
JSS Journal of Statistical Software
April 2012, Volume 47, Issue 6. http://www.jstatsoft.org/

A Greedy Algorithm for Unimodal Kernel Density

Estimation by Data Sharpening

Mark A. Wolters
University of Western Ontario

Abstract

We consider the problem of nonparametric density estimation where estimates are
constrained to be unimodal. Though several methods have been proposed to achieve
this end, each of them has its own drawbacks and none of them have readily-available
computer codes. The approach of Braun and Hall (2001), where a kernel density estimator
is modified by data sharpening, is one of the most promising options, but optimization
difficulties make it hard to use in practice. This paper presents a new algorithm and
MATLAB code for finding good unimodal density estimates under the Braun and Hall
scheme. The algorithm uses a greedy, feasibility-preserving strategy to ensure that it
always returns a unimodal solution. Compared to the incumbent method of optimization,
the greedy method is easier to use, runs faster, and produces solutions of comparable
quality. It can also be extended to the bivariate case.

Keywords: constrained nonparametric estimation, shape constraints, optimization heuristics,
MATLAB.

1. Introduction

Nonparametric density estimators are the usual recourse when a researcher is not prepared to
assume a specific functional form for a density to be estimated. The advantage of nonpara-
metric estimators is their flexibility: based on minimal assumptions, they can take shapes that
are highly data-driven. This shape flexibility can be problematic, however, in cases where one
knows (or strongly suspects) that the true density is unimodal. Spurious peaks can appear
in unlikely locations, such as in the tails of the density.

When one believes that a density is unimodal, there are two good reasons to add a unimodality
constraint to the estimate. First, making use of the extra shape information about the density
can be expected to improve estimation accuracy. Second, incorporating the constraint will

http://www.jstatsoft.org/

2 A Greedy Algorithm for Unimodal Kernel Density Estimation

eliminate spurious modes that may reduce the effectiveness of the density estimate as an
exploratory tool and communication aid.

The contribution of the present paper is an algorithm and code, in the MATLAB language
(The MathWorks, Inc. 2007), which improves the computational performance and ease-of-use
of a particular unimodal density estimator: the sharpened kernel density estimator of Braun
and Hall (2001). A brief introduction to unimodal density estimation is presented below, with
emphasis on the sharpened kernel density estimator. The new algorithm is then described in
Section 2, followed by simulation results in Section 3 that measure the relative performance of
the algorithm. Section 4 contains examples which demonstrate the use of the code in practice.

1.1. Unimodal density estimation

The class of unimodal densities includes monotone densities as a special case, for which
the mode is located at either the left or right edge of the density’s support. Early work
by Grenander (1956) developed the nonparametric maximum likelihood estimator for the
monotone case. For nonincreasing densities, it is the derivative of the least concave majorant
of the empirical cumulative distribution function (ECDF); for nondecreasing densities, it is
the derivative of the greatest convex minorant of the ECDF.

Later research attempted to extend the Grenander estimator to any unimodal density. The
common premise was to combine a nondecreasing Grenander estimate to the left of the mode
with a nonincreasing one to the right. The crucial problem is determining where to locate the
mode. Wegman (1972) considered specifying a modal interval, Bickel and Fan (1996) plugged
in a consistent point estimate of the mode location, and e (1997) chose the mode to minimize
the distance between the estimate and the ECDF. Like the Grenander estimator itself, all
of these methods produce a step-function estimate (though Bickel and Fan 1996 did propose
methods of smoothing the density after estimation).

Alternative approaches to estimation have been proposed to produce a smooth unimodal
density estimate directly. Fougeres (1997) uses a monotone rearrangement to transform a
multimodal density into a unimodal one, though under the restrictive assumption that the
mode location is known. Cheng, Gasser, and Hall (1999) start with a unimodal “template”
density and then iteratively apply monotone transformations (possibly with intermediate
smoothing steps) to construct an estimate.

1.2. The sharpened kernel density estimator

All of the aforementioned approaches require unconventional estimators to handle the uni-
modality constraint. It would be preferable if unimodality could be achieved by adding a
conceptually simple modification to a standard nonparametric estimator. Data sharpening,
as advanced by Braun and Hall (2001), is one approach that operates in this way.

The premise of data sharpening is that the characteristics of an estimator can be improved
by shifting the data points in a controlled way prior to estimation. That is, if the original
unsharpened data vector is x = [x1 · · ·xn]>, we simply replace it by a new sharpened data
vector y before using our estimator of choice. The critical matter is the selection of y—it
must be chosen to endow the estimator with the desired properties (in this case, unimodality),
while maintaining maximum fidelity to the observed x.

The attractive feature of data sharpening is its potential generality: it can in principle be

Journal of Statistical Software 3

−2 0 2

0

0.1

0.2

0.3

0.4

Figure 1: A small example illustrating the premise of data sharpening. The grey curve is the
true distribution, the solid curve is the KDE based on the original data (filled circles), and
the dashed curve is the KDE based on the sharpened data (open circles).

applied to any nonparametric estimator, with any shape constraint, and even in higher dimen-
sions. Using data sharpening, Braun and Hall (2001) showed that enforcing constraints can
improve the mean squared error performance of a number of estimators, including unimodal
density estimators.

The present work follows Braun and Hall (2001) in applying data sharpening to a kernel
density estimator (KDE) to obtain unimodal estimates (see, e.g., Wand and Jones 1995 for
background on standard kernel density estimation). The problem may be set up as follows.
Let the sharpened KDE be

f̂y(u) =
1

n

n∑
i=1

Kh(u− yi), (1)

where Kh(·) is a symmetric, zero-centered kernel function (usually a density function) with
scale parameter h. The parameter h is called the bandwidth of the KDE, and it is assumed
throughout this work that the bandwidth is given (though see the remark below, and the
Appendix). Estimator (1) is algebraically the same as the standard kernel density estimator;
only a subscript has been added to f̂ , indicating which data vector is used to produce the
estimate. The usual KDE is f̂x, that is, it arises when y = x.

The sharpened data are chosen such that they produce a unimodal estimate while being as
close as possible to x. Figure 1 illustrates the idea through a small example. The data are
a sample of size five from a standard normal distribution. A standard KDE with Gaussian
kernel and bandwidth h = 0.5 produces a bimodal estimate. In this case the sharpened
estimate can be constructed by shifting only one of the five points, and this point is shifted
as little as possible to render the estimate unimodal.

A measure of the closeness of y and x is required to define what is the best data sharpening

4 A Greedy Algorithm for Unimodal Kernel Density Estimation

estimator. A natural choice, used by Braun and Hall (2001) and Hall and Kang (2005), is to
base the measurement on a norm of the difference y − x, defining

Lα(y,x) =

n∑
i=1

|yi − xi|α, 1 ≤ α ≤ 2. (2)

Using the Lα distance for some value of α, the best sharpened data vector y∗ can be defined
as a solution to a constrained optimization problem:

y∗ = argmin
y∈C

Lα(y,x), (3)

where C is the set of all feasible solutions (those giving unimodal KDEs):

C =

{
y : ∃m such that

f̂ ′y(x) ≥ 0 if x ≤ m
f̂ ′y(x) ≤ 0 if x ≥ m

}
. (4)

The constraint set C formalizes the definition of unimodality: there must be some m, the loca-
tion of the mode, for which the density estimate is nondecreasing to the left and nonincreasing
to the right.

The remainder of the article focuses on ways of finding good solutions to problem (3).

Remark on bandwidth selection

The simplest way to choose h in data sharpening is to proceed as if no sharpening will be
done. Apply a standard bandwidth selector (such as direct-plug-in) to the original data x,
and then hold its value constant when determining y. When the unimodality assumption is
valid, this strategy can be justified asymptotically: as n increases, the sharpened estimator
modifies the KDE only in the ever-smaller regions where the constraint is violated (Hall
and Kang 2005). For finite samples, empirical results (Braun and Hall 2001; Hall and Kang
2005) suggest that sharpened estimators do have different optimal bandwidths than their
unsharpened counterparts, but also that sharpened estimators are less sensitive to bandwidth
choice than unsharpened ones. For these reasons the simple approach to bandwidth selection
is used here. An alternative method is proposed in the Appendix, but a thorough study
of optimal bandwidth selection for shape-constrained estimators remains an area for future
research.

1.3. Optimization considerations

The incumbent method of optimization, to which the new greedy algorithm will be compared,
is sequential quadratic programming (SQP; see Nocedal and Wright 1999 for a thorough
discussion). SQP has been used by Braun and Hall (2001) and Hall and Kang (2005) to
find sharpened KDEs, and by others (Hall and Huang 2002; Racine and Parmeter 2008) to
perform other forms of constrained nonparametric estimation.

One inconvenient feature of SQP is its poor suitability when the mode m is unknown. As
with other mathematical programming methods, SQP’s standard formulation requires the
problem’s constraints to be expressed as a set of fixed inequalities in y. This cannot be done
with the problem as written in (3) and (4), because m depends on y. One way to proceed is

Journal of Statistical Software 5

to treat m as fixed, solve the sharpening problem, and then repeat the process according to a
1-D optimization scheme to find the best value of m. Taking m as fixed, then, and enforcing
the constraints at a grid of points g = (g1, . . . , gG) covering the support of the estimate, the
optimization problem is a search for the value

y∗ = argmin
y

Lα(x,y) subject to

{
f̂ ′y(gi) ≥ 0, i = 1, . . . , k

f̂ ′y(gi) ≤ 0, i = k + 1, . . . , G,
(5)

where m falls between gridpoints k and k + 1.

Solving a sequence of problems like (5) for different values of m makes it possible to use SQP
to find the sharpened estimate. Note, however, that finding the best m is not trivial, since
the optimal Lα value is not necessarily a convex function of m. An exhaustive grid search
over some interval is a reasonable approach to find a good m value, but this comes with a
considerable computational cost.

A second problem associated with SQP arises when setting α = 1 in the Lα objective function.
Braun and Hall (2001) and Hall and Kang (2005) found some evidence that the sharpening
estimator performs best at or near α = 1, but at this setting the objective function is not
differentiable in its i-th dimension at the point xi = yi. The L1 norm is also not strictly
convex, so solutions might not be unique. These features of the objective can cause numerical
problems that prevent the algorithm from converging.

The most serious problem when using SQP to find sharpened KDEs, however, is the non-
convexity of the constraints. For SQP to find a global optimum, the constraint functions f̂ ′y
in (5) should be convex functions of y; in reality, they are not. The constraint set C is not
convex, and may not even be a contiguous set (for an illustration of this, see Wolters 2009).
The result is a problem with many local optima. In the best case, SQP will converge to one
of these local optima in the region near its starting point; in the worst case it will fail to
converge, returning an error or a nonsensical solution.

The end result of these problems is that SQP is difficult to implement reliably in practice.
Experience has shown that solution quality and the chance of non-convergence depends not
only on the chosen value of α, but also on the magnitude of departures from unimodality
in the sample, and on the quality of the initial solution provided to the algorithm. As an
example, we will see in the simulation study of Section 3 that failure to converge can occur
more than 10% of the time.

Faced with a problem of this nature, it is prudent to consider a heuristic optimization approach
that may be able to find better solutions. The greedy heuristic discussed in the next section
has some advantages: it never fails to return a unimodal solution, it does not need the mode
location to be pre-specified, and it runs more quickly than SQP. Like SQP, the results of the
greedy algorithm depend on its starting point; but there is a natural choice of starting value
that gives good solutions in practice.

Remark on the use of sub-optimal solutions

It is worthwhile to underscore at this point that neither SQP nor the new algorithm can
guarantee that they will find a global optimum of problem (3) or (5). The current work is
based on the belief that i) an easy-to-use nonparametric unimodal density estimator is of value
for practical purposes even if global optimality cannot be proven, and ii) the simplicity and

6 A Greedy Algorithm for Unimodal Kernel Density Estimation

potential generality of data sharpening justifies the search for a suitable optimization routine,
despite the difficulty of the problem. The convergent nature of mathematical programming
methods should not be misconstrued to imply that these methods tend to find superior solu-
tions. If a heuristic method can find a solution with a better objective function value, then
that solution is to be preferred even if the method is not convergent in the classical sense.

2. The algorithm

The greedy data sharpening algorithm is described below in three stages. The new algorithm
is first described at a high level to identify its main features. Afterwards, computational
details related to the computer implementation are described. Extension of the method to
bivariate data is discussed at the end of the section.

2.1. High-level description

The steps in the proposed algorithm are given in the flowchart of Figure 2. The algorithm
starts with a user-supplied initial guess solution, v, that is feasible, and improves this guess by
moving its points closer to the original data. From the initial solution y = v, each sharpened
data point yi is moved to be closer to its corresponding unsharpened data point xi. Every such
move will reduce the objective function Lα(y,x), but moves are only made if the constraint
is not violated. No point may be moved in a way that causes the density estimate to gain a
second mode, and so feasibility is guaranteed throughout. The algorithm cycles through the
points repeatedly as long as improvements can still be made without violating the constraint.
The algorithm is greedy in the sense that each point is moved individually to improve the
objective function, without consideration of how the current move will impact future moves
of other points.

Step one in the search is initialization. The original data x is sorted in ascending order, and
the solution is initialized to y = v. The initial solution may be a simplistic choice, but it
must satisfy the constraint. The default starting point is to put all of the data points at
the location of the highest mode in the unconstrained estimate (in other words, if m0 is the
location of this mode, we set v = m01, where 1 is an n-vector of ones). This starting point
has been found to provide good solutions in most circumstances.

The second step is to prepare for moving the y points. Each xi, i = 1, . . . , n is called the home
or target position for the corresponding yi. The solution is improved during the algorithm by
moving each yi toward home. When the unimodality constraint prevents a point from moving
closer to home, the point is said to be pinned.

In preparation for moving the points, y is first sorted, to produce a sensible matching to x.
After this, each point is examined to determine whether or not it is moveable. A point is
considered moveable if it is neither pinned nor at home. The total number of moveable points
is M . The algorithm terminates when M = 0; at this point no yi can be moved without either
worsening the solution or violating the constraint.

Step three in the flowchart is the core of the method—a sweep or pass through all M moveable
points in y. In each pass, every moveable point is moved closer to its target position, or left
in place if no feasible move is found. The movement of each point is done by grid search over
the interval [yi, xi]. Grid search is performed by dividing the search interval into S steps. If
any moves are made in a pass, S is left unmodified and another pass begins after re-sorting

Journal of Statistical Software 7

Figure 2: A high-level depiction of the greedy algorithm.

y and re-counting the number of moveable points. If a complete sweep results in no moved
points, the value of S is doubled before the next pass, permitting smaller moves to be made
on a finer grid.

An important feature of the algorithm is that S is initialized to 1. This means that during the
first sequence of passes through the data, there is an attempt to move points all the way home
directly in one step. Doing so saves computation time since in many cases a large portion of the
points can move home immediately without violating the constraint. By successively doubling
S only when moves cannot be made, more thorough searches are deferred until the later stages,
when a small number of points are being moved up against the constraint boundary. This
strategy reduces the greediness of the method, preventing points from becoming pinned too
soon and thereby conferring a considerable performance improvement.

Note also that the sorting step (step two) is performed before every pass through the data. Re-
sorting the points at each step improves the performance of the algorithm because sometimes
points cross over one another, in which case both will be closer to home, and the objective
function will be decreased, if they switch target points.

8 A Greedy Algorithm for Unimodal Kernel Density Estimation

1 2 4 5 3

Start

2 3 h 4 1

After 1 pass

h p h p 1

After 2 passes

h p h p p

After 3 passes

Figure 3: A small example illustrating the greedy sharpening method. Solid/dashed lines show
the sharpened/unsharpened estimates. Open/filled circles show the sharpened/unsharpened
data. Grey lines join each unsharpened point to its target and indicate the status of the point.

The ideas of this section are illustrated in Figure 3, which shows how the solution develops
over three passes for a small example with only five data points. The intermediate positions of
the sharpened points are shown after each pass, and a line joins each point to its target. Each
line is labeled to show the status of its corresponding sharpened point. Lines labeled with
numbers correspond to moveable points, and the numbers indicate the order in which points
are to be moved. Lines labeled with h correspond to points at home, while those labeled
with p correspond to points that are pinned. After the first pass (the upper right plot in the
figure), the sorting step has caused two points to switch targets. The thick grey lines indicate
the points’ new targets after re-matching. In this example the search terminated after three
passes, with three points pinned and two points at home.

2.2. Implementation details

The steps just described omitted several details that are important when implementing the
algorithm on a computer. These details will be briefly discussed here.

Initial solution

Just like SQP, the greedy algorithm is sensitive to its starting point v. Supplying an inappro-
priate starting value will result in premature termination of the algorithm at a poor solution.
The recommended initial value (all points at the unsharpened mode) is pragmatic because it
typically allows many points to move directly to their home position in the early stages of

Journal of Statistical Software 9

the search, with the estimate slowly moving outward toward the tails as search progresses.
Nevertheless, to reduce the risk of initialization dependence, one could try multiple starting
points and keep only the best solution found—perhaps by using v = c1 and letting c vary
over the range of x. Such possibilities are not considered here because of the good general
performance of the default starting choice.

Sweep order

Each sweep through the data is done in descending order of distance from home, i.e., the
points with the greatest value of |yi − xi| are moved first. If all points are started near the
center of the distribution, this has the effect of moving points toward the tails first, and then
moving interior points that are closer to home. Experience has shown that this sweep order
provides improved performance and speed.

Feasibility checking

Frequent feasibility checks (verifying that y ∈ C) account for most of the computational
burden of the method. A practical means of evaluating whether a given solution produces
a unimodal estimate is to calculate exact or approximate values of f̂ ′y at a grid of points g

covering the support of the estimate, and then to count the number of times f̂ ′y(gi) changes
sign as gi increases. A monotone estimate will have no sign changes, a peaked unimodal
estimate will have one, and a multimodal estimate will have more than one. The values of
f̂ ′y(gi) are calculated using a binned kernel density estimator approximation (Wand and Jones
1995, Appendix D.2).

Determining the status of each point

Before each pass, every point is evaluated to determine whether it is home, pinned, or move-
able. Each of these states is defined computationally using a numerical tolerance, τ :

yi is home ⇔ |xi − yi| ≤ τ (6)

yi is pinned ⇔ setting yi := yi + sign(xi − yi)τ renders y infeasible (7)

yi is moveable ⇔
{
|xi − yi| > τ, and
y remains feasible when yi := yi + sign(xi − yi)τ.

(8)

Statements (6) through (8) mean, respectively, that a point is home when it is within τ of its
target; it is pinned when a move of size τ toward home causes a constraint violation; and it
is moveable when it is neither pinned nor at home.

The default value of τ is 10−4, though it should be adjusted to be suitable for the scale of
the data. Setting τ to be 4 or 5 orders of magnitude smaller than the range of x is sufficient.
Making τ too small will increase run time, though the density estimates will not be noticeably
affected. Making τ too large will cause the algorithm to terminate too soon, degrading the
performance of the estimator.

Design of the grid search

The goal of each grid search step is to move the current point yi closer to its target xi without
violating the constraint. There are S candidate points along the interval [yi, xi]. Rather than

10 A Greedy Algorithm for Unimodal Kernel Density Estimation

y[i] x[i]

regions of feasibility

Pass 1 S = 1. No move.

S = 2. No move.

S = 4. Move.

S = 4. No move.

S = 8. Move.

S = 8. Stop.6

5

4

3

2

Figure 4: A schematic illustration of the grid search for a single point.

searching all S steps, the grid search is conducted by stepping out from yi along the grid,
until feasibility is lost. After this the last feasible point is chosen. This procedure will not
always find the feasible grid point closest to xi, but it makes the overall search much more
efficient by eliminating many needless constraint checks.

The nature of this shrinking-grid search is illustrated in Figure 4 by looking at a single point
over six passes. For each pass, the interval [yi, xi] is shown with a grid of S steps superimposed.
When the point is moveable, but cannot step out along the grid, the grid is made more fine
by doubling S. As long as the point remains moveable, each pass results in either a successful
step out or a doubling of the grid. Search terminates when the point ceases to be moveable.
Two facts are not clearly depicted in the figure: i) the grid steps are doubled only when none
of the n points move; and ii) the feasible region or target x might change between passes,
since they can be changed by the movement of other points.

Sorting memory

On rare occasions the configuration of the points could lead to cyclic behavior caused by the
sorting step. For example, the two moveable points could exchange targets repeatedly and
thereby never reach a pinned state. To prevent this, a list of all previous orderings is kept in
memory, and new orderings are only accepted if they have not been visited previously. The
memory requirements for this control are not problematic, since the number of passes used is
typically small (on the order of 100 passes for moderate-sized data sets).

2.3. The bivariate case

The greedy algorithm involves moving points in turn toward their targets. These steps can be
applied to two-dimensional points, so the same algorithm can be applied almost unchanged
to bivariate unimodal density estimation problems (and, in principle, to higher dimensions as
well).

The only aspect of the greedy algorithm that does not translate directly from univariate to

Journal of Statistical Software 11

bivariate problems is the sorting step that occurs between passes through the data (in step 2
of Figure 2). In higher dimensions it is not clear how to choose the best matching of sharpened
to unsharpened points. The points cannot be “sorted,” since a total ordering property can no
longer be exploited.

The following matching procedure is proposed for bivariate data. The sharpened and un-
sharpened data are first both given a location and scale transformation such that their com-
ponentwise means and variances are zero and one, respectively. Then, the points are matched
to each other in a greedy way, by recursively letting those two unmatched points separated
by the smallest Euclidean distance to be the next matched pair.

An example of the greedy algorithm applied to a bivariate data set is given in Section 4.3.

3. Simulation results

A simulation study was performed to compare the performance of three optimization options:
(i) the greedy algorithm, (ii) SQP using NAG routine e04wd (Numerical Algorithms Group
2009), and (iii) a combined optimizer, where the greedy solution is used as the starting point
for an SQP search.

3.1. Study design

The three optimization methods were compared across 12 different test cases. The test cases
consisted of all combinations of two target densities, three sample sizes, and two bandwidths.

� Target densities: the t distribution with three degrees of freedom, and a three-component
normal mixture distribution. See Figure 5.

� Sample sizes: 25, 50, and 100.

� Bandwidths: 0.75hSJ and hSJ , where hSJ is the Sheather-Jones direct plug-in bandwidth
(Sheather and Jones 1991).

The target densities correspond to test densities 2 and 4 of Hall and Huang (2002). The
t3 distribution is challenging because its heavy tails result in outliers, and corresponding
spurious modes, in many samples. The mixture distribution has a large, nearly flat shoulder
to the right of its mode, which produces a variety of multimodal shapes in samples. The
two bandwidth levels were chosen to influence the problem difficulty rather than to achieve
optimal estimation performance. Setting h = hSJ produces very smooth estimates that are
easier to sharpen, while h = 0.75hSJ produces more separated peaks and reduces the size of
the feasible set C, making optimization harder.

For each target density, 250 data vectors of each sample size were drawn from the target
distribution. To avoid trivial cases where no sharpening was necessary, a rejection step was
included when generating samples. Any sample producing a unimodal unsharpened estimate
was replaced with a new estimate until a multimodal estimate was obtained.

For each generated x, all three optimizers were run on the same data using both bandwidths.
All runs used the sharpening KDE with Gaussian kernel, and the response of interest was the
L1(y,x) objective (referred to as the sharpening distance). In all, 9000 optimizations were
performed (12 cases, three optimizers, and 250 replicates).

12 A Greedy Algorithm for Unimodal Kernel Density Estimation

−8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x)

t
3

mixture

Figure 5: The simulation target densities. The mixture density is composed of N(−1, 0.62),
N(1, 2.52), and N(5, 1.52) components in proportions 0.35, 0.5, 0.15.

The use of SQP required certain implementation decisions. First, because SQP requires
a fixed mode value, the optimizer was run 20 times with different mode locations, evenly
spaced between the first and third quartiles of the data. The best of these 20 solutions was
returned as the final result. Second, the unsharpened data, x, was used as the starting point
for the SQP search. Finally, the L1(y,x) distance caused problems for the NAG routine when
used as the objective, so the the following twice-differentiable piecewise function, termed the
rounded-corners objective, was used:

RCγ(y,x) =

n∑
i=1

[(
2

3γ
d2i −

1

9γ2
d3i

)
I(di ≤ γ) +

(
d− 4

9
γ

)
I(di > γ)

]
, (9)

where di = |yi − xi| and I is the indicator function. The summand of (9) is a convex cubic
polynomial in the interval |yi − xi| ≤ γ and a line with unit slope (just like L1) outside
this interval. The central interval is effectively a curved, differentiable patch that replaces
the corner in the usual L1 objective. The constant γ determines the width of this interval;
smaller values of γ more closely approximate L1.

In the simulation’s SQP runs, the RC0.01 function was used as the objective. By setting a
small value γ = 0.01, behaviour very similar to L1 was obtained with significantly improved
numerical stability. Because the RC0.01 and L1 curves are so similar, the terms “L1 distance”
or “sharpening distance” will continue to be used to refer to objective function values in the
following discussion.

3.2. Convergence and run time

For the present discussion an optimizer is defined to have converged if it reaches any of its
normal stop conditions and returns a feasible solution. Table 1 shows the proportion of runs
converging, and the median run time, for all three methods across simulation cases.

The greedy algorithm converged for all simulation runs, because it is designed to always return
a feasible solution. Sequential quadratic programming had some failures to converge in seven

Journal of Statistical Software 13

Proportion converging Median run time (s)
Density Bandwidth n Greedy SQP Combined Greedy SQP Combined

t3 0.75hSJ 25 1 0.956 1 0.061 9.6 2.0
t3 0.75hSJ 50 1 0.880 1 0.130 19.0 4.8
t3 0.75hSJ 100 1 0.844 0.992 0.310 41.0 16.0

t3 hSJ 25 1 0.964 1 0.044 3.9 2.0
t3 hSJ 50 1 0.936 0.996 0.092 15.0 4.7
t3 hSJ 100 1 0.916 0.996 0.210 38.0 15.0

Mixture 0.75hSJ 25 1 1 1 0.120 4.4 3.6
Mixture 0.75hSJ 50 1 1 1 0.280 9.7 8.4
Mixture 0.75hSJ 100 1 0.992 1 0.740 31.0 28.0

Mixture hSJ 25 1 1 1 0.060 3.3 3.1
Mixture hSJ 50 1 1 1 0.140 8.2 7.7
Mixture hSJ 100 1 1 1 0.380 28.0 26.0

Table 1: Convergence and run time results.

of the twelve test conditions, including all six cases based on the t3 distribution. In those
cases the proportion of runs converging varied from 84 to 96 percent, with with larger sample
sizes having lower percentages. Note that for SQP to record a failure, the algorithm must fail
to return a feasible solution at all 20 candidate mode points attempted.

The combined algorithm (where SQP was started from the greedy solution) had much im-
proved convergence proportions compared to SQP. Only three of the test cases had any
failures, and even in these three cases only one or two of the 250 replicates failed to converge.
This indicates the importance of choosing a good starting solution, and suggests that the
greedy algorithm could at least be used as a way to generate starting points for SQP.

The run time results show a clear advantage of greedy over SQP, with greedy runs being a
fraction of a second while the median SQP run time ranged from four to 40 seconds depending
on the case. For all cases, using the greedy solution as a starting point (the combined method)
caused a reduction in SQP run time. The improvement was most pronounced for the t3
problems, all of which had a dramatic decrease in median run time.

3.3. Optimization performance

The three optimization methods were run on the same data sets, so each method’s sharpening
distances can be directly compared. Figure 6 shows the objective function values for the greedy
and SQP methods plotted against each other, for the 2872 pairs of optimizations where SQP
converged. Cases based on each of the two target distributions are plotted with different
markers. The 1:1 line is also shown on the plot. Points below the line represent runs where
the greedy method outperformed SQP, and points above the line represent runs where SQP
found the better solution.

The figure suggests that the greedy method had good relative performance. While most of
the runs had similar results for the two methods, there were also a large number of runs where
the SQP L1 value greatly exceeded the greedy value. These are runs where SQP stopped at
a particularly poor local minimum. Interestingly, most of these poor SQP results arose in

14 A Greedy Algorithm for Unimodal Kernel Density Estimation

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

SQP L
1
 distance

G
re

ed
y

L 1 d
is

ta
nc

e

Figure 6: Scatter plot of L1 sharpening distances across all simulation runs. Circles and
crosses denote cases based on the t3 and mixture distributions, respectively.

mixture h 100
mixture h 50
mixture h 25
mixture 0.75h 100
mixture 0.75h 50
mixture 0.75h 25

t3 h 100
t3 h 50
t3 h 25
t3 0.75h 100
t3 0.75h 50
t3 0.75h 25

Greedy

0 0.5 1 1.5 2
mixture h 100
mixture h 50
mixture h 25
mixture 0.75h 100
mixture 0.75h 50
mixture 0.75h 25

t3 h 100
t3 h 50
t3 h 25
t3 0.75h 100
t3 0.75h 50
t3 0.75h 25

Normalized L
1
 Distance

Combined

Figure 7: Box plots of normalized L1 distance, for both the greedy and combined search
methods. The labels at left give the simulation case.

problems based on the mixture distribution, where convergence was not a problem. There
were also some data sets where SQP greatly outperformed greedy, but such cases were much
less frequent.

To facilitate a more detailed comparison, objective function values for the greedy and com-
bined methods were normalized relative to the SQP sharpening distance for the same sample
and bandwidth. The normalized sharpening distance is the ratio of that method’s L1 distance
to the SQP value. Figure 7 shows box plots of the normalized sharpening distance for both

Journal of Statistical Software 15

1 SQP

2 SQP

3 SQP

4 Greedy

5 Greedy

6 Greedy

7 Greedy

8 Greedy

9 Greedy

Figure 8: Comparing the unsharpened estimate (thick grey line), greedy estimate (thin solid
line), and SQP estimate (dashed line) for nine simulation data sets. Plot labels indicates
which method had a smaller L1 sharpening distance.

the greedy and combined methods, for all 12 simulation cases. Boxes show locations of the
first, second, and third quartiles, and whiskers extend to the most extreme values differing
from the median by less than 1.5 times the interquartile range.

Normalized objective function values less than 1 indicate performance better than SQP. The
boxplots for the greedy method show that it strongly outperformed SQP on the t3 problems,
and was roughly equivalent to SQP on the mixture problems. For the t3 cases, all but one of
the cases have their third quartiles less than one, indicating that the greedy result was better
than the SQP result more than 75% of the time. The improvement over SQP is also more
pronounced for larger sample sizes. In the mixture cases, SQP outperformed greedy when the
bandwidth was smaller, while neither method was clearly superior for the larger bandwidth.

Looking at the combined-method cases in Figure 7, it is clear that the combined method
performed better than the default SQP with x as its starting point. Starting at the greedy
optimum had a pronounced effect for the more difficult t3 cases, but only a negligible effect
on the mixture cases. Note that using the greedy starting point does not always improve the
performance of SQP. The best starting point for SQP is sample-dependent and one could not
expect any rule to provide the best start for all cases.

As a further illustration of the performance of the methods, Figure 8 gives plots of the density
estimates for nine randomly-selected simulation data sets. Each plot gives the unsharpened
density as well as the sharpened density based on both the SQP and greedy search. Plots
1–3 show cases where SQP found the better result, and plots 4–9 show cases where the
greedy algorithm found the better result. These examples were sampled from only those cases
where the relative difference in sharpening distance was large (the worse method’s sharpening
distance being at least 50% larger than the better method’s).

16 A Greedy Algorithm for Unimodal Kernel Density Estimation

The examples show that for cases when the unsharpened estimate is nearly unimodal (as
in plots 1, 3, 6, and 9), there is little qualitative difference between the greedy and SQP
solutions despite the large relative difference in L1(y,x). When the original estimate does
have outliers or other large deviations from unimodality, the differences in the estimate are
more pronounced, and typically the SQP estimate is inferior (as in plots 4, 5, 7, and 8). The
greedy estimate matches the unsharpened curve exactly at points away from the unwanted
modes, while the SQP estimate may be poor everywhere if the algorithm converges to a
low-quality local optimum.

Plot 2 in Figure 8 is something of a special case. The data happened to arise in such a way
that the original estimate consisted of two modes of nearly equal height. In this case neither
method could estimate the density well, and the results of either method would be highly
sensitive to the initial solution provided.

3.4. Estimation performance

The simulation results can also be used to compare the statistical performance of the density
estimators involved. The measure of estimation quality used here is the total variation (TV)
distance between each estimate and the truth:

TV (f̂y, f) =
1

2

∫ ∞
−∞
|f̂y(t)− f(t)|dt. (10)

Devroye and Lugosi (2001) examined different distance measures in a density estimation
context and concluded that the TV distance has several theoretical advantages over more
common measures like integrated squared error. In particular, TV admits a probability
interpretation: TV (f̂y, f) is the maximum possible difference attainable when the same

probability is calculated with the two densities f̂y and f . That is, for any Borel set B,

|Pf̂y(B)− Pf (B)| ≤ TV (f̂y, f).

Table 2 summarizes the results. For each combination of true density and sample size, the
average TV distance is shown for seven different estimators. The pairs of columns labeled
KDE, SQP, and Greedy give the results for the unsharpened (multimodal) KDE, the unimodal
SQP estimate, and the unimodal greedy estimate, respectively; the subscripts on the labels
indicate the bandwidth (hSJ or 0.75hSJ). The column labeled Reboul gives the TV distance
for the unimodal estimator described by Reboul (2005), which is an extension of the work of
e (1997). This estimator is a histogram with automatically-determined variable bin widths.
While it is not smooth, its performance can be used as a reference point, since an upper bound
on its L1 risk has been established (Reboul 2005).

Considering first the results for the mixture distribution, both unimodal estimates demon-
strate a slight improvement in TV distance over the unsharpened KDE. The greedy results
are never larger than the SQP values, but the differences between the two sharpening methods
are very small. For the t3 cases, SQP performs worse than either the greedy algorithm or the
unsharpened estimate. This is because the SQP occasionally converged to very poor local
optima, causing the distribution of TV values to be right-skewed (the median TV values for
the t3 cases follow a pattern similar to the mixture cases). Finally, all of the smooth estimates,
including the unconstrained KDEs, were markedly better than the Reboul estimator. This is
not surprising since the densities being estimated were in fact smooth, and the sample sizes
considered were relatively small.

Journal of Statistical Software 17

Bandwidth h = hSJ Bandwidth h = 0.75hSJ
Case Reboul KDE SQP Greedy KDE SQP Greedy

t3, n = 25 0.258 0.156 0.166 0.149 0.167 0.187 0.151
t3, n = 50 0.189 0.120 0.132 0.114 0.127 0.149 0.116
t3, n = 100 0.147 0.095 0.119 0.091 0.101 0.133 0.093
Mixture, n = 25 0.242 0.183 0.175 0.173 0.179 0.162 0.162
Mixture, n = 50 0.182 0.148 0.141 0.140 0.142 0.129 0.126
Mixture, n = 100 0.139 0.118 0.113 0.111 0.111 0.106 0.098

Table 2: Sample mean of TV distances from the truth across 250 replications, for seven
estimators and six test cases. The SQP results exclude runs that failed to converge. The
standard error of the estimate is less than 0.0036 for all table entries.

The results of this brief study agree with the intuition that when x is sampled from a unimodal
density, estimation can be improved by adding a unimodality constraint. Braun and Hall
(2001) and Hall and Kang (2005) have also demonstrated this from a squared error perspective.
Naturally one must find a good data sharpening solution to achieve this improvement in
practice. In this respect the greedy algorithm showed an advantage over SQP, particulary in
the t3 examples.

4. MATLAB code and usage examples

This paper includes code for running the new greedy algorithm in MATLAB, including as-
sociated functions for calculating KDEs and checking the unimodality constraint. Below we
will review the included code and then illustrate its use on one univariate and one bivariate
example.

4.1. The included code

The code consists of ten files: seven functions, one script, and two data sets. Table 3 lists the
file name, typical syntax, and a brief description for each. All of the files in the table must
be in MATLAB’s current directory or on the search path to use the greedy method or to run
the examples that follow.

The general usage of the code is as follows. The main function improve(v, x, confun) is
used to perform data sharpening via the greedy algorithm. Its arguments are v, the initial
unimodal guess solution, x, the unsharpened data, and confun, a handle to a function that
checks whether a proposed solution is unimodal. The main function has been named improve

to reflect the fact that the objective function value of v will always be improved upon by
moving it toward x, as long as v has at least one moveable point.

The constraint-checking function confun must be constructed by the user before improve can
be called. The functions bkde and isuni are used to do this: bkde evaluates the KDE at a
grid of points, and isuni checks whether the function values form a unimodal curve. So the
typical construction is confun = @(y) isuni(bkde(y, h, G)), where h is the bandwidth
and G is the number of grid points.

This brief description and the examples that follow should be sufficient to demonstrate how
the functions are used. The interested user is advised to consult the help text and comments

18 A Greedy Algorithm for Unimodal Kernel Density Estimation

File name Type Typical usage Description
improve.m Function y = improve(v,x,confun) Executes the greedy algorithm.
isuni.m Function tf = isuni(fhat) Checks whether a density estimate is

unimodal.
isuni2D.m Function tf = isuni2D(fhat) Two-dimensional unimodality-

checking function.
bkde.m Function f = bkde(y,h,G) Calculates the binned kernel density

estimator approximation at points
specified by G.

bkde2D.m Function f = bkde2D(X,h,G) Two-dimensional binned kernel den-
sity estimator approximation.

match.m Function ynew = match(y, x) For matching the sharpened data y
to the unsharpened data x. Called
by improve.

SJbandwidth.m Function h = SJbandwidth(x) To calculate the Sheather-Jones plug-
in bandwidth. Used in the examples.

examples.m Script edit examples Examples of this section.
windspeed.mat Dataset load windspeed Data for the univariate example.
kidney.mat Dataset load kidney Data for the bivariate example.

Table 3: List of files included with the paper.

within each file to learn the details of each function, including optional input and output
arguments that are not discussed here.

Code for running the examples is found in the script file examples.m.

4.2. Univariate example: Wind speed data

This example will proceed line-by-line through a univariate problem, to show the sequence of
commands involved in a typical analysis.

Alibrandi and Ricciardi (2008) reported data on 57 wind speed measurements made at each of
five different elevations in Italy’s Messina Strait region. The dataset array windspeed, stored
in windspeed.mat, contains these data. The present analysis will compare the distributions of
the measurements made at the lowest and highest positions (10 and 128 meters), by producing
a plot with regular kernel density estimates and their sharpened unimodal counterparts.

The first step in the analysis is to load the data and perform some preliminary operations.

load windspeed

x1 = double(windspeed.h10);

x2 = double(windspeed.h128);

n = 57;

figure(1)

set(gcf, 'Units', 'pixels', 'Position', [100 100 800 400])

Two vectors, x1 and x2, have been created to hold the speed values at the two heights, and
a figure window has been prepared. Next, the original (unsharpened) density estimates will
be added to the plot. Doing so illustrates how the function bkde works.

h1 = SJbandwidth(x1);

h2 = SJbandwidth(x2);

Journal of Statistical Software 19

[f1 g1] = bkde(x1, h1, 250);

[f2 g2] = bkde(x2, h2, 250);

plot(g1, f1, 'k-');

hold on

plot(g2, f2, 'k--');

The function SJbandwidth has been used to choose a bandwidth for each dataset, using the
plug-in method of Sheather and Jones (1991). The binned kernel density estimates were
calculated using, e.g., [f1 g1] = bkde(x1, h1, 250). This calculates the estimate at a grid
of 250 points extending beyond the range of the data, using x1 as the data and h1 as the
bandwidth. The grid values and function values are returned in g1 and f1, respectively,
making it easy to plot the estimate.

Moving on to find the shape-constrained estimate, it is necessary to set up the constraint
checking function confun and to find the initial guess v. Then, improve can be called.

confun1 = @(y) isuni(bkde(y, h1, 250));

v1 = g1(find(f1 == max(f1), 1, 'first')) * ones(n, 1);

y1 = improve(v1, x1, confun1);

confun2 = @(y) isuni(bkde(y, h2, 250));

v2 = g2(find(f2 == max(f2), 1, 'first')) * ones(n, 1);

y2 = improve(v2, x2, confun2);

The code consists of three identical lines for each case; let us consider the first set of lines.
First, the anonymous function confun1 is constructed. It calls the binned kernel density
estimator, submitting the output of that function to the unimodality-checking function isuni.
The result is a logical value of true if the supplied data vector produces a unimodal estimate.

Second, the starting value v1 is created. The location of the highest mode of f1 is found using
g1(find(f1 == max(f1), 1, ’first’)), and this value is multiplied by a vector of ones to
create the starting solution.

Third, the improve function is called to run the greedy algorithm. Its output is the sharpened
data vector. Note that there are no density estimation steps native to the improve function.
All of the estimation steps are done during calls to confun. The main function is only moving
points and checking for feasibility. Having generated the sharpened data vectors, the unimodal
estimates can be added to the figure:

[f1u g1u] = bkde(y1, h1, 250);

[f2u g2u] = bkde(y2, h2, 250);

plot(g1u, f1u, 'k-', 'linewidth', 2)

plot(g2u, f2u, 'k--', 'linewidth', 2)

xlabel('Speed')

ylabel('f(speed)')

The final result is shown in Figure 9. Considering the original estimates, both curves have
three modes: a main peak, a smaller peak in the shoulder of the distribution, and an extra
mode in the right tail. The sharpened estimates match the unsharpened ones away from the
extra modes, but shift the curve as necessary near those modes to satisfy the unimodality
constraint.

20 A Greedy Algorithm for Unimodal Kernel Density Estimation

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Speed

f(
sp

ee
d)

Figure 9: Unsharpened and sharpened KDEs for the windspeed data, at 10 meters (left pair
of curves) and 128 meters (right pair of curves). In both cases the dark curve is the unimodal
sharpened estimate.

4.3. Bivariate example: Kidney data

The file kidney.mat contains data arising from a study of the association between birth
weight and kidney length for newborns (Fitzsimons 1983). The data consists of these two
measurements taken from a sample of 102 babies. The detailed code for this example is not
given here. Rather, a description of the important points will be provided, and the output
will be examined. The interested reader can replicate the analysis by running the script in
the file examples.m.

The function improve (as well as match, the function it calls to perform the matching step) has
been written to work in d dimensions; it does not need modification for the bivariate case. In
the call y = improve(v, x, confun), y, v, and x will be n-by-1 vectors for univariate data,
and n-by-d matrices for d-dimensional data (here, d = 2). The parts of the analysis that do
need modification, however, are the density estimation and constraint-checking functions.

Kernel density estimation in two dimensions can be carried out using the function bkde2D.
This function implements the Gaussian product kernel (the kernel functions are bivariate
normal distributions with no correlation), with bandwidths h1 and h2. As in the univariate
case, a binned approximation (Wand 1994) is used to speed up computation. For the present
problem, the bandwidth in each component direction is set to 90% of the value chosen by the
normal-reference bandwidth selection rule (Silverman 1986, pp. 86–87).

Bivariate constraint checking is carried out using the function isuni2D. The input to this
function is a matrix of function values evaluated at a uniformly-spaced k-by-k grid defined
on the plane covering the range of the data. Such a matrix is output by bkde2D. With these
function values, the isuni2D function can check for unimodality—that is, the presence of
only one local maximum and no local minima in the function values. Two other types of
unimodality check can also be applied. Unimodality of all conditional distributions can be
checked by applying a univariate unimodality check to the rows and columns of the matrix,

Journal of Statistical Software 21

Unsharpened

Birth Weight (kg)

K
id

ne
y

Le
ng

th
 (

m
m

)

2 3 4 5

35

40

45

50

Unimodal

Birth Weight (kg)
2 3 4 5

Unimodal Conditionals

Birth Weight (kg)
2 3 4 5

Figure 10: Density estimates for the kidney data. Lines connect any pinned sharpened points
to their final targets. Darker shading corresponds to regions of higher density.

and unimodality of marginal distributions can be checked by numerically integrating across
each matrix dimension and then checking the results for univariate unimodality. These checks
can also be used in combination.

Returning to the kidney data, the unsharpened density estimate is shown in the leftmost plot
of Figure 10. It has two spurious modes: one at the bottom of the plot and one at the upper
left. The unimodal sharpened estimate is shown in the middle plot. Lines in the plot connect
each sharpened data point that is not at home, to its target point. Only three points have
been moved to eliminate the two small spurious modes.

The rightmost plot of Figure 10 shows the sharpening result when the density is constrained
to have unimodal conditionals. This constraint would be useful if, for example, the researchers
felt that babies of any fixed birth weight should have a unimodal distribution of kidney lengths.
In this more restrictive case, more points have been moved.

5. Discussion

The simulation study and examples just presented show the potential of the greedy method.
Although it is a relatively simple heuristic, it has some distinct advantages over mathematical
programming when applied to unimodal kernel density estimation problems.

Foremost among the advantages of the greedy algorithm is its speed and reliability relative
to SQP. The practical advantages of this are considerable. In an exploratory analysis, a
researcher may wish to view density estimates under a variety of possible scenarios or band-
width values. Using SQP or a similar method, this will be a slow process and could include
failures to converge at certain points. Though it was not considered here, improve could also
be used unchanged with a different nonparametric density estimator. Making such a change
with SQP requires a considerable effort in calculation and coding to update the derivative
information and constraint functions for the new estimator.

The advantage of the heuristic approach becomes more pronounced as the constraints get

22 A Greedy Algorithm for Unimodal Kernel Density Estimation

more complicated and more highly nonlinear. The kidney example with unimodal conditionals
(Figure 10) provides an excellent example of this. The constraint-checking function for this
case involves evaluating the density at a rectangular grid of points, and then checking whether
the first difference along every horizontal and vertical grid line changes sign only once. To
cast this constraint in a mathematical programming framework is very difficult unless the
mode along each grid line is known in advance (in which case each grid line produces a set of
inequalities like Equation 5).

There are some statistical questions related to the greedy estimator (and to data sharpening
in general) that have not been addressed here. These include how to generate pointwise
interval estimates for the sharpened density, and how one could test or evaluate whether the
constraint is appropriate for a given set of data. A particularly relevant question is how
bandwidth selection procedures could be modified to account for the data sharpening step.
The appendix contains one proposal, but others could doubtless be brought forward.

One area of particular concern with data sharpening density estimators is the behavior of
the estimators in the tails of the distribution. Examining the wind speed data (Figure 9) for
example, both of the distributions had an outlying point causing a spurious mode in the right
tail. Such a data point is fundamentally problematic for unimodal density estimation with
a fixed-bandwidth estimator. A standard KDE can only be made unimodal in this case by
oversmoothing the density; data sharpening improves on this by allowing the point to move
inward, but is still subject to a trade-off between oversmoothing the density and shifting
the point too far. Simulation studies focused on bandwidth selection and tail behavior for
unimodal estimators would be of value here.

Future work in this area could consider all of the above questions, but also could involve
improved optimization techniques to more closely approach the unknown global optimum of
problem (3). One could devise iterative or population-based versions of the greedy algorithm,
or different heuristics altogether, to improve performance. Ideally a data sharpening optimizer
could be applied to other shape-constrained estimation problems as well, not just unimodal
density estimation. The improve function is considered a first step toward a robust optimizer
for this type of problem.

Acknowledgments

The author thanks Professor W. John Braun for many productive discussions related to this
research, and an anonymous referee for suggesting the Reboul estimator as a benchmark.
Funding from the National Sciences and Engineering Research Council of Canada and the
Ontario Student Assistance Program are also gratefully acknowledged.

References

Alibrandi U, Ricciardi G (2008). “Efficient Evaluation of the PDF of a Random Variable
Through the Kernel Density Maximum Entropy Approach.” International Journal for
Numerical Methods in Engineering, 75, 1511–1548.

Bickel PJ, Fan J (1996). “Some Problems on the Estimation of Unimodal Densities.” Statistica
Sinica, 6, 23–45.

Journal of Statistical Software 23

Braun WJ, Hall P (2001). “Data Sharpening for Nonparametric Inference Subject to Con-
straints.” Journal of Computational and Graphical Statistics, 10(4), 786–806.

Cheng MY, Gasser T, Hall P (1999). “Nonparametric Density Estimation under Unimodality
and Monotonicity Constraints.” Journal of Computational and Graphical Statistics, 8(1),
1–21.

Devroye L, Lugosi G (2001). Combinatorial Methods in Density Estimation. Springer-Verlag.

e LB (1997). “Estimation of Unimodal Densities without Smoothness Assumptions.” The
Annals of Statistics, 25(3), 970–981.

Fitzsimons RB (1983). “Kidney Length in the Newborn Measured by Ultrasound.” Acta
Paediatrica Scandinavica, 72, 885–887.

Fougeres AL (1997). “Estimation de Densites Unimodales.” The Canadian Journal of Statis-
tics, 25(3), 375–387.

Grenander U (1956). “On the Theory of Mortality Measurement, Part II.” Skandinavisk
Aktuarietidskrift, 39, 125–153.

Hall P, Huang LS (2002). “Unimodal Density Estimation Using Kernel Methods.” Statistica
Sinica, 12, 965–990.

Hall P, Kang KH (2005). “Unimodal Kernel Density Estimation by Data Sharpening.” Sta-
tistica Sinica, 15, 73–98.

Nocedal J, Wright SJ (1999). Numerical Optimization. Springer-Verlag.

Numerical Algorithms Group (2009). NAG Toolbox for MATLAB, Mark 21E. Numerical
Algorithms Group, Oxford. URL http://www.nag.co.uk/.

Racine JS, Parmeter CF (2008). “Constrained Nonparametric Kernel Regression: Estimation
and Inference.” URL http://www.maxwell.syr.edu/uploadedFiles/econ/kernel_cons.

pdf.

Reboul L (2005). “Estimation of a Function Under Shape Restrictions. Applications to Reli-
ability.” The Annals of Statistics, 33(3), pp. 1330–1356.

Sheather SJ, Jones MC (1991). “A Reliable Data-Based Bandwidth Selection Method for
Kernel Density Estimation.” Journal of the Royal Statistical Society B, 53, 683–690.

Silverman BW (1986). Density Estimation for Statistics and Data Analysis. Chapman &
Hall.

The MathWorks, Inc (2007). MATLAB – The Language of Technical Computing, Ver-
sion 7.4.0. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.

com/products/matlab/.

Wand MP (1994). “Fast Computation of Multivariate Kernel Estimators.” Journal of Com-
putational and Graphical Statistics, 3(4), 433–445.

Wand MP, Jones MC (1995). Kernel Smoothing. Chapman & Hall, London.

http://www.nag.co.uk/
http://www.maxwell.syr.edu/uploadedFiles/econ/kernel_cons.pdf
http://www.maxwell.syr.edu/uploadedFiles/econ/kernel_cons.pdf
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

24 A Greedy Algorithm for Unimodal Kernel Density Estimation

Wegman EJ (1972). “Nonparametric Probability Density Estimation: I. A Summary of Avail-
able Methods.” Technometrics, 14(3), 533–546.

Wolters MA (2009). “A Greedy Algorithm for Unimodal Kernel Density Estimation by Data
Sharpening.” Technical Report TR-09-01, Department of Statistical and Actuarial Sciences,
University of Western Ontario. URL http://ir.lib.uwo.ca/statspub/2/.

http://ir.lib.uwo.ca/statspub/2/

Journal of Statistical Software 25

A. A proposed bandwidth selector

As mentioned in Section 1.3, there is some justification for the simple approach of selecting
the bandwidth prior to data sharpening, and holding it fixed thereafter. Still, a bandwidth
selection procedure designed for data sharpening estimators would be welcome.

Optimal bandwidth selection for data sharpened density estimators is an open problem, be-
yond the scope of the present work. Rather than try to solve the problem here, we propose an
option for bandwidth selection that has some intuitive appeal for unimodal density estimation.

Consider first the likelihood cross-validation bandwidth selector for unconstrained kernel den-
sity estimation (Silverman 1986, p. 52-55). Let f̂ be the standard KDE and f̂−i be the KDE
with xi withheld from the data set. Then likelihood cross-validation selects

h∗ = argmax
h

n∏
i=1

f̂−i(xi;h) (11)

as the optimal bandwidth. It is necessary to withhold xi to ensure that h∗ is nonzero (if xi
is not left out, the product

∏n
i=1 f̂(xi;h) approaches infinity as h → 0). Finding h∗ involves

conducting a line search over the possible values of h.

Directly applying likelihood cross-validation to the data sharpening case would yield the
bandwidth

hLCV = argmax
h

n∏
i=1

f̂y−i(xi;h), (12)

where the notation y−i indicates that i-th point is withheld from the sample before data
sharpening. Implementing (12) is computationally intensive, as it requires n data sharpening
runs per candidate h value (compared to n KDE evaluations per h value to obtain h∗).

The existence of the unimodality constraint makes it unnecessary to withhold points to obtain
a reasonable bandwidth, however. When the constraint is enforced, the product

∏n
i=1 f̂y(xi;h)

approaches zero, not infinity, as h→ 0. So rather than using hLCV , it is proposed to use

hML = argmax
h

n∏
i=1

f̂y(xi;h) (13)

to choose the bandwidth of the unimodal data sharpened density estimator.

The product in the right hand side of (13) is the likelihood of x under the density f̂y, if we take
y to be a fixed vector (rather than what it truly is, a function of x and h). This resemblance
to a maximum likelihood estimate motivates the notation hML. The proposed bandwidth has
intuitive appeal because, just like true maximum likelihood estimators, it favors h choices
that put higher probability mass on the observed sample. Also, only one data sharpening run
is performed for each candidate h value, an approximately n-fold reduction in computational
effort compared to hLCV .

Table 4 compares the mean TV distance from the truth for the simulated data sets of Section 3,
using hSJ , hML, and hLCV as the bandwidth in the greedy algorithm. Bandwidth hML had
better performance than hLCV in all cases. Relative to hSJ , it showed improved performance
for the mixture distribution cases, but reduced performance for the t3 cases. The reduced
performance in the t3 case is caused by sensitivity to outliers. Any estimate that puts a
negligible mass on an outlying point will have a likelihood near zero, and as a consequence hML

26 A Greedy Algorithm for Unimodal Kernel Density Estimation

Case hSJ hML hLCV

t3, n = 25 0.149 0.173 0.209
t3, n = 50 0.114 0.140 0.165
t3, n = 100 0.091 0.120 0.140

Mixture, n = 25 0.173 0.156 0.175
Mixture, n = 50 0.140 0.124 0.139
Mixture, n = 100 0.111 0.097 0.111

Table 4: Mean TV distance from the truth for the greedy algorithm with three different
bandwidth choices.

will favor larger bandwidths when there are outlying observations. The poor performance of
hLCV is also explained by outlier sensitivity, which is only exacerbated by withholding points
from the estimate.

The tendency of hML to oversmooth in the presence of outliers could be viewed in either a
positive or negative light. It has the benefit of avoiding density estimates that place negligible
probability mass on points that were actually observed; but at the same time, outlier-induced
oversmoothing near the mode will degrade overall measures of statistical quality. This conflict
between generating plausible individual estimates and ensuring good average performance is
a manifestation of the problem mentioned in the discussion: a fixed-bandwidth estimator has
fundamental difficulties simultaneously estimating the tails and enforcing the unimodality
constraint. A possible direction for future work is to sharpen the bandwidths, rather than the
kernel centers; maximum likelihood could again be used to choose the optimal bandwidths in
such an estimator.

Affiliation:

Mark A. Wolters
Department of Statistical and Actuarial Sciences
University of Western Ontario
London, Ontario N6A 5B7, Canada
E-mail: mwolters@uwo.ca

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 47, Issue 6 Submitted: 2010-08-23
April 2012 Accepted: 2012-04-05

mailto:mwolters@uwo.ca
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Unimodal density estimation
	The sharpened kernel density estimator
	Remark on bandwidth selection

	Optimization considerations
	Remark on the use of sub-optimal solutions

	The algorithm
	High-level description
	Implementation details
	Initial solution
	Sweep order
	Feasibility checking
	Determining the status of each point
	Design of the grid search
	Sorting memory

	The bivariate case

	Simulation results
	Study design
	Convergence and run time
	Optimization performance
	Estimation performance

	MATLAB code and usage examples
	The included code
	Univariate example: Wind speed data
	Bivariate example: Kidney data

	Discussion
	A proposed bandwidth selector

