
The Ziggurat Method for Generating Random Variables

George Marsaglia�

The Florida State University

and

Wai Wan Tsang

The University of Hong Kong

Abstract

We provide a new version of our ziggurat method for generating a random variable from a given

decreasing density. It is faster and simpler than the original, and will produce, for example, normal

or exponential variates at the rate of 15 million per second with a C version on a 400MHz PC. It

uses two tables, integers ki and reals wi. Some 99% of the time, the required x is produced by:

Generate a random 32-bit integer j and let i be the index formed from the rightmost 8 bits of j. If

j < ki return x = j � wi.

We illustrate with C code that provides for inline generation of both normal and exponential

variables, with a short procedure for setting up the necessary tables.

1 Introduction

In the early 1980's we developed the ziggurat method for sampling from decreasing densities, Marsaglia

and Tsang [9]. The method was based on covering the target density with a set of horizontal equal-

area rectangles, a `cap' and a tail. The ziggurat appellation came from the appearance of the layered

rectangles. A uniform point (x; y) from a randomly chosen rectangle provided the required variate x,

most of the time after two table fetches and a test on magnitude.

But the original ziggurat method had a rather complicated procedure for providing the required x

for the rare cases when the simple test on magnitude failed. We show here how to form the covering

rectangles so that a simpler procedure may be used for the rare cases, and no `cap' is necessary.

The idea of cutting a density into many small pieces, then choosing and sampling from one of them,

goes back to the early 60's, Marsaglia [4]. Particular methods for normal and exponential variates were

described in [6,7,8], and they were, for many years, fast and widely used standard generators for many

platforms. Many of the details are spelled out in successive editions of Knuth's Volume 2,[2].

Rather than cutting the density into easily handled pieces|in e�ect, expressing the density as a

mixture of very simple densities and a complicated residual density, the ziggurat approach covers the

target density with the union of a collection of sets from which it is easy to choose uniform points, then

uses the rejection method.

While the method and the set up were complicated, the original ziggurat method [9] led to some of

the fastest methods for normal, exponential and other decreasing densities. Our goal here is to provide

a version that is faster and simpler. Methods for normal variables by Ahrens and Dieter [1] and Leva

[3] are said to be fast; we provide comparisons with those methods.

Details of the new ziggurat method are in Section 2, then Section 3 provides methods for setting up

the ziggurat for table size 256 or 128; table size is best chosen a power of 2, to make random selection

from the table easy: a 7 or 8-bit segment of a 32-bit random integer.

Section 4 gives speci�c implementations for normal and exponential variates, Section 5 provides

some time comparisons and Section 6 summarizes.
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2 The Ziggurat Method

We begin with a description of the basic rejection method: Let C be the set of points (x; y) under a

plot of the curve y = f(x) with �nite area. Let Z be a set of points containing C : Z � C. The basic

idea of the rejection method is: Choose random points (x; y) uniformly from Z until you get one that

falls in C, then return x as the required variate. The density of such an x will be cf(x), with c the

normalizing constant that makes cf(x) a proper density. (Dealing with an unscaled f allows us to

ignore the nuisance constants that are part of many densities.)

Three of the main criteria for choosing the covering set Z are:

1) Make it easy and fast to select a random point (x; y) from Z ;

2) Make it easy and fast to decide whether the random (x; y) from Z also falls in C;

3) Make area(C)=area(Z), the e�ciency of the rejection procedure, close to 1.

The ziggurat method for choosing the covering set Z comes closer to meeting all of these criteria

than does any other general method we are aware of. A crude version of the ziggurat method is pictured

in Figure 1:
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Figure 1: The ziggurat method with 7 rectangles and a bottom, base strip.

Here, C is the region under the curve y = f(x) = e
�x

2
=2
; x > 0, and Z is the union of 8 sets, 7

rectangles and a bottom strip tailing o� to in�nity. (We have chosen only 8 sets for clarity; in practice

we choose 64, 128 or 256 sets whose union is Z .) All 8 sets in the pictured Z have the same area, v, so

it is easy to choose one of the sets at random. Furthermore, 7 of the 8 sets are rectangles from which it

is easy to get a random point (x; y), and further yet, for those rectangles, it is easy to decide if (x; y)

is in C: If the rightmost coordinates of the rectangles are 0 = x0 < x1 < x2 < � � � < x7, and rectangle

Ri is selected, i > 0, then the x-coordinate of a random point in Ri is Uxi with U uniform (0,1), and

if x < xi�1 then the random point (x; y) must be in C, con�rming the acceptance of x without having

to generate y. (Assume rectangle R0 is empty with right edge x0 = 0, the left edge of R1.)

And �nally, it is easy to get a random point (x; y) from the base strip, as the base is itself a rectangle

adjoined to the tail, x > x7. Let r be the rightmost xi, so that the tail is r < x. We may generate from

the base strip as follows: generate x = vU=f(r), with U uniform (0,1). If x < r return x, else return

an x from the tail. That provides an x from the base rectangle with the required probability: rf(r)=v.

Note that code to provide from the rectangle part of the base strip can have the same form as that for

the other rectangles: Form x and return that x after a succesful test on magnitude.

For the normal tail, the method of Marsaglia [5] provides: generate x = � ln(U1)=r; y = � ln(U2)

until y + y > x� x, then return r + x. For the exponential tail, of course, x = r � ln(U).

For our fastest application, we form the ziggurat with layers of 255 rectangles with common area v,

and a bottom strip of area v. The rectangles end at x1 < x2 < � � � < x255 = r. Assume those x's have

been determined,as described in the next section.

Since, as in most applications, we provide uniform (0,1) variates U by 
oating a random integer

(32-bit unsigned long), we may save time by incorporating the 
oat operation into the step that forms

the x's that are to be returned: For each value of the index i in 1 � i � 255, form the 32-bit integer

ki = b232(xi�1=xi)c, and set wi = :532xi. For the special index i = 0, set k0 = b232rf(r)=vc and

w0 = :532v=f(r).
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We may then describe the entire procedure with these simple steps:

The Ziggurat Algorithm

1. Generate a random 32-bit integer j and let i be the index provided by the rightmost 8 bits of j.

2. Set x = jwi. If j < ki return x.

3. If i = 0 return an x from the tail.

4. If [f(xi�1)� f(xi)]U < f(x)� f(xi), return x.

5. Go to step 1.

3 Setting up the ziggurat

Given the (unscaled) target density f(x); x � 0, we want to �nd 255 (or 127, 63, etc.) equal-area

rectangles, such as pictured in Figure 1, so that the covering set Z is very close to C.

A picture of a ziggurat with some of its 255 rectangles is in Figure 2, for the exponential density.

The rectangles are so closely layered that images blur in the lower part if all 255 are shown. So, after

the �rst 20, only rectangles R30; R40; : : : ; R250 and the �nal R255 are shown. Those few will give an

idea of how closely Z covers C, and the closeness of xi�1=xi to unity for almost all of the rectangles.
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Figure 2: The ziggurat, showing every 10 0th after the �rst 20 of 255 rectangles.

The rectangles must be chosen so that their common area, say v, has the same value as that of the

�nal, base, region. How is this done?

The right edges of the rectangles are at 0 = x0 < x1 < x2 < � � � < x255. From the �gure, it is clear

that we must have, using r to designate the rightmost end point, r = x255:

xi[f(xi�1)� f(xi)] = v; for i = 1; 2; : : : ; 255 with v = rf(r) +

Z
1

r

f(x) dx:

Even if v is given, it is not easy to �nd the necessary x's. Instead, a feasible procedure is this: de�ne

a function of r, the rightmost end point, say z(r), by a sequence of Maple-like commands:

z(r) : x255 = r; v = rf(r) +

Z
1

r

f(x) dx;

for i from 254 by � 1 to 1 do xi = f
�1(v=xi+1 + f(xi+1)) od ; return (v � x1 + x1f(x1));

Then the problem is to �nd the value of r that makes z(r) = 0. For f(x) = e
�x

2
=2 the choice

r = 3:6541528853610088 will make z(r) = 0, and then from that value for x255 the other x0s may be

found, from the relation xi = f
�1(v=xi+1 + f(xi+1)), a procedure that requires inverting f .

The common area of the rectangles and the base turns out to be v = :00492867323399, making the

e�ciency of the rejection procedure 99.33%.

For f(x) = e
�x, the exponential density, r = 7:69711747013104972 makes z(r) = 0 and will assign

the proper value to x255, from which the other x's follow. The common area of the rectangles turns out

to be v = :0039496598225815571993, making the e�ciency of the rejection procedure 98.9%.
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For those who may want to use a table of 127 x's: for the (half-) normal density, the value x127 =

3:442619855899 will serve to �nd v and the other x's; the e�ciency is then 98.78%. For the exponential,

x127 = 6:898315116616, for an e�ciency of 97.98%. With memory so readily available, there seems

little reason for choosing 127 rather than 255 x's, but we will use 127 for the normal distribution in the

implementation below, because we have to accomodate x < 0 as well as x > 0.

Furthermore, with memory so cheap, it is feasible to speed up the generating process even more:

form an auxiliary table of integers, ki = b232(xi�1=xi)c, and, rather than storing a table of x's, store

wi as :5
32
xi. Then the fast part of the generating procedure is: Generate j. Form i from the last 8 bits

of j. If j < ki, return x = jwi. (Special values k0 = b232rf(r)=vc and w0 = :532v=f(r) provide for the

fast part when i = 0.)

4 Implementation

It turns out that storing a third table, fi = f(xi) is no more costly in terms of the �nal size of

the compiled program than is a more complicated version that computes the f(xi)'s. Assuming that

table, the essential part of the generating procedure in C looks like this, assuming the variables have

been declared, static tables k[256],w[256] and f[256] are setup, and SHR3, UNI are inline generators

of unsigned longs or uniform (0,1) variates, using the #define statements given below. The result is

a remarkably simple generating procedure, using a 32-bit integer generator such as SHR3, described

below:
for(;;){

j=SHR3; i=(j&255);

x=j*w[i]; if(j<k[i]) return x;

if(i==0) return x from the tail.

if( UNI*(f[i-1]-f[i]) < f(x)-f[i] ) return x;

}

The in�nite `for' is executed until one of the three return's provides the required x (better than 99%

of the time from the �rst return). The method works for any decreasing density, conveniently scaled

as f(x), for which a tail method can be provided. For symmetric densities, the right half is used and a

random � attached. The procedures di�er only in that di�erent f 's are used in the third return; three

tables k[256],w[256],f[256] need be constructed from that function and di�erent tail methods need

be provided.

Finally, before giving a C implementation that combines both an exponential and a normal generator,

we point out a feature of C, the #define statement, that provides inline access to a sequence of

expression evaluations, saving the overhead costs of calls to a procedure. For the ziggurat method, as

we have outlined it, the required variate is returned some 99% of the time after two table fetches and

a test on magnitude. If these steps could be done inline, the overall average running time would be

reduced. This can be done|if appropriate #define statements are used.

First, with all integers 32-bit unsigned long, one needs a #define statement that provides an inline

random number generator:

#define SHR3 (jz=jsr, jsr^=(jsr<<13), jsr^=(jsr>>17), jsr^=(jsr<<5),jz+jsr)

then the following #define statement provides inline generation of the fast part of the ziggurat method

for exponential variates:

#define REXP (j=SHR3, i=(j&255), (j<kz[i] ? j*wz[i] : efix()))

Here efix needs to be a procedure that returns a variate from the tail if i=0, or generates y in

f(xi�1) < y < f(xi) and returns x = j �wz[i] if y < f(x), or else starts all over. And jsr,i,j need to

be static variables. To avoid possible confusion with the commonly used variable names i and j, we

designate them iz,jz in the code below.

We now give a single C program for the ziggurat method. It provides inline generation of either

exponential (REXP) or normal (RNOR) random variables. To do this, we must have seperate arrays

for exponentials and normals: ke[256],we[256],fe[256],kn[128],wn[128],fn[128], initialized in a

single procedure, zigset, and seperate `�x' procedures that provide for generation when that 99%, the

inline part, does not provide an immediate value.

Here is C code that provides for both exponential and normal generators by means of inline REXP's

and RNOR's:
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#define SHR3 (jz=jsr, jsr^=(jsr<<13), jsr^=(jsr>>17), jsr^=(jsr<<5),jz+jsr)

#define UNI (.5 + (signed) SHR3 * .2328306e-9)

#define RNOR (hz=SHR3, iz=hz&127, (abs(hz)<kn[iz])? hz*wn[iz] : nfix())

#define REXP (jz=SHR3, iz=jz&255, ( jz <ke[iz])? jz*we[iz] : efix())

static unsigned long iz,jz,jsr=123456789,kn[128],ke[256];

static long hz; static float wn[128],fn[128], we[256],fe[256];

float nfix(void) { /*provides RNOR if #define cannot */

const float r = 3.442620f; static float x, y;

for(;;){ x=hz*wn[iz];

if(iz==0){ do{x=-log(UNI)*0.2904764; y=-log(UNI);} while(y+y<x*x);

return (hz>0)? r+x : -r-x;

}

if( fn[iz]+UNI*(fn[iz-1]-fn[iz]) < exp(-.5*x*x) ) return x;

hz=SHR3; iz=hz&127;if(abs(hz)<kn[iz]) return (hz*wn[iz]);

} }

float efix(void) { /*provides REXP if #define cannot */

float x; for(;;){

if(iz==0) return (7.69711-log(UNI));

x=jz*we[iz];

if( fe[iz]+UNI*(fe[iz-1]-fe[iz]) < exp(-x) ) return (x);

jz=SHR3; iz=(jz&255);

if(jz<ke[iz]) return (jz*we[iz]);

} }

/*--------This procedure sets the seed and creates the tables------*/

void zigset(unsigned long jsrseed) {

const double m1 = 2147483648.0, m2 = 4294967296.;

double dn=3.442619855899,tn=dn,vn=9.91256303526217e-3, q;

double de=7.697117470131487, te=de, ve=3.949659822581572e-3;

int i; jsr=jsrseed;

/* Tables for RNOR: */ q=vn/exp(-.5*dn*dn);

kn[0]=(dn/q)*m1; kn[1]=0;

wn[0]=q/m1; wn[127]=dn/m1;

fn[0]=1.; fn[127]=exp(-.5*dn*dn);

for(i=126;i>=1;i--) {

dn=sqrt(-2.*log(vn/dn+exp(-.5*dn*dn)));

kn[i+1]=(dn/tn)*m1; tn=dn;

fn[i]=exp(-.5*dn*dn); wn[i]=dn/m1; }

/* Tables for REXP */ q = ve/exp(-de);

ke[0]=(de/q)*m2; ke[1]=0;

we[0]=q/m2; we[255]=de/m2;

fe[0]=1.; fe[255]=exp(-de);

for(i=254;i>=1;i--) {

de=-log(ve/de+exp(-de));

ke[i+1]= (de/te)*m2; te=de;

fe[i]=exp(-de); we[i]=de/m2; } }

\begin{verbatim}

These comments apply to use of the above code:

� A main program must be provided, in which use of REXP or RNOR in an expression will provide

the required variate.

� Before such uses, the tables must be set up by means of a statement such as zigset(17235321);

with any (non-zero) unsigned long argument.
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� SHR3 uses an inline 3-shift shift register generator, and UNI 
oats it to (0,1). SHR3 is very fast,

has period 232 � 1 and does very well in tests of randomness|in particular for sequences made

from the last 8 bits.

SHR3 adds two successive terms of the sequence yn+1 = yn(I + L
13)(I + R

17)(I + L
5), with the

y
0

s viewed as 1� 32 binary vectors, L the 32� 32 matrix that causes a left-shift of 1, and R its

transpose. The resulting matrix T = (I +L
13)(I +R

17)(I +L
5) has order 232� 1 in the group of

non-singular 32� 32 binary matrices, ensuring that period for SHR3. (See Marsaglia and Tsay,

[10].)

5 Timings

We �nd that the ziggurat algorithm can provide RNOR or REXP, normal or exponential variates, at

about 15 million per second for CPU's operating at 400MHz. Exact timings vary, of course, with the

platform used and the compiler. We compared times for two other methods said to be fast: Leva [3] and

Ahrens-Dieter [1]. We used a 400 MHz Pentium II PC with two di�erent compilers: Microsoft Visual

C++ (MS) and GNU gcc with -O3 optimization. To provide a fair comparison, we used the fast inline

SHR3 or UNI wherever random integers or reals were needed. Times are in nanoseconds.

Method 400MHz, MS 400MHz, gcc

Leva [3] 307 384

Ahrens-Dieter [1] 161 193

RNOR 55 65

REXP 77 40

Speed is one of the criteria by which random variate generators are judged, but not the only one.

However, if a method is a record for speed, and at the same time comes from a simple generating

procedure, then it is worth considering among the many that have been put forward; we think the

ziggurat method is such a one.

6 Summary

Extremely fast and simple sampling from decreasing densities can be provided by covering, as in Figures

1 and 2, the decreasing density f(x) with layers of 255 equal-area rectangles such that the base, made

up of a smaller rectangle with the tail attached, has the same area, v, as each of the 255 rectangles.

The rectangle Ri has range 0 < x < xi, with 0 = x0 < x1 < � � � < x255, and with vertical range

f(xi) < y < f(xi�1).

The x's are related by

xi[f(xi�1)� f(xi)] = v; and rf(r) +

Z
1

r

f(x) dx = v; with r = x255:

The x's may be found by successively trying values for r = x255 until the process

v = rf(r) +

Z
1

r

f(x) dx and xi[f(xi�1)� f(xi)] = v; for i = 254; : : : ; 2; 1;

yields an x1 for which x1(f(0)� f(x1)) = v.

Implementation is made faster by using tabled values wi = xi=2
32, ki = b232(xi�1=xi)c and

fi = f(xi). The fast part, used about 99% of the time, can be implemented inline, for speed and

for the convenience of being able to produce a required variate by merely placing, for example, REXP

or RNOR in any expressions where such random variables are required.
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