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Abstract

A common strategy for the analysis of object-attribute associations is to derive a low-
dimensional spatial representation of objects and attributes which involves a compensatory
model (e.g., principal components analysis) to explain the strength of object-attribute
associations. As an alternative, probabilistic latent feature models assume that objects
and attributes can be represented as a set of binary latent features and that the strength
of object-attribute associations can be explained as a non-compensatory (e.g., disjunctive
or conjunctive) mapping of latent features. In this paper, we describe the R package plfm
which comprises functions for conducting both classical and Bayesian probabilistic latent
feature analysis with disjunctive or a conjunctive mapping rules. Print and summary
functions are included to summarize results on parameter estimation, model selection
and the goodness of fit of the models. As an example the functions of plfm are used to
analyze product-attribute data on the perception of car models, and situation-behavior
associations on the situational determinants of anger-related behavior.

Keywords: latent feature, two-way two-mode data, disjunctive model, conjunctive model,
perceptual mapping, EM algorithm, R.

1. Introduction

The analysis of a two-way frequency table is a basic task in data analysis which is of interest
to researchers in various domains of applied research (Agresti 2002). Depending on the type of
distribution which is appropriate for modelling the frequencies, one may distinguish between
several types of frequency data. In particular, a multinomial distribution is appropriate
for modelling the frequencies in a two-way contingency table, and a Poisson distribution is
appropriate for modelling frequencies which represent (unbounded) counts. Another type of
two-way frequency data, which is the focus of the present paper, arises when the frequencies
are derived by aggregating three-way three-mode or two-way three-mode binary observations
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across the entities of one mode. In that case, a binomial distribution for modelling the
frequencies may be considered appropriate.

Both three-way three-mode and two-way three-mode binary data are of interest in several
substantive domains. First, three-way three-mode binary data occur when multiple raters
judge for each of a set of objects and for each of a set of attributes whether or not a certain
object has a certain attribute. For instance, when investigating product perception in a
marketing context, one may ask consumers to judge whether products have a certain attribute.
In personality psychology, one may ask respondents to judge whether they would display a
specific behavior in a specific situation. In psychiatric diagnosis, one may ask several clinicians
to judge whether or not a certain patient has a certain symptom.

Second, two-way three-mode data occur when respondents nested in groups respond to a
set of binary items. For instance, in the context of cross cultural research, respondents of
different countries may respond to binary statements in a survey. In educational research,
pupils nested in schools may complete an intelligence test that consists of binary items.

As fully modelling three-way three-mode or two-way three-mode binary data may be complex,
researchers may start by analyzing the marginal two-way frequency table that is obtained by
aggregating three-way three-mode data or two-way three-mode data across entities of one
mode (i.e., raters or respondents).

More specifically, one may use a classical multivariate technique such as principal components
analysis (PCA) or correspondence analysis (CA) to derive a low-dimensional spatial repre-
sentation of the row- and column elements, or exploratory factor analysis (EFA) to reveal
the latent factor structure underlying the observed frequencies. Applying such a dimension
reduction or latent variable technique can be interesting in several applications: For instance,
in a marketing context, a correspondence analysis of product-attribute frequencies can be
used to derive a so-called perceptual map of products and attributes in a geometric space, the
dimensions of which reflect the most important cognitive dimensions that drive product per-
ception (Hoffman and Franke 1986; Torres and Bijmolt 2009). Furthermore, correspondence
analysis and its extensions are a popular technique for ordination of species in vegetation sci-
ence (Oksanen et al. 2012). Finally, in the context of document-retrieval conducting a PCA
(or a two-mode factor analysis) on a term-by-document frequency matrix can help to reveal
the semantic structure of a text (Deerwester, Dumais, Furnas, Landauer, and Harshman 1990;
Landauer, Foltz, and Laham 1998).

PCA can be obtained by applying a singular value decomposition to the raw frequency table,
or to the matrix of correlations or covariances between the columns. R functions for apply-
ing PCA to the matrix of correlations or covariances are princomp() (R Core Team 2013),
dudi.pca() in the package ade4 (Dray and Dufour 2007; Chessel, Dufour, and Thioulouse
2004) and PCA() in the package FactoMineR (Lê, Josse, and Husson 2008; Husson, Josse, Lê,
and Mazet 2012). R functions that apply singular value decomposition to the frequency table
are prcomp() (R Core Team 2013) and lsa() in the package lsa for latent semantic analysis
of a term by document matrix of frequencies (Wild 2011).

EFA uses a latent variable approach to model the correlations between the column elements
by assuming that observed variables are a linear combination of a number of common latent
factors and a specific error term. EFA differs from applying PCA to the correlation matrix
in that it only decomposes the common variance in terms of latent factors. To conduct EFA
with R one may use factanal() (R Core Team 2013).
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Correspondence analysis involves using a singular value decomposition to decompose the Chi-
square statistic associated to the frequency table. R functions for applying correspondence
analysis are corresp() in the package MASS (Venables and Ripley 2002), ca() in the package
ca (Nenadić and Greenacre 2007), dudi.coa() in the package ade4 (Dray and Dufour 2007;
Chessel et al. 2004), CA() in the package FactoMineR (Lê et al. 2008; Husson et al. 2012) and
cca() in vegan (Oksanen et al. 2012).

As the metric assumptions underlying spatial approaches may be doubtful (Tversky 1977),
non-spatial categorization-based approaches may be a useful alternative to model a two-way
frequency matrix which results from aggregating replicated binary associations. Adopting a
feature-based approach, one assumes that row- and colum elements can be represented as a set
of binary latent features, and that the strength of the association between row- and column
elements is a function of the pattern of latent features of these elements. Note that by repre-
senting each element as a set of binary latent features, one obtains an overlapping clustering
of both the row- and column elements. More specifically, to model a two-way frequency table
on the basis of latent features one may use a compensatory model (Meeds, Ghahramani, Neal,
and Roweis 2007; Miller, Griffiths, and Jordan 2009), a deterministic non-compensatory model
(Schepers, Van Mechelen, and Ceulemans 2011), or a probabilistic non-compensatory model
(Candel and Maris 1997; Maris, De Boeck, and Van Mechelen 1996; Meulders, De Boeck, and
Van Mechelen 2001a; Meulders, De Boeck, Van Mechelen, and Gelman 2005; Meulders, De
Boeck, Van Mechelen, Gelman, and Maris 2001b). As an alternative, one may use a two-way
partitioning method to simultaneously cluster both the row- and column elements (Schepers
and Hofmans 2009).

The aim of this paper is to present the R (R Core Team 2013) package plfm (Meulders 2013)
for analyzing two-way frequency data with the non-compensatory probabilistic latent feature
models (PLFMs) which were originally introduced by Maris et al. (1996). The PLFM is related
to the above described dimension-reduction techniques (PCA, CA) and to EFA in that it aims
to explain the observed frequencies by representing row- and column elements in terms of a
small set of latent variables. However, it differs from the dimension-based approaches in
that it represents row- and column elements in terms of binary latent features (instead of
continuous dimensions), and in that it explains observed associations as a non-compensatory
(i.e., disjunctive or conjunctive) function of feature patterns (rather than as a compensatory
function). In Section 2 we will first describe probabilistic latent feature models. Next, in
Section 3 we describe the functions which are included in the R package plfm. In Section 4,
we discuss classical probabilistic latent feature analysis: Section 4.1 describes the plfm()

function which includes an improved algorithm for locating the posterior mode(s) of PLFMs.
Section 4.2 describes the stepplfm() function which can be used to fit a series of PLFMs with
with different numbers of latent features. In Section 4.3 the functions for conducting classical
probabilistic latent feature analysis are illustrated with an application on the perception of car
models. In Section 5 we describe Bayesian probabilistic latent feature analysis which involves
computing a sample of the observed posterior distribution (see Section 5.1) with the function
bayesplfm() (see Section 5.2). The Bayesian approach is illustrated in Section 5.3 with an
application on the situational determinants of anger-related behavior.

2. Probabilistic latent feature models

To describe PLFMs, we further consider the situation of I raters who make binary judgments
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on the associations of J objects and K attributes. Let Dijk denote the observed association
which equals 1 if object j (j = 1, . . . , J) has attribute k (k = 1, . . . ,K) according to rater
i (i = 1, . . . , I) and 0 otherwise. The number of raters who indicate an association between
object j and attribute k is denoted as f1jk =

∑
i dijk, and the number of raters who judge pair

(j, k) not to be associated is denoted as f0jk =
∑

i(1− dijk). In order to explain the observed
binary observations, PLFMs assume a two-fold process:

1. When rater i judges whether object j has attribute k, it is assumed that both the object
and the attribute are described in terms of F binary latent features. In particular, the
binary latent variable Zobj

ijkf indicates whether feature f (f = 1, . . . , F ) is regarded as a

property of object j when rater i judges pair (j, k). Also, the binary latent variable Zatt
ijkf

indicates whether feature f (f = 1, . . . , F ) is linked to attribute k when rater i judges
pair (j, k). Furthermore, it is assumed that the categorization of objects and attributes

in terms of the latent features is a stochastic process, that is Zobj
ijkf ∼ Bernoulli(θobjjf )

and Zatt
ijkf ∼ Bernoulli(θattkf ).

2. It is assumed that the observed judgment Dijk is obtained as a deterministic mapping
C(·) of the latent categorization of objects and attributes, namely,

Dijk = C(Zobj
ijk1, . . . , Z

obj
ijkF , Z

att
ijk1, . . . , Z

att
ijkF ).

Maris et al. (1996) propose two mapping rules. First, with a disjunctive communality (DC)
mapping rule it is assumed that

Dijk = 1 ⇐⇒ ∃f : Zobj
ijkf = Zatt

ijkf = 1.

In other words, the object has the attribute if at least one of the latent features which is
linked to the attribute is also assigned to the object.

Second, with a conjunctive dominance (CD) rule it is assumed that

Dijk = 1 ⇐⇒ ∀f : Zobj
ijkf ≥ Z

att
ijkf

Stated otherwise, the object has the attribute if all the latent features which are linked to the
attribute are also assigned to the object. From the distribution of the latent variables and the
mapping rule, one can derive the probability that the object is associated to the attribute:

πjk = P (Dijk = 1|θ)

=
∑
zobjijk1

. . .
∑
zobjijkF

∑
zattijk1

. . .
∑
zattijkF

P (Dijk = 1|zobjijk , z
att
ijk)p(zobjijk |θ

obj
j )p(zattijk|θatt

k ) (1)

with p(zobjijk |θ
obj
j ) and p(zattijk|θ

att
k ) products of Bernoulli distributed variables and with P (Dijk =

1|zobjijk , z
att
ijk) fixed 0/1 probabilities that follow from the mapping rule. In particular, for the

disjunctive communality rule, one may derive that:

πDC
jk = 1−

∏
f

(1− θobjjf θ
att
kf ). (2)
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In the same way, it can be derived that with a conjunctive dominance rule it holds:

πCD
jk =

∏
f

[1− (1− θobjjf )θattkf ] (3)

Statistical inference for PLFMs is based on the observed posterior distribution p(θ|d) ∝
p(θ)p(d|θ) with p(θ) being the prior distribution of the parameters and p(d|θ) being the
likelihood of the observed data, and with θ = (θobj ,θatt) being a vector that comprises all the

model parameters. From the statistical independence of the latent variables Zobj
ijkf and Zatt

ijkf

it follows that the observed variables Dijk are independent and that Dijk ∼ Bernoulli(πjk).
As a result, the likelihood of the model reads:

p(d|θ) =
∏
i

∏
j

∏
k

πjk
dijk(1− πjk)1−dijk

=
∏
j

∏
k

πjk
f1
jk(1− πjk)f

0
jk

Furthermore, it is convenient to specify a mild concave Beta(θ|2, 2) prior distribution p(θ) ∝
θ(1− θ) for each parameter θ as this will guarantee the existence of a posterior mode in the
interior of the parameter space.

3. Components of the package

The R package plfm comprises the following components:

� The function plfm() can be used for classical probabilistic latent feature analysis of
disjunctive and conjunctive PLFMs with a particular number of features. The function
uses an accelerated EM algorithm to compute the posterior mode(s) of PLFMs. In
addition, it computes standard errors of the estimated parameters, as well as criteria
for model selection and goodness of fit.

� The function stepplfm() can be used to fit a series of disjunctive and/or conjunctive
probabilistic latent feature models with different numbers of latent features.

� The function bayesplfm() can be used for Bayesian probabilistic latent feature analy-
sis. It uses a data-augmented Gibbs sampling algorithm to compute a sample of the
posterior distribution in the neighbourhood of a specific posterior mode. The function
also computes the posterior mean, the posterior median, 95% posterior intervals, and a
convergence diagnostic for each model parameter.

� Print and summary methods are provided for each of the above functions. In addition,
for the stepplfm() function, a plot method is included to visualize the fit of a series
of models with different numbers of features with respect to a certain fit criterion (e.g.,
AIC, BIC, variance accounted for by the model, etc.).

� For illustrative purposes two data sets are included: The data set car contains data on
the perception of car models, and the data set anger (Meulders, De Boeck, Kuppens,
and Van Mechelen 2002; Kuppens, Van Mechelen, and Meulders 2004; Vermunt 2007)
contains data on the situational determinants of anger-related behavior.
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4. Classical probabilistic latent feature analysis

4.1. The function plfm()

The function plfm() can be used to compute the posterior mode(s) of disjunctive or con-
junctive PLFMs with a specific number of latent features. In addition, it yields asymptotic
standard errors for the estimated parameters as well as criteria for model selection and good-
ness of fit. When calling plfm() one should specify the following arguments:

� datatype: The plfm() function can be applied to frequency data (datatype = "freq")
or to a data frame (datatype = "dataframe"). When using frequency data as input
one should further specify the parameters freq1 and freqtot, and when using a data
frame as input one should further specify the parameters data, object, attribute and
rating.

� freq1: An object-by-attribute matrix with in each cell the number of raters who indicate
an association between an object-attribute pair.

� freqtot: An object-by-attribute matrix with in each cell the total number of raters
who judged the object-attribute pair. If each object-attribute pair has been judged by
the same number of raters, one may specify freqtot as a single number.

� data: A data frame that consists of three components: the variables object, attribute
and rating. Each row of the data frame describes the outcome of a binary rater
judgement about the association between a certain object and a certain attribute.

� object: The name of the object component in the data frame data. The values of the
vector data$object should be (non-missing) numeric or character values (i.e., object
labels).

� attribute: The name of the attribute component in the data frame data. The values
of the vector data$attribute should be (non-missing) numeric or character values (i.e.,
attribute labels).

� rating: The name of the rating component in the data frame data. The elements of the
vector data$rating should be the numeric values 0 (no association) or 1 (association),
or should be specified as missing (NA).

� F: The number of latent features included in the model.

� maprule: Disjunctive (maprule = "disj") or conjunctive (maprule = "conj") map-
ping rule of the probabilistic latent feature model.

� M: The number of runs that should be conducted using random starting points.

� emcrit1: Convergence criterion which indicates when the estimation algorithm should
switch from expectation-maximization (EM) steps to EM+Newton-Rhapson steps.

� emcrit2: Convergence criterion which indicates final convergence to a local maximum.
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� printrun: printrun = TRUE prints the analysis type (disjunctive or conjunctive), the
number of features (F) and the number of the analysis (out of M runs) to the output
screen, whereas printrun = FALSE suppresses the printing.

Accelerated EM algorithm for computation of the posterior mode(s) of PLFMs

Let z = (zobj , zatt) be a vector that comprises all the latent observations. As the augmented
posterior of PLFMs has a simple structure, namely p(θ|d, z) ∝ p(z|θ)p(θ), one can use
algorithms for parameter estimation that especially gain from this fact. In particular, Maris
et al. (1996) described and EM algorithm to locate the posterior mode of PLFMs and Meulders
et al. (2001b) implemented a data-augmented Gibbs sampling algorithm for computing a
sample of the observed posterior distribution of PLFMs. The plfm() function adds two
improvements to the EM algorithm presented by Maris et al. (1996). First, as convergence of
the EM algorithm may be slow in the neighbourhood of the posterior mode, we accelerated
the convergence of the algorithm by implementing the method of Louis (1982), which extends
the EM algorithm with a Newton Raphson-step (NR). Second, as implementing the NR-step
involves computing the matrix of second derivatives, asymptotic standard errors of the model
parameters can be easily computed.

To compute the posterior mode(s) of the posterior distribution for PLFMs we will use an
accelerated EM algorithm. Given initial values θ(0), in iteration (m + 1), the accelerated
algorithm for locating the mode(s) of the observed posterior distribution p(θ|d) consists of
the following steps (Louis 1982; Tanner 1996):

1. Expectation-step: Compute the expected value of the logarithm of the augmented poste-
rior distribution p(θ|d, z) with respect to the distribution of the latent data, conditional
on the observed data and the current guess to the posterior mode, that is, compute

Q(θ,θ(m)) =

∫
z

log[p(θ|d, z)]p(z|d,θ(m))dz.

2. Maximization-step: Maximize Q(θ,θ(m)) with respect to θ in order to obtain θ
(m)
EM .

3. Newton-Raphson-step: Compute θ(m+1) as

θ(m)+

[
−∂2log p(θ|d)

∂θ2

∣∣∣∣
θ(m)

]−1
×
[
−
∫
∂2log p(θ|d, z)

∂θ2 p(z|d,θ(m))dz

∣∣∣∣
θ(m)

]
[θ

(m)
EM−θ

(m)].

(4)

It can be shown that the EM algorithm (i.e., iterating between expectation and maximization
steps) increases the value of the observed posterior density at each iteration and that it always
converges to a stationary point (Tanner 1996). In contrast, for the accelerated algorithm,
which includes a NR-step, convergence is not always guaranteed. However, as convergence of
the accelerated algorithm becomes more likely in the neighbourhood of the posterior mode,
a good strategy is to start with a number of EM-steps and to switch to the accelerated
algorithm when the obtained solution is close to a posterior mode. More specifically the
function plfm() switches from EM to the accelerated algorithm when the difference between
subsequent values of log p(θ|d) becomes smaller than a (user-specified) convergence criterion
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(i.e., emcrit1), and it stops when the final convergence criterion (emcrit2) has been reached.
Appendices A.1 and A.2 provide further details on the computation of the EM-step and the
NR-step, respectively.

Computation of asymptotic standard errors

The asymptotic standard error of a parameter θ can be computed as follows:

SE(θ) =

[
−∂2log p(θ|d)

∂θ2

]− 1
2

Analytical expressions for the first and second derivatives of the log observed posterior with
respect to object- and attribute parameters are listed in Appendix A.3.

Model selection and assessment of goodness of fit

When using PLFMs to explain associations between objects and attributes on the basis of
latent features, one has to choose among models with different numbers of features, or different
mapping rules. In addition, it is important to investigate how well the model fits the observed
data. For model selection, the function plfm() computes the Akaike information criterion
(AIC, Akaike 1973, 1974) and the Bayesian information criterion (BIC, Schwarz 1978). Both
AIC and BIC take the form of a sum of a badness-of-fit term (minus twice the log likelihood
of the fitted model) and a penalty term, which is a measure of the complexity of the model.
The model having the lowest value for AIC or BIC is selected. For AIC and BIC the penalty
terms equal 2k and log(N)k, respectively, with k being the number of free parameters in
the model and with N being the total ‘sample size’. For PLFMs the sample size equals the
number of raters who judged object-attribute associations.

To assess the goodness of fit of PLFMs, one may investigate to what extent the observed
association frequencies f1jk are fitted by the model. More specifically, the plfm() function
computes a Pearson chi-square test on the J × K table of observed frequencies. Under the
null hypothesis that the model generated the data, the Pearson chi-square statistic is (asymp-
totically) chi-square distributed with degrees of freedom equal to the number of observations
minus the number of model parameters (i.e., df = JK − (J + K)F ). As with increasing
sample size the Pearson chi-square statistic tends to become very sensitive to small devia-
tions between observed and expected frequencies, models selected on the basis of information
criteria will be often rejected on the basis of the Pearson chi-square test. Therefore, it is
also interesting to look at a measure of descriptive model fit. In particular, the plfm() func-
tion includes two descriptive goodness-of-fit measures, namely, (1) the correlation between
observed and expected frequencies, and (2) the proportion of the variance in the observed
frequencies accounted for by the model (i.e., the squared correlation between observed and
expected frequencies).

4.2. The function stepplfm()

The function stepplfm() can be used to fit a series of disjunctive and/or conjunctive PLFMs
that assume minF up to maxF latent features. As stepplfm() repeatedly calls the plfm()

function it takes the same arguments except for the mapping rule and the number of features,
which are specified with the following arguments:
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� minF: The minimum number of latent features.

� maxF: The maximum number of latent features.

� maprule: Fit disjunctive (maprule = "disj"), conjunctive (maprule = "conj") or
both disjunctive and conjunctive (maprule = "disj/conj") models.

4.3. Classical probabilistic feature analysis of the perception of car models

The list car contains data on the perception of car models. The elements of the car-by-
attribute matrix car$freq1 describe how many of 78 respondents indicate an association
between each of 14 car models and each of 27 car attributes. After loading the data, we
use the stepplfm() function to estimate disjunctive PLFMs with 1 up to 7 latent features.
Note that, as the posterior distribution of probabilistic feature models may be multimodal,
(M = 20) runs using random starting points are conducted for each model to investigate the
existence of different local maxima.

R> data("car")

R> set.seed(5698)

R> car.lst <- stepplfm(freq1 = car$freq1, freqtot = 78, maprule = "disj",

+ minF = 1, maxF = 7, M = 20)

In order to choose the number of features, one may use the plot method of the stepplfm()

function to plot the BIC values of models with 1 up to 7 features:

R> plot(car.lst, which = "BIC")

As can be seen in Figure 1, a model with 6 features has the lowest BIC value, and hence it
achieves the best balance between complexity and fit.

When using stepplfm() to compute a series of disjunctive (maprule = "disj") or conjunc-
tive (maprule = "conj") models with minF up to maxF features, the results of subsequent
plfm analyses are stored in a list with maxF-minF+1 components, each of which is a list of
class "plfm". Using names(), a list of all attached entries can be obtained. For instance, for
the 6-feature model:

R> names(car.lst[[6]])

[1] "call" "objpar" "attpar" "fitmeasures"

[5] "logpost.runs" "objpar.runs" "attpar.runs" "bestsolution"

[9] "gradient.objpar" "gradient.attpar" "SE.objpar" "SE.attpar"

[13] "prob1"

with

� call: The parameters used to call the function.

� objpar: A J × F matrix of estimated object parameters for the best model (i.e., the
model with the highest posterior density among M runs).



10 Probabilistic Latent Feature Analysis in R

●

●

●

●

●

● ●

1 2 3 4 5 6 7

29
00

0
30

00
0

31
00

0
32

00
0

Number of features

B
IC

Figure 1: BIC values for disjunctive models with 1 up to 7 features.

� attpar: A K × F matrix of estimated attribute parameters for the best model.

� fitmeasures: Fit measures for the best model including loglikelihood, deviance, log-
posterior, information criteria (AIC, BIC), a Pearson chi-square goodness-of-fit test on
the object-by-attribute table of observed frequencies, and two measures of descriptive
fit (i.e., correlation between observed and expected frequencies, variance accounted for
by the model).

� logpost.runs: The logposterior values of the models obtained with M runs.

� objpar.runs: A M × J × F array of estimated object parameters obtained for each of
M runs.

� attpar.runs: A M ×K ×F array of attribute parameters obtained for each of M runs.

� bestsolution: The rank number of the best model (i.e., with the highest logposterior
value) among M runs.

� gradient.objpar: A J×F matrix with gradients of the object parameters for the best
model.

� gradient.attpar: A K × F matrix with gradients of the attribute parameters for the
best model.

� SE.objpar: A J ×F matrix with asymptotic standard errors for the object parameters
of the best model.

� SE.attpar: A K × F matrix with asymptotic standard errors for the attribute param-
eters of the best model.
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Figure 2: Logarithm of the posterior density for disjunctive 6-feature models computed in M

= 20 runs.

� prob1: A J × K matrix of predicted object-attribute association probabilities for the
best model.

Using

R> plot(car.lst[[6]]$logpost.runs, xlab = "run", ylab = "logposterior value")

one may see in Figure 2 that 2 different solutions were identified with M = 20 runs, and that
the best solution was obtained in 18 out of 20 runs.

To further inspect the fit and the estimated parameters for the best 6-feature model one may
print the model output.

R> print(car.lst[[6]])

Call:

stepplfm(freq1 = car$freq1, freqtot = 78, maprule = "disj",

M = 20, F = 6)

DESCRIPTIVE FIT OBJECT X ATTRIBUTE TABLE:

Correlation observed and expected frequencies 0.960

VAF observed frequencies 0.922

ESTIMATE OBJECT PARAMETERS:
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F1 F2 F3 F4 F5 F6

Volkswagen Golf .67 .04 .12 .42 .02 .04

Opel Corsa .72 .01 .05 .01 .02 .03

Nissan Qashgai .04 .37 .60 .05 .04 .03

Toyota Prius .04 .03 .06 .03 .79 .05

BMW X5 .01 .64 .41 .56 .01 .01

Volvo V50 .06 .02 .77 .33 .14 .01

Renault Espace .03 .02 .95 .02 .04 .06

Citroen C4 Picasso .14 .01 .86 .01 .04 .05

Ford Focus Cmax .26 .03 .71 .02 .01 .03

Mercedes C-class .02 .15 .05 .89 .02 .07

Fiat 500 .28 .01 .01 .01 .04 .73

Audi A4 .15 .29 .28 .78 .04 .07

Mini Cooper .02 .43 .01 .18 .01 .78

Mazda MX5 .02 .84 .01 .02 .01 .11

ESTIMATE ATTRIBUTE PARAMETERS:

F1 F2 F3 F4 F5 F6

Economical .74 .01 .11 .01 .66 .24

Agile .65 .19 .06 .16 .09 .85

Environmentally friendly .31 .02 .04 .03 .81 .24

Reliable .54 .21 .25 .77 .40 .07

Practical .75 .03 .62 .15 .18 .41

Family Oriented .06 .02 .98 .14 .58 .01

Versatile .13 .08 .54 .22 .30 .04

Good price-quality ratio .67 .09 .24 .03 .31 .06

Luxurious .01 .46 .09 .87 .14 .09

Safe .29 .06 .33 .72 .28 .04

Sporty .15 .93 .01 .38 .08 .14

Attractive .17 .51 .10 .54 .10 .67

Comfortable .12 .15 .59 .72 .32 .05

Powerful .01 .58 .11 .63 .11 .02

Status symbol .03 .55 .02 .68 .20 .26

Technically advanced .01 .25 .02 .47 .69 .02

Sustainable .33 .08 .21 .52 .46 .05

Original .03 .20 .03 .02 .26 .63

Nice design .14 .47 .13 .33 .09 .60

Value for the money .43 .09 .15 .07 .15 .03

High trade-in value .06 .05 .01 .69 .05 .05

Exclusive .02 .24 .01 .09 .10 .28

Popular .71 .04 .22 .17 .09 .42

Outdoor .04 .36 .27 .03 .05 .01

Green .09 .01 .02 .02 .54 .10

City focus .69 .02 .01 .01 .32 .84

Workmanship .03 .18 .03 .45 .29 .03
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The printed output shows that the 6-feature disjunctive model fits the car-by-attribute fre-
quencies very well: the model explains 92% of the variance in the observed frequencies.
Furthermore, the estimated feature probabilities indicate that the extracted features have a
meaningful interpretation. Feature 1 (F1) is likely to be ascribed to the small popular car
models ‘Opel Corsa’ (0.72) and ‘Volkswagen Golf’ (0.67); and it has strong links with the
attributes ‘practical’ (0.75), ‘economical’ (0.74), ‘popular’ (0.71), ‘city focus’ (0.69), ‘good
price-quality ratio’ (0.67), ‘agile’ (0.65) and ‘reliable’ (0.54). Feature 2 (F2) has a very high
probability to be linked with the attribute ‘sporty’ (0.93), and has rather high probabilities to
be linked with powerful (0.58), ‘status symbol’ (0.55), ‘attractive’ (0.51), ‘nice design’ (0.47),
and ‘luxurious’ (0.46). The feature is most likely to be perceived in the sports car ‘Mazda
MX5’ (0.84) and also in the SUV ‘BMW X5’. Feature 3 (F3) is most likely to be ascribed to
spatious family cars such as ‘Renault Espace’ (0.95), ‘Citroen C4 Picasso’ (0.86), ‘Volvo V50’
(0.77), ‘Ford Focus Cmax’ (0.71), ‘Nissan Qashgai’ (0.60) and this feature has strong links
with the attributes ‘family Oriented’ (0.98), ‘practical’ (0.62), ‘comfortable’ (0.59), ‘versatile’
(0.54). Feature 4 (F4) has a high probability to be linked with the attributes ‘luxurious’
(0.87), ‘reliable’ (0.77), ‘comfortable’ (0.72), ‘safe’ (0.72), ‘high trade-in value’(0.69), ‘status
symbol’ (0.68), ‘powerful’ (0.63) and ‘attractive’ (0.54). The feature is likely to be ascribed to
the rather expensive German car models ‘Mercedes C-class’ (0.89), ‘Audi A4’ (0.78), ‘BMW
X5’ (0.56). Feature 5 (F5) is most likely perceived in the ‘Toyota Prius’ which uses hybrid
drive technology to reduce CO2 emissions and to minimize gas consumption. The feature
has strong links with the attributes ‘environmentally friendly’ (0.81), ‘technically advanced’
(0.69), ‘economical’ (0.66), ‘family oriented’ (0.58) and ‘green’ (0.54). Feature 6 (F6) is likely
to be linked with the attributes ‘agile’ (0.85), ‘city focus’ (0.84), ‘attractive’ (0.67), ‘original’
(0.63), and ‘nice design’ (0.60). The feature is likely to be perceived in the small ‘Mini Cooper’
(0.78), which has an original design and in the small ‘Fiat 500’ (0.73).

A more detailed summary of the model output including a Pearson chi-square goodness-of-
fit test of the model on the car-by-attributes table, and asymptotic standard errors of the
estimated object- and attribute parameters can be obtained using the summary function. In
particular using

R> summary(car.lst[[6]])

we may see that that the model fails to fit the car-by-attribute frequencies in an absolute sense
(χ2 = 571, df = 132, p < 0.01), and that the asymptotic standard errors of the estimated
parameters are acceptably low (i.e., always lower than .054 for object parameters and always
lower than .074 for attribute parameters):

...

PEARSON CHI-SQUARE TEST OBJECT X ATTRIBUTE TABLE:

Pearson Chi-square 570.581

df 132.000

p-value 0.000

...
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STANDARD ERROR OBJECT PARAMETERS:

SE(F1) SE(F2) SE(F3) SE(F4) SE(F5) SE(F6)

Volkswagen Golf .032 .028 .039 .028 .018 .028

Opel Corsa .029 .009 .023 .006 .013 .020

Nissan Qashgai .021 .033 .035 .022 .020 .018

Toyota Prius .025 .021 .035 .018 .030 .025

BMW X5 .006 .043 .042 .033 .008 .008

Volvo V50 .028 .016 .037 .028 .030 .009

Renault Espace .021 .016 .023 .012 .019 .021

Citroen C4 Picasso .028 .008 .035 .006 .018 .022

Ford Focus Cmax .030 .018 .036 .014 .012 .019

Mercedes C-class .014 .047 .029 .024 .017 .025

Fiat 500 .034 .008 .011 .005 .020 .034

Audi A4 .031 .053 .046 .029 .024 .033

Mini Cooper .015 .044 .010 .026 .008 .034

Mazda MX5 .016 .032 .010 .015 .010 .027

...

STANDARD ERROR ATTRIBUTE PARAMETERS:

SE(F1) SE(F2) SE(F3) SE(F4) SE(F5) SE(F6)

Economical .053 .009 .026 .010 .071 .055

Agile .056 .045 .025 .041 .049 .053

Environmentally friendly .046 .018 .019 .019 .064 .048

Reliable .062 .047 .035 .042 .072 .045

Practical .058 .027 .034 .043 .062 .058

Family Oriented .032 .014 .017 .039 .074 .013

Versatile .042 .034 .032 .042 .065 .027

Good price-quality ratio .053 .030 .030 .021 .065 .036

Luxurious .013 .054 .023 .040 .052 .039

Safe .053 .033 .033 .042 .065 .029

Sporty .041 .038 .008 .049 .041 .055

Attractive .050 .056 .026 .048 .049 .061

Comfortable .042 .044 .034 .046 .068 .034

Powerful .013 .052 .024 .046 .046 .015

Status symbol .022 .055 .012 .046 .056 .057

Technically advanced .012 .043 .013 .042 .070 .019

Sustainable .054 .033 .030 .044 .071 .036

Original .020 .038 .015 .017 .059 .054

Nice design .044 .054 .026 .047 .046 .060

Value for the money .049 .028 .025 .028 .050 .023

High trade-in value .029 .027 .006 .038 .029 .028

Exclusive .015 .039 .007 .028 .041 .047

Popular .056 .030 .030 .039 .047 .056

Outdoor .021 .044 .028 .022 .031 .012
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Green .028 .010 .012 .014 .067 .030

City focus .054 .020 .010 .013 .066 .052

Workmanship .021 .038 .014 .040 .060 .024

5. Bayesian probabilistic latent feature analysis

5.1. Computation of a sample of the posterior

When using PLFMs for data analysis, it may interesting to go beyond merely locating the
posterior mode(s) of the model and to compute a sample of the observed posterior distribution
(Meulders et al. 2001b, 2002; Meulders, De Boeck, and Van Mechelen 2003; Meulders et al.
2005). In particular, computing a sample of the posterior distribution is advantageous as it
can be used to (1) compute 100 ∗ (1−α)% posterior intervals of the model parameters which
are also valid in small samples, (2) simulate the distribution of (any function of) the model
parameters, (3) simulate the posterior predictive distribution of statistics (i.e., functions of
the data), or of discrepancy measures (i.e., functions of the data and of the parameters) to
evaluate the fit of the model.

To compute a sample of the observed posterior distribution p(θ|d) a data-augmented Gibbs
sampling algorithm was implemented in the package plfm. Assuming initial values θ(0), in
iteration m+ 1, the algorithm consists of the following steps:

1. Draw zobj
(m+1)

from p(Zobj |θ(m),d).

2. Draw zatt
(m+1)

from p(Zatt|θ(m), zobj
(m+1)

,d).

3. Draw θ(m+1) from p(θ|zobj(m+1)
, zatt

(m+1)
,d).

It can be shown that the subsequent draws θ(1),θ(2), . . . form a Markov chain which con-
verges to the true posterior distribution (Gelfand and Smith 1990; Tanner and Wong 1987).
Appendix B provides further computational details about the different steps involved in the al-
gorithm. Note that the proposed algorithm differs from the algorithm described by (Meulders
et al. 2001b) in that latent object- and attribute classifications are sampled subsequently, and
not jointly. To evaluate the convergence of simulated chains to the true posterior distribution,
we will use the approach suggested by (Gelman and Rubin 1992).

5.2. The function bayesplfm()

The function bayesplfm() can be used to compute a sample of the posterior distribution
of disjunctive or conjunctive probabilistic latent feature models with a particular number of
features using the proposed data-augmented Gibbs sampling algorithm.

The bayesplfm() function uses the same arguments as plfm() for the specification of the
input data (i.e., datatype, freq1, freqtot, data, object, attribute and rating), the
mapping rule (maprule) and the number of features (F). In addition, it includes the following
arguments:

� Nchains: The number of Markov-chains that are simulated using a data-augmented
Gibbs sampling algorithm.
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� Nburnin: The number of burn-in iterations.

� maxNiter: The maximum number of iterations that will be computed for each chain.

� Nstep: The convergence of the chains to the true posterior will be checked for each
parameter after c*Nstep iterations with c=1,2,... The convergence will only be checked
when Nchains>1.

� Rhatcrit: The estimation procedure will be stopped if the R̂ convergence diagnostic
proposed by Gelman and Rubin (1992) is smaller than Rhatcrit for each object- and
attribute parameter. By default Rhatcrit = 1.2.

� start.bayes: This argument can be used to define the type of starting point for the
Bayesian analysis. If start.bayes = "best" a preliminary plfm analysis (which in-
volves M = 20 runs using random starting points) is conducted and the best solution of
this analysis is used as the starting point for the Bayesian analysis. If start.bayes =

"fitted.plfm", the starting point is read from the plfm object assigned to the argu-
ment fitted.plfm. If start.bayes = "random", a random starting point is used for
the Bayesian analysis.

� fitted.plfm: The name of the (plfm) object that contains posterior mode estimates
for the specified model. Note that, any list object with as components a J × F ma-
trix of object parameters object$objpar and a K × F matrix of attribute parameters
object$attpar can be used as an argument of fitted.plfm, and not only objects of
class "plfm".

When applying PLFMs an important challenge is to efficiently explore the posterior distri-
bution. This is complicated by the fact that the posterior distribution of PLFMs with F > 1
is always multimodal: Different local maxima may exist and, in addition, for each local max-
imum the posterior distribution consists of F ! identical posterior modes because one may
switch the labels of the latent features.

In principle, both plfm() and bayesplfm() can be used to locate the mode(s) of the posterior
distribution for a specific PLFM (i.e., with a specific number of features and a certain mapping
rule). However, using multiple plfm() runs with random starting points for this purpose
is more efficient than simulating multiple chains with bayesplfm() from random starting
points: First, the time to estimate a model is considerably shorter with plfm() than with
bayesplfm(). Second, with the EM algorithm implemented in plfm(), each single run is
ensured to converge to a local maximum, whereas with bayesplfm() convergence using R̂ is
only ensured if the simulated chains all sample from the same posterior mode. This condition
is most likely to be fulfilled if the different chains are started from one of the posterior modes
detected by plfm() (so that they will start sampling from the same mode by definition), and
if different posterior modes are well-separated (so that the chains keep being stuck in the same
mode and do no start visiting distinct posterior modes). Note that the latter is especially
problematic if the model tends the be overparameterized.

In sum, when applying PLFMs in practice, we recommend the following two-step data-analytic
strategy: First, use multiple runs of plfm() with random starting points to locate the modes
of the posterior distribution. Second, use bayesplfm() with the best posterior mode as a
starting point to compute a (local) sample in the neighbourhood of the posterior mode. Using
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bayesplfm() on the final model is often interesting because it provides a more accurate
view on parameter uncertainty (e.g., posterior intervals which are valid in small samples),
because the sample of the posterior can be used summarize the distribution of any function
of the parameters of interest, and because one may use the sample for further model checking
(Gelman, Van Mechelen, Verbeke, Heitjan, and Meulders 2005; Meulders et al. 2001b, 2005).

Finally, note that using the best posterior mode as a starting point in the Bayesian analysis
is fundamentally different from actually including information about the starting point in the
prior distribution (e.g., by using a prior distribution which is centered at the best posterior
mode): When using bayesplfm() with the best posterior mode as a starting point, the
prior distribution involved in this Bayesian analysis is the same as the prior used by plfm()

(namely, a Beta(2,2) prior for each model parameter). In other words, the main goal of the
Bayesian analysis is to compute a sample of the posterior distribution in the neighbourhood of
a specific mode. As a (less efficient) alternative, one could also use random starting points and
select the chains that converge to the mode of interest. On the other hand, when including
information about the best posterior mode in the prior distribution (e.g., by using a strong
prior distribution centered at the best posterior mode), one changes the prior distribution,
and consequently also the posterior distribution. If the involved prior distribution is less vague
than the Beta(2,2) prior, a Bayesian analysis using this adapted posterior will yield smaller
posterior intervals than an analysis with a Beta(2,2) prior.

5.3. Bayesian probabilistic feature analysis of anger-related behavior

The list anger contains data on the situational determinants of anger-related behaviors (Meul-
ders et al. 2002; Kuppens et al. 2004; Vermunt 2007). The raw data anger$data consist of a
situation × behavior × person array of binary judgments of 101 first year psychology students
who indicated whether or not they would display each of 8 anger-related behaviors when being
angry at someone in each of 6 situations. The 8 behaviors consist of 4 pairs of reactions that
reflect a particular strategy to deal with situations in which one is angry at someone, namely,
(1) fighting (fly off the handle, quarrel), (2) fleeing (leave, avoid), (3) emotional sharing (pour
out one’s heart, tell one’s story), and (4) making up (make up, clear up the matter). The six
situations are constructed from two factors with three levels: (1) the extent to which one likes
the instigator of anger (like, dislike, unfamiliar), and (2) the status of the instigator of anger
(higher, lower, equal). Each situation is presented as one level of a factor, without specifying
a level for the other factor. The elements of the matrix anger$freq1 contain the number of
persons who indicated that they would display a certain behavior in a certain situation, and
the elements of the matrix anger$freqtot contain the total number of persons who made a
judgment for each situation-behavior pair.

After loading the data, we first use the plfm() function to estimate disjunctive and conjunctive
models with 1 up to 3 features. Note that models with more than 3 features are not considered
as they do not have a positive number of degrees of freedom.

R> data("anger")

R> set.seed(78665)

R> anger.lst <- stepplfm(freq1 = anger$freq1, freqtot = anger$freqtot,

+ maprule = "disj/conj", minF = 1, maxF = 3, M = 20, emcrit1 = 1e-2,

+ emcrit2 = 1e-10)
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Figure 3: BIC values for disjunctive and conjunctive models with 1 up to 3 features.

Next, to choose between the estimated models, we plot for the disjunctive and conjunctive
models, the BIC values versus the number of features.

R> plot(anger.lst, which = "BIC")

As can be seen in Figure 3, the disjunctive 2-feature model offers the best balance between
complexity and goodness of fit as it has the lowest BIC value. Further inspection of the output
shows that this model deviates significantly from a perfectly fitting model (χ2 = 78.3, df =
20, p < 0.01), but that it has a good descriptive fit in that it explains 92% of the variance in
the observed situation-behavior frequencies. To further study the disjunctive 2-feature model,
we use the bayesplfm() function to compute a sample of the observed posterior distribution.
In doing so, the (best) posterior mode which was identified with the plfm() function is used
as the starting point:

R> set.seed(34769)

R> bayesangerdisj2 <- bayesplfm(maprule = "disj", freq1 = anger$freq1,

+ freqtot = anger$freqtot, F = 2, maxNiter = 20000, Nburnin = 0,

+ Nstep = 5000, Nchains = 4, start.bayes = "fitted.plfm",

+ fitted.plfm = anger.lst$disj[[2]])

The algorithm stopped after 2000 iterations as for each parameter, the convergence diag-
nostic R̂ was smaller than the specified convergence criterion. The output generated by the
bayesplfm() function is stored in a list of class "bayesplfm". Using names(), a list of all
attached entries can be obtained. For instance, for the disjunctive 2-feature model:

R> names(bayesangerdisj2)
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[1] "call" "sample.objpar" "sample.attpar" "pmean.objpar"

[5] "pmean.attpar" "p95.objpar" "p95.attpar" "Rhat.objpar"

[9] "Rhat.attpar" "fitmeasures" "convstat"

with

� call: The parameters used to call the function.

� sample.objpar: A J×F ×Niter× Nchains array with parameter values for the object
parameters. The matrix sample.objpar[, , i, c] contains the draw of object parameters
in iteration i of chain c. Note: when Nchains = 1 the chain length (Niter) equals
maxNiter, and when Nchains > 1 the chain length equals the number of iterations
required to obtain convergence.

� sample.attpar: A K × F × Niter× Nchains array with parameter values for the
attribute parameters.

� pmean.objpar: A J × F matrix with the posterior means of the object parameters.

� pmean.attpar: A K × F matrix with the posterior means of the attribute parameters.

� p95.objpar: A 3×J×F array which contains for each object parameter the percentiles
2.5, 50 and 97.5.

� p95.attpar: A 3 ×K × F array which contains for each attribute parameter the per-
centiles 2.5, 50 and 97.5.

� Rhat.objpar: A J × F matrix of R̂ convergence values for the object parameters.

� Rhat.attpar: A K × F matrix of R̂ convergence values for the attribute parameters

� fitmeasures: A list with two measures of descriptive fit on the J × K table: (1)
the correlation between observed and expected frequencies, and (2) the proportion of
the variance in the observed frequencies accounted for by the model. The association
probabilities and corresponding expected frequencies are computed using the posterior
mean of the parameters.

� convstat: The number of object- and attribute parameters that do not meet the con-
vergence criterion.

To inspect the output of the model, one may print the object:

R> print(bayesangerdisj2)

CALL:

bayesplfm(freq1 = anger$freq1, freqtot = anger$freqtot, F = 2,

Nchains = 4, Nburnin = 0, maxNiter = 20000, Nstep = 5000,

maprule = "disj", start.bayes = "fitted.plfm",

fitted.plfm = anger.lst$disj[[2]])

NUMBER OF PARAMETERS THAT DO NOT MEET CONVERGENCE CRITERION:
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total number of parameters 28

number of parameters without convergence 0

DESCRIPTIVE FIT OBJECT X ATTRIBUTE TABLE:

Correlation observed and expected frequencies 0.959

VAF observed frequencies 0.920

POSTERIOR MEAN OBJECTPARAMETERS:

F1 F2

like .90 .43

dislike .16 .76

unfamiliar .06 .61

higher status .10 .85

lower status .79 .21

equal status .50 .69

POSTERIOR MEAN ATTRIBUTEPARAMETERS:

F1 F2

fly off the handle .55 .27

quarrel .58 .19

leave .09 .53

avoid .10 .64

pour out one's hart .28 .83

tell one's story .32 .92

make up .91 .10

clear up the matter .83 .11

Inspection of the estimated parameters shows that the extracted features have a meaningful
interpretation. More specifically, the two features can be interpreted as situation-behavior
components which are combined in a disjunctive manner.

The first component (F1) indicates that when being angry at a person one likes (0.90), or
when being angry at a person of lower status (0.79), one is more likely to make up (make
up (0.91), clear up the matter (0.83)) or to fight (fly off the handle (0.55), quarrel (0.58)).
The second component F2 indicates that when being angry at a person of higher status
(0.85), or at a person one dislikes (0.76) or with whom one is unfamiliar (0.61), one is more
likely to react with emotional sharing (pour out one’s hart (0.83), tell one’s story (0.92)) or
flighting (leave (0.53), avoid (0.64)) than with making up (make up (0.10), clear up the matter
(0.11)) or fighting (fly off the handle (0.27), quarrel (0.19)). Finally, when being angry at
a person of equal status both components are likely to play a role (i.e., for equal status the
estimated feature probabilities for F1 and F2 equal 0.50 and 0.69, respectively), and they will
be combined in a disjunctive way.

In addition to the print function one may use the summary.bayesplfm() function to print a
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more detailed model output of the Bayesian analysis, which also shows 95% posterior intervals
and R̂ convergence values for each of the parameters. In particular

R> summary(bayesangerdisj2)

...

95% POSTERIOR INTERVAL OBJECTPARAMETERS:

F1 F2

like [.793;.996] [.258;.595]

dislike [.054;.263] [.659;.887]

unfamiliar [.002;.136] [.52;.722]

higher status [.008;.2] [.741;.98]

lower status [.687;.921] [.032;.358]

equal status [.402;.616] [.573;.818]

RHAT CONVERGENCE OBJECTPARAMETERS:

F1 F2

like 1.168 1.084

dislike 1.106 1.037

unfamiliar 1.083 1.047

higher status 1.156 1.061

lower status 1.150 1.115

equal status 1.079 1.027

...

95% POSTERIOR INTERVAL ATTRIBUTEPARAMETERS:

F1 F2

fly off the handle [.441;.665] [.184;.364]

quarrel [.47;.699] [.094;.281]

leave [.003;.216] [.436;.629]

avoid [.004;.242] [.536;.754]

pour out one's hart [.062;.469] [.706;.963]

tell one's story [.122;.532] [.794;.996]

make up [.795;.994] [.008;.22]

clear up the matter [.712;.952] [.01;.22]

RHAT CONVERGENCE ATTRIBUTEPARAMETERS:

F1 F2

fly off the handle 1.044 1.067

quarrel 1.021 1.075

leave 1.057 1.021

avoid 1.014 1.028

pour out one's hart 1.076 1.041

tell one's story 1.093 1.081

make up 1.066 1.086

clear up the matter 1.074 1.097
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Figure 4: Posterior median and 95% posterior interval for the average probability to fight
(empty circle), flight (empty triangle), share emotions (filled square), or make up (filled circle)
per situation in the disjunctive 2-feature model.

In order to illustrate using the sample of the posterior, we will simulate 95% posterior intervals
of the probabilities for displaying certain behavior types (i.e., fight, flight, share emotions,
make up) in a certain situation. As the parameter estimates for different behaviors of a certain
type (e.g., leave and avoid as examples of flighting) are always very similar, we compute the
average probability of different behaviors of a certain type. In order to simulate 95% posterior
intervals we compute situation-behavior probabilities under the model using 2000 draws of
the posterior sample. Note that, to compute the situation-behavior probabilities, we can use
the gendat() function which is included in the plfm package.

R> set.seed(96543)

R> Nit <- 2000

R> S <- 6

R> R <- 4

R> prob <- array(rep(0, S * R * Nit), c(S, R, Nit))

R> for(i in 1:Nit) {

+ repdat <- gendat(maprule = "disj", N = 0,

+ objpar = bayesangerdisj2$sample.objpar[, , i, 1],

+ attpar = bayesangerdisj2$sample.attpar[, , i, 1])

+ prob[, 1, i] <- apply(repdat$prob1[, c(1, 2)], 1, mean)

+ prob[, 2, i] <- apply(repdat$prob1[, c(3, 4)], 1, mean)

+ prob[, 3, i] <- apply(repdat$prob1[, c(5, 6)], 1, mean)

+ prob[, 4, i] <- apply(repdat$prob1[, c(7, 8)], 1, mean)

+ }

R> post95 <- function(x) { post95 <- quantile(x, c(0.025, 0.5, 0.975)) }

R> p95prob <- apply(prob, c(1, 2), post95)
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As can be seen in Figure 4, the visualization of the 95% posterior intervals is very useful
for evaluating which type of behavior is most likely in a certain situation, and to evaluate
whether different behaviors have significantly different probabilities (i.e., non-overlapping 95%
posterior intervals) to be displayed in a certain situation. For instance, Figure 4 shows that
when being angry at a person of equal status, it is significantly more likely to ‘share emotions
with someone’ than to ‘fight’, ‘flight’ or to ‘make up’. On the other hand, the probabilities
for ‘fighting’, ‘flighting’ or ‘making up’ in this situation do no significantly differ as their 95%
posterior intervals overlap.
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A. Optimization details

A.1. Expectation-maximization step

As with PLFMs the maximization step turns out to have a closed form solution (Maris et al.
1996), closed form equations can be derived to update the parameter for each pair of EM-
steps. In particular, using a disjunctive communality rule and a mild concave Beta(θ|2, 2)
prior on each parameter θ, the following updating equations can be derived:

(θobjjf )
(m)
EM =

1 + Ez(
∑

i

∑
k Z

obj
ijkf |d,θ

(m))

2 + IK
(5)
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k[f1jkP (Zobj
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(6)

and
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Ignoring the iteration superscript, the conditional probabilities in Equation 6 and Equation 8
can be computed as follows:

P (Zobj
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A.2. Newton-Raphson step

To implement the NR-step, we first note that it is straightforward to analytically derive the
matrix of second derivatives in Equation 4. The results of these derivations are not listed
here. Second, the conditional expectation of the second derivative of the augmented posterior
with respect to the object- or attribute parameters can be computed as follows:
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The computation of the conditional expectations in (9), (10), (11), and (12) is similar as in
(5) and (7).

A.3. First and second derivatives of log observed posterior

Assuming a disjunctive communality rule, the first derivative of the log observed posterior
with respect to object- and attribute parameters can be computed as follows:
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In the same way, assuming a disjunctive communality rule, minus the second derivative of the
log observed posterior with respect to object- and attribute parameters reads as follows:
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B. Computational details

For the disjunctive model, the steps of the data-augmented Gibbs sampling algorithm can be
implemented as follows:
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1. For each triple (i, j, k) draw zobjijk from
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Note that, to draw latent data vectors zobjijk or zattijk we use the function digitsBase() from the
R package sfsmisc (Maechler et al. 2013) in order to compute a binary matrix which contains
all latent data patterns.
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