
JSS Journal of Statistical Software
June 2012, Volume 49, Issue 9. http://www.jstatsoft.org/

RKWard: A Comprehensive Graphical User

Interface and Integrated Development Environment

for Statistical Analysis with R

Stefan Rödiger
Charité-Universitätsmedizin Berlin

Thomas Friedrichsmeier
Ruhr-University Bochum

Prasenjit Kapat
The Ohio State University

Meik Michalke
Heinrich Heine University Düsseldorf

Abstract

R is a free open-source implementation of the S statistical computing language and
programming environment. The current status of R is a command line driven interface
with no advanced cross-platform graphical user interface (GUI), but it includes tools for
building such. Over the past years, proprietary and non-proprietary GUI solutions have
emerged, based on internal or external tool kits, with different scopes and technological
concepts. For example, Rgui.exe and Rgui.app have become the de facto GUI on the
Microsoft Windows and Mac OS X platforms, respectively, for most users. In this paper
we discuss RKWard which aims to be both a comprehensive GUI and an integrated devel-
opment environment for R. RKWard is based on the KDE software libraries. Statistical
procedures and plots are implemented using an extendable plugin architecture based on
ECMAScript (JavaScript), R, and XML. RKWard provides an excellent tool to manage
different types of data objects; even allowing for seamless editing of certain types. The
objective of RKWard is to provide a portable and extensible R interface for both basic
and advanced statistical and graphical analysis, while not compromising on flexibility and
modularity of the R programming environment itself.

Keywords: GUI, integrated development environment, plugin, R.

1. Background and motivation

In mid 1993 Ihaka and Gentleman published initial efforts on the computing language and
programming environment R on the s-news mailing list. Ambitions for this project were to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Statistical Software

https://core.ac.uk/display/478955132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 RKWard: A Comprehensive GUI and IDE for R

develop an S-like language without inheriting memory and performance issues. The source
code of R was finally released in 1995, and since 1997 development has evolved under the
umbrella of the R Development Core Team (R Development Core Team 2001, 2012a; Ihaka
1998). R does not include an advanced cross-platform graphical user interface (GUI) as known
from other statistical software packages. However, R includes tools for building GUIs mainly
based on Tcl/Tk (Dalgaard 2001, 2002). Meanwhile a plethora of R GUIs have emerged
(see Grosjean 2010, for a comprehensive list). In 2005 John Fox released version 1.0 of
R Commander (Fox 2005, package Rcmdr), which can be considered a milestone in R GUI
development; it was the first GUI implementation that was able to make statistical tests, plots
and data manipulation easily accessible for R novices. John Fox stated that Rcmdr’s target
was to provide functionality for basic-statistical courses, though the features have increased
over time beyond this (Fox 2005, 2007). In November 2002 Thomas Friedrichsmeier started
the RKWard open-source software project with the goal to create a GUI for R based on KDE
(KDE e.V. 2012) and Qt (Nokia Corporation 2012) technologies 1.

The scope of RKWard is deliberately broad, targeting both R novices and experts. For the first
group, the aim is to allow any person with knowledge on statistical procedures to start using
RKWard for their everyday work without having to learn anything about the R programming
language, at least initially. At the same time, RKWard tries to support users who want
to learn and exploit the full flexibility of the R language for automating or customizing an
analysis. At the other end of the learning curve, RKWard provides advanced integrated
development environment (IDE) features to R experts to assist in writing R scripts. Yet,
the idea is that R experts too will benefit from the availability of task-oriented GUI dialogs,
such as when exploring an unfamiliar type of analysis or by allowing to implement routinely
performed tasks as a GUI element. In addition, many features like the integrated data editor
and the plot preview will be useful to R novices and R experts alike in their everyday work
(see Section 3).

RKWard provides a high level of transparency about the steps that are needed to perform
any supported task in R, in order to make it easy for the user to see complete codes for
all GUI actions2. In doing so, RKWard deliberately generates comparatively verbose code.
It avoids wrapping complex sequences of data manipulation or analysis into custom high-
level R functions. The task of providing high-level functions is logically independent of the
development of the GUI frontend, and should best be addressed in dedicated R packages, where
necessary. This approach allows to make better use of the modular design of R, avoids locking-
in users to a specific GUI application, and provides them with more options for customizing
the generated code patterns.

While RKWard tries to address users wishing to learn R, it is specifically not designed as
a teaching tool – such as Rcmdr (Fox 2005) or TeachingDemos (Snow 2012) – but as a
productive tool. Since its incarnation RKWard has gained acceptance for usage in peer-
reviewed publications (Zou and Tolstikov 2008, 2009; Rugg-Gunn, Cox, Ralston, and Rossant

1 KDE is a desktop environment and software collection based on Qt. In the context of this paper, the term
KDE is primarily used to refer to the programming library and runtime environment of KDE, rather than the
complete software collection. For an introduction to KDE as a programming library, see Faure (2000). Qt is
a C++-based cross-platform programming library with a focus on GUI development. For an introduction to
programming with Qt, see Blanchette and Summerfield (2008).

2 This distinguishes RKWard from R GUIs such as Red-R (Parikh and Covington 2010), which specifi-
cally aims to hide the complexities of the R programming language, following the concept of visual data-flow
programming (Sutherland 1966). In contrast, RKWard limits itself to generate R code from GUI settings.

Journal of Statistical Software 3

Linux / Unix / BSD only
Linux / Unix / BSD

MS Windows / (MacOS X)

August 2004: Alpha Stage
● Development resumed
● R engine running in a thread
● Support for multiple
 data.frames
● Two developers

2009: Porting to KDE4 & Qt4
● Porting to KDE4 and Qt4
● Qt3 branch continues to be
 maintained but no new features
 included
● Qt4 branch stabilized, and
 initial port to MS Windows platform

2010: Qt4 branch and new features
● Move from PHP to JavaScript back-end
● Stable running port on MS Windows
 platforms
● Proof of concept on Mac OS X
● New features (e.g. plot history)
● More options to script complex plugins

End of 2005
● Packages for major distributions (e.g. Debian,
 Fedora)
● Basic statistical tests available as plugins
● Addition of R console emulation and syntax
 highlighting

Years

End of 2002: Project starts
● Conceptual draft
● Low development efforts
● Development stopped
 after 0.1.0 release

2006: Accelerated Development
● Growing productive user base
● Inclusion of many plugins by
 external developers
● First localizations

End of 2009: close Qt3 branch
● No further feature inclusion
● Supported up to R 2.11.1
● Support ended with R 2.12.0

Figure 1: Timeline of important development milestones and changes in RKWard. Time is
presented on an arbitrary scale. Here Qt3 and Qt4 refers to the 3.x and 4.x versions of the
Qt libraries, respectively and KDE4 refers to the 4.x version of the KDE libraries.

2010; Yang, Liu, Liu, Qian, Zhang, and Hu 2011; Rödiger et al. 2011, 2012). Dialogs for
statistical procedures in RKWard do not necessarily show a one-to-one correspondence to the
underlying steps in R, but are rather oriented at statistical tasks. Furthermore, RKWard does
not impose artificial limitations on how users can work with the application. For example,
the user is not limited to using only one data.frame or one model at a time.

RKWard is designed to allow users to create custom GUI dialogs as plugins, requiring rel-
atively little programming knowledge. In essence, RKWard plugins consist of an XML file
describing the dialog layout, and ECMAScript code which generates R code from the settings
made in the GUI. Most of the data handling functionality in RKWard is implemented as
plugins (see Section 3.5), and many of these plugins have originated as user contributions.
Since version 0.5.5, RKWard also provides support for downloading user contributed “plugin
packs”, which are not included in the official RKWard releases. Details on the definition of
plugins, and a commented example can be found in the technical appendix of this article.

RKWard is licensed under the terms of the GNU General Public License Version 2 or higher.
However, due to its dependencies, RKWard binaries are effectively distributable only under
the terms of Version 2 of the license. Parts of the documentation are available under the GNU
Free Documentation License. Full terms and explanations of both licenses are available at
http://www.gnu.org/licenses/gpl.html and http://www.gnu.org/licenses/fdl.html,
respectively. While the project remains in constant development, a growing number of users
employs RKWard in productive scenarios. The source code, selected binaries and documenta-
tion is hosted at SourceForge (http://rkward.sourceforge.net/). Selected key milestones
of the development of RKWard are visualized in Figure 1.

In this paper we will give an overview over the installation process (Section 2), the main GUI
elements and features of RKWard (Section 3), and closing by a short example of a simple
RKWard session (Section 4). For readers interested in the technical design, and reasons for
certain design decisions, a technical appendix of this article is available.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/fdl.html
http://rkward.sourceforge.net/

4 RKWard: A Comprehensive GUI and IDE for R

2. Installation and platform availability

Contrary to some other R GUIs, such as Rcmdr, RKWard cannot be installed and started as
a regular R add-on package. Rather, it is started as a stand-alone application which embeds
the R engine, and needs to be installed in a platform dependent way, as detailed below3.
Besides the KDE runtime environment and R, RKWard utilizes a growing number of R add-
on packages. However, these do not have to be installed before hand. Rather RKWard
will prompt the user to install missing packages interactively, on an as-needed basis (see
Section 3.8).

2.1. Installation on the GNU/Linux platform

Historically, RKWard originated on the GNU/Linux platform, and binary packages are avail-
able for many major GNU/Linux distributions, including Debian, Ubuntu, OpenSuse, Gentoo,
Fedora, but also for other POSIX compliant systems such as FreeBSD (http://standards.
ieee.org/develop/wg/POSIX.html). The exact size of the installation is system dependent.
On Debian x86, the package is currently around 1.5 MB (megabyte) compressed, and 5.5 MB
uncompressed. However, if the KDE runtime environment is not yet installed, an installation
of RKWard may need several hundred MB of disc space.

On systems which provide up-to-date packages of R and KDE, compilation from source is
generally unproblematic. Instructions are provided at http://p.sf.net/rkward/compiling.

2.2. Installation on Microsoft Windows

RKWard will run on Windows XP, Windows Server 2003, Vista, and Windows 7. 32-bit
binaries are provided by the project (download links and instructions are provided at http:

//p.sf.net/rkward/windows). Users can choose between a small installer (1.7 MB), which
will add RKWard to pre-existing installations of R and KDE, and an installation bundle,
which provides RKWard, R, and KDE. This bundle just needs to be unpacked to any user-
writable folder, and can be run without any further steps of installation. When using this
bundle, RKWard can also be installed to removable storage devices (e.g., USB sticks) and
shared between systems. Its configuration settings are stored in the user’s home directory,
and will not be shared across systems, unless the user takes further steps. The size of the
current installation bundle is 132 MB compressed, and around 670 MB installed.

Source installation on the Microsoft Windows platform is comparatively difficult, since various
tools need to be installed (see http://sourceforge.net/apps/mediawiki/rkward/?title=

RKWard_on_Windows/Packaging for details).

2.3. Installation on Mac OS X

At the time of writing, the developers lack the resources to support a Mac OS X port,
and especially to provide binaries for Mac OS X. Although RKWard has been successfully
compiled and installed on the Mac, and appeared to be mostly functional, there have also
been unresolved reports of failure to compile or start RKWard on Mac OS X. Since the KDE
project currently does not offer binaries for Mac OS X, installation of RKWard also requires
compilation of the KDE runtime environment and its dependencies from source, which takes

3 See http://p.sf.net/rkward/download for an overview and platform specific download links.

http://standards.ieee.org/develop/wg/POSIX.html
http://standards.ieee.org/develop/wg/POSIX.html
http://p.sf.net/rkward/compiling
http://p.sf.net/rkward/windows
http://p.sf.net/rkward/windows
http://sourceforge.net/apps/mediawiki/rkward/?title=RKWard_on_Windows/Packaging
http://sourceforge.net/apps/mediawiki/rkward/?title=RKWard_on_Windows/Packaging
http://p.sf.net/rkward/download

Journal of Statistical Software 5

many hours to complete on current systems. Further, RKWard’s graphics device window
related features (see Section 3.6) are only available when compiling and using KDE and
RKWard in X11 mode. In conclusion, RKWard on Mac OS X is not suitable for most users
in its current state.

2.4. Starting RKWard

RKWard cannot be loaded from within an R session, but is rather started as a stand-alone
application with an embedded R engine. To facilitate the first steps for new users, a dialog
offers the choice to load an existing workspace, to start with an empty workspace, or to create
a new data.frame and open that for editing. Also, an overview help page is shown in the
document area of the main window. Both these start-up features can be turned off.

3. Main elements of the user interface

This section gives an overview of the main user interface elements and features of RKWard.
For a use case oriented example of an RKWard session, see Section 4.

The default layout4 of the main application window is divided into five parts, as depicted
in Figure 2. The top of the window is occupied by menu bar and toolbar (Figure 2A). The
content of both bars is partially context sensitive, e.g., the Edit menu will offer one set of
actions when the current document window is a data editor, and another set of actions for a
R script editor window. To ease orientation, all top level menus remain persistent, even if no
actions are available for that menu in the current context. The menu bar of the main window
is also the central access point to most data import, manipulation, analysis, and visualization
features (see Section 3.5) for which RKWard provides a GUI interface.

A status bar is shown at the bottom of the window (Figure 2E). It displays (from right to
left) a Stop-button to interrupt the current computations, the status of the R engine (busy
or idle), the current working directory, and a multi purpose region for additional information
on some menu items and other GUI elements, visible when hovering the mouse pointer over
them.

The RKWard GUI generally follows an MDI (multiple document interface) approach. Doc-
ument windows (object summaries, Section 3.1; script editors, Section 3.2; spreadsheet-like
data editors, Section 3.4; results output, Section 3.7; help pages, Section 3.10; and also R
on-screen graphics devices, Section 3.6) are arranged in a TDI (tabbed document interface;
see e.g., Hopkins 2005; Microsoft Developer Network 2010; Kim and Lutteroth 2009) in the
central area (Figure 2C). The order of tabs can be conveniently re-arranged using drag &
drop.

Additionally, several tool windows are available form resizable sub-panes at the four sides5.
By default, the left panel (Figure 2B) contains a file browser (see Section 3.9) and a workspace
browser (see Section 3.1), the bottom panel (Figure 2D) contains a command log (Section 3.9),
an R console (Section 3.3), and a help search (Section 3.10) window. The top and right sub-
panes are not populated by default.

4 Many aspects of the RKWard GUI can be customized by the user. For simplicity we will describe the
default appearance of RKWard, only.

5 This combination of a tabbed-document interface and sub-panes is sometimes referred to as an “IDE-style”
interface, due to its usage in popular IDEs such as Eclipse (Burnette 2005) or KDevelop (KDevelop.Org 2011).

6 RKWard: A Comprehensive GUI and IDE for R

Figure 2: Default RKWard main window after start up. (A) Menu bar and toolbar, (B)
tool panel showing workspace browser, (C) document view area, showing different documents
(welcome message, data.frame“my.data”, “mean” help page, R script demo.R), (D) tool panel
showing embedded R console, and (E) status bar with an option to stop running processes.
Panels B and D can be resized or collapsed. The red border around B indicates that the
workspace browser is the active interface element.

Users can also detach all types of document windows and tool windows from the main ap-
plication window, which will then appear as independent windows, managed by the window
manager, or re-attach them to the main window. This is to allow users to take advantage of an
SDI (single-document interface), where useful, such as the ability to view any two documents
side-by-side, or to make better use of multiple displays. On-screen graphics device windows
are created detached by default, but can be attached to the document view area of the main
window.

Windows can be selected (or shown / hidden) using a mouse device with point & click, as
well as using a series of keyboard shortcuts (defined by default) for activating specific tool
windows, or for cycling through all windows in the order of most recent usage6.

All key bindings can be configured from the GUI via Settings→Configure Shortcuts.
However, for technical reasons only the shortcuts of currently active components will be listed.
Thus, for example, to configure data editor shortcuts, one has to open a data editor first
and then to select Settings→Configure Shortcuts. Since RKWard relies on the RKWard

6 This uses the shortcut Ctrl+Tab by default, and behaves similar to the Alt+Tab feature of common window
managers. The difference is that this cycles through RKWard windows, only, including both detached windows,
and windows which are attached inside the main application window.

Journal of Statistical Software 7

editor component, shortcuts for the script editor (Section 3.2) are managed separately via
Settings→Configure Editor→Shortcuts. On most systems, it is also possible to configure
shortcuts by right-clicking on the respective menu item.

The choice of available actions on the toolbar can be configured via Settings→Configure

Toolbars. Further, it is possible to add and remove sets of data manipulation and analysis
features from the GUI, using Settings→Configure RKWard→Plugins.

3.1. Workspace browser and object viewer

The workspace browser (Figure 2B) allows to view and manipulate R objects, similar to a
regular file-system browser. This includes both, user objects (data, functions, environments)
in .GlobalEnv and non-user objects in other environments in the R search path (typically, R
package environments). Objects are shown in a hierarchical tree structure. For instance, an
object of class list can be expanded to show all contained objects by clicking on the + symbol
left of the object name. The basic type of each object is indicated by specific icons7. Further
information on each object can be seen by hovering the mouse pointer over the respective
icon. A tooltip window will appear, including information such as dimensionality or function
arguments, depending on the type of object. Further, objects inside .GlobalEnv can be
removed, renamed, and edited from the context menu.

Several actions are available from a context menu (after right-clicking on the object names),
depending on the type of object. These allow to search the R help for information on that
object, to open a window with detailed information on the object, to delete, rename or
copy the object to a new symbol name, or to copy it to .GlobalEnv. Further, the context
menu allows to open supported types of objects for editing (see Section 3.4; currently, only
data.frames can be edited, and only while they exist in .GlobalEnv). Selecting View from
the context menu opens a new window in the document area, containing basic information
on the object as well as tabs which show the output of print() and summary() calls.

Literally hundreds or even thousands of objects are present in a typical R session. This can
be overwhelming at first, therefore, the workspace browser has options to show only a certain
subset of objects, e.g., only functions or only data objects, including or excluding hidden
objects (object names starting with a “.”), or showing only the contents of .GlobalEnv as
opposed to all environments in the search path.

An object list similar to the workspace browser (but showing only .GlobalEnv by default) is
also used in several places for the selection of objects to work with, e.g., in an analysis plugin
(see Section 3.5).

3.2. Code editor

RKWard comes with an advanced R script editor, based on the KDE advanced text editor
component (Kate; http://kate-editor.org/). Features of this editor include syntax high-
lighting (both on screen and in printouts; for R and many other script types), code folding,
block-wise indentation adjustments or commenting, automatic brackets, search and replace
with plain text or regular expressions, and many more. Further, Kate can be extended by
customized actions implemented in ECMAScript (Haumann 2010). The editor automatically

7The workspace browser indicates the types “Number”, “Factor”, “String”, and “Logical” for the data.frame

“my.data” (Figure 2B).

http://kate-editor.org/

8 RKWard: A Comprehensive GUI and IDE for R

Figure 3: Code hinting features of the script editor. The script editor is able to hint (A) R
object names and (B) function arguments.

Figure 4: Paste special dialog. This tool allows to paste data (e.g., tabular, text) from the
clipboard, directly to an R script and therefore accelerates the work process with data from
different sources like spreadsheet applications.

saves snapshots of the currently edited files at configurable intervals.

For interaction with R, the editor has predefined shortcuts (and toolbar icons) for submitting
the current line, the current selection, predefined blocks, or the entire document to the R
engine for evaluation. It also offers object name completion and function argument hinting
(Figure 3A and B) based on the objects present in the R workspace8. A further feature specific
to the R language is the Paste Special action, which allows to paste the clipboard content
(e.g., from a separate spreadsheet application) as a single string, vector, or matrix, suitable
for inclusion in an R script, optionally transforming it in advance (Figure 4).

Script editor windows can be created by opening an existing R script file from the file browser
or the File menu. It can also be invoked from R, e.g., using the file.edit(), file.show(),
or fix() commands.

3.3. Using the R console

For users with knowledge of R, RKWard provides direct access to the embedded R engine in
the R console tool window. It is important to understand that technically this is an emulation

8The object name completion and function argument hinting features in RKWard predate the inclusion of
similar features into the core R distribution. For this reason, they are technically based on different mechanisms.

Journal of Statistical Software 9

Figure 5: RKWard with several data.frames in use at the same time. (A) One data.frame

(CO2 data of the datasets package) is opened for editing in the main window. Two further
data.frames are opened in the background in tabs. (B) Another data.frame (ChickWeight)
is opened in a detached window. (C) R’s standard data editing features (e.g., fix(), edit())
are also usable in RKWard. In this example fix(DNase) was invoked from the console
(arrow).

of R running in a console session, not a real R session. This leads to a few subtle differences,
e.g., with respect to the command history feature in R.

However, for most purposes RKWard’s R console can be used exactly like R running in a
terminal. Adding to that, it provides many of the features which are also available in the
code editor (see Section 3.2). Most prominently, it supports syntax highlighting, code folding,
function argument hinting, object name completion, and pasting vector or matrix data directly
from the clipboard. By default, any code that is submitted to the R engine from the code
editor or from help pages, is sent through the R console. However, it can be configured to be
submitted in the background, instead.

3.4. Spreadsheet-like data editor

Historically, one of the earliest features of RKWard is a built-in spreadsheet-like data editor.
Currently, editing R objects of type data.frame is possible. In contrast to the data.frame

editing shipped with the R core distribution, this editor gives the illusion of “in-place” editing
of data. New data.frames can be created and opened from the GUI, and existing objects
can be opened for editing from the workspace browser. For opening objects from R code, the
function rk.edit() can be used. Figure 5 shows multiple data.frames open for editing.

10 RKWard: A Comprehensive GUI and IDE for R

Metadata on each column of a data.frame (i.e., name of the column, data type, and poten-
tially data labels) is shown in the upper portion of the data editor, and can be manipulated
there, while the data itself is shown in the lower portion. The upper portion can be hidden
using a slider, to save space for the display and editing of actual data. Similarly, an editable
column showing the row names of the data.frame can be shown or hidden separately from
the data.

For columns of type factor, factor levels can be edited by double-clicking on the Levels row
of the meta information. Levels can also be assigned to other types of variables, but only for
consecutive integer values. These levels will be displayed instead of the underlying value, if
applicable. Each column can also be assigned an arbitrary descriptive “Label”, which is stored
in R as an attribute of the column.

Contrary to many other editors, the data editor in RKWard does not automatically convert
data types of columns. For instance, if a non-numeric string is entered into a cell of a numeric
column, the data type of the column remains numeric, and the entered value is highlighted
in red. Internally, the invalid cell is set to NA. The entered value is stored separately, in an
attribute of the column. The rationale for this approach is that it offers protection against
accidental, and probably undetected, conversion of data types. The user can manually convert
the storage mode of a column by simply selecting a different data type in the “Type” row of
the meta information.

The data editor supports insertion and deletion of rows or columns at arbitrary positions.
Rows (columns) can also be added at the bottom (right) by simply entering data into the
trailing row (column) shown in gray. Copy & paste is supported, where the area affected by
paste operations can optionally be constrained to the selected region, or to the dimensions of
the table. The data editor can also be set to read-only mode to examine data objects.

In the context of data editing, it is noteworthy that RKWard supports working with multiple
objects simultaneously, rather than limiting actions to a single active data.frame, as with
e.g., Rcmdr or Deducer (Fellows 2012). Given this non-modal interface design, multiple data
editor windows can be opened at once (Figure 5).

3.5. Handling, manipulating, and analyzing data

Dealing with data – i.e., importing, transforming, filtering, analyzing, and visualizing – is the
core strength of R, and one central goal of RKWard is to make the most of this functionality
available to a broader audience by providing it in the form of easy to use GUI dialogs. Since
the data handling functionality itself is provided by R and its numerous add-on packages,
this can basically be accomplished by defining GUI dialogs, generating R code according to
the settings made in the GUI, and having the generated code evaluated by the R engine.
This general pattern, implemented as plugins, is the basic recipe for most of the functionality
provided by RKWard (see the technical appendix of this article for details on the definition of
plugins). For the purpose of this article we will look at the standard elements of data handling
functions by an example of importing comma-separated values (CSV) data9. Further examples
are given in Section 4.

9 Note that on purpose, RKWard does not have its own file format for data import and export, but rather
uses R workspaces as default data format. Additionally, it is possible to import data from several sources as
described in this section. Of course, further formats can also be imported using copy & paste (see Sections 3.2
and 3.4), or by manually entering appropriate R commands in the R console (Section 3.3).

Journal of Statistical Software 11

Figure 6: General data import dialog. Useful defaults for a variety of formats can be set using
the Quick Mode selector on the left. Further customizations can be done from the Rows and

Columns and Further Options tabs. The code in the bottom area can be copied and used
for other purposes.

At the time of writing, RKWard provides support for importing SPSS, Stata, and “delim-
ited text” data. Internally, RKWard relies on standard R functions and the package foreign
(Murdoch 2002) for reading these data files. To import CSV data, select File→Import

format→Import Text→CSV data from the menu. This will open the dialog shown in Fig-
ure 6. The central area of this dialog provides options to control the import. The File

name field is highlighted, to indicate that it is required to specify a file before the dialog can
proceed. Further options are available from the tabbed pages of the central area.

The right-side area is common to all data handling dialogs. Here the Submit button is used
to start the import action. It is enabled once all required settings have been made, i.e., in
this case, once a file name has been selected. The Close button will close the dialog without
taking any action.

The bottom area optionally shows the R code corresponding to the current settings which will
be run upon pressing the Submit button (see Section 4.1 for generated R code). The code
display is hidden by default and can be revealed using the Code button. This generated code
display is updated dynamically as the user changes settings, allowing to see the effect of each
change instantly.

Most data handling functions will produce some output, which is sent to the output win-
dow. From there it is possible to repeat the action by clicking on the Run again-link (see
Section 3.7).

12 RKWard: A Comprehensive GUI and IDE for R

3.6. Graphics window and plot previews

For plotting, RKWard relies on the graphics capabilities provided by R. All R devices, includ-
ing on-screen devices, can be used in the regular way. However, for the X11() and windows()

devices, RKWard adds a menu bar and a toolbar to the device windows (on the Microsoft
Windows platform, replacing the default menu bar provided by the device). The menu bar
and toolbar give access to a number of different functions, including GUI dialogs for exporting
the current plot, and adding a grid to an existing plot (works on only certain types of plots).

Further, a history mechanism is provided, which stores created plots automatically and allows
to navigate back to earlier plots (Figure 7). The history is available as a drop-down list of the
plot calls as well as using typical back and forward buttons on the toolbar. The maximum
number of plots to record, as well as the maximum size of each individual plot, is configurable
from the settings menu. This plot history is shared between all open on-screen device windows,
yet they behave independently. For example, if multiple devices display the same plot, any
modification (including deletion) of the plot on one device renders its instances on other
devices as “new” and hence can be added back to the plot history. In addition, duplicating or
closing a device window records any unsaved plots to the history.

Figure 7: On-screen graphics device window in RKWard. The plot history is available as a
drop-down list, allowing to jump directly to a previous plot. In this example, five different
plots were performed on the same data set of a random sample (rnorm()). The plot can be
exported via Device→Export as described in Section 4.3.

Journal of Statistical Software 13

Further, RKWard provides access to different plotting functions using GUI dialogs, available
from the Plots menu. Wherever appropriate, RKWard supports a “plot preview” feature.
When the Preview box of the respective dialog is checked, a device window is opened, which
shows the plot as it would be created with the current settings (see Section 4.3 for an exam-
ple). The preview is updated automatically as the user makes changes, allowing to see the
effect of each setting instantly10. For example, the central limit theorem plugins under the
Distributions menu can be very helpful to dynamically “show” the convergence in distri-
bution while teaching. For the sake of simplicity, such preview plots are not added to the
history.

3.7. Results output

While all basic mechanisms of capturing and documenting R output can also be used, RKWard
provides a dedicated output file and a output window for documenting the results. All GUI-
driven data handling functions (see Section 3.5) write their output to this file. The same
applies to error messages, in case a plugin fails to perform its task. The output is presented
in a journal format11. All results are presented sequentially with the last performed task at the
bottom. It is also possible to write to the output directly from R scripts by using a number of
dedicated R functions included in the rkward package (part of RKWard). For the GUI-driven
data handling functions, the output is standardized to include the name of the feature, the
date and time of its execution, and other basic parameters, wherever applicable. Further, a
clickable Run again link is rendered below the output of each data handling feature, which
allows to invoke the same feature again with identical parameters12 (see Figure 8). Thus,
the Run again feature combines the documentation of the result with an automated way to
conduct the same analysis again on new data, providing benefits similar to, for example, the
automated report generation available from RReportGenerator (Raffelsberger et al. 2008).

The formatting of output is kept to a minimum. In particular, RKWard is very reluctant
to round numerical results for the sake of a pretty output. Rather, the focus is on making
the results easily accessible for further processing, typically in a dedicated word processor.
Output is based on HTML, and the raw HTML file and any images therein can be directly
retrieved from a dedicated folder (by default, this is a folder named .rkward inside the user’s
home folder). It is also possible to select and copy sections of the output directly from the
output window, and to paste them into office applications as richly formatted text; even
images and tables can be easily copied by drag & drop to many office applications. In future
releases, it is planned to integrate RKWard with existing office suites. This will possibly also
mean addition of different file formats such as Open Document Format and technologies such
as Sweave and odfWeave (Leisch 2002; Kuhn 2006).

Images contained in the output are stored as portable network graphics (PNG; http://www.
libpng.org/pub/png/) by default, but JPEG (http://www.jpeg.org/jpeg/index.html)
and scalable vector graphics (SVG; http://www.w3.org/Graphics/SVG/) can also be used.
Similarly, the size of images can be configured by the user. It is expected that SVG will
become the default output format eventually, but currently some SVG files produced by R

10The preview is updated asynchronously to keep the GUI responsive; see also the technical appendix of this
article.

11Note: The font size of the output can be adjusted from the menu.
12In case not all parameters could be reused, e.g., because some of the objects in question are no longer

available, the user will be notified.

http://www.libpng.org/pub/png/
http://www.libpng.org/pub/png/
http://www.jpeg.org/jpeg/index.html
http://www.w3.org/Graphics/SVG/

14 RKWard: A Comprehensive GUI and IDE for R

Figure 8: Sample contents of the output window. Upper portion: Result of analyzing sample
data (from the DNase and ChickWeight datasets of the datasets package) in the “Descrip-
tive Statistics” plugin. Standard elements of plugin output include a standardized header,
and a Run again-link, which allows to repeat the analysis with identical or similar parame-
ters. Lower portion: A custom heading added using the rk.header() function, and a short
transcript of R code with corresponding output.

are not properly rendered by older supported versions of the KDE libraries.

Users can also add custom content to the output window using rk.header(), rk.print(),
and some related functions. Further, custom R code as well as the corresponding R output
can easily be documented in the RKWard output window, including syntax highlighting (see
the lower portion of Figure 8).

3.8. Package management

The number of R packages available from the Comprehensive R Archive Network (CRAN),
Omegahat (http://www.omegahat.org/) and Bioconductor (Gentleman et al. 2004) has
grown exponentially since R 1.3.0 (2001) to R 2.7.0 (2008) (Fox 2008; Ligges 2003; Visne
et al. 2009). RKWard utilizes functionality from a growing number of these packages, but
avoids making the installation of all supported packages a pre-requirement to using RKWard
at all. Only once a not yet installed package is required to conduct a certain action, a package
management dialog is invoked automatically, which allows to download and install the pack-
age from a repository such as CRAN. The package management dialog can also be invoked
manually from the menu (Settings→Configure Packages) for installing new or updating

http://www.omegahat.org/

Journal of Statistical Software 15

existing R packages. The underlying package management technology is that of R (Ligges
2003; Ripley 2005).

RKWard supports installing packages to any user writable location. If no current library
location is user writable, RKWard offers to create a new one. On Unix systems, interactively
acquiring root privileges for installation to the system-wide libraries is also supported. The
installation process itself can be monitored at the interface for error tracking. At the time of
writing, RKWard has no built-in tools for the interactive exploration of R packages. However,
it is possible to invoke external helpers as reported elsewhere (Zhang and Gentleman 2004).

3.9. Further tool windows

The file browser tool window can be used to open supported file types (e.g., R scripts, HTML
files) inside the main RKWard window. For unsupported file types (such as portable document
format; PDF), the system’s default external applications are used.

The command log window contains a log of the commands that have been evaluated by the
R engine, and any output produced by these commands. By default, the log shows only
commands which have been entered by the user or directly correspond to user actions, but it
can be configured to include commands which are run for RKWard’s internal purposes such
as keeping the workspace browser up to date.

Commands can be submitted while the R engine has not yet started, or while another lengthy
calculation is still in progress. In these cases, commands are placed into a queue first, and
executed as soon as the R engine becomes available. The pending jobs window (not shown
in the tool area by default) lists current R commands waiting for evaluation by the R engine.
While this window is mostly of interest to application developers for diagnostic purposes, it
can also be used to interrupt selected commands.

3.10. Help system

RKWard provides access to both R specific and RKWard specific help pages. R specific
documentation includes help pages for functions and packages and the various R manuals.
RKWard specific documentation consists of help pages on RKWard in general and on specific
GUI dialogs13. All these various types of help pages can be browsed in the same document
window, and can be cross-linked. For example, help pages for RKWard GUI dialogs will typi-
cally link to documentation for both related RKWard dialogs and the underlying R functions.
An arbitrary number of help windows can be browsed simultaneously, in the TDI view area
(see Figure 2C) or in detached windows.

A central access point to the help system is the Help menu. Further, help pages on RKWard
GUI dialogs can be accessed from the dialog itself using the Help button. A useful (“reverse”)
feature here is that these pages include a link near the top of the page to start the correspond-
ing GUI dialog directly. Help on R specific functions can be invoked from multiple places,
such as, the context menu of the workspace browser, by pressing F2 (function reference) while
the cursor is on a function name either in the code editor or in the R console, and of course, by
using the R help() command. In addition, a tool view window is provided as an interface to
the help.search() command in R. This allows to search all installed, all loaded, or specific
R packages for a specified topic.

13For technical background of RKWard GUI help pages please refer to the technical appendix of this article.

16 RKWard: A Comprehensive GUI and IDE for R

The help browser window is based on the KDE HTML viewer component and supports many
standard features like increasing or decreasing the font size and searching text within a page.
Additionally, R code inside a help page can be sent to the R engine for evaluation by selecting
it and pressing F8 (or via Run→Run Selection).

4. Using RKWard: An example session

This section describes an example RKWard session, in order to give an idea of what working
with RKWard is like in practice. The session is organized along the routine tasks of importing,
analyzing, and visualizing data. In this example, it is assumed that an experimental treatment
was given to 20 test subjects. The objective is to compare the responses before and after the
treatment.

4.1. Importing data

Suppose that the data was saved as or exported to CSV format, for example, from a spread-
sheet application. RKWard’s import plugin can comfortably read it into a new R object. The
import dialog (File→Import→Import format→Import Text/CSV data; Figure 9A) assists
in reading the data by a common point & click interface. In this example, “comma” and
“period” were chosen via Quick mode as the field separator and decimal point characters
respectively. The generated R code can be revealed by clicking on the Code button:

read.csv(file = '/media/software/experiment.txt',

na.strings = 'NA', nrows = -1, skip = 0,

check.names = TRUE, strip.white = FALSE, blank.lines.skip = TRUE)

Checking the Edit Object box automatically opens a data editor tab showing the imported
data (Figure 9B).

Figure 9: (A) CSV import dialog. Useful defaults for a variety of common text separated
value formats can be set using the Quick Mode selector on the left. Beyond that, many
options can be customized. (B) Data editor. The imported CSV data from experiment.txt

are presented (data visually trimmed).

Journal of Statistical Software 17

4.2. Conducting a Student’s t test

To test the hypothesis that the given treatment significantly increased the response, a Stu-
dent’s t test for a paired sample is conducted using the Analysis→Means→t-Tests→Two

variable t-Test plugin. In the object browser on the left side, the two variables from the
expanded R object containing the table of imported data are selected (Figure 10). Pressing
the Submit button conducts the test, and opens the output document tab showing the results,
including the date of analysis and relevant test parameters (Figure 11).

4.3. Creating a plot

To visualize the data, Boxplot is chosen from the Plots menu and the two variables, cor-
responding to the Student’s t test above, are selected. The dialog allows to define custom
variable labels (Figure 12). Checking the Preview box opens a graphics window showing the
boxplot as it is configured, and updates the window in real time on any changes to plot pa-
rameters. The plot can also be exported to several image formats, directly from the preview
window (Figure 13).

Figure 10: Student’s t test dialog for two variables. The bottom area shows the R code
corresponding to the settings.

18 RKWard: A Comprehensive GUI and IDE for R

Figure 11: Results of conducting a Student’s t test in tabular HTML format.

Figure 12: Boxplot dialog. The first tab Variables is used to select the variables for analysis.
It is possible to combine any data present in .GlobalEnv. The second tab Options allows
further adjustments (e.g., the addition of mean and standard deviation) to the plot (not
shown).

5. Conclusion and outlook

In this article we have introduced the RKWard GUI to R. RKWard provides features ranging
from easy to use dialogs for common statistical procedures targeted at R novices, to advanced
IDE features targeted at R experts.

RKWard aims to empower users of all knowledge levels to make more efficient use of the R
programming language, while carefully avoiding to lock in users to a specific GUI solution.
In particular, RKWard

� Provides full transparency about the R code that is used to carry out tasks.

� Avoids introducing RKWard-specific R functions for central functionality (but uses some
for output formatting).

� Avoids hard dependencies on third-party R packages.

Journal of Statistical Software 19

Figure 13: Plotted data and plot export dialog. The export dialog (Device→Export) provides
numerous options like resolution and size for different vector formats (e.g., SVG, PDF) and
pixel formats (e.g., PNG, JPEG). (Note: For the shown figure, the optional mean (�) and
standard deviation (+) parameters were selected in the boxplot plugin.)

� Uses standard R formats (see R Development Core Team 2012b) for data storage, and
open standards (HTML, PNG, SVG) for storage of output.

Future versions of RKWard will continue to add value for both groups of users. Planned
features include an enhanced interface for debugging R code, support for editing more types
of data, and the ability to connect the RKWard GUI to a remote R engine. Perhaps most
importantly, RKWard will gain many new graphical dialogs for manipulation, analysis, and
visualization of data. The ability to develop these dialogs as plugins allows to develop and
distribute GUI dialogs independently of the RKWard core application, allowing any user to
help in enhancing RKWard, without in-depth programming knowledge.

Acknowledgments

The software RKWard, presented in this paper, is currently developed by Thomas

20 RKWard: A Comprehensive GUI and IDE for R

Friedrichsmeier (lead developer), Prasenjit Kapat, Meik Michalke, and Stefan Rödiger. Many
more people have contributed, or are still contributing to the project in various forms. We
would like to thank (in alphabetical order) Adrien d’Hardemare, Daniele Medri, David Sibai,
Detlef Steuer, Germán Márquez Mej́ıa, Ilias Soumpasis, Jannis Vajen, Marco Martin, Philippe
Grosjean, Pierre Ecochard, Ralf Tautenhahn, Roland Vollgraf, Roy Qu, Yves Jacolin, and
many more people on rkward-devel@lists.sourceforge.net for their contributions.

The first two authors of this article have contributed equally, and both are available for corre-
spondence pertaining to this article. Questions and comments regarding the software RKWard
should be addressed to the project’s main mailing list, rkward-devel@lists.sourceforge.
net.

References

Blanchette J, Summerfield M (2008). C++ GUI Programming with Qt 4. 2nd edition. Prentice
Hall.

Burnette E (2005). Eclipse IDE Pocket Guide. O’Reilly Media.

Cullmann C (2012). KatePart. URL http://kate-editor.org/about-katepart/.

Dalgaard P (2001). “A Primer on the R-Tcl/Tk Package.” R News, 1(3), 27–31. URL
http://CRAN.R-project.org/doc/Rnews/.

Dalgaard P (2002). “Changes to the R-Tcl/Tk Package.” R News, 2(3), 25–27. URL http:

//CRAN.R-project.org/doc/Rnews/.

Ettrich M, Taylor O (2002). XEmbed Protocol Specification Version 0.5. URL http://

standards.freedesktop.org/xembed-spec/xembed-spec-latest.html.

Faure D (2000). “Creating and Using Components (KParts).” In D Sweet (ed.), KDE 2.0
Development. Sams, Indianapolis.

Fellows I (2012). “Deducer: A Data Analysis GUI for R.” Journal of Statistical Software,
49(8), 1–15. URL http://www.jstatsoft.org/v49/i08/.

Fox J (2005). “The R Commander: A Basic-Statistics Graphical User Interface to R.” Journal
of Statistical Software, 14(9), 1–42. URL http://www.jstatsoft.org/v14/i09/.

Fox J (2007). “Extending the R Commander by “Plug-In” Packages.” R News, 7(3), 46–52.
URL http://CRAN.R-project.org/doc/Rnews/.

Fox J (2008). “Editorial.” R News, (2), 1–2. URL http://CRAN.R-project.org/doc/Rnews/.

Friedrichsmeier T, Michalke M (2011). Introduction to Writing Plugins for RKWard. URL
http://rkward.sourceforge.net/documents/devel/plugins/index.html.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier
L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C,
Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang

rkward-devel@lists.sourceforge.net
rkward-devel@lists.sourceforge.net
rkward-devel@lists.sourceforge.net
http://kate-editor.org/about-katepart/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://standards.freedesktop.org/xembed-spec/xembed-spec-latest.html
http://standards.freedesktop.org/xembed-spec/xembed-spec-latest.html
http://www.jstatsoft.org/v49/i08/
http://www.jstatsoft.org/v14/i09/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://rkward.sourceforge.net/documents/devel/plugins/index.html

Journal of Statistical Software 21

J (2004). “Bioconductor: Open Software Development for Computational Biology and
Bioinformatics.” Genome Biology, 5, R80. URL http://genomebiology.com/2004/5/10/

R80.

Grosjean P (2010). “R GUI Projects.” URL http://www.R-project.org/GUI.

Haumann D (2010). “Kate: Scripted Actions.” URL http://kate-editor.org/2010/07/

09/kate-scripted-actions/.

Helbig M, Urbanek S, Fellows I (2011). JGR: Java Gui for R. R Package Version 1.7-9, URL
http://CRAN.R-project.org/package=JGR.

Hopkins D (2005). “HyperTIES Hypermedia Browser and Emacs Authoring Tool for NeWS.”
URL http://www.donhopkins.com/drupal/node/101.

Ihaka R (1998). “R: Past and Future History.” In S Weisberg (ed.), Proceedings of the 30th
Symposium on the Interface, pp. 392–396. The Interface Foundation of North America.
URL http://CRAN.R-project.org/doc/html/interface98-paper/paper.html.

Jarvis S (2010). “KDE 4 on Windows.” Linux Journal, 2010.

KDE eV (2012). About KDE. Berlin. URL http://www.kde.org/community/whatiskde/.

KDevelopOrg (2011). KDevelop. URL http://www.kdevelop.org/.

Kim J, Lutteroth C (2009). “Multi-Platform Document-Oriented GUIs.” In G Weber, P Calder
(eds.), Tenth Australasian User Interface Conference (AUIC 2009), volume 93 of CR-
PIT, pp. 31–38. ACS, Wellington, New Zealand. URL http://crpit.com/confpapers/

CRPITV93Kim.pdf.

KOfficeOrg (2010). KWord. URL http://www.koffice.org/kword/.

Kuhn M (2006). “Sweave and the Open Document Format – The odfWeave Package.” R
News, 6(4), 2–8. URL http://CRAN.R-project.org/doc/Rnews/.

Lecoutre E (2003). “The R2HTML Package – Formatting HTML Output on the Fly or by
Using a Template Scheme.” R News, 3(3), 33–36. URL http://CRAN.R-project.org/

doc/Rnews/.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W Härdle, B Rönz (eds.), COMPSTAT 2002 – Proceedings in Computational Statistics,
pp. 575–580. Physica-Verlag, Heidelberg.

Ligges U (2003). “R Help Desk: Package Management.” R News, 3(3), 37–39. URL http:

//CRAN.R-project.org/doc/Rnews/.

Microsoft Developer Network (2010). “Microsoft Developer Network.” URL http://msdn2.

microsoft.com/en-us/library/ms997505.aspx.

Murdoch D (2002). “Reading Foreign Files.” R News, 2(1), 2–3. URL http://CRAN.

R-project.org/doc/Rnews/.

http://genomebiology.com/2004/5/10/R80
http://genomebiology.com/2004/5/10/R80
http://www.R-project.org/GUI
http://kate-editor.org/2010/07/09/kate-scripted-actions/
http://kate-editor.org/2010/07/09/kate-scripted-actions/
http://CRAN.R-project.org/package=JGR
http://www.donhopkins.com/drupal/node/101
http://CRAN.R-project.org/doc/html/interface98-paper/paper.html
http://www.kde.org/community/whatiskde/
http://www.kdevelop.org/
http://crpit.com/confpapers/CRPITV93Kim.pdf
http://crpit.com/confpapers/CRPITV93Kim.pdf
http://www.koffice.org/kword/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://msdn2.microsoft.com/en-us/library/ms997505.aspx
http://msdn2.microsoft.com/en-us/library/ms997505.aspx
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

22 RKWard: A Comprehensive GUI and IDE for R

Nokia Corporation (2012). Qt – Cross-Platform Application and UI Framework. Oslo. URL
http://qt.nokia.com/.

Parikh A, Covington KR (2010). “Red-R: A Open Source Visual Programming GUI Interface
for R.” URL http://www.Red-R.org/.

Plate T (2009). trackObjs: Track Objects. R package version 0.8-6, URL http://CRAN.

R-project.org/package=trackObjs.

Raaphorst S (2003). “A Usability Inspection of Several Graphical User Interface Toolkits.”
Technical Report 51222, University of Ottawa. URL http://www.cs.utoronto.ca/~sr/

academic/csi51222paper.pdf.

Raffelsberger W, Krause Y, Moulinier L, Kieffer D, Morand AL, Brino L, Poch O (2008).
“RReportGenerator: Automatic Reports from Routine Statistical Analysis Using R.” Bioin-
formatics, 24(2), 276–278.

R Development Core Team (2001). “What is R?” R News, (1), 2–3. URL http://CRAN.

R-project.org/doc/Rnews/.

R Development Core Team (2012a). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

R Development Core Team (2012b). R Data Import/Export. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-10-0, URL http://www.R-project.org/.

R Development Core Team (2012c). R Internals. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-14-3.

R Development Core Team (2012d). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9.

Ripley BD (2004). “Lazy Loading and Packages in R 2.0.0.” R News, 4(2), 2–4. URL
http://CRAN.R-project.org/doc/Rnews/.

Ripley BD (2005). “Packages and Their Management in R 2.1.0.” R News, 5(1), 8–11. URL
http://CRAN.R-project.org/doc/Rnews/.

Rödiger S, Ruhland M, Schmidt C, Schröder C, Grossmann K, Böhm A, Nitschke J, Berger I,
Schimke I, Schierack P (2011). “Fluorescence Dye Adsorption Assay to Quantify Carboxyl
Groups on the Surface of Poly(methyl methacrylate) Microbeads.” Analytical Chemistry,
83(9), 3379–3385.

Rödiger S, Schierack P, Böhm A, Nitschke J, Berger I, Frömmel U, Schmidt C, Ruhland M,
Schimke I, Roggenbuck D, Lehmann W, Schröder C (2012). “A Highly Versatile Microscope
Imaging Technology Platform for the Multiplex Real-Time Detection of Biomolecules and
Autoimmune Antibodies.” Advances in Biochemical Bioengineering/Biotechnology.

Rugg-Gunn PJ, Cox BJ, Ralston A, Rossant J (2010). “Distinct Histone Modifications in
Stem Cell Lines and Tissue Lineages from the Early Mouse Embryo.” Proceedings of the
National Academy of Sciences, 107(24), 10783–10790.

http://qt.nokia.com/
http://www.Red-R.org/
http://CRAN.R-project.org/package=trackObjs
http://CRAN.R-project.org/package=trackObjs
http://www.cs.utoronto.ca/~sr/academic/csi51222paper.pdf
http://www.cs.utoronto.ca/~sr/academic/csi51222paper.pdf
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Journal of Statistical Software 23

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
URL http://lmdvr.R-Forge.R-project.org/.

Snow G (2012). TeachingDemos: Demonstrations for Teaching and Learning. R package
version 2.8, URL http://CRAN.R-project.org/package=TeachingDemos.

Sutherland WR (1966). The On-line Graphical Specification of Computer Procedures. Ph.D.
thesis, MIT. URL http://hdl.handle.net/1721.1/13474.

Visne I, Dilaveroglu E, Vierlinger K, Lauss M, Yildiz A, Weinhaeusel A, Noehammer C,
Leisch F, Kriegner A (2009). “RGG: A General GUI Framework for R Scripts.” BMC
Bioinformatics, 10(1), 74.

Yang L, Liu J, Liu M, Qian M, Zhang M, Hu H (2011). “Identification of Fatty Acid Synthase
from the Pacific White Shrimp, Litopenaeus vannamei and its Specific Expression Profiles
During White Spot Syndrome Virus Infection.” Fish & Shellfish Immunology, 30(2), 744–
749.

Zhang J, Gentleman R (2004). “Tools for Interactively Exploring R Packages.” R News, 4(1),
20–25. URL http://CRAN.R-project.org/doc/Rnews/.

Zou W, Tolstikov VV (2008). “Probing Genetic Algorithms for Feature Selection in Com-
prehensive Metabolic Profiling Approach.” Rapid Communications in Mass Spectrometry,
22(8), 1312–1324.

Zou W, Tolstikov VV (2009). “Pattern Recognition and Pathway Analysis with Genetic
Algorithms in Mass Spectrometry Based Metabolomics.” Algorithms, 2(2), 638–666.

http://lmdvr.R-Forge.R-project.org/
http://CRAN.R-project.org/package=TeachingDemos
http://hdl.handle.net/1721.1/13474
http://CRAN.R-project.org/doc/Rnews/

24 RKWard: A Comprehensive GUI and IDE for R

A. Appendix overview

In this appendix we will give an overview of some key aspects of RKWard’s technical design
and development process, comparing them briefly to competing GUI solutions, where appro-
priate. We will give slightly more attention to the details of the plugin framework (Section F)
used in RKWard, since this is central to the extensibility of RKWard, and we will conclude
with an example for extending RKWard by a plugin (Section G).

Note that this document refers to RKWard version 0.5.6. Several technical details, described
here, have changed in RKWard version 0.5.7 and the current development version.

B. Asynchronous command execution

One central design decision in the implementation of RKWard is that the interface to the
R engine operates asynchronously. The intention is to keep the application usable to a high
degree, even during the computation of time-consuming analysis. For instance, while waiting
for the estimation of a complex model to complete, the user should be able to continue
to use the GUI to prepare the next analysis. Asynchronous command execution is also a
prerequisite for an implementation of the plot-preview feature (see Section 3.6). Internally,
the GUI frontend and the R engine run in two separate processes14. Commands generated
from plugins or user actions are placed in queue in the frontend and are evaluated in the
backend process in the order they were submitted15.

The asynchronous design implies that RKWard avoids relying on the R engine during inter-
active use. This is one of several reasons for the use of ECMAScript in plugins, instead of
scripting using R itself (see Sections D and F). A further implication is that RKWard avoids
querying information about the existence and properties of objects in R interactively. Rather,
RKWard keeps a representation of R objects and their basic properties (e. g., class and dimen-
sions), which is used for the workspace browser, object name completion, function argument
hinting, and other places. The object representation includes objects in all environments
in the search path, and any objects contained within these environments in a hierarchical
tree16. The representation of R objects is gathered pro-actively17. This has a notable impact
on performance when loading packages. Specifically, objects which would usually be “lazy
loaded” only when needed (see Ripley 2004) are accessed in order to fetch information on
their properties. This means the data has to be loaded from disk; however, the memory is
freed immediately after fetching information on the object. Additionally, for packages with
extremely large number of objects, RKWard provides an option to exclude specific packages
from scanning the object structures.

A further side-effect of the asynchronous threaded design is that there is inherently a rather

14 Up to RKWard version 0.5.4, two separate threads inside a single process were used. This alternate design
is still available as a compile time option.

15 It is possible, and in some cases necessary, to enforce a different order of command execution in internal
code. For instance, RKWard makes sure that no user command can potentially interfere while RKWard is
loading the data of a data.frame for editing.

16 Currently, environments of functions or formulas are not taken into account, but slots of S4 objects, and
package namespace environments are represented in the object tree.

17 To limit the amount of processing, and to avoid recursion, RKWard currently stops gathering object
information at a depth of three levels. Information on deeper levels is gathered on an as-needed basis, when
the user accesses information on the respective parent objects.

Journal of Statistical Software 25

R engine

R engine runs in a separate process

R command queue
and interface

RKWard

R code is generated in a separate thread

PluginPlugin

R Console

Script editor(s)

Data editor(s)

ECMAScript backend ECMAScript backend

Figure 14: Technical design of RKWard. Only a few central components are visualized. All
communication with the R engine is passed through a single interface living in the frontend
process. The R engine itself runs in a separate process. Separate threads within the frontend
process are used to generate R code from plugins.

clear separation between the GUI code and the code making direct use of the R application
programming interface (API) (see also Figure 14). In future releases it could be made possible
to run GUI and R engine on different computers.

C. Object modification detection

RKWard allows the user to run arbitrary commands in R at any time, even while editing
a data.frame or while selecting objects for analysis in a GUI dialog. Any user command
can potentially add, modify, or remove objects in R. RKWard tries to detect such changes in
order to always display accurate information in the workspace browser, object selection lists,
and object views. Beyond that, detecting any changes is particularly important with respect
to objects which are currently being edited in the data editor (which provides an illusion of
in-place editing, see Section 3.4). Here, it is necessary to synchronize the data between R and
the GUI in both directions.

For simplicity and performance, object modification detection is only implemented for objects
inside the “global environment” (including environments inside the global environment), since
this is where changes are typically done. Currently, object modification detection is based
on active bindings. Essentially, any object which is created in the global environment is first
moved to a hidden storage environment, and then replaced with an active binding. The active
binding acts as a transparent proxy to the object in the storage environment, which registers
any write-access to the object18.

18 This is similar to the approach taken in the trackObjs package (Plate 2009).

26 RKWard: A Comprehensive GUI and IDE for R

The use of active bindings has significant performance implications when objects are accessed
very frequently. This is particularly notable where an object inside the global environment is
used as the index variable in a loop, as illustrated by the following example. When control
returns to the top level prompt, after the first assignment, i will become subject to object
modification detection (i. e., it will be wrapped into an active binding). The subsequent for

loop will then run slow.

R> i <- 1

R> for (i in 1:100000) i + i

In contrast, in the following example, i is a local object, and will not be replaced by an active
binding. Therefore the loop will run approximately as fast as in a plain R session:

R> f <- function () {

+ i <- 1

+ for (i in 1:100000) i + i

+ }

R> f ()

Future versions of RKWard will try to avoid this performance problem. One approach that is
currently under consideration is to simply perform a pointer comparison of the SEXP records
of objects in global environment with their copies in a hidden storage environment. Due to
the implicit sharing of SEXP records (R Development Core Team 2012d,c), this should provide
for a reliable way to detect changes for most types of R objects, with comparatively low
memory and performance overhead. Special handling will be needed for environments and
active bindings.

D. Choice of toolkit and implementation languages

In addition to R, RKWard is based on the KDE libraries (KDE e.V. 2012), which are in turn
based on Qt (Nokia Corporation 2012), and implemented mostly in C++. Compared to many
competing libraries, this constitutes a rather heavy dependency. Moreover, the KDE libraries
are still known to have portability issues especially on Mac OS X, and to some degree also on
the Microsoft Windows platform (Jarvis 2010).

The major reason for choosing the KDE and Qt libraries has been the many high level features,
they provide. This has allowed RKWard development to make quick progress despite limited
resources. Most importantly, the KDE libraries provide a full featured text editor (Cullmann
2012) as a component which can be seamlessly integrated into a host application using the
KParts technology (Faure 2000). Additionally, another KPart provides HTML browsing
capabilities in a similarly integrated way. The availability of KWord (KOffice.Org 2010) as an
embeddable KPart might prove useful in future versions of RKWard, when better integration
with office suites will be sought. Additionally Qt libraries offer the encapsulation of the look-
and-feel on specific platforms for a high degree of interoperability and a wide selection of
powerful widgets (Raaphorst 2003).

Another technology from the KDE libraries that is important to the development of RKWard
is the “XMLGUI” technology (Faure 2000). This is especially helpful in providing an inte-
grated GUI across the many different kinds of document windows and tool views supported
in RKWard.

Journal of Statistical Software 27

Plugins in RKWard rely on XML (http://www.w3.org/XML/) and ECMAScript (http://
www.ecmascript.org/; see Section F). XML is not only well suited to describe the layout of
the GUI of plugins, but simple functional logic can also be represented (see also Visne et al.
2009). ECMAScript was chosen for the generation of R commands within plugins, in particular
due to its availability as an embedded scripting engine inside the Qt libraries. While at first
glance R itself would appear as a natural choice of scripting language as well, this would make
it impossible to use plugins in an asynchronous way. Further, the main functional requirement
in this place is the manipulation and concatenation of text strings. While R provides support
for this, concatenating strings with the + operator, as available in ECMAScript, allows for a
very readable way to perform such basic text manipulation.

E. On-screen graphics windows

Contrary to the approach used in JGR (Helbig, Urbanek, and Fellows 2011), RKWard does
not technically provide a custom on-screen graphics device. RKWard detects when new
graphics windows are created via calls to X11() or windows(). These windows are then
“captured” in a platform dependent way (based on the XEmbed (Ettrich and Taylor 2002)
protocol for X11, or on reparenting for the Microsoft Windows platform). An RKWard menu
bar and a toolbar is then added to these windows to provide added functionality. While this
approach requires some platform dependent code, any corrections or improvements made to
the underlying R native devices will automatically be available in RKWard.

A recent addition to the on-screen device is the “plot history” feature which adds a browsable
list of plots to the device window. Since RKWard does not use a custom on-screen graphics
device, this feature is implemented in a package dependent way. For example, as of this
writing, plotting calls that use either the “standard graphics system” or the “lattice system”
can be added to the plot history; other plots are drawn but not added. The basic procedure
is to identify changes to the on-screen canvas and record the existing plot before a new plot
wipes it out. A single global history for the recorded plots is maintained which is used by all
the on-screen device windows. This is similar to the implementation in Rgui.exe (Microsoft
Windows), but unlike the one in Rgui.app (Mac OS X). Each such device window points to a
position in the history and behaves independently when recording a new plot or deleting an
existing one.

Plot history support for the lattice system (Sarkar 2008) is implemented by inserting a
hook in the print.lattice() function. This hook retrieves and stores the lattice.status

object from the lattice:::.LatticeEnv environment, thereby making update() calls on
trellis objects transparent to the user. Any recorded trellis object is then replayed using
plot.lattice(), bypassing the recording mechanism. The standard graphics system, on the
other hand, is implemented differently because the hook in plot.new() is ineffective for this
purpose. A customized function is overloaded on plot.new() which stores and retrieves the
existing plot, essentially, using recordPlot() and replays them using replayPlot().

The actual plotting calls are tracked using appropriate sys.call() commands in the hooks.
These call strings are displayed as a drop-down menu on the toolbar for non-sequential brows-
ing (see Section 3.6) providing a very intuitive browsing interface unlike the native implemen-
tations in windows() and quartz() devices.

http://www.w3.org/XML/
http://www.ecmascript.org/
http://www.ecmascript.org/

28 RKWard: A Comprehensive GUI and IDE for R

F. Plugin infrastructure

One of the earliest features of RKWard was the extensibility by plugins. Basically, plugins in
RKWard provide complete GUI dialogs, or re-usable GUI components, which accept user set-
tings and translate those user settings into R code19. Thus, the plugin framework is basically
a tool set used to define GUIs for the automatic generation of R code.

Much of the functionality in RKWard is currently implemented as plugins. For example,
importing different file formats relying on the foreign package is achieved by this approach.
Similarly, RKWard provides a modest GUI driven tool set for statistical analysis, especially
for item response theory, distributions, and descriptive statistical analysis.

F.1. Defining a plugin

Plugins consist of four parts as visualized in Figure 15 (see Section G for an example; for a
complete manual, see Friedrichsmeier and Michalke 2011):

� An XML file (Section G.1), called a “plugin map”, is used to declare one or more
plugins, each with a unique identifier. For most plugins, the plugin map also defines the
placement in the menu hierarchy. Plugin maps are meant to represent groups of plugins.
Users can disable/enable such groups of plugins in order to reduce the complexity of
the menu hierarchy.

� A second XML file describes the plugin GUI layout itself (Section G.2). Most impor-
tantly this includes the definition of the GUI layout and GUI behavior. High level
GUI elements can be defined with simple XML-tags. Layout is based on “rows” and
“columns”, instead of pixel counts. In most cases this allows for a very sensible resizing
behavior. RKWard supports single-page dialogs and multi-page wizards, however, most
plugins define only a single-page GUI. GUI behavior can be programmed by connecting
“properties” of the GUI elements to each other. For example, the state of a checkbox
could be connected to the “enabled” property of a dependent control. More complex
logic is also supported, as is procedural scripting of GUI behavior using ECMAScript.

� A separate ECMAScript file (Section G.3) is used to translate GUI settings into R code20.
This ECMAScript file is evaluated asynchronously in a separate thread. RKWard cur-
rently enforces structuring the code into three separate sections for preprocessing, cal-
culating, and printing results. The generated code is always run in a local environment,
in order to allow the use of temporary variables without the danger of overwriting user
data.

� A third XML file defines a help page. This help page usually links to the R help pages
of the main functions/concepts used by the plugin, as well as to other related RKWard
help pages. Compared to R help pages, the plugin help pages try to give more hands-on

19 Plugins are also used in some other contexts within RKWard, for instance, the integrated text editor (kate
part) supports extensions via plugins and user scripts. At this point we will focus only on plugins generating
R code.

20 In earlier versions of RKWard, PHP was used as a scripting engine, and PHP interpreters were run as
separate processes. Usage of PHP was abandoned in RKWard version 0.5.3 for reasons of performance and
simplicity.

Journal of Statistical Software 29

RKWard plugin

GUI layout
XML

Plugin map
XML

R code generation
ECMAScript

Help page
XML

RKWard plugin RKWard plugin

Figure 15: Plugin structure of RKWard. One or more plugins are declared in a “plugin map”.
Each plugin is defined by two XML files, and one ECMAScript file.

advice on using the plugin. Plugins can be invoked from their help page by clicking on
a link near the top, which can be useful after following a link from a related help page.

Changes to the source code of these elements take effect without the requirement to recompile
RKWard.

F.2. Embedding and reuse of plugins

RKWard supports several mechanisms for modularization and re-use of functionality in plu-
gins. File inclusion is one very simple but effective mechanism, which can be used in the
ECMAScript files, but is also supported in the XML files. In script files, this is most useful by
defining common functions in an included file. For the XML files, the equivalent is to define
“snippets” in the included file, which can then be inserted.

A third mechanism allows to completely embed one plugin into another. For instance the
plot_options plugin is used by many plugins in RKWard, to provide common plot options
such as labels, axis options, and grids. Other plugins can embed it using the embed-tag in
their XML file (the plugin supports hiding irrelevant options). The generated code portions
can be fetched from the ECMAScript file just like any other GUI settings, and inserted into the
complete code. Other examples of embedded plugins are options for histograms, barplots, and
empirical cumulative distribution function (ECDF) plots (which in turn embed the generic
plot options plugin).

F.3. Enforcing a consistent interface

RKWard tries to make it easy to create a consistent interface in all plugins. GUI-wise this is
supported by providing high-level GUI elements, and embeddable clients. Also, the standard
elements of each dialog (Submit, and Cancel buttons, on-the-fly code view, etc.) are hard
coded. Up to version 0.5.3 of RKWard it was not possible to use any GUI elements in
plugins which were not explicitly defined for this purpose. In the current development version,
theoretically, all GUI elements available from Qt can be inserted, where necessary.

For generating output, the function rk.header() can be used to print a standardized cap-
tion for each piece of output. Printing results in vector or tabular form is facilitated by
rk.results(). A wide range of objects can be printed using rk.print(), which is just a

30 RKWard: A Comprehensive GUI and IDE for R

thin wrapper around the HTML() function of the R2HTML package (Lecoutre 2003) in the cur-
rent implementation. The use of custom formatting with HTML is possible, but discouraged.
Standard elements such as a horizontal separator, and the Run again link (see Section 3.7)
are inserted automatically, without the need to define them for each plugin.

Regarding the style of the generated R code, enforcing consistency is harder, but plugins
which are to become part of the official RKWard application are reviewed for adherence to
some guidelines. Perhaps the most important guidelines are

� Write readable code, which is properly indented, and commented where necessary.

� Do not hide any relevant computations from the user by performing them in the
ECMAScript. Rather, generate R code which will perform those computations, trans-
parently.

� Plugins can be restricted to accept only certain types of data (such as only one-
dimensional numeric data). Use such restrictions where appropriate to avoid errors,
but be very careful not to add too many of them.

F.4. Handling of R package dependencies

A wide range of plugins for diverse functionality is present in RKWard, including plots (e. g.,
boxplot) or standard tests (e. g., Student’s t test)21. Some of the plugins depend on R packages
other than the recommended R base packages. Examples herein are the calculation of kurtosis,
skewness or the exact Wilcoxon test.

RKWard avoids loading all these packages pro-actively, as Rcmdr does. Rather, plugins
which depend on a certain package simply include an appropriate call to require() in the
pre-processing section of the generated R code. The require() function is overloaded in
RKWard, in order to bring up the package-installation dialog whenever needed. Packages
invoked by require() remain loaded in the active RKWard session unless unloaded manually
(from the workspace browser, or using the R function detach()).

Dependencies between (embedded) plugins are handled using the <require>-tag in the plugin
map.

F.5. Development process

RKWard core and external plugins

Newly developed plugins are placed in a dedicated plugin map file22. Plugins in this map
are not visible to the user by default, but need to be enabled manually. Once the author(s)
of a plugin announces that they consider it stable, the plugin is subjected to a review for
correctness, style, and usability. The review status is tracked in the project wiki. Currently
at least one positive review is needed before the plugin is allowed to be made visible by default,
by moving it to an appropriate plugin map.

21 At the time of this writing, there are 164 user-accessible plugins in RKWard. Listing all is beyond the
scope of this article.

22 under_development.pluginmap

Journal of Statistical Software 31

Figure 16: Generated menu structure as defined by the plugin map.

With the release of version 0.5.5, RKWard gained support for downloading additional sets of
plugins directly from the internet. By simply clicking an Install button in a graphical dialog
(Settings→Configure RKWard→Plugins), an external plugin set is downloaded, unpacked
and its plugin map added to RKWard’s configuration, so it becomes instantly available af-
ter the configuration dialog is closed. External plugin sets are neither officially included nor
supported by the RKWard developers. However, they allow plugin developers to easily ex-
tend RKWard with state-of-the-art or highly specialized features. To achieve this, RKWard
(version 0.5.6) draws on KNewStuff2, a KDE library providing support for GHNS23.

Automated testing

A second requirement for new plugins is that each plugin must be accompanied by at least
one automated test. The automated testing framework in RKWard consists of an R package,
rkwardtests, providing a set of R functions which allow to run a plugin with specific GUI
settings, automatically. The resulting R code, R messages, and output are then compared to a
defined standard. Automated tests are run routinely after changes in the plugin infrastructure,
and before any new release.

The automated testing framework is also useful in testing some aspects of the application
which are not implemented as plugins, but this is currently limited to very few basic tests.

G. Extending RKWard: An example for creating a plugin

As discussed in Section F, plugins in RKWard are defined by four separate files (Figure 15).
To give an impression of the technique, this section shows (portions of) the relevant files for a
plugin that provides a simple dialog for a Student’s t test. For brevity, the help-file is omitted.

23 GHNS (Get Hot New Stuff) is a technology platform (software and specifications) for desktop users to share
their work. It is hosted under the umbrella of the freedesktop.org project at http://ghns.freedesktop.org.
In future versions of RKWard, this framework will be deprecated in favor of standard R packages.

http://ghns.freedesktop.org

32 RKWard: A Comprehensive GUI and IDE for R

G.1. Defining the menu hierarchy

A so called .pluginmap file declares each plugin, and, if appropriate, defines where it should
be placed in the menu hierarchy. Usually each .pluginmap file declares many plugins. In
this example we only show one, namely, a two variable Student’s t test (see Figure 16).
The pluginmap (<!DOCTYPE rkpluginmap>) gives a unique identifier (“id”), the location of
the GUI description (“file”), and the window title (“label”). The menu layout is defined in
a hierarchical structure by nesting <menu> elements to form toplevel menus and submenus.
Menus with the same “id” are merged across .pluginmap files. Moreover, the position within
the menu can be explicitly defined (attribute “index”). This might be required if the menu
entries are to be ordered non-alphabetically.

<!DOCTYPE rkpluginmap>

<document base_prefix="" namespace="rkward">

<components>

<component type="standard" id="t_test_two_vars"

file="demo_t_test_two_vars.xml" label="Two Variable t-test" />

</components>

<hierarchy>

<menu id="analysis" label="Analysis" index="4">

<menu id="means" label="Means" index="4">

<menu id="ttests" label="t-Tests">

<entry component="t_test_two_vars" />

</menu>

</menu>

</menu>

</hierarchy>

</document>

G.2. Defining the dialog GUI

The main XML file of each plugin defines the layout and behavior of the GUI, and references
the ECMAScript file that is used for generating R code from GUI settings and the help file
(not included in this paper). GUI logic can be defined directly in the XML file (the <logic>

element). In this example, the Assume equal variances checkbox is only enabled for paired
sample tests. Optionally, GUI behavior can also be scripted in ECMAScript.

The XML file defines the Student’s t test plugin (<!DOCTYPE rkplugin>) to be organized in
two tabs24. On the first tab, two variables can be selected (<varslot .../>). These are set
to be required, i. e., the Submit button will remain disabled until the user has made a valid
selection for both. The second tab includes some additional settings like the confidence level
(default 0.95).

<!DOCTYPE rkplugin>

<document>

<code file="demo_t_test_two_vars.js"/>

<help file="demo_t_test_two_vars.rkh"/>

<logic>

<connect client="varequal.enabled" governor="paired.not"/>

</logic>

24A screenshot of the resulting dialog can be found in Figure 10.

Journal of Statistical Software 33

<dialog label="Two Variable t-Test">

<tabbook>

<tab label="Basic settings" id="tab_variables">

<row id="basic_settings_row">

<varselector id="vars"/>

<column>

<varslot type="numeric" id="x" source="vars" required="true"

label="compare"/>

<varslot type="numeric" id="y" source="vars" required="true"

label="against"/>

<radio id="hypothesis" label="using test hypothesis">

<option value="two.sided" label="Two-sided"/>

<option value="greater" label="First is greater"/>

<option value="less" label="Second is greater"/>

</radio>

<checkbox id="paired" label="Paired sample" value="1" value_unchecked="0" />

</column>

</row>

</tab>

<tab label="Options" id="tab_options">

<checkbox id="varequal" label="assume equal variances" value="1"

value_unchecked="0"/>

<frame label="Confidence Interval" id="confint_frame">

<spinbox type="real" id="conflevel" label="confidence level" min="0" max="1"

initial="0.95"/>

<checkbox id="confint" label="print confidence interval" value="1"

checked="true"/>

</frame>

<stretch/>

</tab>

</tabbook>

</dialog>

</document>

G.3. Generating R code from GUI settings

A simple ECMAScript script is used to generate R code from GUI settings (using echo()

commands). Generated code for each plugin is divided into three sections: “Preprocess”,
“Calculate”, and “Printout”, although each may be empty.

var x;

var y;

var varequal;

var paired;

function preprocess () {

x = getValue ("x");

y = getValue ("y");

echo ('names <- rk.get.description (' + x + ", " + y + ')\n');

}

function calculate () {

varequal = getValue ("varequal");

paired = getValue ("paired");

34 RKWard: A Comprehensive GUI and IDE for R

var conflevel = getValue ("conflevel");

var hypothesis = getValue ("hypothesis");

var options = ", alternative=\"" + hypothesis + "\"";

if (paired) options += ", paired=TRUE";

if ((!paired) && varequal) options += ", var.equal=TRUE";

if (conflevel != "0.95") options += ", conf.level=" + conflevel;

echo ('result <- t.test (' + x + ", " + y + options + ')\n');

}

function printout () {

echo ('rk.header (result\$method, \n');

echo (' parameters=list ("Comparing", paste (names[1], "against", names[2]),\n');

echo (' "H1", rk.describe.alternative (result)');

if (!paired) {

echo (',\n');

echo (' "Equal variances", "');

if (!varequal) echo ("not");

echo (' assumed"');

}

echo ('))\n');

echo ('\n');

echo ('rk.results (list (\n');

echo (' \'Variable Name\'=names,\n');

echo (' \'estimated mean\'=result\$estimate,\n');

echo (' \'degrees of freedom\'=result\$parameter,\n');

echo (' t=result\$statistic,\n');

echo (' p=result\$p.value');

if (getValue ("confint")) {

echo (',\n');

echo (' \'confidence interval percent\'=(100 * attr(result\$conf.int, "conf.level")),\n');

echo (' \'confidence interval of difference\'=result\$conf.int ');

}

echo ('))\n');

}

Affiliation:

Stefan Rödiger
Lausitz University of Applied Sciences
Department of Bio-, Chemistry and Process Engineering
and
Kardiologie-CCM, Charité-Universitätsmedizin Berlin
Germany
E-mail: stefan_roediger@gmx.de, rkward-devel@lists.sourceforge.net

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 49, Issue 9 Submitted: 2010-12-28
June 2012 Accepted: 2011-05-06

mailto:stefan_roediger@gmx.de
mailto:rkward-devel@lists.sourceforge.net
http://www.jstatsoft.org/
http://www.amstat.org/

	Background and motivation
	Installation and platform availability
	Installation on the GNU/Linux platform
	Installation on Microsoft Windows
	Installation on Mac OS X
	Starting RKWard

	Main elements of the user interface
	Workspace browser and object viewer
	Code editor
	Using the R console
	Spreadsheet-like data editor
	Handling, manipulating, and analyzing data
	Graphics window and plot previews
	Results output
	Package management
	Further tool windows
	Help system

	Using RKWard: An example session
	Importing data
	Conducting a Student's t-test
	Creating a plot

	Conclusion and outlook
	Appendix overview
	Asynchronous command execution
	Object modification detection
	Choice of toolkit and implementation languages
	On-screen graphics windows
	Plugin infrastructure
	Defining a plugin
	Embedding and reuse of plugins
	Enforcing a consistent interface
	Handling of R package dependencies
	Development process
	RKWard core and external plugins
	Automated testing

	Extending RKWard: An example for creating a plugin
	Defining the menu hierarchy
	Defining the dialog GUI
	Generating R code from GUI settings

