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Abstract

Phase variation in functional data obscures the true amplitude variation when a typical
cross-sectional analysis of these responses would be performed. Time warping or curve
registration aims at eliminating the phase variation, typically by applying transformations,
the warping functions τn, to the function arguments. We propose a warping method that
jointly estimates a decomposition of the warping function in warping components, and
amplitude components. For the estimation routine, adaptive MCMC calculations are
performed and implemented in C rather than R to increase computational speed. The
R-C interface makes the program user-friendly, in that no knowledge of C is required and
all input and output will be handled through R. The R package MRwarping contains all
needed files.
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1. Introduction

Functional data analysis involves the analysis of a set of curves or images e.g., brain potentials
(Kneip and Gasser 1992), (2D) facial shape data in biology (Barry and Bowman 2008), bidding
patterns in online auctions (Peng and Müller 2008) and market penetration data (Sood, James,
and Tellis 2009) in economics. Although there is a similarity with longitudinal data (see
Hall, Müller, and Wang 2006), functional data are considered through a different conceptual
approach. Ramsay and Silverman (2002) provide a clear overview oriented towards practice,
facilitating the transfer of functional data methodology from the academic context to society
and industry.

An important aspect of functional data is the recognition of phase variation. Most statistical
methodology is designed to seek cross-sectional structure in the response values. That is,
they study the variation in amplitude in the data. When complex processes are observed over
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2 Warping Functional Data in R and C

(a) (b)

Figure 1: (a) Original LC-MS data which vary both in phase and in amplitude (together with
penalized spline smoothed curves). (b) The penalized spline smoothed LC-MS data after
warping using four warplets.

time or some other domain, however, another source of variation, so-called phase variation
can arise. Figure 1 illustrates this for a curve sample of total ion counts (TIC) of a liquid
chromatography - mass spectrometry (LC-MS) data set (Listgarten, Neal, Roweis, and Emili
2005). In the original sample, see Figure 1 (a), the time axes are misaligned in a non-trivial
way, due to variable conditions (temperature, pressure,. . .) in the LC step that cannot be
remedied during the experiment. This obscures the true amplitude variation when a typical
cross-sectional analysis of these responses is performed. In other situations the phase variation
could be of interest itself, e.g., the fact that a data peak is delayed might contain important
information for the further analysis of the data.

Time warping or curve registration aims at eliminating the phase variation in a functional
sample. It achieves this goal by applying transformations, the warping functions τn, to the
function arguments. Many models have been considered in the literature aimed to capture
phase variation as it is intuitively perceived by the data analyst. Landmark registration
(Kneip and Gasser 1992) is one of the earliest methods and requires the identification of
curve features or landmarks. The approaches by Silverman (1995), later extended in Ramsay
and Li (1998) to continuous monotone registration, and Wang and Gasser (1997) are not
based on landmarks but on the minimization of a distance measure between the curves. More
recent are likelihood-based methods by Rønn (2001) and Gervini and Gasser (2005), and
curve alignment by moments (James 2007), the latter combining advantages of landmark
and continuous monotone registration. Warping or registration of the functional observations
takes place before nearly any further analysis. Explicit examples include a study of leg
growth velocities (Gervini and Gasser 2004), and of the geometries of the internal carotid
artery (Sangalli, Secchi, Vantini, and Veneziani 2009; Vantini 2012).

In Claeskens, Silverman, and Slaets (2010) a model is proposed for time warping that also
takes the amplitude variability into account. Similar to Gervini and Gasser (2005), a warping
function is applied to transform the time domain and a random effects structure is added



Journal of Statistical Software 3

to represent amplitude variation. The main novelty of the model in Claeskens et al. (2010)
is that the warping function is constructed through a multiresolution structure with a clear
interpretation in the warping framework. The spline basis functions in the amplitude structure
of that model, however, are not estimated in the model, but need to be specified by the user.

In this paper the model in Claeskens et al. (2010) is extended to jointly estimate the warping
and amplitude components. Instead of B-spline basis functions, a limited number of asymmet-
ric rescaled kernel functions are used to indicate modes of amplitude variation. Apart from
faster functional evaluation, these kernels have the advantage that their parameters have an
easy graphical interpretation and make it possible for the user to provide good starting values.
The amplitude and warping components are presented in Section 2, together with the precise
formulation of the model.

In fitting the model, there are many parameters to be estimated and, in addition, the de-
composition structure of the warping function does not have a unique parameterization. To
deal with this, we have developed a Bayesian estimation method (Claeskens et al. 2010), see
Appendix A, which gathers the most important warping actions in the first components of the
multiresolution structure. A step-by-step estimation routine provides a gradually extended
model with additional warping components that progressively eliminate remaining phase vari-
ation. Two stopping methods are available, see Section A.4. To reduce the time required by
the Markov chain Monte Carlo (MCMC) computations, we perform adaptive MCMC calcu-
lations and program them in C (Kernighan and Ritchie 1988) rather than R (R Core Team
2013). The R-C interface makes the program user-friendly, in that no knowledge of C is
required and all input and output will be handled through R. The R package MRwarping
contains all needed functionality and is available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=MRwarping.

2. Multi-resolution warping

Multiresolution warping allows for flexible domain transformations where the parameters of
the transformation have a meaningful interpretation in the context of warping. This is in
contrast with the use of spline basis functions, for example, which are no warping functions,
and hence require constraints on the parameters to ensure the monotonicity of the resulting
warping functions.

2.1. The warping model with amplitude adjustments

The functional data sample consisting of N curves has function values yn,j (n = 1, . . . , N)
corresponding to a fixed set of T ordered discrete time points tj (j = 1, . . . , T ). The main
model that we use for estimation consists of an overall mean function µ(·), that potentially
needs to be warped for a better alignment. The model allows for local amplitude variation,
plus some random error. The time domain is warped using warplets τn, one for each curve.
Each τn is composed of basic warplet component functions; a precise definition is given in
Equation 2. The model also includes a horizontal shift parameter wshift,n for each curve,
which serves as a global warping action prior to applying the local warplets. To prevent
inappropriate extreme warping, the shifts are restricted to 1/4 of the range of the time points
in both directions. Thus −(tT − t1)/4 ≤ wshift,n ≤ (tT − t1)/4. While the warplets take care of
the phase variation, the functions ψk(·) are used to model possible local amplitude variation

http://CRAN.R-project.org/package=MRwarping
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in the curves. Each ψk(·) is parameterized by a center, a lower and an upper bound. For
a precise definition of these functions, see Equation 5. The warping model with amplitude
adjustment is therefore defined as

yn,j = Fn,j + en,j = µ(τn(tj + wshift,n)) +
K∑
k=1

bn,kψk(τn(tj + wshift,n)) + en,j , (1)

with bn,k and en,j independent realizations of respectively N (0, σ2
k) and N (0, σ2) for n =

1, . . . , N, j = 1, . . . , T and k = 1, . . . ,K, the number of amplitude kernels. The function τn
performs the warping action and is decomposed into warplets, see (3) with an explicit inverse,
see (4). In model (1), K is considered to be a fixed constant and needs to be chosen by the
user based on inspection of the data. For example, for the data in Figure 1, the smoothed
curves in Figure 6 panel (a) reveal two locations of substantial amplitude variation: the areas
around t = 100 and t = 280. A sensible choice would be K = 2. Since the main goal is
to warp the data and since the amplitude variation is considered to be a nuisance effect, the
amplitude coefficients bn,k are modeled as random effects. For the fixed effect shift parameters

the following constraint is used, wshift,N = −
∑N−1

i=1 wshift,i. The recent works by Bigot and
Gadat (2010) and Vimond (2010) also provide a model (the shape invariant model) for the
estimation of shifts (and scales) under similar constraints.

During the course of the paper, the method and all the function arguments will be explained
and illustrated by means of the LC-MS example (Figure 1). This data set contains TIC counts
on N = 11 curve observations each at the same T = 400 time points.

Multiresolution warping by fitting model (1) is made available for easy usage via an R-C
interface in the R package MRwarping, according to the Bayesian estimation procedure as
described in Appendix A. We here present the function call in R, with only the required input
arguments,

R> library("MRwarping")

R> MRwarp(Xdata, Ydata, kernel.s)

The details about this function follow, see Section 3. The input quantity kernel.s provides
starting values for the location and scale of the amplitude kernels ψk, k = 1, . . . ,K, by
specifying their centers, lower and upper boundaries.

2.2. Warplets

Multiresolution warping is built around warplets, which are local warping components that
concentrate the warping action to a certain domain. Warplets are composed, one after the
other, to form the final warping function. Warplets have a clear interpretation in terms of
both location and intensity of the warp.

Warping functions need to be smooth strictly monotonically increasing functions in order to
ensure they define a bijection of the original function domain and respect the natural ordering
of the time points. Figure 2 illustrates the warping process. It shows the original curve (a),
the original equally spaced time points (c), the warping function in (d) and the warped curve
and warped observation points in (b), resp. (e). The warplets or warping components are
designed to only warp a local area. Warplets are denoted in full by τ̃((a, λ, wl, wu); t), or
abbreviated by τ̃(t). They are strictly increasing functions that deviate from the identity
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Figure 2: (a) Original data, (b) warped data, (c) original time points, (d) warping function,
(e) warped time points.

function in a smooth manner on the interval [a − r1, a + r2] = [wl, wu], the area where the
warplet is active. In what follows we will mainly use the notation with the upper and lower
bound (wl,wu) instead of the radii (r1,r2). The intensity parameter λ can take values in
(−1, 1). For a positive value of λ, the warplet will cause a dilation directly followed by a
compression. When λ is negative, a compression is followed by a dilation. For λ = 0, no
warping takes place. The intensity of the warping action increases with the absolute value
of λ, as can be seen in Figure 4 (a) and (b). The component center a divides the warping
intensity in a compression and dilation part, allowing for asymmetric actions. Similar as with
the shift parameters, we restrict the domain of the warplets to the range of the time points,
with the exception that wl can be smaller than t1, but not smaller than t1 − (tT − t1)/10
and wu can be larger than tT but not larger than tT + (tT − t1)/10. The latter exceptions
accommodate phase variation near the borders of the time domain.

The following definition introduces the warplets more formally (see Definition 2.2 of Claeskens
et al. 2010). Define the warplet

τ̃ (a, λ, wl, wu; t) = τ̃ (a, λ, a− r1, a+ r2; t) (2)

=


a+ r1 · g

(
λ r
r1

; (t− a)/r1

)
, t ∈ [a− r1, a− 3

√
3

8 λr]

a+ r2 · g
(
λ r
r2

; (t− a)/r2

)
, t ∈ [a− 3

√
3

8 λr, a+ r2]

t, otherwise,

with r1, r2 > 0, r = min(r1, r2), λ ∈ (−1, 1), g(λ; y) = z + λK(z) = y + 2λK(z) where z is
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the solution to z − λK(z) = y, and with the quartic warplet kernel K:

K(z) =

{
3
√

3
8 (1− z2)2, z ∈ [−1, 1]

0, otherwise.

The function g(λ; y) rotates the rescaled quartic kernel function K(z) alongside the first
diagonal, as is illustrated in panels (a) and (b) of Figure 4. This construction ensures that the
warplets are monotone and guarantees that the inverse warplet, see (4), is again a warplet. For
the use of other kernel functions, see Claeskens et al. (2010). For each curve n (n = 1, . . . , N),
the warplets τ̃n,q (q = 1, . . . , Q) are composed in a warping function τn = τ̃n,Q ◦ . . .◦ τ̃n,2 ◦ τ̃n,1,
where τ̃n,1 is executed first, then τ̃n,2, etc. The warping functions τn in model (1) are curve-
specific and allow for different locations and different intensities,

τn(tj) = τ̃(aQ, λn,Q, wl,Q, wu,Q) ◦ . . . ◦ τ̃(a1, λn,1, wl,1, wu,1)(tj). (3)

The composition of monotone warplets ensures the monotonicity of the overall warping func-
tion and moreover it has the attractive property that the inverse transformation has an easy,
explicit formula,

τ−1
n = τ̃−1

n,1 ◦ . . . ◦ τ̃
−1
n,Q, with τ̃−1

n,q (a, λ, wl, wu; t) = τ̃n,q (a,−λ,wl, wu; t) . (4)

The inverse warplets are used frequently, in the estimation routine, but also to plot the warped
curves. For a single warplet, choosing for all N curves the same warping center and the same
lower and upper bound results in a more parsimonious model in terms of the number of
parameters. This is motivated since many curve samples tend to display phase variation on
only a few joint locations. Different warplets will in general have different centers and bounds.
The intensities λn,q are curve-specific with λN,q = −

∑N−1
n=1 λn,q for q = 1, . . . , Q.

The function warp evaluates a warping function τ in a vector of time points. E.g., to obtain
a plot of τ(t) = τ̃(2, 0.4, 2− 1.5, 2 + 2) ◦ τ̃(5, 0.6, 5− 2, 5 + 3)(t), as in Figure 3 (a), execute:

R> t <- seq(0, 10, length.out = 1000)

R> tau.t <- warp(c(5, 2), c(0.6, 0.4), c(2, 1.5), c(3, 2), t)

R> plot(t, tau.t, type = "l", ylab = expression(tau(t)))

The same plot can be obtained by composing the warplets:

R> tau.t1 <- warp(5, 0.5, 2, 3, t)

R> tau.t <- warp(2, 0.4, 1.5, 2, tau.t1)

R> plot(t, tau.t, type = "l", ylab = expression(tau(t)))

Figures 3 (b) and (c) illustrate the effect of applying this warping function on a normal density
function. The corresponding code is given below. Figure 4 (a) contains some other examples
of warplets and Figure 4 (b) shows how they act on a curve.

R> y <- dnorm(t, mean = 5, sd = 1)

R> plot(t, y, type = "l")

R> plot(tau.t, y, type = "l", xlab = expression(tau(t)))
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Figure 3: (a) warping function, (b) normal density curve (with mean 5 and variance 1) and
(c) warped normal density curve.
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Figure 4: (a) warplets, (b) the effect of applying the warplets to the curve (t, F (t)) and (c)
kernel (dashed) and curves with one amplitude component.

2.3. Amplitude components

In line with the choice of the warplets, we use rescaled asymmetric quartic kernels ψ(ā, al, au; t)
to model the amplitude variability in model (1),

ψ(ā, al, au; t) =


(

1−
(

(t−ā)
au−ā

)2
)2

, ā ≤ t ≤ au(
1−

(
(t−ā)
ā−al

)2
)2

, al ≤ t ≤ ā.
(5)

Other choices are possible, for example, spline basis functions have been used in the papers
by Gervini and Gasser (2005) and Claeskens et al. (2010).

Examples of amplitude kernels are given in Figure 4 (c). Even though the kernel parameters
are estimated in the model, the number of the kernels and for each kernel starting values
(rough guesses) of its center ã, its lower (left) boundary al and its upper (right) boundary au
need to be provided via the input quantity kernel.s, with al ≤ ā ≤ au. This vector is coded
as follows kernel.s = (al,1, ā1, au,1, . . . , al,K , āK , au,K) and hence the length of kernel.s

should be a multiple of 3.

For the example with the TIC responses, inspection of Figure 1 makes us choose two regions
of local amplitude variation, related to the heights of the peaks around t = 100 and t = 280:
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Figure 5: The effect of shr on the prior distributions on (a) the shifts with range [−200, 200]
and (b) warplet intensities with range (−1, 1) in the LC-MS example.

kernel.s <- c(70, 100, 130, 250, 280, 300). It is advisable to not choose more kernels
than clearly suggested by visual inspection. Using too many kernels increases the computation
time, our current experience is that any reasonable number will have limited influence on the
main results.

2.4. Shrinkage of the warping action

The intensity of the warplets (λn,q) and magnitude of the shifts (wshift,n) is governed by the
input parameter shr of MRwarp. By default, the warplet intensities and shift parameters all
have truncated normal prior distributions with zero means in the Bayesian estimation routine,
which favors a low intensity warping action. The parameter shr corresponds to the standard
deviation of the normal priors for the warplet intensities λn,q, and 0.5 · shr · (tT − t1) is the
standard deviation of the prior for the shifts. Figure 5 plots these priors for the intensities
(a) and shifts (b) in the LC-MS example for the values shr = 0.3 (the default value), shr
= 0.5 and shr = 2. The truncation of the normal prior for the λn,q parameters guarantees
that the intensities are contained within the (−1, 1) interval. For the shifts these truncation
points correspond to the extremal values for the allowed shifts (−(tT − t1)/2 and (tT − t1)/2),
as mentioned in Section 2.1. The priors become less informative and the amount of shrinkage
decreases with increased values of shr. In practice, extreme deformations can translate into
a loss of smoothness and without informative priors on the intensities, it generally decreases
the robustness against misspecification of the model. The setting of shr=0.1, offers a good
balance between flexibility and smoothness in the LC-MS example.

2.5. Adding warplets stepwise or fixing Q beforehand

The function MRwarp offers a choice between two strategies regarding the number of warplets.
With selection = "FIXED" and components = 3 a fixed user-determined number of warplets
(3 in this case) can be selected. The program displays intermediate results of the estimation
procedure. The warped curves are plotted for 1, 2 and 3 components, up to the specified
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number of components. After completion the R output vector contains the parameter values
for the last estimated model (with 3 components in this example) and the one-but-last model
(with 2 components in this example).

A second use of the program is by user interaction. The option selection = "STEP" makes
the program ask the user whether or not he/she wants to continue to add an extra component
after viewing the warped curves of each estimated model.

Additionally, the model selection information of Claeskens et al. (2010), see Section A.4, is
displayed after each fit. It can facilitate the decision on whether or not to continue the fitting
procedure, however visual inspection of the data is always advisable. The model selection
criterion is based on (1− α)% highest posterior density intervals for the warping parameters
of the newest component. See Section A.4 for more information. The default value of alpha
= 0.1 can be adjusted.

3. Software overview

Three R functions are contained in this package: MRwarp, warp and comp. The main function is
MRwarp, which performs the actual warp by linking with C and calls the other two functions.
The function comp computes a single quartic warplet, while the function warp is used to
evaluate a composition of warplets. Table 1 presents an overview of the input arguments of
the function MRwarp. Denote N the number of curves and T the number of time points. The

Argument Description

Xdata N × T matrix containing the x-coordinates or time points of the curve
observations. Each row corresponds to a particular subject. No default.

Ydata N ×T matrix containing the y-coordinates or response values of the curve
observations. Each row corresponds to a particular subject. No default.

chain The (total) number of MCMC iterations (default = 400).
thin The thinning factor of the MCMC algorithm (default = 5).
burnin The number of MCMC iterations which are discarded (default = 200).
kernel.s Vector containing the starting values for the kernel parameters (see Sec-

tion 2.3). No default.
selection "FIXED" when we want to estimate a fixed number of warplets, "STEP"

when evaluating the warping procedure after each component (default =
"FIXED").

components The number of warping components in the final model (default = 1). This
value is ignored when selection = "STEP".

shr Determines the variance of the prior on the warplet intensities and shifts
(see Section 2.4, default = 0.3).

outputfit 1 if the warped curves (based on the parameter values in the adaptive
MCMC chain which give rise to the highest posterior density) should be
plotted after each estimated fit, 0 otherwise (default = 1).

alpha The significance level to be used in the model selection procedure (see
Section A.4) (default = 0.1).

Table 1: Input of the function MRwarp.
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Argument Description

$shift Adaptive MCMC chain of the estimated horizontal shifts
(wshift,1, . . . , wshift,N ).

$warping$lower Adaptive MCMC chains of the estimated warping lower bounds
(wl,1, . . . , wl,Q).

$warping$A Adaptive MCMC chains of the estimated warping centers
(a1, . . . , aQ).

$warping$upper Adaptive MCMC chains of the estimated warping upper
bounds (wu,1, . . . , wu,Q).

$warping$Intensities Adaptive MCMC chains of the estimated warping intensities
(λ1,1, . . . , λN,1, λ1,2, . . . , λN,2, . . . λ1,Q, . . . , λN,Q).

$kernels Adaptive MCMC chains of the estimated kernel lower bounds,
centers and upper bounds (al,1, ā1, au,1, . . . , al,K , āK , au,K).

$error.variance The estimated value of the error variance σ2.
$max.post.dens The row in the parameter chain vectors/matrices correspond-

ing to the highest posterior density.

Table 2: Output of the function MRwarp, both output lists $last and $previous consist of
the components stated in this table.

R output is structured as a list with elements as listed in Table 2.

The output is given in the form of a list containing two components, last and previous, which
can be accessed in the usual way by using the dollar sign. Both of the output components, for
the last fitted model in output$last and for the one but last fitted model in output$previous

(where output is the name given to the result of the call to the function MRwarp), are lists, each
containing the components shift, warping, kernels, error.variance and max.post.dens.

The warping parameters in warping are grouped in a list containing the components lower,
A, upper, Intensities, representing, respectively, the lower bounds wl,q, the centers aq, the
upper bounds wu,q and the intensities λn,q, for q = 1, . . . , Q and n = 1, . . . , N .

The default settings provide a good starting point for first time users. A simple model (one
component) is fitted, the warped curves are plotted and the AMCMC chains are not too
big to minimize the waiting period for completion of the routine. Inspecting these initial
results (e.g., plotting adaptive MCMC parameter chains) immediately gives the user an idea
of whether a longer adaptive MCMC chain is needed.

Manual preprocessing of the data is required in the following cases:

(i) An unequal number of observations for the different subjects. Data points can be
omitted or interpolated for certain subjects or the data can be smoothed and predicted
in a vector of time points of equal size.

(ii) Similar time and amplitude domains are required. Although the method can account for
horizontal shifts, these are intended for relatively small global phase effects in the data,
not to adjust different observation domains. E.g., when the data constitute a process
observed for a month, cut into daily curves, these curves need to shifted to a one-day
frame, prior to the analysis.
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4. Example

This section contains the complete R code for the LC-MS example. Computation time for
this entire example is ± 30–60 minutes, provided the user immediately supplies the needed
input. Changing the MRwarp settings to components = 3 and selection = "FIXED" yields
the same final results, without requiring intermediate user input. Faster results are obtained
with shorter adaptive MCMC chains (e.g., chain = 100; burnin = 50).

Reading the data

R> data("TICdata")

R> TIC <- as.matrix(TICdata)

Smoothing the LC-MS data

This is done to improve the linear interpolation performed to evaluate the pseudo-log-likelihood
(see Section 2.1) at time points that are not originally observed.

R> index <- 1:200 * 2 - 1

R> TICy <- t(matrix(index, 200, 11))

R> x <- 1:400

R> for(i in 1:11) {

+ TIC.sm <- spm(TIC[i, ] ~ f(x))

+ TICy[i,] <- TIC.sm$fit$fitted[index]

+ }

R> TICx <- t(matrix(index,200, 11))

Multiresolution warping: options and estimation

See also Table 1.

R> output <- MRwarp(Xdata = TICx, Ydata = TICy, chain = 1000, thin = 5,

+ burnin = 500, kernel.s = c(70, 100, 130, 250, 280, 300), components = 1,

+ selection = "STEP", shr = 0.1, outputfit = 1, alpha = 0.1)

Output and answers provided to the program during the stepwise procedure.

"start C loop"

"C loop finished"

"Bayesian model selection criterion includes this component"

Do you want to continue and add a component? (y/n)y

"start C loop"

"C loop finished"

"Bayesian model selection criterion suggests not to include this component"

Do you want to continue and add a component? (y/n)y

"start C loop"

"C loop finished"
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(a) (b)

(c) (d)

Figure 6: (a) Original data, and (b)–(d) stepwise warped curves (horizontal shifts and warping
components). The plotted lines linearly interpolate the data.

"Bayesian model selection criterion suggests not to include this component"

Do you want to continue and add a component? (y/n)n

"program stopped after 3 components"

After estimation of the first model consisting of a shift and one warplet only, we receive plot (a)
in Figure 6 and the following question: Do you want to continue and add a component?

(y/n). The first model already eliminates a substantial part of phase variation. To investigate
whether this is further improved by including a second component, we answer the output
question with y and enter. The program now extends the model by adding a second warplet
(while updating the priors of the warping parameters by using the posterior information of
the first model, see Section A.3). We continue until we are satisfied with the result, which
in this example is at Q = 2. A third component was still added, but did not offer much
improvement. The model selection information suggests to use just one components, but in
this example we prefer to rely on a visual inspection of the data.
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Extracting parameters of the final model (Q = 2) from the output

Three components have been fitted in the final model. Since we prefer the model with two
components (the previous one), we use the values stored in the ‘previous’ part of the list. See
also Table 2.

R> index <- output$previous$max.post.dens

R> index

[1] 157

Output (wshift,1, . . . , wshift,N ) (N = 11):

R> shift <- output$previous$shift[index,]

R> shift

[1] -9.607246 3.214980 -0.544125 5.686913 7.518277 -2.307322

[7] 3.519495 4.971258 6.998859 -15.701871 -3.749218

R> A <- as.matrix(output$previous$warping$A)[index, ]

R> A

Output (a1, . . . , aQ) (Q = 2):

[1] 143.34798 28.67765

Output (wu,1, . . . , wu,Q) (Q = 2):

R> Wl <- as.matrix(output$previous$warping$lower)[index,]

R> Wl

[1] 56.852001 8.224291

Output (wu,1, . . . , wu,Q) (Q = 2):

R> Wu <- as.matrix(output$previous$warping$upper)[index,]

R> Wu

[1] 353.5670 222.5567

Output of (λ1,1, . . . , λN,1, λ1,2, . . . , λN,2, . . . λ1,Q, . . . , λN,Q) (Q = 2, N = 11)

R> Intensities <- output$previous$warping$Intensities[index,]

R> Intensities

[1] 0.1681539226 0.0489868217 0.0506884156 0.0646273158 -0.0625221529

[6] -0.0777187035 0.0008774359 -0.0247585172 0.0366047925 -0.1124949934

[11] -0.0477684531 0.0977758034 -0.0851257317 0.0750820117 -0.0808696189

[16] 0.1231458679 -0.2354372868 -0.0926394026 0.1070670289 -0.0460199249

[21] 0.1847897063 -0.0477684531
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Output (al,1, ā1, au,1, . . . , al,K , āK , au,K) (K = 2):

R> kernels <- output$previous$kernels[index,]

R> kernels

[1] 28.53527 104.91836 136.15320 190.15830 279.66676 318.79581

Plot of the warped data

While the function MRwarp provides plots of the warped curves corresponding to the (smoothed)
input data ({(τ̂n(TICx[n, ]), T ICy[n, ]))}, n = 1, . . . , 11), it is also possible to use the esti-
mated warping functions on other curves by means of the function warp. Below we illustrate
how to use the output to apply the warping functions to the original, unsmoothed data TIC
({(τ̂n(x), T IC[n, ])}, n = 1, . . . , 11). The resulting plot is shown in Figure 1 (b). For each
curve the values that need to be supplied to the warp function (see Section 2.2) are extracted
from the output.

R> x <- 1:400

R> T <- 400

R> N <- 11

R> Q <- length(A)

R> TIC.plot <- matrix(0, N, T)

R> WX <- t(matrix(x, T, N))

R> WX <- (WX) + shift

R> r1 <- A - Wl

R> r2 <- Wu - A

R> for(i in 1:N) {

+ ints <- Intensities[seq(from = i, to = (Q - 1) * N + i, by = N)]

+ WX[i,] <- warp(A, ints, r1, r2, WX[i, ])

+ wx <- WX[i,]

+ TIC.sm <- spm(TIC[i, ] ~ f(wx))

+ TIC.plot[i, ] <- TIC.sm$fit$fitted

+ }

In this example we have two warplets, the output vectors r1, r2 and A give us their lower
radius, upper radius and center. For these data the first warplet has r1 = 85.7061, r2 =
202.88084 and center a = 155.51366. The second warplet has r1 = 53.6720, r2 = 103.2508,
and the center at value 62.80259.

R> plot(WX[1, ], TIC[1, ], xlab = "", ylab = "", ylim = range(TIC))

R> lines(WX[1, ], TIC.plot[1, ])

R> for(i in 2:N) {

+ points(WX[i, ], TIC[i, ], col = i)

+ lines(WX[i, ], TIC.plot[i, ], col = i)

+ }
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5. Conclusion

The multiresolution warping method (Claeskens et al. 2010) has been extended to incorporate
joint amplitude estimates in the form of rescaled kernel functions. The latter were chosen
because of their parametrization which makes it easy for the user to interpret the parameters
and to provide proper starting values.

Shrinking the warping intensities and the warping domain avoids too severe transformations
and promotes data smoothness after warping.

The R-C interface for multiresolution warping combines the computational efficiency of C with
the graphical features and user-friendliness of R. It provides the user with a several options to
monitor the warping stage. Extensive output is available and can be consulted when desired.
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A. Bayesian estimation method

We now give some details about the pseudo-log-likelihood and the Bayesian methods that are
used in the estimation routine.

A.1. A weighted pairwise log-likelihood function

A sum of weighted pairwise log-likelihoods is used to estimate all the parameters. The esti-
mation of the common underlying mean function µ(·) can be avoided by exploiting the in-
vertibility of the warping functions. Indeed, for every possible combination of values n1 6= n2

in {1, . . . , N} it holds that

µ(t) = Fn2(τ−1
n2

(t− wshift,n2))−
K∑
k=1

bn2,kψk(t+ wshift,n1),

and thus

Fn1(t) = Fn2(τ−1
n2

(τn1(t+ wshift,n1)− wshift,n2))−
K∑
k=1

bn2,kψk(τn1(t+ wshift,n1))

+
K∑
k=1

bn1,kψk(τn1(t+ wshift,n1))

yn1,j = Fn2(τ−1
n2

(τn1(tj + wshift,n1)− wshift,n2))

+
K∑
k=1

(bn1,k − bn2,k)ψk (τn1(tj + wshift,n1)) + en1,j . (6)

The pseudo-log-likelihood is defined as the sum of the weighted pairwise log-likelihoods corre-
sponding to the N(N − 1) pairwise models, see Equation 6, with n1 6= n2.
Denote αshift = {wshift,n;n = 1, . . . , N} the shift parameters, ατ = {aq, wl,q, wu,q, λn,q; q =
1, . . . , Q, n = 1, . . . , N} the parameters of the warplet expansions of the warping functions,

αψ = {āk, al,k, au,k, λψi , σ2
k; k = 1, . . . ,K} the kernel parameters and the variances of the ran-

dom amplitudes, and σ2 the variance of the noise en,j . The pseudo-log-likelihood is given
by

logL(αshift,ατ ,αψ, σ
2)

=
−1

(N − 1)N

N∑
n1=1

N∑
n2=1,n2 6=n1

T∑
j=1

log


√√√√2π(

K∑
k=1

2ψ2
k(τn1(tj + wshift))σ

2
k + σ2)


+

(
yn1,j − fn2(τ−1

n2
◦ τn1(tj + wshift,n1)− wshift,n2)

)
2(
∑K

k=1 2ψ2
k(τn1(tj + wshift,n1))σ2

k + σ2)

]
, (7)

where fn(t) are predicted values of Fn(t) based on an interpolation of the data {tj , yn,j}. The
number of kernels K is specified by the user.

The evaluation of this pairwise log-likelihood function requires function evaluations at time
points at which the original observations might not have been observed. When the data
display a lot of variation, rather than using linear interpolation to predict the intermediate



18 Warping Functional Data in R and C

values, we smooth the data and create a new data set based on the smoothed curves. For the
LC-MS data, TIC is the original data matrix and TICx and TICy are the new data, smoothed
by using the package SemiPar (Wand 2013).

A.2. Adaptive MCMC

In the Bayesian philosophy, model parameters are random rather then fixed entities.
They have a prior distribution f

(
αshift,ατ ,αψ, σ

2
)

which is used to obtain the posterior
distribution fpost , see Equation 8. We use the pseudo-likelihood of Equation 7, that is,

f
(
{yn(tj)}n=1...N

j=1...T |αshift,ατ ,αψ, σ
2
)

= L(αshift,ατ ,αψ, σ
2). This leads to the following ex-

pression for the posterior distribution,

fpost
(
αshift,ατ ,αψ, σ

2
)

= f
(
αshift,ατ ,αψ, σ

2
∣∣{yn(tj)}n=1...N

j=1...T

)
=

f
(
{yn(tij)}i=1,...,N

j=1...T |αshift,ατ ,αψ, σ
2
)
f
(
αshift,ατ ,αψ, σ

2
)

∫
f
(
{yn(tj)}n=n,...,N

j=1,...,T |αshift,ατ ,αψ, σ2
)
f (αshift,ατ ,αψ, σ2) d(αshift,ατ ,αψ, σ2)

.(8)

The program takes the following priors on each newly added component. Let U(x1, x2) denote
the uniform distribution on the interval (x1, x2).

wshift ∼ N̄ (0, (0.5 · shr · (tT − t1))2 ,−0.5 · (tT − t1), 0.5 · (tT − t1))

aq ∼ U(t1, tT ), wl,q ∼ U(t1, tT ), wu,q ∼ U(t1, tT ),

λn,q ∼ N̄ (0, shr2,−1, 1), q = 1, . . . , Q;n = 1, . . . , N,

āk ∼ U(t1, tT ), al,k ∼ U(t1 − (tT − t1)/v), tT ),

au,k ∼ U(t1, tT + (t1 − tT )/v), k = 1, . . . ,K,

with v = 100 to allow for an increased amplitude variation near the boundary of [t1, tT ], shr
the shrinkage parameter (see Section 2.4), and an inverse gamma prior on σ and σk with
shape and scale equal to 0.01, k = 1, . . . ,K.

Since the true posterior distribution is not tractable, numerical methods are used to obtain
an informative sample. A Markov chain Monte Carlo (MCMC) procedure generates chains
of dependent samples which converge to the equilibrium distribution, that is, the posterior
distribution of the model parameters. The initial part of the chain, the burn-in period, is
disregarded. The chain starts with a proper starting value which must be determined in
accordance to the prior distribution

{w(1)
shift,n, a

(1)
q , λ

(1)
n,q, w

(1)
l,q , w

(1)
u,q, ā

(1)
k , a

(1)
l,k , a

(1)
u,k, σ

2(1)
k , σ2(1)}n=1...N

q=1,...,Q, k=1...K={α(1)
shift,α

(1)
τ ,α

(1)
ψ , σ2(1)}.

The parameter values in iteration i are denoted by {α(i)
shift,α

(i)
τ ,α

(i)
ψ , σ

2(i)}.
We use a Metropolis-Hastings algorithm to generate a new proposal of parameter values at
iteration (i + 1) based on the previous iteration (i) by means of a proposal density P . The
drawn sample will be approved with probability

P (acceptance) = min

{
fpost

(
α

(i+1)
shift ,α

(i+1)
τ ,α

(i+1)
ψ , σ2(i+1)

)
fpost

(
α

(i)
shift,α

(i)
τ ,α

(i)
ψ , σ

2(i)
) · P

(i),(i+1)

P (i+1),(i)
, 1

}
. (9)
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Here, P (i),(i+1) denotes the proposal density with mean {α(i)
shift,α

(i)
τ ,α

(i)
ψ , σ

2(i)}, evaluated in
the newly drawn values at step (i + 1). If the proposed value is rejected, the previous value

is carried over unchanged and thus {α(i+1)
shift ,α

(i+1)
τ ,α

(i+1)
ψ , σ2(i+1)} = {α(i)

shift,α
(i)
τ ,α

(i)
ψ , σ

2(i)}.
The algorithm works best (read: the chain converges fastest to a sample of the posterior)
if the proposal density matches the shape of the target distribution, namely, the posterior
distribution. Since the latter is unknown, we use adaptive MCMC (AMCMC), comparable to
the adaptive Metropolis-within-Gibbs algorithm in Roberts and Rosenthal (2009), which up-
dates the proposal density at regular times throughout the algorithm when more information
on the posterior becomes available.

Our AMCMC scheme differs from that of Roberts and Rosenthal (2009), in two ways. First,
the use of truncated normal proposal densities for each of the parameters. This way we make
sure the generated parameter proposals give rise to valid warping functions and amplitude
components, before evaluating the priors. Second, the updating of the variance of these
densities is only done during the burn-in stage and, third, in our algorithm we do not always
evaluate Equation 9 after a value has been drawn for a particular parameter. We explain this
in more detail below.

When sampling in iteration (i), the other parameters are left unchanged. In iteration (i+ 1)
a new value is drawn from the distributions as given by the ordering in Equation 10 while
the other values are carried over, and so on. Note that because λN,q = −

∑N−1
n=1 λn,q for

q = 1, . . . , Q and wshift,N = −
∑N−1

i=1 wshift,i, the intensities and shift of the Nth curve are not
generated. Schematically,

{
w

(i+n)
shift,n drawn from N̄

(
w

(i)
shift,n , (tT − t1)/100,−0.5 · (tT − t1), 0.5 · (tT − t1)

)
,

n = 1, . . . , N − 1,

a
(i+N)
Q drawn from N̄

(
a

(i)
Q , σ2

aQ
, w

(i)
l,Q, w

(i)
u,Q

)
,

w
(i+N+1)
l,Q drawn from N̄

(
w

(i)
l,Q , σ

2
wl,Q

, t1 − 0.1 · (tT − t1), a
(i+N)
Q

)
,

w
(i+N+2)
u,Q drawn from N̄

(
w

(i)
u,Q , σ

2
wu,Q

, a
(i+N)
Q , tT + 0.1 · (tT − t1)

)
,

λ
(i+N+2+n)
n,Q drawn from N̄ (λ

(i)
n,Q , σ

2
λn,Q

,max{−1,−1−
∑n−1

j=1 λ
(i+N+2+j)
j,q

−
∑N−1

j=n+1 λ
(i)
j,q},min{1, 1−

∑n−1
j=1 λ

(i+N+2+j)
j,q −

∑N−1
j=n+1 λ

(i)
j,q}),

n = 1, . . . , N − 1,

σ(i+2N+2) drawn from N̄
(
σ(i) , σ2

σ, 0, (max
n,j

yn(tj)−min
n,j

yn(tj))

)
. (10)

For q = 1, . . . , Q− 1 :

a
(i+2N+3)
q drawn from N̄

(
a

(i)
q , σ2

aq , w
(i)
l,q , w

(i)
u,q

)
,

w
(i+2N+3)
l,q drawn from N̄

(
w

(i)
l,q , σ

2
wl,q

, t1, a
(i+2N+3)
q

)
,

w
(i+2N+3)
u,q drawn from N̄

(
w

(i)
u,q , σ2

wu,q
, a

(i+2N+3)
q , tT

)
,

λ
(i+2N+3)
n,q drawn from N̄ (λ

(i)
n,q , σ2

λn,q
,max{−1,−1−

∑n−1
j=1 λ

(i+2N+3)
j,q

−
∑N−1

j=n+1 λ
(i)
j,q},min{1, 1−

∑n−1
j=1 λ

(i+2N+3)
j,q −

∑N−1
j=n+1 λ

(i)
j,q}),

n = 1, . . . , N − 1,

For k = 1, . . . ,K :
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a
(i+2N+3+k)
l,k drawn from

N̄
(
a

(i)
l,k , σ

2
al,k

, t1 − r, ā(i+2N+3+(k−1))
k

)
if k = 1,

N̄
(
a

(i)
l,k , σ

2
al,k

, a
(i+2N+3+(k−1))
u,(k−1) + r, ā

(i+2N+3+(k−1))
k

)
, k > 1,

ā
(i+2N+3+k)
k drawn from N̄

(
ā

(i)
k , σ2

ās , a
(i+2N+3+k)
l,k , a

(i+2N+3+(k−1))
u,k

)
,

a
(i+2N+3+k)
u,k drawn from

N̄
(
a

(i)
u,k , σ

2
au,k

, ā
(i+2N+3+k)
k + r, a

(i+2N+3+k)
l,k+1 − r

)
if k < K,

N̄
(
a

(i)
u,k , σ

2
au,k

, ā
(i+2N+3+k)
k + r, tT + r

)
if k = K,

σ
(i+2N+3+k+1)
k drawn from N̄

(
σ

(i)
k , σ2

σk
, 0, (max

n,j
yn(tj)−min

n,j
yn(tj))

)
, k = 1, . . . ,K

where N̄ (x1, x2, x3, x4) denotes the truncated normal distribution on the interval (x3, x4) with
mean x1, variance x2 and and with r = (tT − t1)/100, the minimum distance between the
kernel parameters.

After one run through the iterations in Equations 10, only the final parameter values (corre-
sponding to iteration (i+ 2N + 3 + k+ 1)) are considered for storage. This means that a new
proposal has been considered for all parameters. Whether or not the values are stored depends
on the thinning argument in the function call. The latter indicates after how many runs the
values need to be stored. For thinning = 1 the parameter values are stored after each run.
The chain argument denotes the total number of stored values (burn-in included) and burnin

the number of stored values that are thrown away. Thus the output chains (see Table 2) will
contain chain − burnin values for each parameter, corresponding to chain · thinning runs
and chain · thinning · (i+ 2N + 3 + k + 1) iterations.

To increase the computational speed, new values can be generated in clusters. We define
as a cluster {σ2

k}k=1...K , αψ = {āk, al,k, au,k, k = 1, . . . ,K} and the warping parameters
except those from the latest component, that is, {āq, wl,q, wu,q, λn,q; q = 1, . . . , Q − 1, n =
1, . . . , N − 1}. The reason why the last component is treated differently is explained in
Section A.3.

The advantage of updating values one by one or in smaller clusters and not having one big
cluster, is that we can monitor the acceptance probabilities of the parameters that are altered
and evaluated separately. In order for the algorithm to converge sufficiently fast, an acceptance
rate during the Metropolis-Hastings step in Equation 9 of roughly 44% is targeted by Roberts
and Rosenthal (2009). The proposal variances in Equation 10 can thus be adjusted differently
for each of the parameters, to better approximate the target density. Concretely this is done
after 30 thinnings for the parameters. When we have more than 0.5 · 30 acceptances of that
particular parameter or cluster, the corresponding proposal variances are increased by 25%,
when it is lower than 0.4 ·30 they are increased by the same amount. We use a relatively large
initial choice for the variances of the proposal densities to benefit the exploration phase.

At convergence, the iterated parameter values are still dependent draws from the posterior
distribution. Their information content is therefore smaller than that of a sample of inde-
pendent draws. For this reason thinning is applied, that is, we only store the estimates after
several iterations.

The following settings are applied to the LC-MS example: chain = 1000, thin = 5, burnin
= 500.
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A.3. A prior-posterior transfer

Instead of building the model stepwise, immediately starting with a large number of warplets,
say 6 components, would be problematic. The fact that the decomposition of τ is not unique
can give rise to a multimodal posterior density of the warping parameters, which makes it
difficult to detect convergence. The non-uniqueness is easily explained. For example, if the
true unobserved warping function has two components, a model with with four warplets can
simply take an arbitrary τn,3 and have τn,4 = (τn,3)−1. Or, in the case of warplets with a
non-overlapping domain their order can be reversed. Such a multimodal posterior density is
not only difficult to use to judge convergence, but more importantly, it disables any sort of
interpretation of the parameters.

The solution that we offer is to build the model gradually. We start with a model with a
single warplet and extend the model with one warplet at a time. The information gathered
after estimating each such model is incorporated in the extended model in the next step
in the form of an updated prior. As a result, we estimate a sequence of models in which
each additional warplet is stimulated to eliminate the remaining phase variation only while
the previous components take care of the warping actions that were already achieved in the
simpler model.

The joint posterior distribution of the vector ατ in a model with a single warplet is summarized
by means of marginal histograms of the MCMC chains for each of the parameters. While
more advanced methods could be used at this stage, we found the information contained in
the histograms sufficient.

Since the adaptive MCMC has adjusted the proposal variances of the warping parameters in
Equation 10 a separate Metropolis-Hastings evaluation step in Equation 9 is not necessary
and rather a cluster of proposals is created as in Section A.2.

A.4. Selection of the number of warplets

Because each new warplet contributes less to the warping action than the already present
warplets, a natural model selection procedure arises. When the newest warplet (indexed by
Q) can not sufficiently improve the model, it will either operate on a very small domain,
which results in an overlap of the highest posterior density (hpd) intervals of wl,Q and wu,Q
and/or act with a low intensity, in which case all the highest posterior density intervals of
λQ,n contain 0. In case of one of these scenarios, the model selection step suggests to drop
this additional component and opts for a reprise of the previously estimated model.

The (1− alpha)% highest posterior density intervals are calculated using the function hpd in
the R package boa (Smith 2007).
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