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Abstract

Logistic regression is one of the most popular techniques used to describe the relation-
ship between a binary dependent variable and a set of independent variables. However,
the application of logistic regression to small data sets is often hindered by the complete
or quasicomplete separation. Under the separation scenario, results obtained via maxi-
mum likelihood should not be trusted, since at least one parameter estimate diverges to
infinity. Firth’s approach to logistic regression is a theoretically sound procedure, which
is guaranteed to arrive at finite estimates even in a separation case. Firth’s procedure
was also proved to significantly reduce the small sample bias of maximum likelihood esti-
mates. The main goal of the paper is to introduce the STATISTICA macro, which performs
Firth-type logistic regression.
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1. Introduction

1.1. Logistic regression model

Logistic regression is a commonly used tool to describe the relationship between a binary
outcome variable and a set of explanatory variables. It is routinely employed in many fields,
e.g., medicine, social sciences, economics. The popularity of logistic regression stems mainly
from its mathematical convenience and the relative ease of interpretation in terms of odds
ratios (Hosmer and Lemeshow 2000; Long 1997; Greene 2003).

Assume that the dependent variable yi ∈ {0, 1} is a Bernoulli distributed variable with success
probability F (x>i θ), where F (◦) is the logistic distribution function, xi is a p-dimensional
vector of explanatory variables and θ ∈ Rp is a p-dimensional parameter vector (i = 1, . . . , n).
The most frequently used estimation method of θ is the maximum likelihood estimation
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(MLE). The MLE principle states that the estimate of θ is the value which maximizes the
likelihood function (Hosmer and Lemeshow 2000). The likelihood function and its logarithm
in case of logistic regression are given by the following equations:

L(θ) =

n∏
i=1

F (x>i θ)
yi [1− F (x>i θ)]

1−yi , (1)

l(θ) =
n∑
i=1

yi lnF (x>i θ) + (1− yi) ln[1− F (x>i θ)]. (2)

In order to find the value of θ that maximizes L(θ), partial derivatives of a log-likelihood
function with respect to θ are calculated:

U(θ) =
n∑
i=1

[yi − F (x>i θ)]xi. (3)

The solution to score equations U(θ) = 0 gives the ML estimate of θ, i.e., θ̂.

In most cases, there is no analytical solution to score equations. Consequently, numerical
methods are used to find θ̂. With starting value θ(1), the maximum likelihood estimate θ̂ is
obtained iteratively:

θ(r+1) = θ(r) + I−1
θ(r)

U
(
θ(r)
)
, (4)

where the superscript (r) refers to the r-th iteration and Iθ denotes the Fisher information
matrix evaluated at θ (Greene 2003):

Iθ = −
n∑
i=1

∂2li(θ)

∂θ∂θ>
=

n∑
i=1

F (x>i θ)
(

1− F (x>i θ)
)
xix
>
i . (5)

The desirable properties of ML estimates such as: consistency, efficiency and normality, are
based on the assumption that the sample size (n) approaches infinity. However in many real
life situations the large sample assumption is not satisfied, and as a result, ML estimates
should not be trusted.

The bias of ML estimates in small samples can be substantial. Moreover, in small samples,
there is a non-negligible probability of encountering the separation. From the geometrical
point of view the separation occurs when there exists a hyperplane which separates successes
and failures (complete separation), where the hyperplane itself may contain both successes
and failures (quasicomplete separation). In that case, at least one parameter estimate di-
verges to infinity (Albert and Anderson 1984; Heinze and Schemper 2002). In practice, the
separation phenomenon can be detected by tracking the magnitude of standard errors. The
most common strategy to deal with separation is to remove any offending variable(s) from
the model. However, this approach is seriously flawed since the omission of any important
variable(s) is inappropriate.

1.2. Penalized maximum likelihood

Firth (1992a,b, 1993) derived the procedure that guarantees finite estimates of logistic re-
gression parameters in case of separation; it was also proven to significantly reduce the small
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sample bias of maximum likelihood estimates, i.e., the first-order term is removed from the
asymptotic bias of maximum likelihood estimates. The procedure originally developed by
Firth (1993) was further researched and popularized by the work of Heinze and Schemper
(2002), Heinze and Ploner (2004), and Heinze (2006).

The basis of Firth’s approach is the idea that the bias in θ̂ can be reduced by modifying the
score equations. The modified equation has the following form:

U∗(θ) =
n∑
i=1

{
yi − F (x>i θ) + hi

[
1

2
− F (x>i θ)

]}
xi, (6)

where hi is the i-th diagonal element of the H matrix H = W
1
2X(X>WX)−1X>W

1
2 is

a n × p data matrix and W is a n × n diagonal matrix with the i-th diagonal element
F (x>i θ)

[
1− F (x>i θ)

]
.

The modification to score equations can alternatively be introduced by penalizing the original
likelihood function:

L∗(θ) = L(θ)|Iθ|
1
2 . (7)

It is interesting that Firth’s approach to logistic regression is identical to Bayesian logistic
regression with noninformative Jeffreys prior.

Penalized maximum likelihood estimates (PMLE) can be found with the use of the numerical
routine described above with U

(
θ(r)
)

term replaced by U∗
(
θ(r)
)
.

1.3. Statistical inference

Estimation of standard errors can be based on the roots of the diagonal elements of I−1
θ̂

, which

is a first-order approximation to I∗θ
−1 =

(
−∂2l∗(θ)
∂θ∂θ>

)−1
(Firth 1992a,b, 1993; Bull, Mak, and

Greenwood 2002). According to the simulation study performed by the authors (results not
shown), there is no clear advantage of using I∗θ

−1 in place of I−1θ with respect to the number
of iterations needed for convergence and the coverage of a Wald confidence interval. However,
more extensive study regarding this subject would be useful. Appropriate simulation studies
can be greatly facilitated by the recent work of (Chen, Ibrahim, and Kim 2008) from which
the closed form of I∗θ

−1 can be easily obtained.

Given the estimate of the covariance matrix I−1
θ̂

, one can compute Wald confidence intervals
and p values based on the normal approximation to the distribution of the PML estimates.
The (1− α)% Wald confidence interval for θj , (j = 1, . . . , p) is given by:(

θ̂j − z1−α
2

√
(I−1
θ̂

)j ; θ̂j + z1−α
2

√
(I−1
θ̂

)j

)
, (8)

where θ̂j is the PML estimate of j-th element of θ̂, z1−α
2

is the 1− α
2 quantile of the standard

normal distribution function and (I−1
θ̂

)j is a j-th diagonal element of I−1
θ̂

.

It should be noted, however, that in small samples the coverage probability of the Wald confi-
dence interval may deviate from its nominal value. This behavior was observed in simulation
studies performed by (Heinze 1999), it was also shown there that profile likelihood confidence
intervals are superior to Wald intervals. Simulation studies performed by the authors (results
not shown) led to similar conclusions.
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2. STATISTICA macro

The STATISTICA data analysis software system (StatSoft, Inc. 2010) offers a user-friendly
module for maximum likelihood estimation of logistic regression coefficients. As was men-
tioned above, the maximum likelihood estimation is not resistant to the separation problem
and, generally speaking, is not suitable for small datasets. This was the main motivation for
the implementation of a STATISTICA macro performing Firth-type logistic regression.

The presented macro was written in SVB (the Visual Basic programming environment inte-
grated with STATISTICA) in STATISTICA 9.1. SVB is similar to Microsoft Visual Basic 6, as
well as the Visual Basic language available in Microsoft Excel. SVB includes a comprehensive
library of optimized matrix procedures. The employment of built-in matrix functions resulted
in a more readable macro code.

The macro code was partly based on a source code of the R (R Development Core Team 2012)
package logistf (Heinze and Ploner 2004; Ploner, Dunkler, Southworth, and Heinze 2010). An
alternative R implementation offering similar functionality is available in the package brglm
(Kosmidis 2011), based on the recent work of Kosmidis and Firth (2009).

2.1. Starting a macro

� Launch STATISTICA and open a dataset of interest.

� Open the macro file named SR_BR_LR.svb (separation-resistant bias-reduced logistic
regression), available along with this manuscript.

� Press the F5 keyboard button or left-click the Run Macro button on the Macro toolbar
(see Figure 1).

� The variable selection window should appear. The list of variables available for analysis
is automatically loaded from the active workbook.

� Select appropriate variables and press the OK button. After a short time, an output
window should appear.

If one plans to use the macro frequently, then a different approach should be taken, i.e., the
macro should be installed. This process creates a button which automatically starts the macro
without the need to manually reopen the macro file every time STATISTICA is restarted. To
install the macro file:

Figure 1: The localization of the Run Macro button on the Macro toolbar.
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Figure 2: The localization of the Customize button.

Figure 3: The localization of the Commands list.

Figure 4: The effect of the macro installation.
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� Launch STATISTICA.

� Open the macro file named SR_BR_LR.svb.

� Right-click on any toolbar and select the Customize (see Figure 2).

� Go to the Command/Macros tab, select Macros from the Categories list, and from the
Commands list, drag the macro name (i.e., SR_BR_LR) from its original position to the
main toolbar (see Figure 3 and 4).

� Press the newly created button to start the macro.

2.2. Generated output

The output generated by the macro consists of a workbook with three spreadsheets. The
first spreadsheet holds the original values of the dependent variable along with estimated
probabilities of a success. The second spreadsheet holds the estimate of the covariance matrix,
i.e., I−1

θ̂
. The third spreadsheet is of the most importance as it shows the following:

� The number of iterations needed for convergence.

� The value of log-likelihood at last iteration.

� Parameter estimates.

� Standard errors (SE) of parameter estimates.

� 95% Wald confidence intervals for parameters.

� Odds ratios for a unit increase in the independent variables.

� 95% Wald confidence intervals for odds ratios.

� P values for a hypothesis test that a given parameter is equal to zero.

In the current version of the macro, profile penalized likelihood confidence intervals are not
implemented. They are, however, planned for future release.

3. Examples

3.1. Toy example

The toy dataset was constructed to demonstrate the case of the infiniteness of ML estimates in
logistic regression. The data matrix X in the first column contains 1s and the only explanatory
variable assumes 10 equidistant values from 1 to 10. The first 5 values of dependent variable
(y) are failures (0) and the last 5 are successes (1). One can clearly see the complete separation,
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Figure 5: STATISTICA macro output – toy dataset.

i.e., all cases are failures where the value of the explanatory variable is less than 6 and all
cases are successes where the value of the explanatory variable is greater than or equal to 6.

X =

(
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

)>
y =

(
0 0 0 0 0 1 1 1 1 1

)>
To estimate the logistic regression model on this dataset, we used both the package logistf

and our macro. Below we show the necessary commands to create the toy dataset, estimate
the model and visualize the results. Figure 6 presents the dataset along with the fitted logistic
function. Figure 5 shows a screen capture of the output of our macro. The estimation results
of both the package logistf and our macro are in very close agreement.

R> library("logistf")

R> X <- 1:10

R> Y <- rep(0:1, each = 5)

R> mod <- logistf(Y ~ X, firth = TRUE, pl = FALSE)

R> mod

logistf(formula = Y ~ X, pl = FALSE, firth = TRUE)

Model fitted by Penalized ML

Confidence intervals and p-values by Wald

coef se(coef) lower 0.95 upper 0.95 z p

(Intercept) -5.33857 3.32271 -11.85096 1.1738 2.5815 0.108122

X 0.97065 0.57654 -0.15935 2.1006 2.8344 0.092264

Likelihood ratio test=7.7588 on 1 df, p=0.0053453, n=10

R> mod$loglik[2]

[1] -1.0807

R> C1 <- coef(mod)

R> par(mar = c(2.5, 2.5, 1.5, 1.5))

R> plot(X, Y, pch = 19, cex = 1.5)

R> grid()

R> sek <- seq(0, 10, by = 0.01)

R> pr_1 <- 1 / (1 + exp(-cbind(1, sek) %*% C1))

R> lines(sek, pr_1, lwd = 2)
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Figure 6: Logistic function fitted to the toy dataset.

3.2. Swiss banknotes example

For the next example we used the ‘Swiss banknotes’ dataset (Flury 1988). The dataset
contains 7 variables, of which the first 6 variables are explanatory variables and the last
variable is the outcome variable which describes whether the banknote is genuine or not. The
dataset was taken from the R package ncomplete (Christmann and Rousseeuw 2001). The
explanatory variables were standardized before applying estimation procedures.

The ‘Swiss banknotes’ dataset also exhibits complete separation. Consequently, penalized
maximum likelihood estimates should be preferred. As before, estimation results of both the
package logistf and our macro (see Figure 7) are in very close agreement.

R> data("Banknotes", package = "ncomplete")

R> bank <- cbind(scale(Banknotes[, 1:6]), Banknotes[, 7])

R> mod <- logistf(bank[, 7] ~ bank[, 1:6], firth = TRUE,

+ pl = FALSE, control = logistf.control(maxit = 100))

R> mod

logistf(formula = bank[, 7] ~ bank[, 1:6], pl = FALSE,

control = logistf.control(maxit = 100), firth = TRUE)

Model fitted by Penalized ML

Confidence intervals and p-values by Wald

coef se(coef) lower 0.95 upper 0.95 z p

(Intercept) -0.221121 0.70080 -1.59466 1.15242 0.0995570 0.7523619

bank[, 1:6]1 -0.036786 0.53481 -1.08499 1.01142 0.0047312 0.9451615

bank[, 1:6]2 -0.264789 1.02000 -2.26395 1.73437 0.0673906 0.7951747

bank[, 1:6]3 0.661888 0.93900 -1.17852 2.50229 0.4968644 0.4808811

bank[, 1:6]4 2.747925 0.85890 1.06452 4.43133 10.2359251 0.0013773

bank[, 1:6]5 1.885411 0.81721 0.28371 3.48711 5.3228970 0.0210470

bank[, 1:6]6 -1.817096 0.71229 -3.21316 -0.42104 6.5079479 0.0107393

Likelihood ratio test=248.58 on 6 df, p=0, n=200
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Figure 7: STATISTICA macro output – ‘Swiss banknotes’ dataset.

R> mod$loglik[2]

[1] -1.9604
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A. Implementation details

At the variable selection step, only one dependent variable can be selected and at least one
independent variable must be selected. The macro code performs a suite of data checks before
attempting the estimation step. These data checks are as follows:

� No missing values are allowed.

� The dependent variable must be 0/1 coded.

� No constant variables are allowed.

� Independent variables are screened for extreme collinearity (the absolute value of Pear-
son’s correlation coefficient between two variables greater than 0.99).

In case of any data check violation, the warning message is generated and the execution of
the macro is terminated. After a successful data check, independent variables are internally
standardized and the estimation procedure is started.

The convergence of the likelihood maximization procedure is declared if all of the following
conditions are met:

� The value of the log-likelihood between two consecutive iterations is smaller than 1e−5.

� The sum of absolute values of U∗
(
θ(r)
)

is smaller than 1e− 5.

� The sum of absolute changes of θ(r) between two consecutive iterations is smaller than
1e− 5.

In cases where the maximum number of iterations (500) is reached, no convergence is declared.

If the maximization routine overshoots the optimum (which can be detected be the decrease
in the log-likelihood), step-halving is used (no more than 10 half-steps are calculated). Addi-
tionally the maximum step size is limited to 0.5. The vector of starting values θ(1) is a vector
of zeros.

All of the above-mentioned control parameters can be easily modified by the user within the
macro source code.

Affiliation:

Kamil Fijorek
Department of Statistics
Cracow University of Economics
Rakowicka 27 Str.
31-510 Cracow, Poland
E-mail: kamil.fijorek@uek.krakow.pl

mailto:kamil.fijorek@uek.krakow.pl


12 Separation-Resistant and Bias-Reduced Logistic Regression: STATISTICA Macro

Andrzej Soko lowski
Department of Statistics
Cracow University of Economics
Rakowicka 27 Str.
31-510 Cracow, Poland
E-mail: andrzej.sokolowski@uek.krakow.pl

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 47, Code Snippet 2 Submitted: 2011-03-06
April 2012 Accepted: 2012-01-25

mailto:andrzej.sokolowski@uek.krakow.pl
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Logistic regression model
	Penalized maximum likelihood
	Statistical inference

	STATISTICA macro
	Starting a macro
	Generated output

	Examples
	Toy example
	Swiss banknotes example

	Implementation details

