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Abstract

The detection and determination of clusters has been of special interest among re-
searchers from different fields for a long time. In particular, assessing whether the clusters
are significant is a question that has been asked by a number of experimenters. In Fuentes
and Casella (2009), the authors put forth a new methodology for analyzing clusters. It
tests the hypothesis H0 : κ = 1 versus H1 : κ = k in a Bayesian setting, where κ denotes
the number of clusters in a population. The bayesclust package implements this approach
in R. Here we give an overview of the algorithm and a detailed description of the functions
available in the package. The routines in bayesclust allow the user to test for the exis-
tence of clusters, and then pick out optimal partitionings of the data. We demonstrate
the testing procedure with simulated datasets.

Keywords: clustering, hierarchical, Bayes, R.

1. Introduction

1.1. About this document

Clustering of data is required in many different disciplines of science, including machine
learning, image analysis and genetics. The great demand for this methodology has led to
several varied approaches to cluster analysis. However, the majority of these methods are
directed towards dividing the data into a pre-specified number of groups; rarely do they
accommodate explicitly testing for the existence of clusters.

In Fuentes and Casella (2009), the authors put forward a novel approach to analyzing clusters,
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which permits us to test the hypothesis

H0 : κ = 1 vs. H1 : κ = k

where κ is a parameter denoting the true number of clusters in the population from which
the data arose. If the null hypothesis is indeed rejected, we can then proceed to partition the
data.

This article is an introduction to the R (R Development Core Team 2012) package bayesclust –
an implementation of the methodology proposed in Fuentes and Casella (2009). The package
comprises a suite of functions for testing and searching for significant clusters in multivariate
data. It is available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=bayesclust. The aim here is to provide a detailed user guide, depicting the
entire testing protocol from start to finish. We will use simple examples and scripts that
demonstrate how the functionality of the package can be easily extended.

1.2. The clustering problem

The fundamental aim in clustering is to distribute a set of n distinguishable objects into
groups such that the objects within each group are similar to one another, while the groups
themselves are different. Implicit in this objective, though, is the assessment of whether or
not it is meaningful to partition the observations into different groups, and if so, how many.
Partitioning of the data should only be carried out if the assessment deems it is reasonable
to do so.

The relatively few methods for testing for significant clusters include Hartigan’s Rule in
Hartigan (1975) and more recently, work by Tibshirani, Walther, and Hastie (2001) and
Sugar and James (2003). These methods are distance-based in their assessment of whether
clusters are far enough apart.

We propose embedding the model in a Bayesian framework, and including the true number
of clusters as a parameter κ. Then applying a Bayesian model selection methodology, we can
derive an explicit hypothesis test for the existence of clusters, or equivalently, that κ 6= 1. As
our procedure is not distance-based, we are able to avoid the use of a metric to determine
the clusters. Moreover, evidence for clusters will be determined according to the probability
structure used to model the data, and not the “proximity” of the observations.

1.3. Outline of this article

In Section 2, we outline the theoretical framework and distributional assumptions behind our
approach. This portion is essentially a distilled version of Fuentes and Casella (2009). The
reader is referred to that paper for full details and proofs. As the methods in Sections 2.4, 2.5
and 2.6 are all computationally intensive, we present typical run-times for these routines in
Appendix A. Section 3 is concerned with demonstrating the main features of the package. It
walks the reader through the entire process of testing a dataset for clusters, running diagnos-
tics, and then searching for the optimal partitioning of the data into clusters. In Section 4,
we extend the methodology to testing multiple hypotheses on the same dataset, and highlight
some salient features of the frequentist calibration process introduced in Section 2.5. Finally
in Section 5, we compare our procedure to the one in mclust (Fraley and Raftery 2006).

http://CRAN.R-project.org/package=bayesclust
http://CRAN.R-project.org/package=bayesclust
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2. Bayes clustering methodology

2.1. Notations and terminologies

We will denote the observed data by Y = (Y1, . . . , Yn) where Yi ∈ R
p for i = 1, . . . , n. Let

κ denote the (unknown) true number of clusters from which the data were drawn. Hence
κ takes integer values greater than 0, with κ = 1 corresponding to there being exactly one
cluster. Our primary aim is to test if κ > 1, which would signify the existence of at least 2
clusters.

With κ = k clusters in the dataset, let us denote the number of observations in the j-th
cluster by nj , for j = 1, . . . , k. It is evident that

∑k
j=1 nj = n, and in accordance with our

set-up in the preceding paragraph, that nj > 0 for i = 1, . . . , k.

In addition, we parametrize the exact partitioning of Y into κ = k clusters by ωk. In this
paper we shall use the terms partitioning, clustering and clusters interchangeably to refer to
the groupings that ωk gives rise to. In order to visualize ωk, we can view it as a vector of
length n, with each individual element drawn from the set {1, 2, . . . , k} such that there are n1

occurrences of 1, n2 occurrences of 2, and so on. In fact this is exactly how ωk is represented in
the R code. Given that there are k clusters and n observations, the total number of possible
partitionings is equal to Sn,k, the Stirling number of the second kind, as shown in Gould
(1960). Even when n is quite small, say 50 or so, Sn,k will still be unmanageably large. The
secondary goal of our methodology is to pick out the optimal ωk as evidenced by the data, in
light of this hurdle.

For a given partition ωk ∈ Sn,k, we will denote by Y
(j)
1 , . . . , Y

(j)
nj the nj data points that are

allocated to cluster j. Finally, to describe the individual elements of the vector Y
(j)
l , we shall

use the notation Y
(j)
l = (y

(j)
l1 , . . . , y

(j)
lp )′, where l = 1, . . . , nj and j = 1, . . . , k.

2.2. Bayesian hypothesis testing

This section provides a brief overview of carrying out hypothesis testing in a Bayesian setting,
focusing on the special case of model selection. A comprehensive overview of this topic can
be found in Pericchi (2005).

Our aim is to test the following hypothesis:

H0 : κ = 1 vs. H1 : κ = k (1)

Thus each hypothesis is identified with one of the two models we are trying to distinguish
between. In general, if Y is conditionally distributed as f(·|θ) and the prior on θ is denoted
by π, then the Bayes factor associated with the above hypothesis test is

BF 10 =
m(Y |κ = k)

m(Y |κ = 1)
(2)

where m(Y |κ = k) =
∫

f(Y |θ)π(θ|κ = k)dθ. Intuitively, the Bayes factor gives an indication
of the evidence in favor of or against H1 over H0. In addition to the data, BF 10 depends
on the priors associated with each hypothesis, or in our case, with the two models under
consideration. If we denote the distribution of the data given that there are κ clusters by
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m(Y |κ), we can express the posterior probability of the null hypothesis as

P (H0|Y ) = P (κ = 1|Y ) =
m(Y |κ = 1)P (κ = 1)

m(Y |κ = 1)P (κ = 1) +m(Y |κ = k)P (κ = k)

=
P (κ = 1)

P (κ = 1) + P (κ = k)BF 10

With the assumption that either model is equally likely before observing the data, the poste-
rior probability of the null hypothesis reduces to

P (H0|Y ) =
1

1 + BF 10
(3)

This will be our measure of evidence for or against H0. Small values would correspond to
evidence against κ = 1.

Finally, we rewrite BF 10 in terms of ωk:

BF 10 =
1

m(Y |κ = 1)

∑

ωk∈Sn,k

m(Y |ωk)π(ωk) (4)

where π(ωk) denotes the prior probability of partition ωk.

2.3. Distributional assumptions

Suppose that κ = k. Then for any partition ωk ∈ Sn,k, we assume that all the observations
in cluster j follow a multivariate normal distribution.

Y
(j)
l ∼ N(µj ,Σj)

for l = 1, . . . , nj and j = 1, . . . , k. For the prior on µj , we assume that

µj |Σj ∼ N(µ
(j)
0 , τ2Σj) for j = 1, . . . , k (5)

With regards to Σj , we assume that Σj = diag(σ2
1j , . . . , σ

2
pj), with

σ2
rj ∼ IG(a, b) =

1

Γ(a)ba
1

(σ2
rj)

a+1
e−1/bσ2

rj (6)

for r = 1, . . . , p and j = 1, . . . , k. This assumption on the covariance matrices, which implies
independence within the clusters, is admittedly not the most general. However, as we shall
see in Section 2.5, this assumption allows us to obtain the distribution of P (H0|Y ) in the
multivariate case, as an immediate extension of the univariate case.

If we now set µ
(j)
0 to be equal to the sample means ȳ(j) we can arrive at the following expression

for the ratio term in Equation 4.

m(Y |ωk)

m(Y |κ = 1)
=

(

2

b

)pa(k−1) (nτ2 + 1)p/2

Γ(a)p(k−1)Γ(n2 + a)p

k
∏

j=1

Γ(
nj

2 + a)p

(njτ2 + 1)p/2

×

p
∏

r=1

[

(ns2r +
2
b )

n/2+a

∏k
j=1(njs2rj +

2
b )

nj/2+a

]

(7)



Journal of Statistical Software 5

where s2r = (1/n)
∑n

i=1(yir − ȳr)
2, s2rj = (1/nj)

∑nj

i=1(y
(j)
ir − ȳ

(j)
r )2 and ȳ

(j)
r = (1/nj)

∑nj

i=0 y
(j)
ir

The derivation of the above expression is not trivial and has been omitted here.

What remains is to decide on a prior distribution on the space of possible partitions. Instead
of assuming that all priors in Sn,k are equally likely, we will assume the following probability
mass function

g(ωk) =
k!

(

n−1
k−1

)(

n
n1...nk

) (8)

As explained in Section 2.3 of Fuentes and Casella (2009), one of the benefits of this density
is that it is easy to sample from. More importantly, however, the sampling scheme that was
used to draw from this distribution could be easily modified to incorporate a minimum cluster
size. This was an important consideration in the application for which this methodology was
constructed.

2.4. Estimating the Bayes factor

Our strategy to compute the posterior probability of the null hypothesis using Equation 3
requires us to first calculate the Bayes factor using Equation 4. Since this is a sum over
all possible partitionings in Sn,k, it is practically impossible to compute. We shall resort
to Markov chain Monte Carlo techniques in order to approximate the Bayes factor in the
following manner

BF 10 =
∑

ωk∈Sn,k

[

m(Y |ωk)

m(Y |κ = 1)

]

π(ωk) (9)

≈
1

M

M
∑

i=1

[

m(Y |ω
(i)
k )

m(Y |κ = 1)

]

(10)

where for i = 1, . . . ,M , the ω
(i)
k are draws from the g distribution. We shall utilize a

Metropolis-Hastings algorithm with stationary distribution g to draw the partitions, in which
case the ergodic average above would converge to the desired integral BF 10, as M increases
without bound.

The purpose of using a Metropolis-Hastings algorithm is to ensure that the sampling will re-
main in areas of high probability, thus achieving a more accurate calculation while maintaining
the correct stationary distribution. The candidate distribution for our Metropolis-Hastings
step will be a mixture of 2 component distributions:

❼ Independent draw: At iteration t, draw candidate ω′
k from g.

❼ Random walk: At iteration t, obtain candidate ω′
k by choosing one observation at ran-

dom from ω
(t)
k , and moving it to one of the other k − 1 clusters with equal probability.

The density of this mixture distribution we denote by

h(ω′
k|ω

(t)
k ) =

a

n(k − 1)
+ (1− a)g(ω′

k) (11)

where a ∈ (0, 1) determines the probability of drawing a partition from the random walk
component.

The final Metropolis-Hastings algorithm is as follows: At iteration t
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1. With probability a, draw candidate ω′
k from the random walk centered at ω

(t)
k , and with

probability 1− a draw candidate ω′
k independently from g.

2. Compute the Metropolis-Hastings ratio

MH =
g(ω′

k)

h(ω′
k|ω

(t)
k )

×
h(ω

(t)
k |ω′

k)

g(ω
(t)
k )

3. With probability min(1,MH ) set ω
(t+1)
k = ω′

k, otherwise set ω
(t+1)
k = ω

(t)
k

There are a number of texts that explain why the stationary distribution of the above Markov
chain will be g, and that justify convergence of the mean to the desired integral. For instance,
the reader can consult Chapter 7 of Robert and Casella (2004).

2.5. Frequentist calibration

Although we are now at the stage where, for a given dataset, we can compute the posterior
probability of there being only one cluster in the data, we are still unable to assess exactly
how strong the evidence is for or against the null hypothesis. All we know is that lower values
for the computed P (H0|Y ) correspond to evidence for more than one cluster.

Our solution will be to derive the frequentist null distribution of P (H0|Y ), that is, the dis-
tribution of P (H0|Y ) as a function of the data when the null hypothesis is true. In essence,
we will treat the computed value of (3) as a statistic. Knowing its distribution under H0 will
permit us to obtain a p value for it, or to obtain critical values which we can check against
for fixed significance levels of the hypothesis test.

First, define Pn,k be the number of ways that we can partition an integer n into k integers
n1, n2, . . . , nk such that n = n1+n2+ . . .+nk. Also, let ξ be an element in Pn,k, and consider
first the case p = 1. Then Lemma 1 from Fuentes and Casella (2009) gives us a method
of obtaining samples from the distribution of BF 10(Y ) when testing the hypothesis (1) and
when H0 is true.

Lemma 1 (Fuentes and Casella 2009). Let v1, . . . , vn−1 be iid χ2
1 random variables and let

V = (v1, . . . , vn−1). Then, if the null hypothesis holds,

BF 10(Y )
D
=

∑

ξ∈Pn,k

φ(ξ)T (V |ξ)

where

T (V |ξ)
D
=

1

(σ2)(k−1)a

(
∑n−1

i=1 vi + 2/bσ2)
n
2
+a

∏k
j=1

(

∑nj−1
i=nj−1

vi + 2/bσ2
)

nj

2
+a

and φ(ξ) is an appropriate normalizing constant for every ξ ∈ Pn,k.

The details of the proof are in Sections 4 and Appendix B.2 of the quoted paper. It can be
seen that to obtain one draw from this distribution, a vector of χ2

1 random variables has to
be drawn, and the above sum computed. Due to the number of elements in Pn,k, this cannot
be computed exactly and will be estimated by Monte Carlo techniques. Although the result



Journal of Statistical Software 7

above corresponds to the univariate case, it can immediately be extended to the multivariate
situation, because of the assumed form of the covariance matrices Σj in Section 2.3. This
result is also detailed in the original paper.

At this point, we have outlined the theory that will allow an experimenter to conduct the
hypothesis test in Equation 1, and decide whether or not to reject the null. For a given dataset,
the experimenter would have to first estimate P (H0|Y ) by approximating BF 10 using the
theory laid out in Section 2.4. The next step would be to calibrate this posterior probability
by applying the theory in this section. This would involve generating the distribution of the
computed statistic under H0, by sampling from it. The experimenter would then obtain a
cutoff point from this distribution, which would serve as a critical value for a pre-specified
α-level of significance.

2.6. Searching for the optimal cluster

In this section we consider the problem of picking out the optimal partitioning of the data
once we have concluded that there are indeed significant clusters. This immediately raises the
question of what is meant by optimality. We define the objective function to be m(Y |ωk),
considered as a function of ωk. With this definition, the optimal ωk is the one that maximizes
the objective function for a given set of observations. Coupled with the assumption that
π(ωk) ∝ 1, maximizing this objective function is equivalent to maximizing the posterior
probability of ωk.

However, as the partition space is extremely large, it is not possible to examine every single
partition. Instead we shall have to resort to a stochastic search through Sn,k. The proposed
Metropolis search algorithm will again utilise the mixture distribution in Equation 11 as the
proposal distribution.

The Metropolis algorithm to find the optimal cluster is as follows: At iteration t

1. With probability a, draw candidate ω′
k from the random walk centered at ω

(t)
k , and with

probability 1− a draw candidate ω′
k independently from g.

2. Compute the Metropolis-Hastings ratio

MH =
m(Y |ω′

k)

h(ω′
k|ω

(t)
k )

×
h(ω

(t)
k |ω′

k)

m(Y |ω
(t)
k )

3. With probability min(1,MH ) set ω
(t+1)
k = ω′

k, otherwise set ω
(t+1)
k = ω

(t)
k

As the algorithm cycles through points in the partition space, it will store the best partitions
found.

2.7. Minimum cluster size

From the scatter plots, it might appear that one observation is extremely different from the
rest. However, we might want to avoid placing that observation in a cluster of its own. In
fact, in our application, the investigator only wanted to consider clusters to be significant if
they were of a certain minimum size. Our methodology allows for this modification, and this
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feature is available in bayesclust. The minimal changes needed are concerned with the prior
and the candidate distribution in the Metropolis algorithms.

Suppose that a minimum cluster size of m is imposed. Then the new modified prior will look
like this:

gm(ωk) =
k!

(

n−mk+k−1
k−1

)(

n
n1n2...nk

) , (12)

and the new candidate distribution will look like this:

h(ω′
k|ω

(t)
k ) =

a

nm(k − 1)
+ (1− a)g(ω′

k), (13)

where nm is the total number of observations from clusters that have strictly more than m
observations.

It should be pointed out that imposing a minimum cluster size does prevent outliers from
being isolated, as it forces every single point to belong to a cluster. If this is not palatable,
then the user has the option of removing minimum cluster size restriction. For more on this
aspect of the methodology, please see the Rejoinder section of Fuentes and Casella (2009).

3. Usage

In this portion of the article we provide an example of how to use bayesclust to test and search
for clusters in multivariate data, using the methods described in the previous sections. We
demonstrate a workflow that an experimenter would go through from start to finish. Figure 1
summarises this workflow, and the manner in which the functions in bayesclust are related.
The “No” branch in Figure 1 and the use of the combine() function are described in more
detail in Section 4.1.

Suppose that an experimenter wishes to test the hypothesis given in Equation 1 for a specific
k. Then a summary of the workflow is as follows:

1. Run cluster.test() on dataset to obtain an estimate of P (H0|Y ) for the given hy-
pothesis test. We shall refer to this estimate as the empirical posterior probability of the
null hypothesis.

2. Run nulldensity() to generate the distribution of P (H0|Y ) under the null hypothesis,
for the particular hypothesis test.

3. Assess the significance of the estimate of P (H0|Y ), by obtaining its p value. The relevant
function at this stage is emp2pval(), which stands for “empirical posterior probability
of null hypothesis to p value”.

4. If the k-clustering is deemed significant, then proceed to partition the observations into
an optimal k-clustering using cluster.optimal().

In the remainder of this section, we devote one subsection to each of the 4 steps outlined
above.
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Obtain estimate of P(H0 | Y) for 

intended hypothesis test(s)

cluster.test()

Carry 

out frequentist 

calibration of estimated 

P(H0 | Y)? 
Generate samples from null 

distribution for estimated 

P(H0 | Y)

nulldensity()

Obtain p-value for estimated 

statistics from generated null 

distributions

emp2pval()
Decide 

on number of 

clusters in the 

data

Search for optimal clustering of 

data

cluster.optimal()

Compute posterior probabilities 

that there are k clusters in the 

data

combine()

Yes No

Figure 1: Flowchart demonstrating usage of functions in bayesclust. The relevant functions
in each stage of the analysis are in bold font.

3.1. Carrying out the cluster test

Dataset 1 consists of 75 observations, simulated from bivariate normal distributions with three
different means. This dataset is available as part of the bayesclust package. Figure 2 contains
a scatter plot of this dataset, which will be used to demonstrate the functions in bayesclust.
As we know the true value of κ to be 3, we expect the test procedure to reject

H0 : κ = 1 vs. H1 : κ = 3 (14)

The R code below will compute P (H0|Y ) for the hypothesis given in Equation 14, just as
described in Sections 2.2 and 2.4.

R> library("bayesclust")

R> data("egDataset1")

R> clusterTestK3 <- cluster.test(egDataset1, nsim = 500000, p = 2, k = 3,

+ mcs = 0.1, replications = 4)

The first argument to cluster.test() is the data matrix. Now we put the rest of the function
arguments into the context of the previous section: nsim sets the value of M in Equation 10,
aR corresponds to a in the mixture distribution of Equation 11 and mcs sets the minimum
cluster size discussed in Section 2.7. For this test, we have set it to be 10% of the total sample
size. Hence it would take a value of 8 here. (To remove the minimum cluster size restriction
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Figure 2: Unshaded circles represent the 75 points from dataset 1. There are 25 observations
from each of the 3 different sampling distributions, which are differentiated by color, and
whose means are indicated by smaller, shaded circles. For this example dataset, we have
n = 75, κ = 3, and p = 2.

entirely, the user can specify a value of mcs that is less than 1/n.) The unspecified arguments
for a,b and tau2 correspond to the hyperparameters in Equations 5 and 6. Since we are
sampling from the space of partitions when running our Markov chain, the usual convergence
diagnostics are not are not applicable. Hence we recommend running replications of the chain
in order to monitor convergence of the estimate of P (H0|Y ). In the above example code, the
final argument is an instruction to carry out 4 replicate chains.

When only 1 replication is requested, cluster.test() will return an S3 object of class
“cluster.test”. It is a list with 3 components. The first component, param, serves as a
record of the arguments that were used when cluster.test() was run. The second and
third components in the list are for plotting the running estimates of P (H0|Y ). If more
than one replication has been carried out, then cluster.test() returns an object of class
“cluster.test.reps”, which is a list of objects of class “cluster.test”.

The plot()method can be called on objects of class“cluster.test.reps”or“cluster.test”.
From our experience, it is recommended that when running cluster.test, nsim be at least
500,000. With so many points, it is not necessary to plot or store every single one. Thus, only
every 500th value of the Markov chain is stored in the cluster.test object. An example of
the convergence plot is shown in Figure 3.

R> plot(clusterTestK3)

Extracting the (final) estimated posterior probability can be done either manually or using
the summary() function available in bayesclust.
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Figure 3: Running estimates of posterior probability for dataset 1.

R> summary(clusterTestK3)

Cluster test conducted on data object data1, with 5e+05 iterations.

Num. observations : 75

Min cluster size : 8

p : 2

H1 : k = 3

****************************************

Final Empirical Posterior Probabilities:

****************************************

Post.Probs

rep1 0.0151

rep2 0.0880

rep3 0.3333

rep4 0.1465

Please run emp2pval to obtain the corresponding P-values for

the mean of the above statistics
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3.2. Distribution of estimates under the null hypothesis

This section covers generation of random variables from the distribution of P (H0|Y ), when
the null hypothesis is true. It is part of the calibration procedure detailed in Section 2.5. In
order to save time, this portion of the testing procedure should be carried out at the same
time as Section 3.1, since the output from cluster.test() is not needed here. As such, we
have kept nulldensity() independent of cluster.test(), even though our methodology
requires both steps.

The key piece of information necessary to start nulldensity() running is the particular
simple hypothesis being tested. The fact that BF 10(Y ), and consequently P (H0|Y ), depends
on this can be seen from Equations 4 and 7. Now we continue with our example dataset,
running nulldensity() for the hypothesis in Equation 14.

R> nulldensK3 <- nulldensity(n = 75, nsim = 8000, k = 3, mcs = 0.1, p = 2,

+ prop = 0.25)

R> hist(nulldensK3, main = "Null Density Histogram", xlab = "samples")

A histogram of the null distribution can be seen in Figure 4. The object returned by
nulldensity() has class “nulldensity”. The prop argument refers to the proportion of
the partition space Pn,k that is sampled from at each iteration of the algorithm, since it is not
feasible to compute the entire sum indicated in Lemma 1 at every step. It is recommended
that prop be at least 0.25. The nsim argument indicates how many samples are to be drawn
from the distribution. The recommended number of draws here is 8,000 - 10,000.

It has to be stressed that parameters used to generate the null distribution, that is, n, p,
κ, τ2, a, b and the minimum cluster size, should exactly match those used when running
cluster.test(). Only in this situation will the test valid.
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Figure 4: Null distribution of P (H0|Y ) when testing κ = 3. For this example, n = 75, κ = 3,
p = 2.
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3.3. Obtaining frequentist p value

In order to calibrate the test statistic from Section 3.1, the funtion emp2pval() with the
objects from the preceding two steps has to be called.

R> emp2pval(clusterTestK3, nulldensK3)

mean.emp.prob pvalue

data1 0.1457166 0.01375

3.4. Searching for optimal clusters

The function to search for the optimal partitioning of the data is cluster.optimal(). By
default, the routine will store the best 4 partitionings encountered. However, the argument
keep can be used to specify how many to store instead. Here, we consider partitioning
dataset 1 into 3 clusters. The R code below will run the search function and then plot the
top 4 clusterings found.
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Figure 5: Optimal partitioning of dataset 1 into 3 clusters.
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R> clusterOptK3 <- cluster.optimal(egDataset1, nsim = 100000, p = 2,

+ k = 3, mcs = 0.1)

R> plot(clusterOptK3)

The top 4 clusterings found by cluster.optimal can be seen in Figure 5. They are ranked ac-
cording to their corresponding log(m(Y |ωk)) values. The cluster with the largest log(m(Y |ωk))
value is ranked the highest. These values can be manually extracted from the output object,
which has class “cluster.optimal”. Examining them allows one to assess the relative quality
of the partitionings found.

4. Discussion

4.1. Conducting multiple tests on a single dataset

The situation might arise where an experimenter has to conducts several tests on the same
dataset. For example, for dataset 1, we might test the following hypotheses, as well as (14).

H0 : κ = 1 vs. H1 : κ = 2 (15)

H0 : κ = 1 vs. H1 : κ = 4 (16)

How then should we combine the results? Here we describe two possible options for the
experimenter.

The first option is to obtain p values for all 3 tests, and then test for their significance while
controlling the false discovery rate (FDR). The 3 tests are not independent since they involve
the same dataset, so one possible controlling procedure is the one outlined in Theorem 1.3 of
Benjamini and Yekutieli (2001). Note also that, as emphasized in Section 3.2, a different null
distribution has to be generated for each test that is conducted on the dataset.

The second option was suggested in Bayarri (2009). If the experimenter knows in advance the
maximum number of clusters present in the data, then this alternative procedure is applicable
(see the “Rejoinder” section in Fuentes and Casella 2009). An attractive feature of this
method is that it side-steps having to generate the null distribution of P (H0|Y ) for any of
the 3 hypothesis tests. Using this method returns us posterior probabilities that there are
k clusters in the data. Here is a brief explanation of how and why it works. Refer to our
example dataset, and the 3 hypothesis tests conducted on it for κ = 2, 3 and 4. If we assume
that all 4 hypotheses are equally likely a priori, and we denote the Bayes factor for testing
κ = k by BF 10(k), then the following formula yields posterior probabilities for the 4 different
models under consideration.

P (κ = k|Y ) =
BF 10(k)

∑4
i=1 BF 10(i)

(17)

where BF 10(1) = 1. Since the Bayes factors that are required for the above computation can
be derived from the P (H0|Y ) estimated in each test, the resulting probability distribution on
the set {1, 2, 3, 4} can be used to pick the k that has the highest posterior probability. The
function combine() in bayesclust implements this procedure. It takes any number of objects
of class “cluster.test” or “cluster.test.reps” as its arguments. As an example, consider
once more the example dataset introduced in the previous section.
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R> clusterTestK2 <- cluster.test(egDataset1, nsim = 500000, p = 2, k = 2,

+ mcs = 0.1, replications = 4)

R> clusterTestK4 <- cluster.test(egDataset1, nsim = 500000, p = 2, k = 4,

+ mcs = 0.1, replications = 4)

R> combine(clusterTestK2, clusterTestK3, clusterTestK4)

Postr.Prob

K=1 0.02342574

K=2 0.34990387

K=3 0.48843776

K=4 0.13823263

The dataset can then be partitioned into 3 clusters using cluster.optimal(), as per Sec-
tion 3.4.

4.2. Using the default null distributions

Sometimes, the experimenter might not want to wait for the null distribution to be generated.
In this situation, bayesclust provides pre-computed cut-off points to use.

R> data("cutoffs")

R> tail(cutoffs)

n mcs p k cutoff1pct cutoff5pct

49 100 0.2 2 2 0.1803965 0.6043680

50 100 0.2 2 3 0.4229948 0.8828393

51 100 0.2 2 4 0.7322049 0.9714527

52 100 0.2 3 2 0.3271753 0.8140608

53 100 0.2 3 3 0.8228163 0.9850078

54 100 0.2 3 4 0.9707377 0.9987355

The experimenter can then look for the parameters most similar to those under which his own
test was run, and repeat the procedure outlined earlier in this section to obtain the cut-off
point.

Notice that the cutoff for a test with significance level α = 0.05 is 0.999 when n = 100, p = 3,
κ = 4 and the minimum cluster size is set to 20. This underlines the importance of the
calibration step. Without it, we would probably accept H0 if the computed value of P (H0|Y )
turned out to be 0.8. However, based on the null distribution cutoff, we should in fact reject
H0 at α = 0.05 significance level.

4.3. Variation of the null distribution

The null distribution of P (H0|Y ) varies with the parameters under which the test is con-
ducted: n, p, κ and the minimum cluster size. Even for a given dataset and a fixed minimum
cluster size, the distribution of the statistic under the null hypothesis will not be the same
when different values of κ are tested. The reason for this is that the expression for the Bayes
factor in Equation 2 depends explicitly on the value of κ being tested.
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Figure 6: The plot on the left presents the true partitioning of the dataset. The plot in the
middle is the optimal 3-clustering found by bayesclust. The plot on the right displays the
best partitioning of the data found by mclust.

In all cases, though, the effect on the null distribution is similar. As n, p, κ and the minimum
cluster size increase, the shape of the distribution becomes more skewed to the left. As far as
possible, this should be taken into account when the default null cutoffs are used in decision-
making. For example, suppose that cluster.test() is run with n = 57, mcs = 0.1, p = 1,
and k = 2. Then the closest set of parameters from the table of default values would be n

= 50, mcs = 0.1, p = 1, and k = 2. However, the experimenter should be aware that there
could be an error in the conclusion, and that the error would be in the conservative direction.
Plots that demonstrate some of the variations are given in Appendix B.

5. Comparison with mclust

In this section, we compare the bayesclust procedure with classification by mclust. For the
methods and routines implemented in mclust, the reader is referred to Fraley and Raftery
(2007). We shall apply both routines to the diabetes dataset that can be obtained from the
mclust, and compare their outputs. This dataset consists of data from 3 clusters. We shall
compare the two procedures by assessing the number of misclassifications returned by each.

The first step we have to do is test for the presence of 3 clusters using bayesclust.

R> library("bayesclust")

R> library("mclust")

R> data("diabetes")

R> X <- as.matrix(diabetes[, 2:4])

R> clusterTestK3 <- cluster.test(X, nsim = 500000, p = 3, k = 3,

+ mcs = 0.1, replications = 4)

R> nulldensK3 <- nulldensity(n = 145, nsim = 8000, k = 3, mcs = 0.1,

+ p = 3, prop = 0.25)
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R> emp2pval(clusterTestK3, nulldensK3)

mean.emp.prob pvalue

data1 2.761797e-15 0.000125

As we can see, the obtained p value is significant at α = 0.05 level, giving strong evidence
for the presence of 3 significant clusters. Hence we can proceed to partition the data into 3
clusters.

R> clusterOptK3 <- cluster.optimal(X, nsim = 200000, p = 3, k = 3,

+ mcs = 0.1)

Plots of the clusterings found by the two algorithms can be found in Figure 6. Counting the
wrongly classified steps, we can see that the bayesclust procedure makes 23 misclassifications,
whereas mclust makes only 17. Both procedures agree that a 3-clustering is significant, but
the mclust procedure seems to work better in this case. However, it is worth pointing out
that by construction, bayesclust provides the user with a method of explicitly testing the
significance of the 3-clustering, whereas mclust does not.

For the above comparison, we have used a relatively small dataset. However, we have applied
the package to larger datasets from genetics in order to test its limitations. In De Souto,
Costa, De Araujo, Ludermir, and Schliep (2008), the authors cluster 35 different datasets.
The maximum number of observations they have is n = 250, and the maximal dimension
is p = 4500. In such a situation, our cluster test and search would take approximately 1
minute to carry out 100 iterations of the Markov chain on a 2.2 GHz processor. Generating
from the null distribution is typically slower though, and would take about 45 seconds for 2
simulations. Overall, when n is larger than, say 150, the experimenter might prefer not to
calibrate the test statistic and to use the alternative, fully Bayesian approach (see Figure 1
and Equation 17). For more timings, please refer to Section A.

6. Conclusions

We have presented a detailed user guide for the R package bayesclust, which allows for testing
and searching for significant clusters in multivariate data. We have demonstrated that our
methodology provides a ready alternative to other available methods, such as mclust.
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A. Timings

The functions cluster.test(), nulldensity() and cluster.optimal() are computation-
ally intensive. Portions of these functions have been coded in C in order to speed up the
routines. We recommend that the experimenter time the functions for a small number of
simulations in order to estimate the total running time. Tables 1–3 provide some timings on
a 2.2 GHz AMD Dual Core Opteron processor with 8 GB RAM.

n p k mcs nsim Elapsed time (sec)

100 10 2 0.1 500000 1346
100 10 4 0.1 500000 1408
100 10 6 0.1 500000 1434
100 20 2 0.1 500000 1501
100 20 4 0.1 500000 1244
100 20 6 0.1 500000 1143

Table 1: Timings for the cluster.test() function.

n p k mcs nsim Elapsed time (sec)

100 10 2 0.1 500000 877
100 10 4 0.1 500000 887
100 10 6 0.1 500000 886
100 20 2 0.1 500000 936
100 20 4 0.1 500000 921
100 20 6 0.1 500000 958

Table 2: Timings for the cluster.optimal() function.

n p k mcs nsim prop Elapsed time (sec)

50 10 2 0.1 8000 0.25 150
50 10 4 0.1 8000 0.25 5715
50 10 6 0.1 8000 0.25 34266
50 20 2 0.1 8000 0.25 294
50 20 4 0.1 8000 0.25 11573

Table 3: Timings for the cluster.optimal() function.

B. Null distribution plots

This section contains plots of how the distribution of P (H0|Y ) varies with n and k. It is
meant to demonstrate the critical nature of the calibration step.
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Figure 7: Null distribution under varying n, with k = 2 and mcs = 10%.
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Figure 8: Null distribution under varying k, with n = 50 and mcs = 10%.
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