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Abstract

In many areas, scientists deal with increasingly high-dimensional data sets. An im-
portant aspect for these scientists is to gain a qualitative understanding of the process
or system from which the data is gathered. Often, both input variables and an outcome
are observed and the data can be characterized as a sample from a high-dimensional
scalar function. This work presents the R package msr for exploratory data analysis of
multivariate scalar functions based on the Morse-Smale complex. The Morse-Smale com-
plex provides a topologically meaningful decomposition of the domain. The msr package
implements a discrete approximation of the Morse-Smale complex for data sets. In pre-
vious work this approximation has been exploited for visualization and partition-based
regression, which are both supported in the msr package. The visualization combines the
Morse-Smale complex with dimension-reduction techniques for a visual summary represen-
tation that serves as a guide for interactive exploration of the high-dimensional function.
In a similar fashion, the regression employs a combination of linear models based on the
Morse-Smale decomposition of the domain. This regression approach yields topologically
accurate estimates and facilitates interpretation of general trends and statistical compar-
isons between partitions. In this manner, the msr package supports high-dimensional data
understanding and exploration through the Morse-Smale complex.

Keywords: Morse-Smale complex, visualization, exploratory data analysis, regression, high-
dimensional data.

1. Introduction

Recent advances in computational topology have led to a multitude of algorithms to esti-
mate the topological properties of a function from a finite sample (Van Kreveld et al. 1997;
Edelsbrunner et al. 2003; Carr et al. 2003; Gyulassy et al. 2007). These algorithms led to the
analysis of data sets based on their topological properties and have shown promising results
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in a wide variety of applications, including combustion simulations (Bremer et al. 2010; Mas-
carenhas et al. 2011), fluid dynamics (Laney et al. 2006), climate simulations (Gerber et al.
2010), protein folding (Weber et al. 2007) and molecular shape analysis (Cazals et al. 2003).

This paper describes the R (R Development Core Team 2012) package msr (Gerber et al.
2012a) for data analysis with the Morse-Smale complex, available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/package=msr. The Morse-Smale complex
provides a topologically meaningful decomposition of the domain of a scalar function. The
basic functionality of this package rests on the computation of the Morse-Smale complex from
unorganized scattered data. The domain decomposition induced by the Morse-Smale complex
is used to build the exploratory visualization technique described in (Gerber et al. 2010) and
the regression approach in (Gerber et al. 2012b).

Gerber et al. (2010) exploit the Morse-Smale complex decomposition to form abstract two-
dimensional representations of high dimensional scalar functions. These representations present
high-level summaries of the salient features of the functions and form the scaffolding for an
exploratory data analysis tool. In regression, domain decompositions have been used success-
fully to build flexible non-parametric models such as regression trees (Breiman et al. 1984),
multivariate adaptive regression splines (MARS, Friedman 1991) and variations on those ap-
proaches (Chaudhuri et al. 1994; Alexander and Grimshaw 1996). These partition-based
regression methods split the domain recursively into smaller partitions with low-order para-
metric models in each partition. The recursive partitioning is based on splitting rules that
typically measure the quality of the resulting fit. In a similar fashion, Gerber et al. (2012b) use
the domain of the Morse-Smale complex as the splitting rule for a partition-based regression
scheme.

To take full advantage of the package presented in this paper, a high-level understanding
of the properties of the Morse-Smale complex is necessary. Thus, a brief overview of the
Morse-Smale complex, and some issues involving its discrete approximation, is included in
this paper. For completeness, the visualization and regression techniques in Gerber et al.
(2010) and Gerber et al. (2012b) are summarized.

2. The Morse-Smale complex

In Morse theory, the Morse-Smale complex provides a tool to examine the topology of a
manifold M based on the critical points of a function f defined on M. Here, the interest
is not on the topology of M but on the exploitation of the Morse-Smale complex to glean
information about the geometry of the function f itself.

The Morse-Smale complex partitions the domain of a function f based on the critical points
of f . Informally, the interior of each partition is a monotonic region, i.e., contains no critical
points, as illustrated in Figure 1.

2.1. Formal definition

Let M be a smooth, compact, p-dimensional manifold. A smooth function f : M 7→ R is
Morse if, for all critical points x of f , the Hessian matrix Hf(x) is not singular. An integral
line, λ : R 7→ M, is a curve in M with dλ

ds (s) = ∇f(λ(s)), with α(λ) = lims→−∞ λ(s) and
ω(λ) = lims→∞ λ(s). Note, α(λ) and ω(λ) are both, by definition, critical points of f . Define
the ascending and descending, also referred to as stable and unstable, manifolds of a critical
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Figure 1: A two-dimensional scalar function (left) and the corresponding Morse-Smale com-
plex (right). The Morse-Smale complex induces a segmentation of the function into monotonic
regions using gradient flows with a single local minimum and maximum.

point x as A(x) = {λ : α(λ) = x} and D(x) = {λ : ω(λ) = x} . A Morse function f
is Morse-Smale if the ascending and descending manifolds only intersect transversely. The
Morse-Smale complex of a Morse-Smale function is the set of intersections, A(xi) ∩ D(xj),
over all combinations of critical points (xi, xj). The Morse-Smale complex includes regions
(i.e., sub-manifolds of M) of dimensions 0 through p and partitions M. The 0 through
p − 1 dimensional components of the Morse-Smale complex delineate the boundaries of the
p-dimensional partitions. By definition, the p-dimensional partitions contain no critical points
and have a single local minimum and maximum on the boundary.

2.2. Persistence

The Morse-Smale complex introduces a measure of the significance of each extremal point,
called persistence. Persistence is a measure of the amount of change in the function f required
to remove a critical point, and thus, to merge two or more partitions. Note, persistence
describes the significance of an extremal point in geometric terms and not in the statistical
sense of a hypothesis test. Figure 2 illustrates the concept of persistence simplification on a
one-dimensional function.

Definition Let xi be the critical points of f . Define s(xi) as the set of critical points that
have a direct integral line connecting to xi. Let n(xi) = arg minxj∈s(xi)(‖f(xi)− f(xj)‖, the
persistence of a critical point xi is then defined as p(xi) = ‖f(xi)− f(n(xi))‖. This definition
is motivated by the amount of change of f in L∞ required such that the critical point pair
(xi, n(xi)) is either canceled or merged into a single critical point. Recursively removing
the critical point with minimal persistence leads to a nested series of successively simplified
Morse-Smale complicies, also called a filtration (Edelsbrunner et al. 2006; Chazal et al. 2009).
At each level, some of the partitions induced by the Morse-Smale complex are merged into a
single partition until the Morse-Smale partitioning consists of only a single partition (i.e., the
entire input domain).

The sequential simplification by persistence leads to a hierarchy of Morse-Smale complicies.
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Figure 2: At the highest persistence level, the Morse-Smale complex of the solid gray func-
tion has three 1-dimensional partitions (α1, α2), (α2, α3) and (α3, α4). The dashed gray line
indicates the change required to remove the critical point pair {α2, α3} with persistence γ2,
and results in a Morse-Smale complex with a single partition (α1, α4).

At the highest persistence level, the Morse-Smale complex only consists of the highest max-
imum and lowest minimum, and the segmentation corresponds to the entire domain. With
decreasing persistence levels, more extremal points and corresponding partitions are intro-
duced in order of their persistence level. Thus, persistence introduces a notion of scale at
which the Morse-Smale complex of f is considered.

2.3. Morse-Smale complex approximation

The definition of the Morse-Smale complex, in terms of ascending and descending manifolds,
leads to a direct algorithm. Given a set of observations O = {yi, xi}N1 with yi = f(xi),
determine, for each data point xi, its α- and ω-limit and corresponding partition by following
the gradient at xi. A direct approach would require the estimation of the gradient at xi, and
to trace the integral line that passes through it. This would require essentially an estimate of
f . However, the only information required to partition the domain is the α- and ω-limit of the
integral line, which is computed using a discrete approximation of the integral line without
having to first estimate f .

Note, that the 0 through p−1 dimensional components have measure zero. Thus, in practice,
the points of a data set are, with probability one, part of the p-dimensional components of
the Morse-Smale complex with integral lines ending in local minima and maxima.

In Gerber et al. (2010), the domain is approximated via a k nearest-neighbor graph. The
algorithm follows paths of steepest ascent and descent based on the connectivity of the graph;
essentially a variant of the quick shift algorithm (Vedaldi and Soatto 2008). For such an
algorithm, let the adjacencies of point xi be adj(xi) = {xj : xi ∈ knn(xj), xj ∈ knn(xi)}.
Then the approximate integral line is traced out by following the path of steepest ascent
pa(xi) = arg maxxj∈adj(xi) f(xj)− f(xi) and descent pd(xi) = arg maxxj∈adj(xi) f(xi)− f(xj),
with pa(xi) = xi and pd(xi) = xi if all neighbors have lower/higher function value (i.e., a
local maxima/minima). This assigns each point to a p-dimensional component, identified
by local minima/maxima association, of the Morse-Smale complex. Hence, the Morse-Smale
approximation results in a partition C = {C1, . . . , Cn}, with Ci the set of points for partition
i, such that

⋃
iCi = {xi}n1 and Cj ∩ Ci = ∅∀i 6= j.



Journal of Statistical Software 5

For computing the persistence-based hierarchy of the Morse-Smale complex, an approximation
of saddle point values between neighboring partitions is required. Let s(pa, pb) be the set of
edges (xi, xj) such that xi is assigned to partition pa and xj to pb. Then, the persistence of the
minima amin of partition pa is defined as mink∈P̄ (X) mine∈s(pa,pk) maxxi∈e‖amin − xi‖. Again,

as in the continuous case, this is recursively applied with P̄ (X), the minimal persistence
extrema, removed.

Depending on the number of nearest neighbors and sampling density, artificial extremal points
can be introduced or true extremal points can be removed. Artificial extremal points are
introduced if the k-nearest neighbors of a point connect only to points with lower function
values. True maxima (or minima) can be removed if the k-nearest neighbors graph introduce a
monotonous steepest ascent (or descent) path – strictly positive or negative difference between
neighboring points along the path – to another maxima (minima) point. This arises mostly
in the case of a large number of nearest neighbors, and/or a sparse sample of the domain.

2.4. Partition prediction

The Morse-Smale complex approximation provides the partition assignments, or labels, for
the input data, but not the complete domain. In Gerber et al. (2012b), two approaches to
extend this partitioning to the complete domain are considered.

The first approach estimates the probability distribution P (X|C = Ci) with a kernel density
estimator over the observations s in partition i:

pi(x) =
1

‖Ci‖
∑
s∈Ci

K(x, s) . (1)

From this, Bayes’ theorem yields partition probabilities P (C = Ci|X = x) = pi(x)P (C=Ci)∑
j pj(x)P (C=Cj)

with P (C = Ci) = ‖Ci‖∑
j‖Cj‖ .

The second approach employs a support vector machine (SVM) to build a multi-class classifier
using the one-against-one approach described in Hsu and Lin (2002). The SVM is trained on
the partition assignments of the Morse-Smale complex. To estimate partition probabilities
from the classifier, a logistic regression is fit to the decision values of the SVM as described
in Platt (1999).

3. The Morse-Smale complex for scalar function visualization

In Gerber et al. (2010) the Morse-Smale complex is used to build a summary representation
of the high-dimensional scalar function f : Ω 7→ R, with Ω a compact connected subset of
Rn. Each partition Ci of the Morse-Smale complex is summarized by an inverse regression
curve, ri(y) = E[X ∈ Ci|Y = y]. The regression estimates approximate a graph of curves con-
necting the minima and maxima as identified by the Morse-Smale segmentation; essentially
a compressed representation of the domain. For visualization, the extremal points are pro-
jected, using principal components, into two-dimensions (2D). Then, each regression curve is
separately projected into 2D, again using principal components. Finally, the projected curves
are affine-transformed such that the end points match the corresponding projected extremal
points. This concept is illustrated in Figure 3.
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Figure 3: Schematic illustration of the visualization: the two-dimensional scalar function is
decomposed into piecewise monotonic partitions by the Morse-Smale complex. The function
is then represented by a network of regression curves. Each curve summarizes the domain of
a partition with ri = E[X ∈ Ci|y = y]. For visualization of higher dimensional functions, this
network is embedded into 2D.

The visualization created by this method can help to gain a qualitative understanding of
higher dimensional functions. In Gerber et al. (2010) this exploratory analysis approach is
demonstrated on

� climate simulations outcomes,

� chemical compositions in combustion simulations,

� concrete mixture strengths,

� socio-economic variables in relation to crime rates.

The approach consists of three steps to arrive at a 2D representation for visualization of the
high-dimensional scalar function:

1. Morse-Smale approximation: Compute a segmentation using the Morse-Smale ap-
proximation of f .

2. Geometric summaries: Construct regression curves ri with kernel regression.

3. Dimension reduction: Embed the regression curves in 2D using a three-step dimension-
reduction approach:

(a) Project extremal points onto its first two principal components.

(b) Project each regression curve onto its first two principal components.

(c) Affine-transform projected curves to match the corresponding projected extremal
points.
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4. Morse-Smale regression

The idea presented in Gerber et al. (2012b) is to use the Morse-Smale complex induced
segmentation of the domain of a function f : Ω 7→ R to combine simple linear models within
each partition to approximate the underlying function f . Two approaches are considered.
First, a piecewise linear model

f̂l(x) = aj + bjx if x ∈ Cj , j=1, . . . , k . (2)

Second, a sum of weighted linear models, with weights based on the probabilistic interpretation
of the segmentation induced by the Morse-Smale complex, i.e., a soft assignment of each point
based on the partition probabilities.

f̂w(x) =
k∑
j=1

wj(x)(aj + bjx) (3)

with wj(x) = P (C = Ci|X = x) estimated as described in Section 2.4.

5. Package description

The methods for approximating the Morse-Smale complex from a sample of a scalar function
form the basis of the msr package (Gerber et al. 2012a). The regression and visualization
approaches are built on this basic functionality. This section gives a brief overview of the
package. Detailed descriptions of the available methods are in the manual pages contained in
the package.

5.1. Morse-Smale complex approximation

The main functions for the Morse-Smale approximation is msc.nn. The functions msc.nn.kd
and msc.nn.svm add predictive capacity to msc.nn by estimating the partition probabilities
with kernel density estimation or a multi-class SVM, respectively (see Section 2.4). All these
methods return a basic Morse-Smale complex object msc.nn (potentially supplemented with
predictive capabilities), which is the basic input for the regression and visualization methods.

The nearest neighbor graph is computed using the approximate nearest neighbor library
ANN (Mount and Arya 2010). For performance, the kernel density estimation is implemented
in C with an interface to R. For the SVM multi-class classifier the R package e1071 (Dimitri-
adou et al. 2011) is used, which provides an interface to the C++ library libsvm (Chang and
Lin 2012).

For both msc.nn.kd and msc.nn.svm, the generic R method predict is implemented and
returns a matrix with partition probabilities for each point, either of the original data x or,
if the argument newdata is specified, for the locations of the new observations.

Two additional utility functions are supplied:

� msc.level.ind extracts the indices into the original, supplied data x for a given parti-
tion index, Morse-Smale complex, and persistence level.

� msc.sublevels extracts a subset of the hierarchy of Morse-Smale complicies.



8 msr: Data Analysis with the Morse-Smale Complex in R

5.2. Visualization

The visualization functionality is accessed through plot.msc. This function takes in an
msc.nn object, computes the necessary geometry for the plots, and creates the visualization.
The package rgl Adler and Murdoch (2012) is used for three-dimensional display, and user
interaction through mouse clicks bring up detailed 2D plots of the inverse regression curves.
The plotting function returns an object that allows the user to modify what is displayed in
the rgl device, such as the optional display of the standard deviation tubes, or the 3D axis.

The visualization displays the graph of the regression curves in 3D. The regression curves are
projected into 2D and the 3rd dimension is used to encode the function value, also redundantly
encoded with a colormap. While color provides a quick overview of the location of minima and
maxima, the 3rd dimension can be used to better perceive quantitative differences in minima
and maxima and helps to visualize the function as a height field over the graph representation
of the domain.

Opaque tubes surrounding the curves encode the standard deviation of the regression curves
by mapping to the radius of the tubes. The standard deviation provides information about
the shape of a partition, i.e., the extent of the level sets.

Figure 4 shows the use of the 3rd dimension as well as the standard deviation tubes, which can
be turned on or off through a user parameter. In addition, the user can inspect the behavior
of the independent variables in each partition by clicking on the corresponding regression
curve which then highlights that curve in an identifying color in a corresponding 2D graph, as
shown in Figure 5, left. A separate graphics device is then opened, and plots the regression
curve ri(y) = E[X ∈ Ci|Y = y with d graphs of y as a function of ri(y) for each dependent
variable in X (Figure 5, right). To compare various partitions simultaneously, the user can

Figure 4: Visual summary representation from 2000 observations of the function in Figure 1.
The regression curves for each partition are projected into 2D with the 3rd dimension encoding
the function value. The function value is redundantly encoded using a colormap. The standard
deviation of the regression curve is displayed by the opaque tube surrounding the curve.
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Figure 5: The interactive visualization of the data set from Figure 1. The user is presented
with the visual summary (left) and can select curves of interest (highlighted in red, green,
purple and blue). These curves, representing independent variables, are then plotted side-by-
side (right).

select multiple curves, which are displayed in the same plot using the matching color from
the main display.

5.3. Regression

The piecewise linear model for the Morse-Smale regression is implemented in the two methods:

� msc.lm: The piecewise linear model.

� msc.elnet: The piecewise linear model with L1 regularization using the package glm-
net (Friedman et al. 2010).

and for the weighted linear model:

� msc.slm: The weighted linear model.

� msc.slm.elnet: The weighted linear model with L1 regularization using glmnet.

The methods take as input a Morse-Smale complex object and additional parameters that
influence the fitting.

6. A complete tour

This section gives a complete tour of the package on a simple 2D function, for which it is easy
to show visual results for all aspects of the package. The tour is based on the 2D function
shown in Figure 1, which is defined by

f(x) =
1

2

(
e−(x1− 1

4
)2/0.32 + e−(x2− 1

4
)2/0.32 + e−(x1− 3

4
)2/0.12 + e−(x2− 3

4
)2/0.12

)
. (4)
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6.1. Morse-Smale complex construction and partition prediction

Create 2000 observations from f , uniformly distributed on [0, 1]2 (scaled to [0, 1] for color-
mapping).

R> library("msr")

R> data("fourpeaks")

R> d <- fourpeaks(2000)

R> d[, 1] <- (d[, 1] - min(d[, 1])) / (max(d[, 1]) - min(d[, 1]))

and compute the Morse-Smale complex at persistence level 0.1 with 15 nearest neighbors.

R> ms <- msc.nn(y = d[, 1], x = d[, 2:3], pLevel = 0.1, knn = 15)

R> summary(ms)

Plot the function and the segmentation induced by the Morse-Smale complex in 2D (see
Figure 6).

R> par(mfcol = c(1, 2))

R> fancy <- c("#0066CC", "#CCCC00", "#D22905")

R> colormap <- colorRamp(fancy, interpolate = "linear", bias = 0.5)

R> colors <- rgb(colormap(d[, 1]), maxColorValue = 255)

R> par(mar = c(8, 5, 5, 4))

R> plot(d[, 2], d[, 3], type = "p", xlab = "", ylab = "", col = colors,

+ pch = 19, cex.axis = 2.5)

R> pal <- brewer.pal(9, "Set1")

R> pal <- colorRampPalette(pal)

R> pal <- pal(length(ms$level[[1]]$mins))

R> colors <- pal[ms$level[[1]]$partition]

R> par(mar = c(8, 5, 5, 4))

R> plot(d[, 2], d[, 3], col = colors, type = "p", xlab = "", ylab = "",

+ pch = 19, cex.axis = 2.5)

Show the number of extrema as a function of persistence (see Figure 7).

R> np <- length(ms$persistence)

R> ms$persistence[np] <- 1

R> par(mar = c(6, 4, 4, 4) + 3)

R> plot(ms$persistence, np:1 + 1, xlab = "Persistence Percentage",

+ ylab = "Extrema", cex = 2, cex.lab = 2, cex.axis = 2, type = "p",

+ pch = 19)

The persistence is expressed as a percentage of the function range. Note, that persistence

always contains the complete persistence hierarchy, even if only a subset of the complete
Morse-Smale complex persistence hierarchy is computed.

In the above example, the Morse-Smale complex was computed for a fixed persistence level.
Alternatively, compute the last 15 persistence levels of the Morse-Smale complex

R> ms <- msc.nn(y = d[, 1], x = d[, 2:3], nLevels = 15, knn = 15)
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Figure 6: Function and segmentation induced by Morse-Smale complex in 2D.

Figure 7: Number of extrema as a function of persistence.

and access individual levels.

R> level5 <- ms$level[[5]]

R> summary(level5)

Length Class Mode

call 1 -none- function

pLevel 1 -none- numeric

partition 2000 -none- numeric

maxs 6 -none- numeric

mins 6 -none- numeric

partitionSize 6 -none- numeric

Note that the persistence hierarchy is in reverse order, starting from highest persistence to
nLevels lower persistences Morse-Smale complicies.
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At this point, the Morse-Smale complex has no prediction capabilities. Compute a Morse-
Smale complex that supports partition prediction by SVM.

R> ms.svm <- msc.nn.svm(y = d[, 1], x = d[, 2:3], nLevels = 15, knn = 15,

+ cost = 1, precompute = TRUE)

The precompute flag indicates that the SVM at each persistence level is computed and stored
for later use. If set to FALSE, the SVM is computed on demand, which saves storage space,
but can be time consuming if multiple predictions at different levels are made.

Alternatively, construct a Morse-Smale complex with partition prediction by kernel density
estimation for two different bandwidths.

R> ms.kd1 <- msc.nn.kd(y = d[, 1], x = d[, 2:3], nLevels = 15, knn = 15,

+ bw = 0.05)

R> ms.kd2 <- msc.nn.kd(y = d[, 1], x = d[, 2:3], nLevels = 15, knn = 15,

+ bw = 0.15)

Create a test data set and predicts partition probabilities at level 12.

R> test <- fourpeaks(2000)

R> ms.svm$predictLevel <- 12

R> psvm <- predict(ms.svm, newdata = test)

R> ms.kd1$predictLevel <- 12

R> ms.kd2$predictLevel <- 12

R> pkd1 <- predict(ms.kd1, newdata = test)

R> pkd2 <- predict(ms.kd2, newdata = test)

For both visualization and regression, predictLevel determines the level of the current
Morse-Smale hierarchy at which prediction or visualization is performed, with predictLevel

= 1 corresponding to the highest peristence.

Now plot the partition probabilities for partition index 8 (see Figure 8).

R> par(mfcol = c(1, 4))

R> pId <- ms.svm$level[[12]]$partition == 8

R> colors <- vector(length = length(ms.svm$y))

R> colors[] <- fancy[1]

R> colors[pId] <- fancy[3]

R> par(mar=c(6, 4, 4, 4) + 1)

R> plot(ms$x, col = colors, type = "p", xlab = "", ylab = "", pch = 19,

+ cex.axis = 2, cex = 1)

R> title("Ground Truth", cex.main = 3.5)

R> colors <- rgb(colormap(psvm[, 8]), maxColorValue = 255)

R> par(mar=c(6,4,4,4) + 1)

R> plot(test[, 2], test[, 3], type = "p", xlab = "", ylab = "",

+ col = colors, pch = 19, cex.axis = 2, cex = 1)

R> title("SVM", cex.main = 3.5)

R> colors <- rgb(colormap(pkd1[, 8]), maxColorValue = 255)
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Figure 8: Partition probabilities.

R> par(mar = c(6, 4, 4, 4) + 1)

R> plot(test[, 2], test[, 3], type = "p", xlab = "", ylab = "",

+ col = colors, pch = 19, cex.axis = 2, cex = 1)

R> title("KD bw = 0.05", cex.main = 3.5)

R> colors <- rgb(colormap(pkd2[, 8]), maxColorValue = 255)

R> par(mar = c(6, 4, 4, 4) + 1)

R> plot(test[, 2], test[, 3], type = "p", xlab = "", ylab = "",

+ col = colors, pch = 19, cex.axis = 2, cex = 1)

R> title("KD bw = 0.15", cex.main = 3.5)

6.2. Visualization

Using the Morse-Smale complex from Section 6.1 show visualizations at level 2, 7, and 12 (see
Figure 9).

R> ms$predictLevel <- 2

R> plot(ms, span = 0.9)

R> ms$predictLevel <- 7

R> plot(ms)

R> ms$predictLevel <- 12

R> plot(ms)

As for the partition prediction, the predictLevel defines at which persistence level the visu-
alization is performed.

6.3. Regression

The regression is invoked directly on the Morse-Smale complex object. Construct Morse-
Smale complex with SVM prediction and fit a piecewise linear model with a cross-validation
for choosing the prediction level.

R> ms.svm$predictLevel <- 1

R> msr.lm <- msc.lm(ms.svm)

R> summary(msr.lm)

Length Class Mode

lms 15 -none- list
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Figure 9: Morse-Smale complex visualizations at level 2, 7, and 12.

ms 9 msc.svm list

blend 1 -none- logical

R> pLevel <- msr.lm$ms$predictLevel

R> print(pLevel)

[1] 14

R> print(msr.lm$lms[[pLevel]]$cv)

1

0.001819926

This constructs a hierarchy of linear models and the msr$ms$predictLevel designates the
model used for prediction. Predict the test data and print the mean squared error.

R> p <- predict(msr.lm, newdata = test)

R> print(mean((p - test[, 1])^2))

[1] 0.003417632

Instead of the piecewise linear model, fit a sum of weighted linear models. The persistence
level is, as for the piecewise linear model, selected automatically with cross-validation.

R> msr.slm <- msc.slm(ms.svm)

R> print(msr.slm$slm[[pLevel]]$cv)

[1] 0.00140596

Predict at different levels and plot the corresponding models (see Figure 10).

R> msr.slm$ms$predictLevel <- 1

R> p1 <- predict(msr.slm, newdata = test)

R> print(mean((p1 - test[, 1])^2))
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Figure 10: Model visualization at different levels.

[1] 0.03254943

R> msr.slm$ms$predictLevel <- 7

R> p2 <- predict(msr.slm, newdata = test)

R> print(mean((p2 - test[, 1])^2))

[1] 0.01055478

R> msr.slm$ms$predictLevel = 12

R> p3 <- predict(msr.slm, newdata = test)

R> print(mean((p3 - test[, 1])^2))

[1] 0.002921932

R> par(mfcol = c(1, 3))

R> ps <- p1

R> ps[ps > 1] <- 1

R> ps[ps < 0] <- 0

R> colors <- rgb(colormap(ps), maxColorValue = 255)

R> plot(test[,2], test[,3], type = "p", xlab = "", ylab = "", col = colors,

+ pch = 19, cex.axis = 2.5, cex = 1)

R> ps <- p2

R> ps[ps > 1] <- 1

R> ps[ps < 0] <- 0

R> colors <- rgb(colormap(ps), maxColorValue = 255)

R> plot(test[,2], test[,3], type = "p", xlab = "", ylab = "", col = colors,

+ pch = 19, cex.axis = 2.5, cex = 1)

R> ps <- p3

R> ps[ps > 1] <- 1

R> ps[ps < 0] <- 0

R> colors <- rgb(colormap(ps), maxColorValue=255)

R> plot(test[,2], test[,3], type = "p", xlab = "", ylab = "", col = colors,

+ pch = 19, cex.axis = 2.5, cex = 1)
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7. Visualizing the UCI crime data

The communities and crime data set from the UCI machine learning repository (Frank and
Asuncion 2010) combines socio-economic data from the 1990 US Census, law enforcement
data from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR. The original
data set contains 1,994 observations (communities) with 128 attributes. This analysis uses
a reduced data set, with attributes that have missing entries removed, and investigates the
crime rate in relation to 99 socio-economic variables.

R> data("uci_crime_subset")

First, construct the Morse-Smale complex and plot the persistences.

R> ms <- msc.nn(y = crimes[, 100], x = crimes[, 1:99], knn = 120,

+ nLevels = 5)

R> np <- length(ms$persistence)

R> ms$persistence[np] <- 1

R> par(mar = c(5, 4, 4, 2) + 3)

R> plot(ms$persistence, np:1 + 1, xlab = "Persistence Percentage",

+ ylab = "Extrema", cex = 2.5, cex.lab = 2, cex.axis = 2, type = "p",

+ pch = 19)

This shows that the Morse-Smale complex with 4 extrema requires a function change of
26 percent of the function range to introduce an additional extrema (see Figure 11). This
indicates that the Morse-Smale complex at this level is relatively stable and the extremal
points are not very likely artifacts from noisy observations.

Now plot the Morse-Smale based summary representation of the function at persistence level
3 (see Figure 12).

R> ms$predictLevel <- 3

R> obj <- plot(ms)

Figure 11: Number of extrema as a function of persistence.
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Figure 12: Visual summary of the UCI crime data set with the regression curves for all
99 variables and a selected subset of 7 variables.

This visualization is interactive and allows for deeper investigation of the function. By clicking
on a regression curve, representing one partition of the Morse-Smale complex, a window with
the inverse regression curves per variable is shown for that curve. In the case of the crime
data, this opens multiple device windows to show the 99 variables of the domain. This can
be cumbersome to analyze. To restrict attention to variables of interest, a plotList on the
object is created which allows the user to select specific variables for plotting.

R> obj$plotList <- c(1, 12, 27, 20, 32, 33, 97)

R> names <- colnames(crimes)[obj$plotList]

R> print(names)

R> plot(obj)

This allows for the easy comparison of user selected variables of interest. For example, the
selected variables show that two peak crime rate configurations involve a large percentage of
urban population, while the third high crime rate peak concerns rural areas, One peak crime
rate is related to high unemployment rates while the other two have relatively low unemploy-
ment. This illustrates how the proposed visualization can be used to build hypotheses for
further examination.

8. A Morse-Smale regression example

This example is based on the energy/objective function of a camera estimation problem.

R> data("camera_estimation")

R> energy$E <- (energy$E - min(energy$E)) / (max(energy$E) - min(energy$E))

R> train <- energy[1:2000, ]

R> test <- energy[8001:10000, ]

Create a Morse-Smale complex object with kernel density based partition prediction.
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Figure 13: Cross-validation error as a function of the number of extrema.

R> ms <- msc.nn.kd(y = train$E, x = train[, 2:10], knn = 40, nLevels = 17,

+ bw = 0.3)

The piecewise linear model

R> ms.lm <- msc.lm(ms)

at level

R> pLevel <- ms.lm$ms$predictLevel

R> print(pLevel)

[1] 9

has the lowest cross-validation error. Plot the cross-validation error as a function of the
number of extrema (see Figure 13).

R> cv <- c()

R> for(i in 1:ms.lm$ms$nLevels) cv[i] <- ms.lm$lms[[i]]$cv

R> par(mar = c(5, 4, 4, 2) + 3)

R> plot(1:ms.lm$ms$nLevels, cv, xlab = "Persistence Level",

+ ylab = "CV error", pch = 19, cex = 2.5, cex.lab = 2, cex.axis = 2)

The segmentation from the Morse-Smale complex can be used to compute an ANOVA with
the partition id as factor.

R> df <- data.frame(test, pID = as.factor(ms$level[[pLevel]]$partition))

R> lm1 <- lm(E ~ . * pID, data = df)

Here, the different partitions are, except for a few (visible with summary(lm1), not shown), not
significantly different. However, in general, this illustrates how the partition based regression
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can be used to detect different regions of the parameter space where the function shows
different behaviours.

Next, extract a single persistence level Morse-Smale complex and estimate a piecewise linear
model with an L1 regularization

R> ms15 <- msc.sublevels(ms, pLevel)

R> ms.l1 <- msc.elnet(ms15)

and show coefficients for partition 1 and 5

R> b1 <- as.vector(ms.l1$elnet[[1]]$lm[[1]]$beta)

R> b5 <- as.vector(ms.l1$elnet[[1]]$lm[[5]]$beta)

R> print(cbind(b1, b5))

b1 b5

[1,] 0.1384267871 0.06085361

[2,] 0.0563464331 0.05729387

[3,] 0.0380388475 -0.13577235

[4,] -0.0003342101 -0.07801561

[5,] 0.4440587959 0.44355786

[6,] 0.0049414605 -0.01630017

[7,] -0.0433647106 0.11108694

[8,] 0.1011040420 0.13535760

[9,] 0.2020158713 0.18104548

to compare differences between the partitions.

Alternatively, employ a forward stepwise approach for a sparse regression estimate.

R> ms.lm1 <- msc.lm(ms15, modelSelect = TRUE)

Next, construct a weighted additive.

R> ms.slm <- msc.slm(ms)

The cross-validation selected persistence level

R> print(ms.slm$ms$predictLevel)

[1] 12

with a mean squared test error of

R> penergy <- predict(ms.slm, test)

R> mean((test$E - penergy)^2)

[1] 0.002840482
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Note, that due to the averaging of different linear models the additive weighted approach is
not suitable for interpretation, but typically yields better function approximations than the
piecewise linear approach.

9. Conclusion

This paper described the R package msr for exploratory data analysis based on the Morse-
Smale complex approximation of a function. The package is built in a modular fashion with
the Morse-Smale complex approximation as the fundamental building block. A visualization
and a regression approach are implemented on top of the Morse-Smale approximation. The
regression and visualization facilitate a qualitative understanding of high-dimensional func-
tions. However, the modular design enables to harness the Morse-Smale complex for data
analysis approaches other than the two methods presented here.
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Gerber S, Rübel O, Bremer PT, Pascucci V, Whitaker RT (2012b). “Morse-Smale Regression.”
Journal of Computational and Graphical Statistics. doi:10.1080/10618600.2012.657132.
Forthcoming.

Gyulassy A, Natarajan V, Pascucci V, Hamann B (2007). “Efficient Computation of Morse-
Smale Complexes for Three-Dimensional Scalar Functions.” IEEE Transactions on Visual-
ization and Computer Graphics, 13(6), 1440–1447.

Hsu CW, Lin CJ (2002). “A Comparison of Methods for Multiclass Support Vector Machines.”
IEEE Transaction on Neural Networks, 13(2), 415–425.

Laney D, Bremer PT, Mascarenhas A, Miller P, Pascucci V (2006). “Understanding the
Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities.” IEEE Transactions
on Visualization and Computer Graphics, 12(5), 1052–1060.

http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://CRAN.R-project.org/package=msr
http://dx.doi.org/10.1080/10618600.2012.657132


22 msr: Data Analysis with the Morse-Smale Complex in R

Mascarenhas A, Grout RW, Bremer PT, Hawkes ER, Pascucci V, Chen JH (2011). “Topo-
logical Feature Extraction for Comparison of Terascale Combustion Simulation Data.” In
V Pascucci, X Tricoche, H Hagen, J Tierny (eds.), Topological Methods in Data Analysis
and Visualization, Mathematics and Visualization, pp. 229–240. Springer-Verlag, Berlin.

Mount DM, Arya S (2010). Approximate Nearest Neighbors ANN Library. C library ver-
sion 1.1.2, URL http://www.cs.umd.edu/~mount/ANN/.

Platt JC (1999). “Probabilities for SV Machines.” In AJ Smola, PL Bartlett, B Schölkopf,
D Schuurmans (eds.), Advances in Large Margin Classifiers, pp. 61–74. MIT Press, Cam-
bridge.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Van Kreveld MJ, Van Oostrum R, Bajaj CL, Pascucci V, Schikore D (1997). “Contour Trees
and Small Seed Sets for Isosurface Traversal.” In Symposium on Computational Geometry,
pp. 212–220.

Vedaldi A, Soatto S (2008). “Quick Shift and Kernel Methods for Mode Seeking.” In Proceed-
ings of the European Conference on Computer Vision, pp. 705–718.

Weber G, Bremer PT, Pascucci V (2007). “Topological Landscapes: A Terrain Metaphor
for Scientific Data.” IEEE Transactions on Visualization and Computer Graphics, 13(6),
1077–2626.

Affiliation:

Samuel Gerber
Scientific Computing and Imaging Institute
University of Utah
72 S Central Campus Drive, Room 3750
Salt Lake City, UT 84112, United States of America
E-mail: sgerber@cs.utah.edu
URL: http://www.cs.utah.edu/~sgerber/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 50, Issue 2 Submitted: 2011-03-22
July 2012 Accepted: 2012-04-13

http://www.cs.umd.edu/~mount/ANN/
http://www.R-project.org
http://www.R-project.org
mailto:sgerber@cs.utah.edu
http://www.cs.utah.edu/~sgerber/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The Morse-Smale complex
	Formal definition
	Persistence
	Morse-Smale complex approximation
	Partition prediction

	The Morse-Smale complex for scalar function visualization
	Morse-Smale regression
	Package description
	Morse-Smale complex approximation
	Visualization
	Regression

	A complete tour
	Morse-Smale complex construction and partition prediction
	Visualization
	Regression

	Visualizing the UCI crime data
	A Morse-Smale regression example
	Conclusion

