
JSS Journal of Statistical Software
April 2012, Volume 47, Issue 11. http://www.jstatsoft.org/

Causal Inference Using Graphical Models with the

R Package pcalg

Markus Kalisch
ETH Zürich

Martin Mächler
ETH Zürich

Diego Colombo
ETH Zürich

Marloes H. Maathuis
ETH Zürich

Peter Bühlmann
ETH Zürich

Abstract

The pcalg package for R can be used for the following two purposes: Causal structure
learning and estimation of causal effects from observational data. In this document, we
give a brief overview of the methodology, and demonstrate the package’s functionality in
both toy examples and applications.

Keywords: IDA, PC, RFCI, FCI, do-calculus, causality, graphical model, R.

1. Introduction

Understanding cause-effect relationships between variables is of primary interest in many fields
of science. Usually, experimental intervention is used to find these relationships. In many
settings, however, experiments are infeasible because of time, cost or ethical constraints.

We therefore consider the problem of inferring causal information from observational data.
Under some assumptions, the PC algorithm (see Spirtes, Glymour, and Scheines 2000), the
FCI algorithm (see Spirtes et al. 2000 and Spirtes, Meek, and Richardson 1999) and the RFCI
algorithm (see Colombo, Maathuis, Kalisch, and Richardson 2012) can infer information about
the causal structure from observational data. Thus, these algorithms tell us which variables
could or could not be a cause of some variable of interest. They do not, however, give
information about the size of the causal effects. We therefore developed the IDA method (see
Maathuis, Kalisch, and Bühlmann 2009), which can infer bounds on causal effects based on
observational data under some assumptions. IDA was validated on a large-scale biological
system (see Maathuis, Colombo, Kalisch, and Bühlmann 2010).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Statistical Software

https://core.ac.uk/display/478955103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 pcalg: Causal Graphical Models in R

For broader use of these methods, well documented and easy to use software is indispensable.
We therefore wrote the R package pcalg, which is available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=pcalg and contains implementations of
the PC, FCI and RFCI algorithms, as well as of the IDA method. The objective of this paper
is to introduce the R package pcalg, explain the range of functions on simulated data sets and
summarize some applications.

To get started, we show how two of the main functions (one for causal structure learning and
one for estimating causal effects from observational data) can be used in a typical applica-
tion. Suppose we have a system described by some variables and many observations of this
system. Furthermore, assume that it seems plausible that there are no hidden variables and
no feedback loops in the underlying causal system. The causal structure of such a system can
be conveniently represented by a directed acyclic graph (DAG), where each node represents
a variable and each directed edge represents a direct cause. To fix ideas, we have simulated
an example data set with p = 8 continuous variables with Gaussian noise and n = 5000
observations, which we will now analyse. First, we load the package pcalg and the data set.

R> library("pcalg")

R> data("gmG")

In the next step, we use the function pc() to produce an estimate of the underlying causal
structure. Since this function is based on conditional independence tests, we need to define two
things. First, we need a function that can compute conditional independence tests in a way
that is suitable for the data at hand. For standard data types (Gaussian, discrete and binary)
we provide predefined functions. See the example section in the help file of pc() for more
details. Secondly, we need a summary of the data (sufficient statistic) on which the conditional
independence function can work. Each conditional independence test can be performed at a
certain significance level alpha. This can be treated as a tuning parameter. In the following
code, we use the predefined function gaussCItest() as conditional independence test and
create the corresponding sufficient statistic, consisting of the correlation matrix of the data
and the sample size. Then we use the function pc() to estimate the causal structure and plot
the result.

R> suffStat <- list(C = cor(gmG$x), n = nrow(gmG$x))

R> pc.fit <- pc(suffStat, indepTest = gaussCItest, p = ncol(gmG$x),

+ alpha = 0.01)

R> library("Rgraphviz")

R> par(mfrow = c(1, 2))

R> plot(gmG$g, main = "")

R> plot(pc.fit, main = "")

As can be seen in Figure 1, there are directed and bidirected edges in the estimated causal
structure. The directed edges show the presence and direction of direct causal effects. A bidi-
rected edge means that the PC algorithm was unable to decide whether the edge orientation
should be← or→. Thus, bidirected edges represent some uncertainty in the resulting model.
They reflect the fact that in general one cannot estimate a unique DAG from observational
data, not even with an infinite amount of data, since several DAGs can describe the same
conditional independence information.

http://CRAN.R-project.org/package=pcalg

Journal of Statistical Software 3

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1: True underlying causal DAG (left) and estimated causal structure (right), represent-
ing a Markov equivalence class of DAGs that all encode the same conditional independence
information. (Due to the large sample size, there were no sampling errors.)

On the inferred causal structure, we can estimate the causal effect of an intervention. Denote
the variable corresponding to node i in the graph by Vi. For example, suppose that, by
external intervention, we first set the variable V1 to some value x̃, and then to the value x̃+1.
The recorded average change in variable V6 is the (total) causal effect of V1 on V6. More
precisely, the causal effect C(V1, V6, x̃) of V1 from V1 = x̃ on V6 is defined as

C(V1, V6, x̃) = E(V1|do(V6 = x̃+ 1))− E(V1|do(V6 = x̃)) or

C(V1, V6, x̃) =
∂

∂x
E(V1|do(V6 = x))|x=x̃,

where do(V6 = x) denotes Pearl’s do-operator (see Pearl 2000). If the causal relationships are
linear, these two expressions are equivalent and do not depend on x̃.

Since the causal structure was not identified uniquely in our example, we cannot expect to
get a unique number for the causal effect. Instead, we get a set of possible causal effects. This
set can be computed by using the function ida(). To provide full quantitative information,
we need to pass the covariance matrix in addition to the estimated causal structure.

R> ida(1, 6, cov(gmG$x), pc.fit@graph)

[1] 0.75364 0.54878

Since we simulated the data, we know that the true value of the causal effect is 0.71. Thus,
one of the two estimates is indeed close to the true value. Since both values are larger than
zero, we can conclude that variable V1 has a positive causal effect on variable V6. Thus, we
can always estimate a lower bound for the absolute value of the causal effect. (Note that at
this point we have no p value to control the sampling error.)

If we would like to know the effect of a unit increase in variable V1 on variables V4, V5 and
V6, we could simply call ida() three times. However, a faster way is to call the function
idaFast(), which was tailored for such situations.

4 pcalg: Causal Graphical Models in R

R> idaFast(1, c(4,5,6), cov(gmG$x), pc.fit@graph)

[,1] [,2]

4 0.01027 0.012014

5 0.23875 0.017935

6 0.75364 0.548776

Each row in the output shows the estimated set of possible causal effects on the target variable
indicated by the row names. The true values for the causal effects are 0, 0.2, 0.71 for variables
V4, V5 and V6, respectively. The first row, corresponding to variable V4, quite accurately
indicates a causal effect that is very close to zero or no effect at all. The second row of the
output, corresponding to variable V5, is rather uninformative: Although one entry comes close
to the true value, the other estimate is close to zero. Thus, we cannot be sure if there is a
causal effect at all. The third row, corresponding to V6 was already discussed above.

2. Methodological background

In Section 2.1 we propose methods for estimating the causal structure from observational
data. In particular, we discuss the PC algorithm (see Spirtes et al. 2000), the FCI algorithm
(see Spirtes et al. 2000 and Spirtes et al. 1999) and the RFCI algorithm (see Colombo et al.
2012). In Section 2.2 we describe the IDA method (see Maathuis et al. 2009) to obtain bounds
on causal effects from observational data. This method is based on first estimating the causal
structure and then applying do-calculus (see Pearl 2000)

2.1. Estimating causal structures with graphical models

Graphical models can be thought of as maps of dependence structures of a given probability
distribution or a sample thereof (see for example Lauritzen 1996). In order to illustrate the
analogy, let us consider a road map. In order to be able to use a road map, one needs two given
factors. First, one needs the physical map with symbols such as dots and lines. Second, one
needs a rule for interpreting the symbols. For instance, a railroad map and a map for electric
circuits might look very much alike, but their interpretation differs a lot. In the same sense,
a graphical model is a map. First, a graphical model consists of a graph with dots, lines and
potentially edge marks like arrowheads or circles. Second, a graphical model always comes
with a rule for interpreting this graph. In general, nodes in the graph represent (random)
variables and edges represent some kind of dependence.

Without hidden and selection variables

An example of a graphical model is the DAG model. The physical map here is a graph
consisting of nodes and directed edges (← or →). As a further restriction, the edges must be
directed in a way, so that it is not possible to trace a cycle when following the arrowheads
(i.e., no directed cycles). The interpretation rule is called d-separation. This rule is a bit
intricate and we refer the reader to Lauritzen (1996) for more details. This interpretation
rule can be used in the following way: If two nodes x and y are d-separated by a set of nodes
S, then the corresponding random variables Vx and Vy are conditionally independent given
the set of random variables VS . For the following, we only deal with distributions where the

Journal of Statistical Software 5

following holds: For each distribution, it is possible to find a DAG, whose list of d-separation
relations perfectly matches the list of conditional independencies of the distribution. Such
distributions are called faithful. It has been shown that the set of distributions that are
faithful is the overwhelming majority (Meek 1995), so that the assumption does not seem to
be very strict in practice.

Since the DAG model encodes conditional independencies, it seems plausible that information
on the latter helps to infer aspects of the former. This intuition is made precise in the PC
algorithm (see Spirtes et al. 2000; PC stands for the initials of its inventors Peter Spirtes
and Clark Glymour) which was proven to reconstruct the structure of the underlying DAG
model given a conditional independence oracle up to its Markov equivalence class which is
discussed in more detail below. In practice, the conditional independence oracle is replaced
by a statistical test for conditional independence. For situations without hidden variables
and under some further conditions it has been shown that the PC algorithm using statistical
tests instead of an independence oracle is computationally feasible and consistent even for
very high-dimensional sparse DAGs (see Kalisch and Bühlmann 2007).

As mentioned before, several DAGs can encode the same list of conditional independencies.
One can show that such DAGs must share certain properties. To be more precise, we have to
define a v-structure as the subgraph i→ j ← k on the nodes i, j and k where i and k are not
adjacent (i.e., there is no edge between i and k). Furthermore, let the skeleton of a DAG be
the graph that is obtained by removing all arrowheads from the DAG. It was shown that two
DAGs encode the same conditional independence statements if and only if the corresponding
DAGs have the same skeleton and the same v-structures (see Verma and Pearl (1991)). Such
DAGs are called Markov-equivalent. In this way, the space of DAGs can be partitioned into
equivalence classes, where all members of an equivalence class encode the same conditional
independence information. Conversely, if given a conditional independence oracle, one can
only determine a DAG up to its equivalence class. Therefore, the PC algorithm cannot
determine the DAG uniquely, but only the corresponding equivalence class of the DAG.

An equivalence class can be visualized by a graph that has the same skeleton as every DAG in
the equivalence class and directed edges only where all DAGs in the equivalence class have the
same directed edge. Edges that point into one direction for some DAGs in the equivalence
class and in the other direction for other DAGs in the equivalence class are visualized by
bidirected edges (sometimes, undirected edges are used instead). This graph is called a
completed partially directed acyclic graph (CPDAG).

We now describe the PC algorithm, which is shown in Table 1, in more detail. The PC
algorithm starts with a complete undirected graph, G0, as stated in (P1) of Table 1. In stage
(P2), a series of conditional independence tests is done and edges are deleted in the following
way. First, all pairs of nodes are tested for marginal independence. If two nodes i and j are
judged to be marginally independent at level α, the edge between them is deleted and the
empty set is saved as separation sets Ŝ[i, j] and Ŝ[j, i]. After all pairs have been tested for
marginal independence and some edges might have been removed, a graph results which we
denote by G1. In the second step, all pairs of nodes (i, j) still adjacent in G1 are tested for
conditional independence given any single node in adj(G1, i)\{j} or adj(G1, j)\{i} (adj(G, i)
denotes the set of nodes in graph G that are adjacent to node i) . If there is any node k
such that Vi and Vj are conditionally independent given Vk, the edge between i and j is
removed and node k is saved as separation sets (sepset) Ŝ[i, j] and Ŝ[j, i]. If all adjacent pairs
have been tested given one adjacent node, a new graph results which we denote by G2. The

6 pcalg: Causal Graphical Models in R

Input: Vertex set V, conditional independence information, significance level α.
Output: Estimated CPDAG Ĝ, separation sets Ŝ.

Edge types: →, −.

(P1) Form the complete undirected graph on the vertex set V.

(P2) Test conditional independence given subsets of adjacency sets at a given significance
level α and delete edges if conditional independent.

(P3) Orient v-structures.

(P4) Orient remaining edges.

Table 1: Outline of the PC algorithm.

algorithm continues in this way by increasing the size of the conditioning set step by step.
The algorithm stops if all adjacency sets in the current graph are smaller than the size of the
conditioning set. The result is the skeleton in which every edge is still undirected. Within
(P3), each triple of vertices (i, k, j) such that the pairs (i, k) and (j, k) are each adjacent
in the skeleton but (i, j) are not (such a triple is called an “unshielded triple”), is oriented
based on the information saved in the conditioning sets Ŝ[i, j] and Ŝ[j, i]. More precisely, an
unshielded triple i − k − j is oriented as i → k ← j if k is not in Ŝ[j, i] = Ŝ[i, j]. Finally, in
(P4) it may be possible to orient some of the remaining edges, since one can deduce that one
of the two possible directions of the edge is invalid because it introduces a new v-structure
or a directed cycle. Such edges are found by repeatedly applying rules described in Spirtes
et al. (2000, p. 85). The resulting output is the equivalence class (CPDAG) that describes the
conditional independence information in the data, in which every edge is either undirected or
directed. (To simplify visual presentation, undirected edges are depicted as bidirected edges
in the output as soon as at least one directed edge is present. If no directed edge is present,
all edges are undirected.)

A causal structure without feedback loops and without hidden or selection variable can be
visualized using a DAG where the edges indicate direct cause-effect relationships. Under
some assumptions, Pearl (2000, Theorem 1.4.1) showed that there is a link between causal
structures and graphical models. Roughly speaking, if the underlying causal structure is
a DAG, we observe data generated from this DAG and then estimate a DAG model (i.e.,
a graphical model) on this data, the estimated CPDAG represents the equivalence class of
the DAG model describing the causal structure. This holds if we have enough samples and
assuming that the true underlying causal structure is indeed a DAG without latent or selection
variables. Note that even given an infinite amount of data, we usually cannot identify the
true DAG itself, but only its equivalence class. Every DAG in this equivalence class can be
the true causal structure.

With hidden or selection variables

When discovering causal relations from nonexperimental data, two difficulties arise. One
is the problem of hidden (or latent) variables: Factors influencing two or more measured
variables may not themselves be measured. The other is the problem of selection bias: Values

Journal of Statistical Software 7

of unmeasured variables or features may influence whether a unit is included in the data
sample.

In the case of hidden or selection variables, one could still visualize the underlying causal
structure with a DAG that includes all observed, hidden and selection variables. However,
when inferring the DAG from observational data, we do not know all hidden and selection
variables.

We therefore seek to find a structure that represents all conditional independence relationships
among the observed variables given the selection variables of the underlying causal structure.
It turns out that this is possible. However, the resulting object is in general not a DAG
for the following reason. Suppose, we have a DAG including observed, latent and selection
variables and we would like to visualize the conditional independencies among the observed
variables only. We could marginalize out all latent variables and condition on all selection
variables. It turns out that the resulting list of conditional independencies can in general not
be represented by a DAG, since DAGs are not closed under marginalization or conditioning
(see Richardson and Spirtes 2002).

A class of graphical independence models that is closed under marginalization and condition-
ing and that contains all DAG models is the class of ancestral graphs. A detailed discussion
of this class of graphs can be found in Richardson and Spirtes (2002). In this text, we only
give a brief introduction.

Ancestral graphs have nodes, which represent random variables and edges which represent
some kind of dependence. The edges can be either directed (← or →), undirected (–) or
bidirected (↔) (note that in the context of ancestral graphs, undirected and bidirected edges
do not mean the same). There are two rules that restrict the direction of edges in an ancestral
graph:

1: If i and j are joined by an edge with an arrowhead at i, then there is no directed path
from i to j. (A path is a sequence of adjacent vertices, and a directed path is a path
along directed edges that follows the direction of the arrowheads.)

2: There are no arrowheads present at a vertex which is an endpoint of an undirected edge.

Maximal ancestral graphs (MAG), which we will use from now on, also obey a third rule:

3: Every missing edge corresponds to a conditional independence.

The conditional independence statements of MAGs can be read off using the concept of m-
separation, which is a generalization the concept of d-separation. Furthermore, part of the
causal information in the underlying DAG is represented in the MAG. If in the MAG there
is an edge between node i and node j with an arrowhead at node i, then there is no directed
path from node i to node j nor to any of the selection variables in the underlying DAG (i.e.,
i is not a cause of j or of the selection variables). If, on the other hand, there is a tail at node
i, then there is a directed path from node i to node j or to one of the selection variables in
the underlying DAG (i.e., i is a cause of j or of a selection variable).

Recall that finding a unique DAG from an independence oracle is in general impossible.
Therefore, one only reports on the equivalence class of DAGs in which the true DAG must
lie. The equivalence class is visualized using a CPDAG. The same is true for MAGs: Finding

8 pcalg: Causal Graphical Models in R

a unique MAG from an independence oracle is in general impossible. One only reports on the
equivalence class in which the true MAG lies.

An equivalence class of a MAG can be uniquely represented by a partial ancestral graph
(PAG) (see e.g., Zhang 2008). A PAG contains the following types of edges: o–o, o–, o–>,
–>, <–>, –. Roughly, the bidirected edges come from hidden variables, and the undirected
edges come from selection variables. The edges have the following interpretation: (i) There
is an edge between x and y if and only if Vx and Vy are conditionally dependent given VS for
all sets VS consisting of all selection variables and a subset of the observed variables; (ii) a
tail on an edge means that this tail is present in all MAGs in the equivalence class; (iii) an
arrowhead on an edge means that this arrowhead is present in all MAGs in the equivalence
class; (iv) a o-edgemark means that there is a at least one MAG in the equivalence class where
the edgemark is a tail, and at least one where the edgemark is an arrowhead.

An algorithm for finding the PAG given an independence oracle is the FCI algorithm (“fast
causal inference”; see Spirtes et al. 2000 and Spirtes et al. 1999). The orientation rules
of this algorithm were slightly extended and proven to be complete in Zhang (2008). FCI
is very similar to PC but makes additional conditional independence tests and uses more
orientation rules (see Section 3.3 for more details). We refer the reader to Zhang (2008) or
Colombo et al. (2012) for a detailed discussion of the FCI algorithm. It turns out that the
FCI algorithm is computationally infeasible for large graphs. The RFCI algorithm (“really
fast causal inference”; see Colombo et al. 2012), is much faster than FCI. The output of
RFCI is in general slightly less informative than the output of FCI, in particular with respect
to conditional independence information. However, it was shown in Colombo et al. (2012)
that any causal information in the output of RFCI is correct and that both FCI and RFCI
are consistent in (different) sparse high-dimensional settings. Finally, in simulations the
estimation performances of the algorithms are very similar.

2.2. Estimating bounds on causal effects

One way of quantifying the causal effect of variable Vx on Vy is to measure the state of Vy if
Vx is forced to take value Vx = x and compare this to the value of Vy if Vx is forced to take
the value Vx = x+ 1 or Vx = x+ δ. If Vx and Vy are random variables, forcing Vx = x could
have the effect of changing the distribution of Vy. Following the conventions in Pearl (2000),
the resulting distribution after manipulation is denoted by P [Vy|do(Vx = x)]. Note that this
is different from the conditional distribution P [Vy|Vx = x]. To illustrate this, imagine the
following simplistic situation. Suppose we observe a particular spot on the street during some
hour. The random variable Vx denotes whether it rained during that hour (Vx = 1 if it rained,
Vx = 0 otherwise). The random variable Vy denotes whether the street was wet at the end of
that hour (Vy = 1 if it was wet, Vy = 0 otherwise). If we assume P (Vx = 1) = 0.1 (rather dry
region), P (Vy = 1|Vx = 1) = 0.99 (the street is almost always still wet at the end of the hour
when it rained during that hour) and P (Vy = 1|Vx = 0) = 0.02 (other reasons for making the
street wet are rare), we can compute the conditional probability P (Vx = 1|Vy = 1) = 0.85.
So, if we observe the street to be wet, the probability that there was rain in the last hour is
about 0.85. However, if we take a garden hose and force the street to be wet at a randomly
chosen hour, we get P (Vx = 1|do(Vy = 1)) = P (Vx = 1) = 0.1. Thus, the distribution of the
random variable describing rain is quite different when making an observation versus making
an intervention.

Journal of Statistical Software 9

Oftentimes, only the change of the target distribution under intervention is reported. We use
the change in mean, i.e., ∂

∂xE[Vy|do(Vx = x)], as a general measure for the causal effect of
Vx on Vy. For multivariate Gaussian random variables, E[Vy|do(Vx = x)] depends linearly
on x. Therefore, the derivative is constant which means that the causal effect does not
depend on x, and can also be interpreted as E[Vy|do(Vx = x + 1)] − E[Vy|do(Vx = x)]. For
binary random variables (with domain {0, 1}) we define the causal effect of Vx on Vy as
E(Vy|do(Vx = 1))− E(Vy|do(Vx = 0)) = P (Vy = 1|do(Vx = 1))− P (Vy = 1|do(Vx = 0)).

The goal in the remainder of this section is to estimate the effect of an intervention if only
observational data is available.

Without hidden and selection variables

If the causal structure is a known DAG and there are no hidden and selection variables, Pearl
(2000, Theorem 3.4.1) suggested a set of inference rules known as “do-calculus” whose appli-
cation transforms an expression involving a “do” into an expression involving only conditional
distributions. Thus, information on the interventional distribution can be obtained by using
information obtained by observations and knowledge of the underlying causal structure.

Unfortunately, the causal structure is rarely known in practice. However, as discussed in
Section 2.1, we can estimate the Markov equivalence class of the true causal DAG. Taking
this into account, we conceptually apply the do-calculus on each DAG within the equivalence
class and thus obtain a possible causal effect for each DAG in the equivalence class (in practice,
we developed a local method that is faster but yields a similar result; see Section 3.5 for more
details). Therefore, even if we have an infinite amount of observations we can in general report
on a multiset of possible causal values (it is a multiset rather than a set because it can contain
duplicate values). One of these values is the true causal effect. Despite the inherent ambiguity,
this result can still be very useful when the multiset has certain properties (e.g., all values
are much larger than zero). These ideas are incorporated in the IDA method (intervention
calculus when the DAG is absent).

In addition to this fundamental limitation in estimating a causal effect, errors due to finite
sample size blur the result as with every statistical method. Thus, we can typically only get
an estimate of the set of possible causal values. It was shown that this estimate is consistent
in sparse high-dimensional settings under some assumptions by Maathuis et al. (2009).

It has recently been shown empirically that despite the described fundamental limitations
in identifying the causal effect uniquely and despite potential violations of the underlying
assumptions, the method performs well in identifying the most important causal effects in a
high-dimensional yeast gene expression data set (see Maathuis et al. 2010).

With hidden and selection variables

At the moment, we can not yet estimate causal effects when hidden variables or selection
variables are present.

2.3. Summary of assumptions

For all proposed methods, we assume that the data is faithful to the unknown underlying
causal DAG. For the individual methods, further assumptions are made.

10 pcalg: Causal Graphical Models in R

PC algorithm: No hidden or selection variables; consistent in high-dimensional settings
(the number of variables grows with the sample size) if the underlying DAG is sparse,
the data is multivariate Normal and satisfies some regularity conditions on the partial
correlations, and α is taken to zero appropriately. See Kalisch and Bühlmann (2007)
for full details. Consistency in a standard asymptotic regime with a fixed number of
variables follows as a special case.

FCI algorithm: Allows for hidden and selection variables; consistent in high-dimensional
settings if the so-called Possible-D-SEP sets (see Spirtes et al. 2000) are sparse, the
data is multivariate Normal and satisfies some regularity conditions on the partial cor-
relations, and α is taken to zero appropriately. See Colombo et al. (2012) for full details.
Consistency in a standard asymptotic regime with a fixed number of variables follows
as a special case.

RFCI algorithm: Allows for hidden and selection variables; consistent in high-dimensional
settings if the underlying MAG is sparse (this is a much weaker assumption than the one
needed for FCI), the data is multivariate Normal and satisfies some regularity conditions
on the partial correlations, and α is taken to zero appropriately. See Colombo et al.
(2012) for full details. Consistency in a standard asymptotic regime with a fixed number
of variables follows as a special case.

IDA: No hidden or selection variables; all conditional expectations are linear; consistent in
high-dimensional settings if the underlying DAG is sparse, the data is multivariate Nor-
mal and satisfies some regularity conditions on the partial correlations and conditional
variances, and α is taken to zero appropriately. See Maathuis et al. (2009) for full
details.

3. Package pcalg

This package has two goals. First, it is intended to provide fast, flexible and reliable implemen-
tations of the PC, FCI and RFCI algorithms for estimating causal structures and graphical
models. Second, it provides an implementation of the IDA method, which estimates bounds
on causal effects from observational data when no causal structure is known and hidden or
selection variables are absent.

In the following, we describe the main functions of our package for achieving these goals.
The functions skeleton(), pc(), fci() and rfci() are intended for estimating graphical
models. The functions ida() and idaFast() are intended for estimating causal effects from
observational data.

Alternatives to this package for estimating graphical models in R include: Scutari (2010),
Bottcher and Dethlefsen (2011), Højsgaard (2012), Dethlefsen and Højsgaard (2005) and
Højsgaard and Lauritzen (2007).

3.1. skeleton

The function skeleton() implements (P1) and (P2) from Table 1. The function can be called
with the following arguments

Journal of Statistical Software 11

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 2: True underlying DAG (left) and estimated skeleton (right) fitted on the simulated
Gaussian data set gmG.

skeleton(suffStat, indepTest, p, alpha, verbose = FALSE, fixedGaps = NULL,

fixedEdges = NULL, NAdelete = TRUE, m.max = Inf)

As was discussed in Section 2.1, the main task in finding the skeleton is to compute and
test several conditional independencies. To keep the function flexible, skeleton() takes as
argument a function indepTest() that performs these conditional independence tests and
returns a p value. All information that is needed in the conditional independence test can
be passed in the argument suffStat. The only exceptions are the number of variables p

and the significance level alpha for the conditional independence tests, which are passed
separately. For convenience, we have preprogrammed versions of indepTest() for Gaussian
data (gaussCItest()), discrete data (disCItest()), and binary data (binCItest()). Each
of these independence test functions needs different arguments as input, described in the
respective help files. For example, when using gaussCItest(), the input has to be a list
containing the correlation matrix and the sample size of the data. In the following code, we
estimate the skeleton on the data set gmG (which consists of p = 8 variables and n = 5000
samples) and plot the results. The estimated skeleton and the true underlying DAG are shown
in Figure 2.

R> suffStat <- list(C = cor(gmG$x), n = nrow(gmG$x))

R> pc.fit <- skeleton(suffStat, indepTest = gaussCItest, p = ncol(gmG$x),

+ alpha = 0.01)

R> par(mfrow = c(1, 2))

R> plot(gmG$g, main = "")

R> plot(pc.fit, main = "")

To give another example, we show how to fit a skeleton to the example data set gmD (which
consists of p = 5 discrete variables with 3, 2, 3, 4 and 2 levels and n = 10000 samples). The
predefined test function disCItest() is based on the G2 statistic and takes as input a list
containing the data matrix, a vector specifying the number of levels for each variable and an
option which indicates if the degrees of freedom must be lowered by one for each zero count.

12 pcalg: Causal Graphical Models in R

1 2

3 4

5

1 2

3 4

5

Figure 3: True underlying DAG (left) and estimated skeleton (right) fitted on the simulated
discrete data set gmD.

Finally, we plot the result. The estimated skeleton and the true underlying DAG are shown
in Figure 3.

In some situations, one may have prior information about the underlying DAG, for example
that certain edges are absent or present. Such information can be incorporated into the
algorithm via the arguments fixedGaps (absent edges) and fixedEdges (present edges). The
information in fixedGaps and fixedEdges is used as follows. The gaps given in fixedGaps

are introduced in the very beginning of the algorithm by removing the corresponding edges
from the complete undirected graph. Thus, these edges are guaranteed to be absent in the
resulting graph. Pairs (i, j) in fixedEdges are skipped in all steps of the algorithm, so that
these edges are guaranteed to be present in the resulting graph.

If indepTest() returns NA and the option NAdelete is TRUE, the corresponding edge is deleted.
If this option is FALSE, the edge is not deleted.

The argument m.max is the maximum size of the conditioning sets that are considered in the
conditional independence tests in (P2) of Table 1.

Throughout, the function works with the column positions of the variables in the adjacency
matrix, and not with the names of the variables.

3.2. pc

The function pc() implements all steps (P1) to (P4) of the PC algorithm shown in Table 1.
First, the skeleton is computed using the function skeleton() (steps (P1) and (P2)). Then,
as many edges as possible are oriented (steps (P3) and (P4)). The function can be called as

pc(suffStat, indepTest, p, alpha, verbose = FALSE, fixedGaps = NULL,

fixedEdges = NULL, NAdelete = TRUE, m.max = Inf, u2pd = "rand",

conservative = FALSE)

where the arguments suffStat, indepTest, p, alpha, fixedGaps, fixedEdges, NAdelete

and m.max are identical to those of skeleton().

Sampling errors (or hidden variables) can lead to conflicting information about edge directions.
For example, one may find that a−b−c and b−c−d should both be oriented as v-structures.
This gives conflicting information about the edge b − c, since it should be oriented as b ← c

Journal of Statistical Software 13

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 4: True underlying DAG (left) and estimated CPDAG (right) fitted on the simulated
Gaussian data set gmG.

in v-structure a → b ← c, while it should be oriented as b → c in v-structure b → c ← d. In
such cases, we simply overwrite the directions of the conflicting edge. In the example above
this means that we obtain a→ b→ c← d if a− b− c was visited first, and a→ b← c← d if
b− c− d was visited first.

Sampling errors or hidden variables can also lead to invalid CPDAGs, meaning that there
does not exist a DAG that has the same skeleton and v-structures as the graph found by the
algorithm. An example of this is an undirected cycle consisting of the edges a− b− c− d and
d − a. In this case it is impossible to direct the edges without creating a cycle or a new v-
structure. The optional argument u2pd specifies what should be done in such a situation. If it
is set to "relaxed", the algorithm simply outputs the invalid CPDAG. If u2pd is set to "rand",
all direction information is discarded and a random DAG is generated on the skeleton. The
corresponding CPDAG is then returned. If u2pd is set to "retry", up to 100 combinations of
possible directions of the ambiguous edges are tried, and the first combination that results in
a valid CPDAG is chosen. If no valid combination is found, an arbitrary CPDAG is generated
on the skeleton as with u2pd = "rand".

By setting the argument conservative = TRUE, the conservative PC algorithm (see Ramsey,
Zhang, and Spirtes 2006) is chosen. The conservative PC is a slight variation of the PC
algorithm and is intended to be more robust against sampling errors in its edge orientations.
After the skeleton is computed, all unshielded triplets a−b−c are checked in the following way.
We test whether Va and Vc are conditionally independent given any subset of the adjacency
set of a or any subset of the adjacency set of c. If b is in no such conditioning set (and not
in the original sepset) or in all such conditioning sets (and in the original sepset), the triple
is marked as faithful. If, however, b is in some conditioning sets but not in others, or if there
was no subset S of the adjacency set of a nor of c such that Va and Vc are conditionally
independent given VS , the triple is marked as “unfaithful”. Only faithful triples are oriented
as v-structures. Furthermore, orientation rules that need to know whether a − b − c is a
v-structure or not are only applied to faithful triples. (For more details, see the help file of
the internal function pc.cons.intern() which is called with the argument version.unf =

c(2, 2).)

14 pcalg: Causal Graphical Models in R

As with the skeleton, the PC algorithm works with the column positions of the variables in
the adjacency matrix, and not with the names of the variables. When plotting the object,
undirected and bidirected edges are equivalent.

As an example, we estimate a CPDAG of the Gaussian data used in the example for the
skeleton in Section 3.1. Again, we choose the predefined gaussCItest() as conditional in-
dependence test and create the corresponding test statistic. Finally, we plot the result. The
estimated CPDAG and the true underlying DAG are shown in Figure 4.

R> suffStat <- list(C = cor(gmG$x), n = nrow(gmG$x))

R> pc.fit <- pc(suffStat, indepTest = gaussCItest, p = ncol(gmG$x),

+ alpha = 0.01)

R> par(mfrow = c(1, 2))

R> plot(gmG$g, main = "")

R> plot(pc.fit, main = "")

3.3. fci

The FCI algorithm is a generalization of the PC algorithm, in the sense that it allows arbi-
trarily many latent and selection variables. Under the assumption that the data are faithful
to a DAG that includes all latent and selection variables, the FCI algorithm estimates the
equivalence class of MAGs that describe the conditional independence relationships between
the observed variables given the selection variables.

The first part of the FCI algorithm is analogous to the PC algorithm. It starts with a
complete undirected graph and estimates an initial skeleton using the function skeleton().
All edges of this skeleton are of the form o–o. Now, the v-structures are oriented as in the
PC algorithm. However, due to the presence of hidden variables, it is no longer sufficient
to consider only subsets of the adjacency sets of nodes x and y to decide whether the edge
x− y should be removed. Therefore, the initial skeleton may contain some superfluous edges.
These edges are removed in the next step of the algorithm. To decide whether edge x o–
o y should be removed, one computes Possible-D-SEP(x, y) and Possible-D-SEP(y, x) and
performs conditional independence tests of Vx and Vy given all subsets of Possible-D-SEP(x,
y) and of Possible-D-SEP(y, x) (see helpfile of function pdsep()). Subsequently, all edges are
transformed into o–o again and the v-structures are newly determined (using information in
sepset). Finally, as many undetermined edge marks (o) as possible are determined using (a
subset of) the 10 orientation rules given by Zhang (2008).

The function can be called with the following arguments:

fci(suffStat, indepTest, p, alpha, verbose = FALSE, fixedGaps = NULL,

fixedEdges = NULL, NAdelete = TRUE, m.max = Inf, rules = rep(TRUE, 10),

doPdsep = TRUE, conservative = c(FALSE, FALSE), biCC = FALSE,

cons.rules = FALSE, labels = NA)

where the arguments suffStat, indepTest, p, alpha, fixedGaps, fixedEdges, NAdelete

and m.max are identical to those in skeleton(). The option rules contains a logical vector
of length 10 indicating which rules should be used when directing edges, where the order of
the rules is taken from Zhang (2008).

Journal of Statistical Software 15

1 2

3 4

5

2 3

4

5

●

●

●

●

●

●

Figure 5: True underlying DAG (left) and estimated PAG (right), when applying the FCI
and RFCI algorithms to the data set gmL. The output of FCI and RFCI is identical. Variable
V1 of the true underlying DAG is latent.

The option doPdsep indicates whether Possible-D-SEP should be computed for all nodes, and
all subsets of Possible-D-SEP are considered as conditioning sets in the conditional indepen-
dence tests. If FALSE, Possible-D-SEP is not computed, so that the algorithm simplifies to
the modified PC algorithm of Spirtes et al. (2000).

The argument conservative can be used to invoke the conservative FCI algorithm which
consists of two parts. In the first part (done if conservative[1] is TRUE), we call the internal
function pc.cons.internal() with argument version.unf = c(1, 2) after computing the
skeleton. This is a slight variation of the conservative PC algorithm (which used version.unf

= c(2, 2)): If Va is independent of Vc given some VS in the skeleton (i.e., the edge a − c
dropped out), but Va and Vc remain dependent given all subsets of the adjacency set of either a
or c, we call a−b−c“unambiguous”. This is because in the FCI algorithm, the true separating
set might be outside the adjacency sets of a or c. The purpose of this conservative version is to
speed up the algorithm in the sample version (less v-structures lead to smaller Possible-D-SEP
sets). In the second part (done if conservative[2] is TRUE), we call pc.cons.internal(...,
version.unf = c(1, 2)) again after Possible-D-SEP was found and the graph potentially
lost some edges. Therefore, new triples might have occurred. If this second part is done, the
resulting information on sepset and faithful triples overwrites the previous and will be used
for the subsequent orientation rules. The purpose of this conservative version is used in the
hope to obtain better edge orientations. See Colombo et al. (2012) for more details.

By setting the argument biCC = TRUE, Possible-D-SEP(a, c) is defined as the intersection of
the original Possible-D-SEP(a, c) and the set of nodes that lie on a path between a and c.
This method uses biconnected components to find all nodes on a path between nodes a and c.
The smaller Possible-D-SEP sets lead to faster computing times, while Colombo et al. (2012)
showed that the algorithm is identical to the original FCI algorithm given oracle information
on the conditional independence relationships.

The argument cons.rules manages the way in which the information about unfaithful triples
affects the orientation rules for directing edges. If cons.rules = TRUE, an orientation rule
that needs information on definite non-colliders is only applied, if the corresponding subgraph
relevant for the rule does not involve an unfaithful triple.

Using the argument labels, one can pass names for the vertices of the estimated graph. By
default, this argument is NA, in which case the node names as.character(1:p) are used.

16 pcalg: Causal Graphical Models in R

As an example, we estimate the PAG of a graph with five nodes using the function fci()

and the predefined function gaussCItest() as conditional independence test. In Figure 5
the true DAG and the PAG estimated with fci() are shown. Random variable V1 is latent.
We can read off that both V4 and V5 cannot be a cause of V2 and V3, which can be confirmed
in the true DAG.

R> data("gmL")

R> suffStat1 <- list(C = cor(gmL$x), n = nrow(gmL$x))

R> pag.est <- fci(suffStat1, indepTest = gaussCItest, p = ncol(gmL$x),

+ alpha = 0.01, labels = as.character(2:5))

R> par(mfrow = c(1, 2))

R> plot(gmL$g, main = "")

R> plot(pag.est)

3.4. rfci

The function rfci() is rather similar to fci(). However, it does not compute any Possible-
D-SEP sets and thus does not make tests conditioning on them. This makes rfci() much
faster than fci(). The orientation rule for v-structures and the orientation rule for so-called
discriminating paths (rule 4) were modified in order to produce a PAG which, in the oracle
version, is guaranteed to have correct ancestral relationships.

The function can be called in the following way:

rfci(suffStat, indepTest, p, alpha, verbose = FALSE, fixedGaps = NULL,

fixedEdges = NULL, NAdelete = TRUE, m.max = Inf)

where the arguments suffStat, indepTest, p, alpha, fixedGaps, fixedEdges, NAdelete

and m.max are identical to those in skeleton().

As an example, we re-run the example from Section 3.3 and show the PAG estimated with
rfci() in Figure 5. The PAG estimated with fci() and the PAG estimated with rfci() are
the same.

R> suffStat1 <- list(C = cor(gmL$x), n = nrow(gmL$x))

R> pag.est <- rfci(suffStat1, indepTest = gaussCItest, p = ncol(gmL$x),

+ alpha = 0.01, labels = as.character(2:5))

A note on implementation: As pc(), fci() and rfci() are similar in the result they produce,
their resulting values are of (S4) class pcAlgo and fciAlgo (for both fci() and rfci()),
respectively. Both classes extend the class (of their “communalities”) gAlgo.

3.5. ida

To illustrate the function ida(), consider the following example. We simulated 10000 samples
from seven multivariate Gaussian random variables with a causal structure given on the left of
Figure 6. We assume that the causal structure is unknown and want to infer the causal effect
of V2 on V5. First, we estimate the equivalence class of DAGs that describe the conditional
independence relationships in the data, using the function pc() (see Section 3.2).

Journal of Statistical Software 17

1

2

3

4

56

7

1

2

3

4

56

7

Figure 6: True DAG (left) and estimated CPDAG (right).

R> data("gmI")

R> suffStat <- list(C = cor(gmI$x), n = nrow(gmI$x))

R> pc.fit <- pc(suffStat, indepTest=gaussCItest, p = ncol(gmI$x),

+ alpha = 0.01)

Comparing the true DAG with the CPDAG in Figure 6, we see that the CPDAG and the
true DAG have the same skeleton. Moreover, the directed edges in the CPDAG are also
directed in that way in the true DAG. Three edges in the CPDAG are bidirected. Recall that
undirected and bidirected edges bear the same meaning in a CPDAG, so they can be used
interchangeably.

Since there are three undirected edges in the CPDAG, there might be up to 23 = 8 DAGs in
the corresponding equivalence class. However, the undirected edges 2− 3− 5 can be oriented
as a new v-structure. As mentioned in Section 2.1, DAGs in the equivalence class must have
exactly the same v-structures as the corresponding CPDAG. Thus, 2 − 3 − 5 can only be
oriented as 2 → 3 → 5, 2 ← 3 ← 5 or 2 ← 3 → 5, and not as 2 → 3 ← 5. There is only one
remaining undirected edge (1 − 6), which can be oriented in two ways. Thus, there are six
valid DAGs (i.e., they have no new v-structures and no directed cycles) and these form the
equivalence class represented by the CPDAG. In Figure 7, all DAGs in the equivalence class
are shown. DAG 6 is the true DAG.

For each DAG G in the equivalence class, we apply Pearl’s do-calculus to estimate the total
causal effect of Vx on Vy. Since we assume Gaussianity, this can be done via a simple linear
regression: If y is not a parent of x, we take the regression coefficient of Vx in the regression
lm(Vy ~ Vx + pa(Vx)), where pa(Vx) denotes the parents of x in the DAG G (z is called a
parent of x if G if G contains the edge z → x); if y is a parent of x in G, we set the estimated
causal effect to zero.

If the equivalence class contains k DAGs, this yields k estimated total causal effects. Since
we do not know which DAG is the true causal DAG, we do not know which estimated total
causal effect of Vx on Vy is the correct one. Therefore, we return the entire multiset of k
estimated effects.

In our example, there are six DAGs in the equivalence class. Therefore, the function ida()

(with method = "global") produces six possible values of causal effects, one for each DAG.

18 pcalg: Causal Graphical Models in R

DAG 1

1
2
3

45

6
7

DAG 2

1
2

3 4
56

7
DAG 3

1

2
3

4

56
7

DAG 4

1
2
3

45

6
7

DAG 5

1
2

3 4
56

7

DAG 6

1
2

3
4

56
7

Figure 7: All DAGs belonging to the same equivalence class as the true DAG shown in
Figure 6.

R> ida(2, 5, cov(gmI$x), pc.fit@graph, method = "global", verbose = FALSE)

[1] -0.0049012 -0.0049012 0.5421360 -0.0049012 -0.0049012 0.5421360

Among these six values, there are only two unique values: −0.0049 and 0.5421. This is because
we compute lm(V5 ~ V2 + pa(V2)) for each DAG and report the regression coefficient of V2.
Note that there are only two possible parent sets of node 2 in all six DAGs: In DAGs 3 and
6, there are no parents of node 2. In DAGs 1, 2, 4 and 5, however, the parent of node 2 is
node 3. Thus, exactly the same regressions are computed for DAGs 3 and 6, and the same
regressions are computed for DAGs 1, 2, 4 and 5. Therefore, we end up with two unique
values, one of which occurs twice, while the other occurs four times.

Since the data was simulated from a model, we know that the true value of the causal effect
of V2 on V5 is 0.5529. Thus, one of the two unique values is indeed very close to the true
causal effect (the slight discrepancy is due to sampling error).

The function ida() can be called as

ida(x.pos, y.pos, mcov, graphEst, method = "local", y.notparent = FALSE,

verbose = FALSE, all.dags = NA)

Journal of Statistical Software 19

where x.pos denotes the column position of the cause variable, y.pos denotes the column
position of the effect variable, mcov is the covariance matrix of the original data, and graphEst

is a graph object describing the causal structure (this could be given by experts or estimated
by pc()).

If method = "global", the method is carried out as described above, where all DAGs in
the equivalence class of the estimated CPDAG are computed. This method is suitable for
small graphs (say, up to 10 nodes). The DAGs can (but need not) be precomputed using the
function allDags() and passed via argument all.dags.

If method = "local", we do not determine all DAGs in the equivalence class of the CPDAG.
Instead, we only consider the local neighborhood of x in the CPDAG. In particular, we
consider all possible directions of undirected edges that have x as endpoint, such that no new
v-structure is created. For each such configuration, we estimate the total causal effect of Vx
on Vy as above, using linear regression.

At first sight, it is not clear that such a local configuration corresponds to a DAG in the
equivalence class of the CPDAG, since it may be impossible to direct the remaining undirected
edges without creating a directed cycle or a v-structure. However, Maathuis et al. (2009)
showed that there is at least one DAG in the equivalence class for each such local configuration.
As a result, it follows that the multisets of total causal effects of the global and the local

method have the same unique values. They may, however, have different multiplicities.

Recall, that in the example using the global method, we obtained two unique values with
multiplicities two and four yielding six numbers in total. Applying the local method, we
obtain the same unique values, but the multiplicities are 1 for both values.

R> ida(2,5, cov(gmI$x), pc.fit@graph, method = "local")

[1] 0.5421360 -0.0049012

One can take summary measures of the multiset. For example, the minimum absolute value
provides a lower bound on the size of the true causal effect: If the minimum absolute value
of all values in the multiset is larger than one, then we know that the size of the true causal
effect (up to sampling error) must be larger than one. The fact that the unique values of the
multisets of the global and local method are identical implies that summary measures of
the multiset that only depend on the unique values (such as the minimum absolute value)
can be found using the local method.

In some applications, it is clear that some variable is definitivly a cause of other variables.
Consider for example a bacterium producing a certain substance, taking the amount of pro-
duced substance as response variable. Knocking out genes in the bacterium might change
the ability to produce the substance. By measuring the expression levels of genes, we want
to know which genes have a causal effect on the product. In this setting, it is clear that
the amount of substance is the effect and the activity of the genes is the cause. Thus in the
causal structure, the response variable cannot be a parent node of any variable describing the
expression level of genes. This background knowledge can be easily incorporated: By setting
the option y.notparent = TRUE, all edges in the CPDAG that have the response variable as
endpoint (no matter whether directed or undirected) are overwritten so that they are oriented
towards the response variable.

20 pcalg: Causal Graphical Models in R

3.6. idaFast

In some applications it is desirable to estimate the causal effect of one variable on a set of
response variables. In these situations, the function idaFast() should be used. Imagine
for example, that we have data on several variables, that we have no background knowledge
about the causal effects among the variables and that we want to estimate the causal effect
of each variable onto each other variable. To this end, we could consider for each variable
the problem: What is the causal effect of this variable on all other variables. Of course, one
could solve the problem by using ida() on each pair of variables. However, there is a more
efficient way which uses the fact that a linear regression of a fixed set of explanatory variables
on several different response variables can be computed very efficiently.

The function idaFast() can be called with the following arguments

idaFast(x.pos, y.pos.set, mcov, graphEst)

The arguments x.pos, mcov, graphEst have the same meaning as the corresponding argu-
ments in ida(). The argument y.pos.set is a vector containing the column positions of all
response variables of interest.

This call performs ida(x.pos, y.pos, mcov, graphEst, method = "local", y.notparent

= FALSE, verbose = FALSE) for all values of y.pos in y.pos.set at the same time and in
an efficient way. Note that the option y.notparent = TRUE is not implemented.

Consider the example from Section 3.5, where we computed the causal effect of V2 on V5.
Now, we want to compute the effect of V2 on V5, V6 and V7 using idaFast() and compare
the results with the output of ida(). As expected, both methods lead to the same results.

R> suffStat <- list(C = cor(gmI$x), n = nrow(gmI$x))

R> pc.fit <- pc(suffStat, indepTest = gaussCItest, p = ncol(gmI$x),

+ alpha = 0.01)

R> (eff.est1 <- ida(2,5, cov(gmI$x), pc.fit@graph, method = "local"))

[1] 0.5421360 -0.0049012

R> (eff.est2 <- ida(2, 6, cov(gmI$x), pc.fit@graph, method = "local"))

[1] -0.0058532 -0.0062310

R> (eff.est3 <- ida(2 ,7, cov(gmI$x), pc.fit@graph, method = "local"))

[1] 1.00861 0.89708

R> (eff.estF <- idaFast(2, c(5, 6, 7), cov(gmI$x), pc.fit@graph))

[,1] [,2]

5 0.5421360 -0.0049012

6 -0.0058532 -0.0062310

7 1.0086138 0.8970766

Journal of Statistical Software 21

3.7. Using a user specific conditional independence test

In some cases it might be desirable to use a user specific conditional independence test instead
of the provided ones. The pcalg package allows the use of any conditional independence
test defined by the user. In this section, we illustrate this feature by using a conditional
independence test for Gaussian data that is not predefined in the package.

The functions skeleton(), pc() and fci() all need the argument indepTest, a function
of the form indepTest(x, y, S, suffStat) to test conditional independence relationships.
This function must return the p value of the conditional independence test of Vx and Vy given
VS and some information on the data in the form of a sufficient statistic (this might be simply
the data frame with the original data), where x, y, S indicate column positions of the original
data matrix. We will show an example that illustrates how to construct such a function.

A simple way to compute the partial correlation of Vx and Vy given VS for some data is to solve
the two associated linear regression problems lm(Vx ∼ VS) and lm(Vy ∼ VS), get the residuals,
and calculate the correlation between the residuals. Finally, a correlation test between the
residuals yields a p value that can be returned. The argument suffStat is an arbitrary object
containing several pieces of information that are all used within the function to produce
the p value. In the predefined function gaussCItest() for example, a list containing the
correlation matrix and the number of observations is passed. This has the advantage that
any favorite (e.g., robust) method of computing the correlation matrix can be used before
partial correlations are computed. Oftentimes, however, it suffices to just pass the complete
data set in suffStat. We choose this simple method in our example. An implementation of
the function myCItest() could look like this.

R> myCItest <- function(x, y, S, suffStat) {

+ if(length(S) == 0) {

+ x. <- suffStat[,x]

+ y. <- suffStat[,y]

+ } else {

+ rxy <- resid(lm.fit(y = suffStat[, c(x, y)],

+ x = cbind(1, suffStat[, S])))

+ x. <- rxy[,1]

+ y. <- rxy[,2]

+ }

+ cor.test(x., y.)$p.value

+ }

We can now use this function together with pc().

R> pc.myfit <- pc(suffStat = gmG$x, indepTest = myCItest, p = 8,

+ alpha = 0.01)

R> par(mfrow = c(1, 2))

R> plot(pc.fit, main = "")

R> plot(pc.myfit, main = "")

As expected, the resulting CPDAG (see Figure 8) is the same as in Section 3.2 where we
used the function gaussCItest() as conditional independence test. Note however that using

22 pcalg: Causal Graphical Models in R

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 8: The estimated CPDAGs using the predefined conditional independence test
gaussCItest() (left) and the user specified conditional independence test myCItest() (right)
are identical for the gmG data.

gaussCItest() is considerably faster than using myCItest() (on our computer 0.059 seconds
using gaussCItest() versus 1.05 seconds using myCItest()).

4. Applications

The pcalg package has been used for applications in epidemiology (see Kalisch et al. 2010),
biology (see Maathuis et al. 2010 and Nagarajan et al. 2010) and the social sciences (see
Danenberg and Marsella 2010). We will discuss two applications in more detail below.

4.1. Graphical models and causal effects in human functioning

In Kalisch et al. (2010), the development of WHO’s International Classification of Functioning,
Disability and Health (ICF) on the one hand and recent developments in graphical modeling
on the other hand were combined to deepen the understanding of human functioning. The
objective of the paper was to explore how graphical models can be used in the study of
ICF data. It was found that graphical models could be used successfully for visualization
of the dependence structure of the data set, dimension reduction, and the comparison of
subpopulations. Moreover, estimations of bounds on causal effects using the IDA method
yielded plausible results. All analyses were done with the pcalg package.

4.2. Causal effects among genes

In Maathuis et al. (2010), the authors aim at quantifying the effects of single gene interventions
on the expression of other genes in yeast, allowing for better insights into causal relations
between genes. With n = 63 samples of observational data measuring the expression of
p = 5361 genes (see Hughes et al. 2000), the goal was to identify the largest intervention
effects between all pairs of genes. For the analysis, the pcalg package was used.

Hughes et al. (2000) also provide gene expression measurements from 234 interventional ex-

Journal of Statistical Software 23

False positives

Tr
ue

 p
os

iti
ve

s

0 1,000 2,000 3,000 4,000

0

200

400

600

800

1,000 IDA
Lasso
Elastic−net
Random

Figure 9: The largest 10% of the causal effects found in experiments among yeast genes
are identified much better from observational data with IDA than with lasso, elastic net or
random guessing. The figure is essentially taken from Maathuis et al. (2010).

periments, namely from 234 single-gene deletion mutant strains. Using this data, we know
the true causal effect of the knock-out genes on the remaining genes in good approximation.
We can then quantify how well we can find the true intervention effects in the following way:
We encode the largest 10% of the intervention effects computed from the interventional data
as the target set of effects that we want to identify. We then check in an ROC curve, how well
the ranking of the causal effects estimated by applying ida() to the observational data is able
to identify effects in the target set. For comparison, the authors also used the (conceptually
wrong) Lasso and Elastic Net to obtain rankings. In Figure 9 one can see that ida() is clearly
superior to the alternative methods (and random guessing) in terms of identifying effects in
the target set.

We note that the yeast data set is very high-dimensional (n = 63, p = 5361). Thus, unlike the
toy examples used to illustrate the package in this manuscript, where n was much bigger than
p and the causal structure was recovered exactly up to its equivalence class, the estimated
causal structure for the yeast data is likely to contain many sampling errors. However, Figure 9
shows that it is still possible to extract useful information about causal effects.

5. Discussion

Causal structure learning and the estimation of causal effects from observational data has
large potential. However, we emphasize that we do not propose causal inference methods
based on observational data as a replacement for experiments. Rather, IDA should be used

24 pcalg: Causal Graphical Models in R

as a guide for prioritizing experiments, especially in situations where no clear preferences
based on the context can be given.

Since many assumptions of the proposed methods are uncheckable, it is important to further
validate the methods in a range of applications. We hope that the pcalg package contributes
to this important issue by providing well-documented and easy to use software.

Session information

R> toLatex(sessionInfo())

� R version 2.14.1 (2011-12-22), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=de_CH.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=de_CH.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=de_CH.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=de_CH.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

� Other packages: abind 1.4-0, corpcor 1.6.2, fortunes 1.4-2, graph 1.30.0, pcalg 1.1-4,
Rgraphviz 1.31.2, sfsmisc 1.0-19

� Loaded via a namespace (and not attached): ggm 1.99-2, RBGL 1.28.0,
robustbase 0.7-8, tools 2.14.1

References

Bottcher SG, Dethlefsen C (2011). deal: Learning Bayesian Networks with Mixed Variables.
R package version 1.2-34, URL http://CRAN.R-project.org/package=deal.

Colombo D, Maathuis MH, Kalisch M, Richardson TS (2012). “Learning High-Dimensional
DAGs with Latent and Selection Variables.” The Annals of Statistics. Forthcoming.

Danenberg P, Marsella S (2010). “Data-Driven Coherence Models.” In Proceedings of the 19th
Conference on Behavior Representation in Modeling and Simulation.

Dethlefsen C, Højsgaard S (2005). “A Common Platform for Graphical Models in R: The gR-
base Package.” Journal of Statistical Software, 14(17), 1–12. URL http://www.jstatsoft.

org/v14/i17/.

Højsgaard S (2012). “Graphical Independence Networks with the gRain Package for R.”
Journal of Statistical Software, 46(10), 1–26. URL http://www.jstatsoft.org/v46/i10/.

Højsgaard S, Lauritzen S (2007). “Inference in Graphical Gaussian Models with Edge and
Vertex Symmetries with the gRc Package for R.” Journal of Statistical Software, 23(6),
1–26. URL http://www.jstatsoft.org/v23/i06/.

http://CRAN.R-project.org/package=deal
http://www.jstatsoft.org/v14/i17/
http://www.jstatsoft.org/v14/i17/
http://www.jstatsoft.org/v46/i10/
http://www.jstatsoft.org/v23/i06/

Journal of Statistical Software 25

Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA,
Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants
SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000).
“Functional Discovery via a Compendium of Expression Profiles.” Cell, 102, 109–126.

Kalisch M, Bühlmann P (2007). “Estimating High-Dimensional Directed Acyclic Graphs with
the PC-Algorithm.” Journal of Machine Learning Research, 8, 613–636.

Kalisch M, Fellinghauer B, Grill E, Maathuis MH, Mansmann U, Bühlmann P, Stucki G
(2010). “Understanding Human Functioning Using Graphical Models.” BMC Medical Re-
search Methodology, 10(14).

Lauritzen S (1996). Graphical Models. Oxford University Press, Oxford.

Maathuis MH, Colombo D, Kalisch M, Bühlmann P (2010). “Predicting Causal Effects in
Large-Scale Systems from Observational Data.” Nature Methods, 7, 261–278.

Maathuis MH, Kalisch M, Bühlmann P (2009). “Estimating High-Dimensional Intervention
Effects from Observational Data.” The Annals of Statistics, 37, 3133–3164.

Meek C (1995). “Strong Completeness and Faithfulness in Bayesian Networks.” In Proceed-
ings of Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 411–418. Morgan
Kaufmann.

Nagarajan R, Datta S, Scutari M, Beggs ML, Nolen GT, Peterson CA (2010). “Functional
Relationships between Genes Associated with Differentiation Potential of Aged Myogenic
Progenitors.” Frontiers in Physiology, 1.

Pearl J (2000). Causality. Cambridge University Press, Cambridge.

Ramsey J, Zhang J, Spirtes P (2006). “Adjacency-Faithfulness and Conservative Causal Infer-
ence.” In Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty
in Artificial Intelligence (UAI-06), pp. 401–408. AUAI Press, Arlington, Virginia.

Richardson TS, Spirtes P (2002). “Ancestral Graph Markov Models.” The Annals of Statistics,
30, 962–1030.

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of
Statistical Software, 35(3), 1–22. URL http://www.jstatsoft.org/v35/i03/.

Spirtes P, Glymour C, Scheines R (2000). Causation, Prediction, and Search. Adaptive
Computation and Machine Learning, 2nd edition. MIT Press, Cambridge.

Spirtes P, Meek C, Richardson TS (1999). “An Algorithm for Causal Inference in the Presence
of Latent Variables and Selection Bias.” In C Glymour, GF Cooper (eds.), Computation,
Causation and Discovery, pp. 211–252. MIT Press.

Verma T, Pearl J (1991). “Equivalence and Synthesis of Causal Models.” In UAI ’90: Proceed-
ings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, pp. 255–270.
Elsevier, New York.

http://www.jstatsoft.org/v35/i03/

26 pcalg: Causal Graphical Models in R

Zhang J (2008). “On the Completeness of Orientation Rules for Causal Discovery in the
Presence of Latent Confounders and Selection Bias.” Artificial Intelligence, 172, 1873–
1896.

Affiliation:

Markus Kalisch
Seminar für Statistik
ETH Zürich
8092 Zürich, Switzerland
E-mail: kalisch@stat.math.ethz.ch
URL: http://stat.ethz.ch/~kalisch/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 47, Issue 11 Submitted: 2010-10-18
April 2012 Accepted: 2012-02-23

mailto:kalisch@stat.math.ethz.ch
http://stat.ethz.ch/~kalisch/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Methodological background
	Estimating causal structures with graphical models
	Without hidden and selection variables
	With hidden or selection variables

	Estimating bounds on causal effects
	Without hidden and selection variables
	With hidden and selection variables

	Summary of assumptions

	Package pcalg
	skeleton
	pc
	fci
	rfci
	ida
	idaFast
	Using a user specific conditional independence test

	Applications
	Graphical models and causal effects in human functioning
	Causal effects among genes

	Discussion

