several functions that can be independently employed,
with the function TestMCARNormality being the main function. A description of each of the
functions in the package can be obtained by the R function help. In the subsections that
follow, however, we provide a more detailed description of the functions, including examples
and reference to the technical notes made above.

3.1. The function TestMCARNormality

The syntax, including various options, for the function TestMCARNormality is as follows:

TestMCARNormality(data, del.lesscases = 6, imputation.number = 1,

method = "Auto", imputation.method = "Dist.Free", nrep = 10000,

n.min = 30, seed = 110, alpha = 0.05, imputed.data = NA)

Below, we provide a detailed description of this function.

data is an input to this function consisting of a data set with incompletely observed cases.
This data set must be a matrix or data frame with missing data coded as NA.

del.lesscases is an option that allows the user to remove, from the analysis, missing data
patterns with ni less than or equal to the number of cases specified in this option. As
explained in Jamshidian and Jalal (2010, Section 5), the larger the nis the better their
tests perform. However, their tests perform well for ni as small as 3, and their simulation
shows great performance when ni > 6. So, we have set the default del.lesscases =

6, and the user has the option of changing this value. Based on our experience, a value
as small as del.lesscases = 3 works well. The smallest value allowed, however, is 1,
since for our analysis we require at least two cases in each of the missing data patterns.
Indeed if there are no groups with small nis, this option would not be useful.

imputation.number specifies the number of times the missing data are imputed. This option
allows the user to impute the data multiple times. The default for this option is 1,
as the test results are based on a single imputation. However, since the imputation
procedures include random components, the statistical test results can vary depending
on the random values used in the imputation process. The multiple imputation option
allows the user to examine the performance of the test under different imputation values.
More specifically, for each imputation, this option produces the Pi values for i = 1, . . . , g,
based on the statistic (3), and in the case that the nonparametric test is used, Ti values,
given in (5), are also reported. Note that, small values of Pi or large values of Ti support
rejection of H0. The package MissMech can generate a boxplot of the Pi and Ti, using
the output of the TestMCARNormality function. We will give more details on utility of
such boxplots in Example 4 in Section 3.2.

method is an option that allows the user to select either the Hawkins or the nonparametric
method for the test. If the user believes that the data follow multivariate normal
distribution, method = "Hawkins" should be selected. On the other hand, if data are
not normally distributed, then method = "Nonparametric" should be used. If the user
is unsure, then the default value of method = "Auto" will be used, in which case both
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the Hawkins and the nonparametric tests will be run, and the default output follows
the recommendation by Jamshidian and Jalal (2010) outlined in their flowchart given
in Figure 7 of their paper.

imputation.method is an option that allows the user to choose one of the two imputation
methods described in Sections 2.1 and 2.2. The option "Normal" will generate imputed
values based on the conditional distribution (2), and the option "Dist.Free" will gen-
erate imputation values based on the method of Srivastava and Dolatabadi (2009) de-
scribed in Section 2.2. The latter is the default imputation method and, as noted above,
requires min(10, 2p) number of complete cases. If this number of complete cases is not
available, the program gives a warning and uses the method "Normal" to impute the
data. We have selected the value of min(10, 2p) based on our experience, and with the
rationale that there must be sufficient number of complete cases to estimate the popu-
lation covariance matrix, as required by the the method of Srivastava and Dolatabadi
(2009).

nrep is an option that allows the user to set the number of replications used to simulate
the empirical distribution of the statistic Nik in (4) under the null. This empirical
distribution is used to obtain critical values for the Neyman test of uniformity. Clearly
the larger the number of replications, the more accurate the critical value would be. As
noted in Section 2.2, the default value is set to be 10,000. This leads to a reasonable
accuracy in a reasonable time. If the evidence, however, is marginal in terms of the
p value obtained, one may increase this default value to increase accuracy. See also the
option n.min.

n.min is an option that allows the user to set a value for the nmin, described in Section 2.1.
Specifically, if for a given group the sample size ni is at least as large or larger than the
value set by n.min, then the asymptotic χ2 distribution will be used for the Nik in the
Neyman test of uniformity for that group. Clearly, if n.min is set to maxi ni + 1, then
the simulation method will be used for all groups, and if n.min is set to mini ni, the
asymptotic approximation will be used for all groups. Also note that in the cases where
imputation.number is set to a value larger than 1, and the simulation method is used
to obtain an empirical distribution of Nik, it suffices to simulate the null values of Nik

only once, and this is the case in the MissMech package.

seed is an option that allows the user to set a seed for random number generation. The
default seed is 110. If the value is set to NA, a system selected seed is used. Note
that random numbers are used to obtain imputation values as to obtain an empirical
distribution for Nik.

alpha is an option that allows the users to set the significance level at which the statistical
tests are performed. The default value is 0.05.

imputed.data is an option that allows the user to input an imputed data set of their
own. When this option is used, data must be a matrix or data frame with incom-
plete data prior to imputation and imputed.data must be the corresponding data set
(with the same order of cases) with incomplete data filled by a method of user’s choice.
When imputed.data is specified, neither the imputation methods of "Normal" nor
"Dist.Free" will be used.
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3.2. Examples

In this section we give a few examples of applications of the MissMech package.

Example 1: MCAR and normal data

We start with an example where we generate n = 300 cases from the multivariate normal
N5(0, I). We then remove each datum, independently of the other data, with probability of
20%. The result is an incomplete data set with data that are MCAR. We then apply the
TestMCARNormality function.

R> n <- 300

R> p <- 5

R> pctmiss <- 0.2

R> set.seed(1010)

R> y <- matrix(rnorm(n * p), nrow = n)

R> missing <- matrix(runif(n * p), nrow = n) < pctmiss

R> y[missing] <- NA

R> out <- TestMCARNormality(data = y)

R> out

Call:

TestMCARNormality(data = y)

Number of Patterns: 9

Total number of cases used in the analysis: 245

Pattern(s) used:

Number of cases

group.1 1 1 1 NA 1 16

group.2 1 1 NA 1 1 23

group.3 1 1 1 1 1 101

group.4 NA 1 1 1 1 33

group.5 1 NA 1 1 1 22

group.6 NA NA 1 1 1 7

group.7 1 1 1 1 NA 21

group.8 1 1 NA 1 NA 10

group.9 NA 1 1 1 NA 12

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 0.948
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There is not sufficient evidence to reject normality

or MCAR at 0.05 significance level

The output includes the number of imputations (which by default is 1), the number of missing
data patterns (in this example 9), and the number of cases in each of the patterns. For
example, group.1 consists of 16 cases that have missing values on the fourth variable only.
Also, group.3 includes 101 cases that are completely observed. Furthermore, a total of
16 + 23 + . . . + 12 = 245 out of the 300 cases generated is used in the analysis. The 55
cases that were excluded belonged to groups of missing data patterns with 6 or less cases in
each group. For this example, the p value for the Hawkins test is 0.948, from which we infer
that there is not sufficient evidence to reject either the normality or the MCAR assumptions.
This is expected for this example, as data were generated from a normal distribution and the
missing data mechanism was MCAR.

When the p value for the Hawkins test is larger than the value of alpha specified, neither the
hypothesis of normality nor the hypothesis of MCAR is rejected, and thus the program does
not report the result of the nonparametric test. However, users may obtain the p value for
the nonparametric test by applying the summary function, as shown below. For this example,
the p value for the nonparametric test is 0.711.

R> Out <- TestMCARNormality(data = y)

R> summary(Out)

We can include more cases, from the 300 cases, in the analysis of the above data, by setting
del.lesscases = 1, namely using

R> out1 <- TestMCARNormality(data = y, del.lesscases = 1)

R> out1

Call:

TestMCARNormality(data = y, del.lesscases = 1)

Number of Patterns: 22

Total number of cases used in the analysis: 293

Pattern(s) used:

Number of cases

group.1 1 1 1 NA 1 16

group.2 1 1 NA 1 1 23

group.3 1 1 1 1 1 101

group.4 NA 1 1 1 1 33

group.5 1 NA 1 1 1 22

group.6 NA NA 1 1 1 7

group.7 1 1 1 NA NA 5

group.8 1 1 1 1 NA 21

group.9 1 NA 1 NA 1 5

group.10 1 1 NA 1 NA 10
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group.11 1 NA 1 1 NA 5

group.12 NA 1 1 1 NA 12

group.13 1 NA NA NA 1 4

group.14 NA 1 1 NA 1 5

group.15 NA NA 1 1 NA 3

group.16 1 NA NA 1 1 5

group.17 1 1 NA NA NA 2

group.18 NA 1 NA NA 1 3

group.19 NA NA 1 NA 1 2

group.20 NA 1 1 NA NA 2

group.21 NA 1 NA 1 1 5

group.22 1 1 NA NA 1 2

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 0.279

There is not sufficient evidence to reject normality

or MCAR at 0.05 significance level

The output indicates that the number of data patterns increases to 22, and the number of
cases used in the analysis increases to a total of 293. The remaining 7 cases were in missing
data patterns that had a single case. Again, as expected, the hypotheses of normality and
homoscedasticity are not rejected based on the p value of 0.279.

To see how randomness of the imputations affects the results, we apply the multiple impu-
tation option and look at the boxplot of the p values. This is done by issuing the following
commands:

R> Out <- TestMCARNormality(data = y, imputation.number = 100)

R> summary(Out)

R> boxplot(Out)

The top panel of Figure 1 shows boxplots of 100 Pi values for each of the 9 groups. The
dashed red line indicates the cut-off value, which is set to α/g, in this case it is set to alpha

= 0.05/9. While the p values vary, they all are above the shown cut-off line. Note that
group 3 is the group of completely observed data with the largest number of cases, namely
101, and smallest variation in the p values. The bottom panel of Figure 1 shows the boxplots
corresponding to 100 Ti values for the nonparametric test for each of the groups. While the
Ti scales are not easily interpretable, this plot can serve as an exploratory tool to identify
possible outlying groups (i.e., groups with exceptionally large Tis), which in this example do
not exist.
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Figure 1: Result of 100 multiple imputations in Example 1.

Example 2: MCAR and non-normal data

This example uses data that are not normally distributed, but are MCAR. Specifically, we
generate independent data from the t distribution with 5 degrees of freedom, and apply the
TestMCARNormality function.

R> n <- 300

R> p <- 5

R> pctmiss <- 0.2

R> set.seed(1010)

R> y <- matrix(rt(n * p, 5), nrow = n)

R> missing <- matrix(runif(n * p), nrow = n) < pctmiss

R> y[missing] <- NA

R> out <- TestMCARNormality(data = y)

R> out
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Call:

TestMCARNormality(data = y)

Number of Patterns: 11

Total number of cases used in the analysis: 258

Pattern(s) used:

Number of cases

group.1 NA 1 1 1 1 31

group.2 1 1 1 1 1 100

group.3 1 1 1 NA NA 12

group.4 1 1 1 NA 1 20

group.5 1 1 1 1 NA 19

group.6 1 NA 1 1 1 23

group.7 NA NA 1 1 1 7

group.8 1 NA 1 NA 1 10

group.9 1 1 NA 1 1 20

group.10 1 1 NA 1 NA 8

group.11 NA 1 1 NA 1 8

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 0.000266

Either the test of multivariate normality or homoscedasticity (or both)

is rejected.

Provided that normality can be assumed, the hypothesis of MCAR is

rejected at 0.05 significance level.

Non-Parametric Test:

P-value for the non-parametric test of homoscedasticity: 0.51

Reject Normality at 0.05 significance level.

There is not sufficient evidence to reject MCAR at 0.05 significance

level.

For this example, the p value for the Hawkins test is small (0.0003) and this is evidence that
either normality or homoscedasticity (or both) is rejected. This test is then followed by the
nonparametric test of homoscedasticity which results in a high p value (0.51) from which we
conclude that there is no evidence of heteroscedasticity. Thus, as it should ideally happen,
the software concludes that there is evidence of non-normality, but no evidence that data are
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Figure 2: Result of 100 multiple imputations for Example 2.

not MCAR.

Figure 2 shows the boxplots corresponding to a multiple imputation run, based on 100 impu-
tations, for Example 2. Interestingly, with exception of a few outliers, the p values for groups
1 and 2 are small. These groups are the two groups with the largest number of cases. The
Ti value for the nonparametric test is smallest for group 2, the largest group, but it does not
seem to distinguish itself significantly from the other groups.

As noted above, one may impute the data using a method other than the methods available
in the package MissMech. In the following, we use the k nearest neighbor method of the
package imputation (Wong 2013) to impute the missing data of Example 2 and then run the
MissMech tests.

R> library("imputation")

R> yimputed <- kNNImpute(y, k = 3)

R> out <- TestMCARNormality(data = y, imputed.data = yimputed$x)

R> out
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Call:

TestMCARNormality(data = y, imputed.data = yimputed$x)

Number of Patterns: 11

Total number of cases used in the analysis: 258

Pattern(s) used:

Number of cases

group.1 NA 1 1 1 1 31

group.2 1 1 1 1 1 100

group.3 1 1 1 NA NA 12

group.4 1 1 1 NA 1 20

group.5 1 1 1 1 NA 19

group.6 1 NA 1 1 1 23

group.7 NA NA 1 1 1 7

group.8 1 NA 1 NA 1 10

group.9 1 1 NA 1 1 20

group.10 1 1 NA 1 NA 8

group.11 NA 1 1 NA 1 8

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 1.17e-13

Either the test of multivariate normality or homoscedasticity (or both)

is rejected.

Provided that normality can be assumed, the hypothesis of MCAR is

rejected at 0.05 significance level.

Non-Parametric Test:

P-value for the non-parametric test of homoscedasticity: 0.00408

Hypothesis of MCAR is rejected at 0.05 significance level.

The multivariate normality test is inconclusive.

Example 3: Normally distributed data and not MCAR

In this example, we generate data from a multivariate normal distribution with mean zero,
variance one, and all correlations equal to 0.3. The missing data mechanism imposed is MAR
(not MCAR) and it was implemented by setting each Yij for i = 1, . . . , n and j = 2, . . . , p to
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missing provided that Yi,j−1 > 0.8. The value 0.8 was selected to achieve approximately 15
to 20 percent missing values.

R> n <- 300

R> p <- 5

R> r <- 0.3

R> mu <- rep(0, p)

R> sigma <- r * (matrix(1, p, p) - diag(1, p)) + diag(1, p)

R> set.seed(110)

R> eig <- eigen(sigma)

R> sig.sqrt <- eig$vectors %*% diag(sqrt(eig$values)) %*% solve(eig$vectors)

R> sig.sqrt <- (sig.sqrt + t(sig.sqrt)) / 2

R> y <- matrix(rnorm(n * p), nrow = n) %*% sig.sqrt

R> tmp <- y

R> for (j in 2:p)

+ y[tmp[, j - 1] R > 0.8, j] <- NA

R> out <- TestMCARNormality(data = y, alpha = 0.1)

R> out

Call:

TestMCARNormality(data = y, alpha = 0.1)

Number of Patterns: 9

Total number of cases used in the analysis: 277

Pattern(s) used:

Number of cases

group.1 1 1 1 NA 1 19

group.2 1 NA 1 1 1 21

group.3 1 1 1 1 1 163

group.4 1 1 NA NA 1 8

group.5 1 NA 1 1 NA 7

group.6 1 NA 1 NA NA 7

group.7 1 1 NA 1 1 25

group.8 1 1 1 1 NA 20

group.9 1 1 NA 1 NA 7

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 0.053

Either the test of multivariate normality or homoscedasticity (or both)

is rejected.
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Provided that normality can be assumed, the hypothesis of MCAR is

rejected at 0.1 significance level.

Non-Parametric Test:

P-value for the non-parametric test of homoscedasticity: 0.000341

Hypothesis of MCAR is rejected at 0.1 significance level.

The multivariate normality test is inconclusive.

For this example, the Hawkins test is rejected at the 10% significance level (p value = 0.053),
pointing to either non-normality or heteroscedasticity. Note that we set the option alpha =

0.1 to force the program to output the result of the nonparametric test. The nonparametric
test rejects the null hypothesis of homoscedasticity. Thus, it is concluded that there is suffi-
cient evidence that data are not MCAR. Note that rejection of Hawkins test, in the absence
of any distributional assumptions about the data, simply points to either non-normality or
heteroscedasticity which is indistinguishable by the test. Thus, in this case we can make no
conclusion about non-normality of the data.

We examined the power of the Hawkins and the nonparametric tests by simulating 1000 sets
of data, using the same scheme of data generation used in this example. In 1000 runs, the
Hawkins test rejected H0 approximately 54.7% of the time and the nonparametric test rejected
the null hypothesis, approximately 83.9% of the time, indicating especially good power for the
nonparametric test. In the next section we discuss results of a few more simulation studies
to shed some light on the power of the Hawkins and nonparametric tests.

Example 4: Identifying group(s) that differ

In this example we show how multiple imputation and boxplots can be used to identify
one or two groups that have a different covariance matrix than others. To show this, we
generated data from standard normal and created missingness based on the MCAR missing
data mechanism, as in Example 1. Then, we identified the two largest groups, not including
the complete data group, and multiplied the generated values for these groups by 2, thus
making the covariance matrices for these two groups different from the other groups. The
code involves use of the MissMech function OrderMissing, which orders the missing data
according to their missing data patterns.

R> n <- 300

R> p <- 5

R> pctmiss <- 0.2

R> set.seed(1010)

R> y <- matrix (rnorm(n * p), nrow = n)

R> missing <- matrix(runif(n * p), nrow = n) < pctmiss

R> y[missing] <- NA

R> Out <- OrderMissing(y)

R> y <- Out$data

R> spatcnt <- Out$spatcnt

R> g2 <- seq(spatcnt[1] + 1, spatcnt[2])
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R> g4 <- seq(spatcnt[3] + 1, spatcnt[4])

R> y[c(g2, g4), ] <- 2 * y[c(g2, g4), ]

R> out <- TestMCARNormality(data = y, imputation.number = 100)

R> out

R> boxplot(out)

Call:

TestMCARNormality(data = y, imputation.number = 100)

Number of Patterns: 9

Total number of cases used in the analysis: 245

Pattern(s) used:

Number of cases

group.1 1 1 1 NA 1 16

group.2 1 1 NA 1 1 23

group.3 1 1 1 1 1 101

group.4 NA 1 1 1 1 33

group.5 1 NA 1 1 1 22

group.6 NA NA 1 1 1 7

group.7 1 1 1 1 NA 21

group.8 1 1 NA 1 NA 10

group.9 NA 1 1 1 NA 12

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 3.09e-15

Either the test of multivariate normality or homoscedasticity (or both)

is rejected.

Provided that normality can be assumed, the hypothesis of MCAR is

rejected at 0.05 significance level.

Non-Parametric Test:

P-value for the non-parametric test of homoscedasticity: 1.01e-33

Hypothesis of MCAR is rejected at 0.05 significance level.

The multivariate normality test is inconclusive.

The groups that have covariance 4I are group.2 and group.4. As expected, both the Hawkins
test and the MCAR test are rejected due to non-homogeneous covariances. Inspecting the
boxplot obtained by multiple imputation, shown in Figure 3, we see that the boxplots for
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Figure 3: Result of 100 multiple imputations for Example 4.

group.2, group.3, and group.4 stand out. In particular, the boxplot of Ti values for group.2
and group.4 are highest, thus identifying these two special groups. Note that group.3 is the
group with complete cases and has a much larger number of cases than the other groups.

In a next step to analyze these data, we use the code shown below to remove group 2, and
apply the analysis to the newly formed data set.

R> y1 <- y[-seq(spatcnt[1] + 1, spatcnt[2]), ]

R> Out <- TestMCARNormality(data = y1, imputation.number = 100)

R> boxplot(Out)

Call:

TestMCARNormality(data = y1, imputation.number = 100)

Number of Patterns: 8
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Total number of cases used in the analysis: 222

Pattern(s) used:

Number of cases

group.1 1 1 1 NA 1 16

group.2 1 1 1 1 1 101

group.3 NA 1 1 1 1 33

group.4 1 NA 1 1 1 22

group.5 NA NA 1 1 1 7

group.6 1 1 1 1 NA 21

group.7 1 1 NA 1 NA 10

group.8 NA 1 1 1 NA 12

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 5.38e-17

Either the test of multivariate normality or homoscedasticity (or both)

is rejected.

Provided that normality can be assumed, the hypothesis of MCAR is

rejected at 0.05 significance level.

Non-Parametric Test:

P-value for the non-parametric test of homoscedasticity: 4.72e-15

Hypothesis of MCAR is rejected at 0.05 significance level.

The multivariate normality test is inconclusive.

Now, the covariance for group.3 (formerly group.4), is different from all other groups. The
boxplot corresponding to this run is given in Figure 4, with the Ti values for group.3 clearly
standing out, thus identifying the group that has a different covariance matrix. We should
note that this type of analysis simply has exploratory value, and once a group is identified
as possibly having a different covariance matrix further confirmatory analysis need to be
performed to make definitive conclusions.

Example 5: Test of homoscedasticity for complete data

While the main use of the TestMCARNormality function is to test MCAR for an incom-
plete data set, this function can also be utilized for test of homoscedasticity between several
groups based on completely observed data. A way to accomplish this is to set the option
imputed.data equal to the name of the complete data set for which homoscedasticity is to
be tested, and identify groups via artificial missing data patterns. More specifically, we as-
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Figure 4: Result of 100 multiple imputations in Example 4 after removing group 2.

sume a unique missing data pattern for each group (e.g., 1 NA 1 1 1), and build a data set
corresponding to the complete data in which for each case we include the designated missing
data pattern for the group that the case belongs to. We input this constructed data matrix
for data in TestMCARNormality.

In this example we generate three groups of data from the multivariate normal distribution
with mean zero and covariances as follows: Group 1 has all variances equal to 1 and covariances
equal to 0.2, and groups 2 and 3 have I and 2I as their covariance matrices, respectively.
The complete data set called ycomplete is assigned to the option imputed.data. Thus the
program will use this data set to test for homoscedasticity. The data set ygroup is a data set
which has the same size as the data set ycomplete, with cases in group 1 replaced by NA 1 1

1 1, cases in group 2 replaced by NA 1 NA 1 1, and finally cases in group 3 replaced by 1 NA

1 1 1. The pattern designation using 1s and NAs can be done in any arbitrary way, as long as
each group is assigned a unique pattern. Note that this allows designation of 2p − 1 groups,
if we have p variables in the data set. For this problem, we have used the option method =

"Hawkins" since we know that the data are normally distributed.
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R> n <- 50

R> p <- 5

R> r <- 0.4

R> sigma <- r * (matrix(1, p, p) - diag(1, p)) + diag(1, p)

R> set.seed(1010)

R> eig <- eigen(sigma)

R> sig.sqrt <- eig$vectors %*% diag(sqrt(eig$values))

+ %*% solve(eig$vectors)

R> sig.sqrt <- (sig.sqrt + t(sig.sqrt)) / 2

R> y1 <- matrix(rnorm(n * p), nrow = n) %*% sig.sqrt

R> n <- 75

R> p <- 5

R> y2 <- matrix(rnorm(n * p), nrow = n)

R> n <- 25

R> p <- 5

R> r <- 0

R> sigma <- r * (matrix(1, p, p) - diag(1, p)) + diag(2, p)

R> y3 <- matrix(rnorm(n * p), nrow = n) %*% sqrt(sigma)

R> ycomplete <- rbind(y1, y2, y3)

R> y1[, 1] <- NA

R> y2[, c(1, 3)] <- NA

R> y3 [, 2] <- NA

R> ygroup <- rbind(y1, y2, y3)

R> out <- TestMCARNormality(data = ygroup, method = "Hawkins",

+ imputed.data = ycomplete)

R> out

Call:

TestMCARNormality(data = ygroup,

method = "Hawkins", imputed.data = ycomplete)

Number of Patterns: 3

Total number of cases used in the analysis: 150

Pattern(s) used:

Number of cases

group.1 NA 1 1 1 1 50

group.2 NA 1 NA 1 1 75

group.3 1 NA 1 1 1 25

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 1.66e-05
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The three groups are identified, and the p value for the Hawkins test indicates heteroscedas-
ticity. Obviously, if one does not know the distribution of the data, then the option method

= "Nonparametric" would be appropriate to use.

Example 6: Application to real data

In this example we examine a set of data from the first wave of an on-going longitudinal
study on aging (Montpetit and Bergeman 2007). These data were used by Jamshidian and
Yuan (2013) to study their sensitivity analysis method to detect missing data mechanism.
The data consist of 521 cases and 7 variables with 280 of the cases being complete. The
variables are education, income, perceived satisfaction of social support, social coping, total
life events scale, depression scale, and self-rated help. In our analysis we use 506 of the cases,
as the remaining 15 cases each have a unique pattern of missingness to themselves (recall that
MissMech requires at least two cases per missing data pattern).

R> data("agingdata", package = "MissMech")

R> TestMCARNormality(agingdata, del.lesscases = 1)

Call:

TestMCARNormality(data = agingdata, del.lesscases = 1)

Number of Patterns: 20

Total number of cases used in the analysis: 506

Pattern(s) used:

education income support coping events depression

group.1 1 1 1 1 1 1

group.2 1 NA 1 1 1 1

group.3 1 1 1 NA 1 1

group.4 1 1 1 NA 1 1

group.5 1 1 1 NA 1 NA

group.6 1 1 1 1 1 NA

group.7 1 1 NA 1 1 1

group.8 1 1 1 1 1 1

group.9 NA 1 1 1 1 1

group.10 1 1 NA NA 1 NA

group.11 1 1 NA NA 1 1

group.12 1 1 NA 1 1 1

group.13 NA 1 1 NA 1 1

group.14 1 1 1 1 NA 1

group.15 1 1 1 NA NA 1

group.16 1 1 1 NA NA NA

group.17 NA NA 1 NA 1 1

group.18 1 1 1 NA NA 1

group.19 1 NA 1 NA 1 1

group.20 NA NA 1 NA NA NA
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Health Number of cases

group.1 1 280

group.2 1 10

group.3 1 90

group.4 NA 3

group.5 1 11

group.6 1 6

group.7 1 14

group.8 NA 5

group.9 1 2

group.10 NA 3

group.11 1 4

group.12 NA 2

group.13 1 2

group.14 1 18

group.15 1 41

group.16 1 5

group.17 1 4

group.18 NA 2

group.19 1 2

group.20 1 2

Test of normality and Homoscedasticity:

-------------------------------------------

Hawkins Test:

P-value for the Hawkins test of normality and homoscedasticity: 0.000264

Either the test of multivariate normality or homoscedasticity (or both)

is rejected.

Provided that normality can be assumed, the hypothesis of MCAR is

rejected at 0.05 significance level.

Non-Parametric Test:

P-value for the non-parametric test of homoscedasticity: 0.0164

Hypothesis of MCAR is rejected at 0.05 significance level.

The multivariate normality test is inconclusive.

There are 20 distinct patterns that include two or more cases in this data set. The Hawkins
test has a very small p value, implying heteroscedasticity or non-normality. The p value for
the nonparametric test is 1.6%, and thus there is sufficient evidence at 5% level that data are
not MCAR. This conclusion is consistent with the findings in Jamshidian and Yuan (2013)
about the missing data mechanism for these data.
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4. Performance of the tests

Jamshidian and Jalal (2010) have performed a number of simulation studies to examine the
performance of the Hawkins and the nonparametric tests, which we have made available in
the package MissMech. In their study, they found that when data are normal, the Hawkins
test performs well in the sense that its observed significance levels are close to the nominal
significance levels, and it fails as a test of homoscedasticity and MCAR for non-normal data.
The latter is due to the fact that the Hawkins test is a test of multivariate normality, in
addition to homoscedasticity, and naturally has a high rejection rate for non-normal data.
On the other hand, Jamshidian and Jalal (2010) found that the nonparametric test performs
well for testing homoscedasticity and MCAR for both normal and non-normal data in terms of
achieving observed significance levels that are close to their nominal counterparts. Moreover,
they showed that both tests have reasonable powers with the Hawkins tests performing slightly
better than the nonparametric test for normally distributed data. In this section we report on
a small simulation study of our own that both extends and confirms findings of Jamshidian
and Jalal (2010).

Table 1 shows results of a simulation study where we generated data from various symmetric
and skewed distributions with various degrees of kurtosis and skewness. Each entry of the table
is based on testing 1000 data sets of sample size n = 300 with p = 5 variables. In each case
we generated a set of complete data, and then removed every single datum with probability of
20%, thus obtaining a data set with approximately 20% missing data that were MCAR. The
middle panel of Table 1, shows the percentage of times the hypothesis of homoscedasticity
(MCAR) was rejected when we set our nominal significance level at 5%. To examine how
well the imputation procedure works, in each case we also performed the tests with replacing
the missing data with the original generated data (i.e., using the data prior to imposition of
missing) with groups being those implied by missing data pattern in each case. The result
of this latter simulation is shown on the right panel of Table 1 (with the heading “Original
data with no imputation”). We observe that in every case, the observed significance levels for
imputed data and original data are close, which indicates that the imputation procedure is
performing well.

As for the performance of the Hawkins and the nonparametric tests on the incomplete data,
our results are very much in line with those reported in Jamshidian and Jalal (2010). For the
normally distributed data, both the Hawkins and the nonparametric tests performed well,
with the Hawkins test’s observed significance level (5.8%) being closer to its nominal value
of 5% as compared to the nonparametric test’s observed significance level (8.7%). In our
simulation study, we also generated data from the Student’s t distribution with degrees of
freedom ranging from 3 (heavy tailed) to 20 (close to the normal distribution). The Hawkins
test’s rejection rates are high for degrees of freedom ranging from 3 to 9, as expected, since
data are not normally distributed. As the degrees of freedom increases, the power of the
Hawkins test decreases, and in fact for df = 20, our rejection rate is about 11.6% since
the data is close to normally distributed. The nonparametric test for the t distributed data
performs well, with its rejection rates getting closer to the nominal value, as the degrees of
freedom increase.

We also simulated data from a short-tailed distribution, namely Uniform(0, 1). Again, as ex-
pected, the Hawkins test has a high rejection rate (95.5%) and while the observed significance
level for the nonparametric test is somewhat inflated (9.2%), it is significantly better than the
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Missing data were imputed Original data with no imputation
Distribution Hawkins Nonparametric Hawkins Nonparametric

Normal 5.8 8.7 5.5 7.1
t, df = 3 100.0 10.7 100.0 10.6
t, df = 5 87.7 9.7 90.8 9.1
t, df = 7 55.1 7.2 55.9 7.9
t, df = 9 36.3 7.4 36.7 7.1
t, df = 20 11.6 6.5 11.8 6.3
Uniform(0, 1) 95.5 9.2 96.7 7.7
Gamma(2, 1) 91.1 21.0 92.1 20.3
Gamma(5, 1) 27.6 12.4 27.5 12.6
Gamma(10, 1) 12.0 9.6 12.8 9.7

Table 1: Observed significance levels for the Hawkins and nonparametric tests with n = 300
cases and p = 5 variables. The first column shows the distribution used to generate the data;
results in columns 2 and 3 are based on incomplete data with MCAR missing data mechanism;
results in columns 4 and 5 are based on data prior to creation of missing data.

Hawkins test. In order to see the performance of the test on skewed data, we generated data
from gamma(α, β = 1). We varied the value of α from 2 (highly skewed) to 10 (approximately
symmetric). As expected, the Hawkins test has a high rejection rate for the skewed data, and
its rejection rates decrease as data approaches normality. The nonparametric test has a high
rejection rate of 21.0% for the the highly skewed case where (α = 2). As the data gets closer
to being symmetric, the performance of the nonparametric test improves.

What we found in our simulation, in addition to findings of Jamshidian and Jalal (2010), is
that if the data are symmetrically distributed and have a high kurtosis, the nonparametric
test has somewhat of an inflated rejection rate, but its performance is acceptable. On the
other hand, the nonparametric test does not perform well for highly skewed data. Fortunately,
however, in this case one can transform the data into symmetry and then apply the test. As
we noted earlier, Jamshidian and Jalal (2010) have performed a number of power studies and
we refer the reader to their paper for more information on this issue.

5. The by-product functions

While the main function in the package MissMech is TestMCARNormality, there are a total of
16 functions that are available in the package to users, each having their independent utility.
In this section we describe a few of these functions that are important in their own right.

5.1. The AndersonDarling function

This function implements the Anderson-Darling k-sample test as described in Scholz and
Stephens (1987). Given k vectors of observed values, the Anderson-Darling k-sample test
tests the null hypothesis that the k samples come from a common distribution. Rejection of
this test indicates that the k samples do not have the same distribution.

As an example, consider the following code, where we generate data consisting of three groups
of sizes 30, 45, and 60, from normal and uniform distributions. The output shows a p value
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of 2.4×10−16, rejecting equality of the distribution between the three groups. The remaining
output values are the ingredients used to perform the test and they are described in the
MissMech help function.

R> set.seed(50)

R> n1 <- 30

R> n2 <- 45

R> n3 <- 60

R> v1 <- rnorm(n1)

R> v2 <- runif(n2)

R> v3 <- rnorm(n3, 2, 3)

R> AD <- AndersonDarling(data = c(v1, v2, v3), number.cases = c(n1, n2, n3))

R> AD$pn

[1] 1.345932e-31

R> AD$adk.all

[,1]

[1,] 6.566425

[2,] 5.075349

[3,] 6.978307

R> AD$adk

[1] 18.62008

R> AD$var.sdk

[1] 1.119502

5.2. The Impute function

The Impute function can be used as an independent tool to impute incomplete data using
two different methods. The option imputation.method = "Normal" will impute the missing
data under the assumption of the normality and the option "Dist.Free" uses the method of
Srivastava and Dolatabadi (2009). Details of both of these methods are given in Jamshidian
and Jalal (2010). Run its help function for an example.

5.3. The Mls and Ddf functions

The Mls function obtains the maximum likelihood estimates of mean and covariance matrix
from an incomplete set of data, when it is assumed that the data come from a multivariate
normal with mean µ and covariance Σ. The EM algorithm, as described in Jamshidian
and Bentler (1999) is implemented. The standard error of these estimates can be obtained
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by computing the negative of the Hessian of the log-likelihood, using the function Ddf, and
taking the square root of its diagonal elements.

5.4. The TestNey function

The TestNey function uses the Neyman’s smooth test of goodness of fit, as described by
Ledwina (1994) to test whether a set of data come from the Uniform(0, 1) distribution. An
example of the use of this test is provided via its help function.

6. Discussion and other related R packages

The main applications of package MissMech is to test multivariate normality, homoscedas-
ticity, and MCAR for multivariate incomplete data. The latter two tests can be performed
for both normal and non-normal data. Two by-products of the MissMech package are test-
ing for homoscedasticity and normality for multivariate complete data, as demonstrated in
Example 5. To our knowledge, no R package exists that tests for multivariate normality or
homoscedasticity in the context of incomplete data. However, for complete data, the com-
mand mshapiro.test() in the package mvnormtest (Jarek 2012) can be used to perform the
Shapiro-Wilks test of multivariate normality (see e.g., Royston 1995). Also, to our knowl-
edge, no other formal R package exists that includes test of homoscedasticity for complete
data. There is a set of codes available for this purpose at http://finzi.psych.upenn.edu/
R/Rhelp02a/archive/33330.html which uses Box’s M method (Box 1949), based on the
likelihood ratio test. This test is known to be highly sensitive to violations of normality, a
problem that our nonparametric test deals with.

Another by-product of the MissMech package is that it can impute incomplete data by two
methods. In one method multivariate normality of the data is assumed, and in another
method, called "Dist.Free", no specific distribution is assumed. There are a number of R
packages that impute missing data in various contexts. For example Amelia II (Honaker, King,
and Blackwell 2011) is a package that imputes data under the assumption of normality, impute
(Hastie, Tibshirani, Narasimhan, and Chu 2013) has implemented the k nearest neighbor
imputation, and mi is another more extensive package. The recent paper by Su, Gelman,
Hill, and Yajima (2011) gives references to a few imputation packages and introduces the mi
package. If one’s main aim is to impute data, we recommend the mi package, as it has a host
of methods that can handle various types of data, including categorical data, the latter being
a task that MissMech or Amelia II are not designed to handle. Nonetheless, the "Dist.Free"
method of imputation within MissMech package can be useful in its own right, and is not
available in other R packages.

We are not aware of any R package that tests MCAR based on test of homogeneity of co-
variances. The R package BaylorEdPsych (Beaujean 2012) is the only package that we were
able to find that has a test of MCAR. This test, however, is based on testing equality of
means between groups with similar missing data patterns, as proposed in Little (1988). Since
our package does not perform a test of equality of means to test MCAR, one might initially
use the package BaylorEdPsych to test for MCAR based on equality of group means, and if
that test is not rejected, then use our test to perform a test of MCAR for homogeneity of
covariances. A word of caution, however, is that the method used in BaylorEdPsych assumes
multivariate normality, and thus a user should perhaps use the Hawkins test in MissMech for

http://finzi.psych.upenn.edu/R/Rhelp02a/archive/33330.html
http://finzi.psych.upenn.edu/R/Rhelp02a/archive/33330.html
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multivariate normality, and if that test is not rejected use BaylorEdPsych. Another caution
is that adjustments need to be made for multiple testing. As a future development of the
MissMech package, we plan to add tests of MCAR based on the equality of means between
groups that can handle non-normal data.

Finally, we should note that there are other statistical software that can perform imputation
or test for MCAR. For example, the EQS software (Bentler 2006) includes tests of MCAR
based on the methods proposed by Kim and Bentler (2002). However, as explained above
and as noted by Jamshidian and Jalal (2010) these methods do not perform as well as the
methods implemented in MissMech. As another example, the MI and MIANALYZE procedures
in SAS create imputations and analyze the imputed data. Also PROC DISCRIM is a SAS (SAS
Institute Inc. 2011) procedure that performs a modification of the likelihood ratio test of the
homogeneity of the group covariance matrices for complete data based on the Bartlett’s test
(see e.g., Anderson 1984) that is well-known to be sensitive to non-normality. Unique features
of the MissMech include (i) test of MCAR for both normal and non-normal data, (ii) test
of multivariate normality for incomplete data and (iii) test of homogeneity of covariances for
any combination of complete and incomplete as well as normal and non-normal data.
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