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Abstract

Frailty models are very useful for analysing correlated survival data, when observations
are clustered into groups or for recurrent events. The aim of this article is to present the
new version of an R package called frailtypack. This package allows to fit Cox models and
four types of frailty models (shared, nested, joint, additive) that could be useful for several
issues within biomedical research. It is well adapted to the analysis of recurrent events
such as cancer relapses and/or terminal events (death or lost to follow-up). The approach
uses maximum penalized likelihood estimation. Right-censored or left-truncated data are
considered. It also allows stratification and time-dependent covariates during analysis.

Keywords: frailty models, R, penalized likelihood, Marquardt, cross-validation, correlated
survival data, splines, hazard functions.

1. Introduction

Frailty models (Duchateau and Janssen 2008; Hougaard 2000; Wienke 2010; Hanagal 2011)
are extensions of the Cox proportional hazards model (Cox 1972) which is the most popular
model in survival analysis. In many clinical applications, the study population needs to be
considered as a heterogeneous sample or as a cluster of homogeneous groups of individuals
such as families or geographical areas. Sometimes, due to lack of knowledge or for economical
reasons, some covariates related to the event of interest are not measured. The frailty approach
is a statistical modelling method which aims to account for the heterogeneity caused by
unmeasured covariates. It does so by adding random effects which act multiplicatively on the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Statistical Software

https://core.ac.uk/display/478955096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/


2 frailtypack: Frailty Models for Correlated Survival Data in R

hazard function. frailtypack is an R package (R Development Core Team 2012) which allows
to fit four types of frailty models, for left-truncated and right-censored data, adapted to most
survival analysis issues. The aim of this paper is to present the new version of the R package
frailtypack, which is available from the Comprehensive R Archive Network at http://CRAN.
R-project.org/package=frailtypack, and the various new models proposed. It depends
on the R survival package (Therneau 2012). The initial version of this package (Rondeau and
Gonzalez 2005) was proposed for a simple shared frailty model, and was developed for more
general frailty models (Rondeau et al. 2012). The shared frailty model (Rondeau et al. 2003)
can be used, when observations are supposed to be clustered into groups. The nested frailty
model (Rondeau et al. 2006) is most appropriate, when there are two levels of hierarchical
clustering. However, several relapses (recurrent events) are likely to increase the risk of
death, thus the terminal event is considered as an informative censoring. Using a joint frailty
model, it is possible to fit jointly the two hazard functions associated with recurrent and
terminal events (Rondeau et al. 2007), when these events are supposed to be correlated. The
additive frailty model (Rondeau et al. 2008) is more adapted to study both heterogeneity
across trial and treatment-by-trial heterogeneity (for instance meta-analysis or multicentric
datasets study). Depending on the models, stratification and time-dependent covariates are
allowed or not. The frailty models discussed in recent literature present several drawbacks.
Their convergence is too slow, they do not provide standard errors for the variance estimate of
the random effects and they can not estimate smooth hazard function. frailtypack use a non-
parametric penalized likelihood estimation, and the smooth estimation of the baseline hazard
functions is provided by using an approximation by splines. frailtypack was first written in
Fortran 77 and was implemented for the statistical software R. Section 2 presents the models
that frailtypack can fit and the estimation method. Section 3 describes all the functions
and the arguments of frailtypack. Section 4 provides some examples illustrating frailtypack
functions.

2. Models and estimation methods

2.1. Models

In the following models, the covariates could be time-dependent, but to simplify the expres-
sions we replace for instance Xij(t) by Xij .

Cox model

The proportional hazards Cox model is a frailty model without random effect. With frailty-
pack, it is possible to fit such a model with parameters estimated by penalized likelihood
maximization.

Shared frailty model

When observations are clustered into groups such as hospitals or cities, or when observations
are recurrent events times (cancer relapses), the shared gamma frailty model is the most
often adapted model (Rondeau et al. 2003). In the following, we will use recurrent event
terminology; nevertheless, grouped data can also be treated. For the j-th (j = 1, ..., ni)
individual of the i-th group (i = 1, ..., G), let Tij denote the recurrent event times under
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study, let Cij be the right-censoring times and let Lij be the left truncation times. The
observations Yij equal to min(Tij , Cij) and the censoring indicators are δij = I{Yij=Tij}. The
recurrent event times may be left-truncated and right-censored. Stratified analysis by a binary
variable is allowed. The hazard function for a shared frailty model is

λij(t|vi) = viλ0(t) exp(β>Xij) = viλij(t), (1)

where λ0(t) is the baseline hazard function, Xij the covariate vector associated with the
vector of regression parameters β, and vi is the random effect associated with the i-th group.
We assume that the vi are independently and identically distributed (i.i.d.) from a gamma

distribution with E(vi) = 1 and Var(vi) = θ, i.e., vi ∼ Γ
(
1
θ ,

1
θ

)
. We observe Yij , Lij , δij . The

full marginal loglikelihood for this model has an analytical formulation (Klein 1992)

l(Φ) =
G∑
i=1

{[ ni∑
j=1

δij lnλij(Yij)
]
−
(
1
θ +mi

)
ln
[
1 + θ

ni∑
j=1

Λij(Yij)
]

+ 1
θ ln

[
1 + θ

ni∑
j=1

Λij(Lij)
]

+ I{mi 6=0}
mi∑
k=1

ln
(
1 + θ(mi − k)

)}
,

(2)

where Φ = (λ0(·), β, θ), the cumulative baseline hazard function is Λ0(·) and the number of

recurrent events is mi =
ni∑
j=1

I{δij=1}.

Nested frailty model

Nested frailty models account for hierarchical clustering of the data by including two nested
random effects that act multiplicatively on the hazard function. Such models are appropriate
when observations are clustered at several hierarchical levels such as in geographical areas
(Rondeau et al. 2006). For instance, the American Cancer Society Study on air pollution and
mortality (Pope et al. 1995) included 552,138 subjects from 151 metropolitan areas throughout
the United States, themselves nested within 44 states. As the hypothesis of independent
observations is not a priori obvious in this cohort, a flexible survival model with two nested
random effects at state and city levels is needed to obtain valid estimates. We consider
G independent clusters and within the i-th there are ni subclusters. Left-truncated and
right-censored data are allowed. Stratified analysis by a binary variable is allowed, too. Let
Tijk denote the survival times under study for the k-th subject (k = 1, ...,Kij) from the
j-th subgroup (j = 1, ..., ni) of the i-th group (i = 1, ..., G), Cijk the right-censoring times
and Lijk the left-truncating times. The observations are Yijk = min(Tijk, Cijk) and the
censoring indicators δijk. We assume that Tijk, Lijk and Cijk are independent. We observe
Yijk, Lijk, δijk. The hazard function for a nested frailty model is

λijk(t|vi, zij) = vizijλ0(t) exp(β>Xijk) = vizijλijk(t), (3)

where λ0(t) is the baseline hazard function and Xijk the covariate vector associated with
β the corresponding vector of regression parameters. The cluster random effect vi and the
subcluster random effect zij are both independently and identically gamma-distributed:

� vi ∼ Γ
(
1
θ ,

1
θ

)
i.i.d., with E(vi) = 1 and Var(vi) = θ.
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� zij ∼ Γ
(
1
η ,

1
η

)
i.i.d., with E(zij) = 1 and Var(zij) = η.

If η is null, then observations from the same subgroup are independent and if θ is null, then
observations from the same group are independent. A larger variance implies greater hetero-
geneity in frailty across groups and a greater correlation of the survival times for individuals
that belong to the same group. The full marginal loglikelihood takes the following form
(Rondeau et al. 2006)

l(Φ) =
G∑
i=1

{
ni∑
j=1

{ Kij∑
k=1

δijk
[
β>Xijk + ln

(
λ0(Yijk)

)]
+ I{mi>1}

mij∑
k=1

ln
(
1 + η(mij − k)

)}

+ ln

∫ ∞
0

v
1/θ−1+mi

i exp(−vi/θ)
ni∏
j=1

[
1 + ηvi

Kij∑
k=1

Λijk(Yijk)
]1/η+mij

dvi − ln

∫ ∞
0

v
1/θ−1
i exp(−vi/θ)

ni∏
j=1

[
ηvi

Kij∑
k=1

Λijk(Lijk) + 1
]1/η dvi

}
,

(4)
where Φ = (λ0(·), β, η, θ), the cumulative baseline hazard function is Λijk(·), the number of

recurrent events in the i-th group is mi =
ni∑
j=1

Kij∑
k=1

I{δijk=1} and the number of observed events

in the j-th subgroup is mij .

Joint frailty model

The observation of successive events across time (recurrent events) for subjects in cohort
studies may be terminated by loss to follow-up, end-of-study, or a major failure event such as
death. In this context, the major failure event could be correlated with recurrent events and
the usual assumption of noninformative censoring of the recurrent event process by death is
not valid. Joint frailty models allow to study the joint evolution over time of two survival
processes by considering the terminal event as informative censoring (Rondeau et al. 2007).
A common frailty term vi for the two rates takes into account the heterogeneity in the data,
associated with unobserved covariates. We assume that the vi are independently and iden-
tically distributed (i.i.d.) from a gamma distribution with E(vi) = 1 and Var(vi) = θ, i.e.,

vi ∼ Γ
(
1
θ ,

1
θ

)
. The frailty term acts differently on the two rates (vi for the recurrent rate and

vαi for death rate). The parameters θ and α characterize the dependence between recurrent
event process Tij and terminal event time T ∗i attributed to the unobserved random effects. A
zero value of α implies that the dependence between Tij and T ∗i can be fully explained by the
(observed) covariates. If θ is null, Tij and T ∗i are considered independent and the parameter
α is non interpretable. On the other hand, if θ is nonzero and α is also nonzero, then θ not
only accounts for the intra-subjects correlations, but also represents the dependence between
the recurrent event rate and the terminal event rate. The covariates could be different for
the recurrent rate and the death rate. This model can be fitted to right-censored and/or
left-truncated data, but stratification by a boolean variable is not allowed. We denote for
subject i (i = 1, ..., G) Tij the j-th recurrent time (j = 1, ..., ni) considered as time-to-event,
Ci the censoring time, Li the left-truncating time, Di the death time. Yij = min(Tij , Ci, Di)
corresponds to each observation time, and δij = I{Yij=Tij} is the recurrent event indicator.
T ∗i = min(Ci, Di) is the last follow-up time and δ∗i = I{T ∗i =Di} the death indicator. And we
observe Yij , T

∗
i , Li, δij , δ

∗
i . The hazard functions system for joint frailty models of recurrent
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events and death is{
rij(t|vi) = vir0(t) exp(β>1 Xij) = virij(t) (recurrent events)
λi(t|vi) = vαi λ0(t) exp(β>2 Xi) = vαi λi(t) (death)

, (5)

where r0(t) (resp. λ0(t)) is the recurrent (resp. terminal) event baseline hazard function, β1
(resp. β2) the regression coefficients vector associated with Xij (resp. Xi) the covariate vector
and vi ∼ Γ(1θ ,

1
θ ) are i.i.d. Contrary to the shared gamma frailty model, the full log-likelihood

does not take a simple form because the integrals do not have a closed form (Rondeau et al.
2007). The full marginal log-likelihood expression is

l(Φ) =
G∑
i=1

{[ ni∑
j=1

δij ln
(
rij(Yij)

)]
+ δ∗i ln

(
λi(T

∗
i )
)
− ln

(
Γ(1θ )

)
− 1

θ ln θ

+ ln

∫ ∞
0

v
mi+αδ

∗
i +1/θ−1

i exp
[
− vi

∫ T ∗i

0
dRij(t)dt− vαi

∫ T ∗i

0
dΛi(t)dt−

vi
θ

]
dvi

}
,

(6)

where Φ = (r0(·), λ0(·), β, α, θ), with β = (β1, β2) the covariates vector for recurrent events
or death, with Yi0 = 0 and Yini = T ∗i . Λi(t) =

∫ t
0 λi(u)du (resp. Rij(t) =

∫ t
0 rij(u)du) is the

cumulative hazard function for death (resp. for recurrent events) and mi is the total number
of recurrent events for subject i.

Additive frailty model

In a meta-analysis of clinical trials, the main objective consists in both looking at the het-
erogeneity between trials of underlying risk and treatment effects. An additive frailty model
is a proportional hazards model with two correlated random effects at the trial level that act
multiplicatively on the hazard function and on the interaction with treatment. This approach
does not only allow variations of the baseline hazard function across trials but also variations
of the treatment effect across trials in a meta-analysis concerning individual survival data
(Vaida and Xu 2000; Legrand et al. 2005; Rondeau et al. 2008; Ha et al. 2011). If we are
only interested in the variation of the baseline hazard function across trials, a simple shared
frailty model can be used (see Section 2.1). In the case of an additive frailty model, only
right-censored data are allowed, but not left-truncated data. We suppose that the G trials
are independent. For the j-th (j = 1, ..., ni) individual of the i-th trial (i = 1, ..., G), let Tij
denote the survival times under study and let Cij be the corresponding right-censoring times.
The observations Yij equal to min(Tij , Cij) and the censoring indicators δij = I{Yij=Tij}. For
each subject, we observe a binary variable Xij1 which equals 1 when the patient is in the
experimental arm and 0 when in the standard arm, as a treatment arm indicator. Stratified
analysis by a binary variable is allowed. The hazard function for the j-th individual of the
i-th trial with random trial effect ui and random treatment-by-trial interaction wi is

λij(t|ui, wi) = λ0(t) exp(ui + wiXij1 +
p∑

k=1

βkXijk), (7)

ui ∼ N (0, σ2), wi ∼ N (0, τ2), cov(ui, wi) = ρστ

where λ0(t) is the baseline hazard function, βk the fixed effect associated with the covariate
Xijk (k=1,..,p), β1 is the treatment effect and Xij1 the treatment variable. ρ is the corre-
sponding correlation coefficient for the two frailty terms. The variance σ2 of ui represents the
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heterogeneity between trials of the overall underlying baseline risk and the variance τ2 of wi
represents the heterogeneity between trials of the overall treatment effect β1. If σ2 = 0, then
observations from the same trial are independent. A larger variance implies greater hetero-
geneity across trials and a greater correlation of the survival times for individuals belonging
to the same trial. A null variance τ2 indicates no heterogeneity of the treatment effect over
trials. The full marginal log-likelihood expression for an additive frailty model is

l(Φ) = ln
G∏
i=1

∫
<

∫
<

{
ni∏
j=1

λ(Yij |ui, wi)δijS(Yij |ui, wi)
}
f(ui, wi)duidwi, (8)

where Φ = (λ0(·), β, σ2, τ2, ρ). The calculus of this log-likelihood is detailed elsewhere (Ron-
deau et al. 2008). This marginal log-likelihood depends on integrals that have no analytical
solution. We approximate it by using the Laplace integration technique, which seems to
provide good estimates.

2.2. Computational methods and estimation

The estimation method used in frailtypack is the maximization of the penalized loglikelihood
(Joly et al. 1998; Rondeau et al. 2003).

Penalized likelihood

The penalized loglikelihood has different expressions according to the models.

For Cox, shared, nested, additive frailty models, it is

pl(Φ) = l(Φ)− κ
∫ ∞
0

λ
′′
0(t)2dt, (9)

where κ is a positive smoothing parameter which controls the trade-off between the data fit
and the smoothness of the functions.

If it is a stratified analysis with a maximum of two strata (for instance, a stratification on
gender), the penalized loglikelihood is

plstr(Φ) = lstr(Φ)− κ1
∫ ∞
0

λ
′′
0m(t)2dt− κ2

∫ ∞
0

λ
′′
0f (t)2dt, (10)

where λ0m(·) and λ0f (·) are the baseline hazard functions for men and women respectively.
We suppose that these 2 baseline hazard functions are different. That is why it requires two
positive smoothing parameters: κ1 for the stratum 1 (men) and κ2 for the stratum 2 (women).

The penalized loglikelihood for joint frailty models is defined as

pljoint(Φ) = ljoint(Φ)− κ1
∫ ∞
0

r
′′
0 (t)2dt− κ2

∫ ∞
0

λ
′′
0(t)2dt, (11)

Two positive smoothing parameters (κ1 and κ2) are necessary because a joint frailty model
requires two hazard functions (r0(·) for recurrent events and λ0(·) for death). Stratified
analyses with this model are not allowed.

For a fixed value of the smoothing parameter, the maximization of the penalized likelihood
provides estimators for Φ, the parameters of the model.



Journal of Statistical Software 7

Maximization of the penalized likelihood

The estimated parameters are obtained by the robust Marquardt algorithm (Marquardt 1963),
which is a combination between a Newton Raphson algorithm and a steepest descent algo-
rithm. This algorithm has the advantage of being more stable than the Newton Raphson
algorithm while preserving its fast convergence property. To be sure of having positive hazard
functions at all stages of the algorithm, the variance of the frailties and the spline coefficients
need to be positive. We ensure this positiveness by using a square transformation. The vector
Φ of the parameters is updated until the convergence using the following iterative expression

Φ(r+1) = Φ(r) − δ
(
H̃(r)

)−1
∆
(
L(Φ(r))

)
, (12)

The step δ is equal to 1 by default but can be modified to ensure that the likelihood is improved
at each iteration. The matrix H̃ is a diagonal-inflated Hessian matrix to ensure positive
definiteness. The term ∆(L(Φ(r))) corresponds to the penalized log-likelihood gradient at the
r-th iteration. The iterations stop when the difference between two consecutive log-likelihoods
is small (< 10−4), the coefficients are stable (< 10−4) and the gradient is small enough
(< 10−6). The first and second derivates are calculated using finite differences method. After
the convergence, the standard errors of the estimates are directly obtained from the inverse
of the Hessian matrix.

The integrals in the full log-likelihood expression do not always have an analytical solution.
They are evaluated using a Gaussian quadrature with Laguerre polynomials with 20 points
for the nested and the joint frailty models. They are evaluated using the Laplace integration
method for the additive frailty models.

Approximation with splines

The estimator of the baseline hazard function λ0(·) has no analytical solution, but can be

approximated on the basis of splines with Q knots: λ̃0(·) =
m∑
i=1

ηiMi(·), with m = Q + 2.

Cubic M-splines (polynomial functions of 3rd order that are combined linearly to approximate
a function on an interval) which are a variant of cubic B-splines are used. The second derivate
of the baseline hazard function λ

′′
0(·) is approximated by a sum of polynomial functions of 1st

order. This approximation allows flexible shapes of the hazard function while reducing the
number of parameters. The more knots we use, the closer is the approximation to the true
hazard function. An approximation for the confidence bands at 95% of λ0(·) is provided:

λ̃0(t)± 1.96
√
M(t)T I−1η̂ M(t), (13)

where M(t) = (M1(t), ...,Mm(t)) is the M-splines vector and Iη̂ = ∂2pl(η̂)
∂η2

.

Parameter initialization

The frailtypack programs include several algorithms which need initial values. It is very
important to choose good initial values for the maximization of the penalized likelihood. The
closer the initial value is to the true value, the faster the convergence. According to the model
used, we implemented different methods to provide initial values.
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� For a shared frailty model, the splines and the regression coefficients are initialized to
0.1. The program fits, firstly, an adjusted Cox model to give new initial values for the
splines and the regression coefficients. The variance of the frailty term θ is initialized
to 0.1. Then, a shared frailty model is fitted.

� For a joint frailty model, the splines and the regression coefficients are initialized to 0.5.
The program fits an adjusted Cox model to provide new initial values for the regression
and the splines coefficients. The variance of the frailty term θ and the coefficient α are
initialized to 1. Then, it a joint frailty model is fitted.

� For a nested frailty model, the splines and the regression coefficients are initialized to
0.1. The program fits an adjusted Cox model to provide new initial values for the
regression and the splines coefficients. The variances of the frailties are initialized to
0.1. Then, a shared frailty model with covariates considering only subgroup frailties is
fitted to give a new initial value for the variance of the subgroup frailty term. Then, a
shared frailty model with covariates and considering only group frailties is fitted to give
a new initial value for the variance of the group frailties. In a last step, a nested frailty
model is fitted.

� For an additive frailty model, the splines and the regression coefficients are initialized
to 0.1. An adjusted Cox model is fitted, to provide new initial values for the splines
coefficients and the regression coefficients. The variances of the frailties are initialized
to 0.1. Then an additive frailty model with independent frailties is fitted. At last, an
additive frailty model with correlated frailties is fitted.

Another important point is the choice of the smoothing parameters.

How to estimate the smoothing parameter κ

The smoothing parameter can be fixed by the user or evaluated by an automatic method: the
maximization of a likelihood cross-validation criterion (Joly et al. 1998) for Cox model. This
method provides an estimated value of the smoothing parameter by minimizing the function

V̄ (κ) =
1

n

{
tr(Ĥ−1pl Ĥl − l(Φ̂κ))

}
, (14)

where Φ̂κ is the maximum penalized likelihood estimator, Ĥl is minus the converged Hessian
matrix of the log-likelihood, Ĥpl is minus the converged Hessian matrix of the penalized log-
likelihood and l(·) is the full log-likelihood. To minimize V̄ (κ), we calculate it for several and
very remote values of κ (for avoiding a local minimum).

The cross-validation method is not implemented for more than one smoothing parameter.
Thus, it can not be used for a stratified analysis and for a joint frailty model.

Concerning the choice of the kappas for a joint frailty model, first we have to fit two shared
frailty models with cross-validation method: one with recurrences as event of interest and
the other one with death as event of interest. Then, the two κ obtained are used in the joint
frailty model. If the terminal event survival curve is too smoothed, we can set κ2 = κ1 (see
modJoint.gap in Section 4.2). Choosing the kappas for a stratified model is based on the
same idea. First, we fit a shared frailty model without stratification (see mod.sha.gap in
Section 4.2) using a cross-validation method for κ. Then this κ is used for the two strata in
the stratified shared frailty model (see mod.sha.str.gap in Section 4.2).
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3. Frailtypack arguments

The two main functions which can be used in frailtypack are frailtyPenal for shared, joint
and nested frailty models and additivePenal for additive frailty models. Different arguments
for each type of model are proposed. We describe here each of the arguments needed for these
functions and explain how to parametrize them to fit each type of model.

3.1. Arguments of the main functions

The standard code for fitting a Cox model or a shared, joint and nested frailty model is:

frailtyPenal(formula, formula.terminalEvent, data, Frailty = FALSE,

joint = FALSE, recurrentAG = FALSE, cross.validation = FALSE,

n.knots, kappa1, kappa2, maxit = 350)

The standard code for fitting an additive frailty model is:

additivePenal(formula, data, correlation = FALSE, n.knots,

cross.validation = FALSE, kappa1, kappa2, maxit = 350)

Common arguments for fitting a model

� formula: Indicates the model which is fitted. It is different according to the model (see
the following subsections).

� data: Indicates the name of the data file. The database structure is different according
to the model (see Section 4.1).

� recurrentAG: Logical value (TRUE or FALSE). If recurrentAG = TRUE, it indicates that
the counting process approach of Andersen and Gill (Andersen and Gill 1982) with a
calendar timescale for recurrent event times is used. Within a calendar timescale, the
time corresponds to the time since entry/inclusion in the study. Within a gap timescale,
the time corresponds to the time between two recurrent events. Default is FALSE, in
particular for recurrent events or clustered data with gap-time as the timescale. This
argument is always FALSE when an additive frailty model is fitted.

� n.knots: The number of knots to use. It corresponds to the n.knots+2 splines functions
for the approximation of the baseline hazard function or the survival functions. The
number of knots must be between 4 and 20. It is recommended to start with a small
number of knots (for instance: n.knots = 7) and to increase the number of knots until
the graph of the baseline hazard function remains unchanged.

� kappa1: The smoothing parameter of the penalized likelihood.

� kappa2: The second smoothing parameter, it is required if the analysis is stratified (only
for Cox, shared, nested and additive frailty models). This parameter will corresponds
to the smoothing parameter for the second baseline hazard function. If a joint frailty
model is fitted, this parameter will correspond to the smoothing parameter for the death
baseline hazard function (kappa1 being the smoothing parameter for the recurrent events
baseline hazard function).
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� cross.validation: If TRUE, indicates that a cross validation procedure is used for
estimating the best smoothing parameter. kappa1 is used as the seed for estimating
the smoothing parameter (see Section 2.2). It is important to underline that if a joint
frailty model is fitted or a stratified analysis for Cox, shared, additive, nested frailty
models is used, the cross-validation method is not allowed, i.e., cross.validation =

FALSE. Default is FALSE.

� maxit: The maximum number of iterations for the Marquardt algorithm (default 350).

Specified arguments for fitting a Cox or a shared frailty model

� formula: Example.

frailtyPenal(Surv(time, event) ~ var1 + var2 + cluster(id),

n.knots = 12, kappa1 = 10000, data = database, Frailty = FALSE)

� cluster: Function which identifies groups of correlated observations.

� time: Follow-up time.

� event: Event indicator (0 = censored, 1 = event).

� var1, var2: Some explanatory variables.

� Frailty: Logical value (TRUE or FALSE). If Frailty = TRUE, the model includes a
frailty term (a shared frailty model is fitted) and the variance of the frailty parameter is
estimated. If Frailty = FALSE, a Cox proportional hazards model is estimated using
penalized likelihood on the hazard function. Default is FALSE.

Specified arguments for fitting a joint frailty model

� formula: Example.

frailtyPenal(Surv(t1, t2, event) ~ cluster(id) + var1 + var2 +

terminal(status.terminal), formula.terminalEvent = var1,

data = database, n.knots = 7, kappa1 = 1, kappa2 = 1,

joint = TRUE, recurrentAG = TRUE)

� terminal: Special function used in the context of recurrent event models with terminal
event (e.g., censoring variable related to recurrent events). It contains the recurrent
event indicator (0 = no relapse, 1 = relapse).

� status.terminal: Death indicator. t1 is the entry time, t2 is the last follow-up time.

� joint: Logical value (TRUE or FALSE). The default is FALSE. If TRUE a joint frailty model
is fitted and if so, the formula.terminalEvent argument is required.

� formula.terminalEvent: Covariates that the terminal event rate is adjusted for.
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Specified arguments for fitting a nested frailty model

� formula: Example.

frailtyPenal(Surv(t1, t2, event) ~ cluster (group) +

subcluster(subgroup) + cov1 + cov2, data = database,

n.knots = 8, kappa1 = 50000, recurrentAG = TRUE)

� The subcluster function identifies subgroups levels, the cluster function from the
survival package identifies groups levels.

Specified arguments for fitting an additive frailty model

� formula: Example.

additivePenal(Surv(t2, event) ~ cluster(group) + slope(var1) + var1,

data = database, correlation = TRUE, n.knots = 8, kappa1 = 10000)

� The slope function identifies the variable in interaction with the random slope (wi).

� correlation: Logical value (TRUE or FALSE). Are the two random effects (ui and wi)
correlated? If so, the correlation coefficient is estimated. The default is TRUE.

3.2. Objects returned by frailtyPenal and additivePenal

The objects returned by frailtyPenal and additivePenal are detailed in the reference
manual (see Value part), which is available along with the package or from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=frailtypack.

3.3. Other available functions: plot, summary, and print

frailtypack includes R methods for summarizing, printing, and plotting objects of different
classes depending on the model fitted. summary gives estimations and confidence intervals
for the hazard ratios of each covariate. print provides a short summary of the parameter
estimates. plot is useful to draw baseline survival or hazard functions for each type of model.
For a joint frailty model, it is possible to plot the terminal event and/or the recurrent hazard
or survival functions (see Section 4.4).

4. Illustrating examples

The Cox proportional hazards model and the shared frailty model have already been intro-
duced in the first version of frailtypack (Rondeau and Gonzalez 2005).

To illustrate the models provided by frailtypack, three datasets are proposed: readmission,
dataNested, dataAdditive. The first subsection explains how to build a dataset adapted
to each model. Then, in the second subsection we describe the R code to fit the different
models and the parameter estimates in the output obtained with the R function print. We
also present the R function summary adapted to these models. Finally, we present the different
options of the R function plot according to the model.

http://CRAN.R-project.org/package=frailtypack
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4.1. Build an adapted dataset

Several variables are necessary to fit the models provided by frailtypack.

Cox, shared frailty, and joint frailty models

The following variables are common for all these models (see Table 1). For instance, when
studying recurrent events with a Cox model or a shared frailty model, it is necessary to specify
the identification number of the subject (id), an event indicator (event) and some covariates
(e.g., chemo, sex, dukes, charlson) for each observation. If the interest is on the duration
between two events, the gap-time timescale (e.g recurrentAG = FALSE) is appropriate and
then a variable (time) that indicates the duration between two events is needed. If the
focus is on the occurence of events during the follow-up, the calendar-time timescale (e.g.,
recurrentAG = TRUE) must be used and two variables such as (time.start) and (time.stop)
are needed. time.start indicates the time at which the subject entered the study or the time
at which the event last occured if it is not its first occurence. time.stop corresponds to the
time when the event occurs or to the end of the follow-up when there is no more occurence.
For instance, patient 2 entered the study at time time.start = 0, then developed an event
at time time.stop = 489 and is then censored at time time.stop = 1182. In a joint frailty
model, we fit jointly the terminal event rate and the recurrent event rate.

The dataset readmission is used for the Cox, shared and joint frailty model. It contains
rehospitalization data of patients diagnosed with colorectal cancer (Gonzalez et al. 2005).
The data describe the calendar time (in days) of the successive hospitalizations after the
date of surgery. The first readmission time was considered as the time between the date
of the surgical procedure and the first rehospitalization after discharge related to colorectal
cancer. Each subsequent readmission time was defined as the difference between the current
hospitalization date and the previous discharge date. A total of 861 rehospitalization events
were recorded for the 403 patients included in the analysis. Several readmissions can occur
for the same patient, and an individual frailty may influence the occurrence of subsequent
rehospitalizations.

id t.start t.stop time event chemo sex dukes charlson death

1 0 24 24 1 Treated F stage D 3 0
1 24 457 433 1 Treated F stage D 0 (ref) 0
1 457 1037 580 0 Treated F stage D 0 (ref) 0
2 0 489 489 1 Untreated M stage C 0 (ref) 0
2 489 1182 693 0 Untreated M stage C 0 (ref) 0
3 0 15 15 1 Untreated M stage C 3 0
3 15 783 768 0 Untreated M stage C 3 1
4 0 163 163 1 Treated F stage A–B 0 (ref) 0
4 163 288 125 1 Treated F stage A–B 0 (ref) 0
4 288 638 350 1 Treated F stage A–B 0 (ref) 0
4 638 686 48 1 Treated F stage A–B 0 (ref) 0
4 686 2048 1362 0 Treated F stage A–B 0 (ref) 0
...

...
...

...
...

...
...

...
...

...

Table 1: Extract from the dataset readmission.
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group subgroup t1 t2 event var1 var2

1 1 7.4960230 12.207784 1 1 1
1 1 1.9733403 3.241331 0 1 1
1 1 5.1983415 19.358550 1 1 1
1 1 0.6593517 27.643763 1 1 0
1 1 3.8408960 15.980288 0 0 1
1 2 0.4632736 17.578661 1 1 1
1 2 1.6894384 23.492833 1 1 0
1 2 0.0176663 34.352493 1 0 0
1 2 0.4506022 17.142112 0 1 0
1 2 4.0068631 12.216722 1 0 1
...

...
...

...
...

...
...

Table 2: Extract from the generated dataset dataNested.

Nested frailty model

In the nested frailty model, we use two levels of clustering. We need to specify the group and
the subgroup of each subject such as the variables group and subgroup in dataNested (see
Table 2). t1 is the time of entrance in the study and a left-truncating time and t2 corresponds
to the time of event if the event indicator event equals 1; otherwise t2 corresponds the end
of follow-up. var1 and var2 are generated covariates. This dataset, included in the package,
contains a simulated sample of 400 observations which may be divided 20 clusters with 4
subgroups and 5 subjects in each subgroup, in order to obtain two levels of grouping. Two
independent gamma frailty parameters with a variance fixed at 0.1 for the cluster effect and
at 0.5 for the subcluster effect were generated. Independent survival times were generated
from a Weibull baseline risk function. The percentage of censored data was around 30 per
cent. The right-censoring variables were generated from a uniform distribution on [1, 36] and
a left-truncating variable was generated with a uniform distribution on [0, 10]. Observations
were included only if the survival time was greater than the truncation time.

Additive frailty model

In an additive frailty model, we are interested in the heterogeneity across trials. We need
to specify the treatment variable. The treatment variable could be var1 (see Table 3). This
model doesn’t allow left-truncated data, thus the time of entrance t1 for each subject has
to be equal to zero and only gap-time timescale can be used (e.g., recurrentAG = FALSE).
To illustrate this model we used a generated dataset named dataAdditive included in the
package.

This dataset contains simulated samples of 100 clusters with 100 subjects in each cluster, such
as a compilation of clinical trials databases. Two correlated centered gaussian random effects
are generated with the same variance fixed at 0.3 and the covariance at -0.2. The regression
coefficient β is fixed at −0.11. The percentage of right censoring data is around 30 percent
which are generated from a uniform distribution on [1, 150]. Independent survival times were
generated from a Weibull baseline risk function.

Then we can fit the adapted model.
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group t1 t2 event var1

1 0 22.942795 1 1
1 0 17.250234 0 1
1 0 36.633232 1 1
1 0 37.428067 1 0
1 0 28.947368 1 0
1 0 51.219719 1 0
...

...
...

...
...

Table 3: Extract from the generated dataset dataAdditive.

4.2. Fit the different models and print the parameter estimates

The objective of the study described in Gonzalez et al. (2005) is to analyse the hospital
readmission times related to colorectal cancer after surgical procedure. We first estimate the
hazard rate ratios of readmission time for covariates analysed using a Cox proportional model,
then using a shared frailty model and finally using a joint frailty model.

Before fitting the model, we need to load the package frailtypack and the dataset readmission.
This step is necessary for every model. An extract from this dataset is provided in Table 1
of the previous Section 4.1.

R> library("frailtypack")

R> data("readmission")

Cox model

The following lines correspond to the R code for fitting a Cox model. We use cross-validation
(cross.validation = TRUE) for the smoothing parameter because it provides smoother func-
tions (hazard or survival).

R> mod.cox.gap <- frailtyPenal(Surv(time, event) ~ cluster(id) + dukes +

+ charlson + sex + chemo, Frailty = FALSE, n.knots = 10, kappa1 = 1,

+ data = readmission, cross.validation = TRUE)

With the print function, the parameter estimates of the models can be presented.

Call:

frailtyPenal(formula = Surv(time, event) ~ cluster(id) + dukes +

charlson + sex + chemo, data = readmission, Frailty = FALSE,

cross.validation = TRUE, n.knots = 10, kappa1 = 1)

Cox proportional hazards model parameter estimates

using a Penalized Likelihood on the hazard function

coef exp(coef) SE coef (H) SE coef (HIH) z p

dukesC 0.3006 1.3507 0.1210 0.1210 2.484 1.30e-02

dukesD 1.0316 2.8056 0.1389 0.1389 7.429 1.09e-13
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charlson1-2 0.4943 1.6393 0.2028 0.2028 2.437 1.48e-02

charlson3 0.3821 1.4654 0.1140 0.1140 3.353 8.01e-04

sexFemale -0.4742 0.6224 0.1011 0.1010 -4.691 2.72e-06

chemoTreated -0.2378 0.7884 0.1038 0.1037 -2.291 2.19e-02

penalized marginal log-likelihood = -3275.92

LCV = the approximate likelihood cross-validation criterion

in the semi parametrical case = 3.825

n= 861

n events= 458 n groups= 403

number of iterations: 4

Exact number of knots used: 10

Smoothing parameter estimated by Cross validation: 208159031,

DoF: 11.00

In this output, we can read:

� coef: Regression coefficients.

� exp(coef): Hazard ratios.

� SE coef (H): Standard error estimated by inverting the Hessian matrix.

� SE coef (HIH): Standard error estimated using the matrix product H−1IH−1 where
H−1 is the inverse of the Hessian matrix and I the Fisher Information matrix.

� z: Wald statistics.

� p: p value which is the probability P (|z| > 1.96). If p < 0.05, the covariate is significantly
different from 0.

Shared frailty model

We notice that for some subjects several relapses occur. Logically, we can imagine that a
correlation within subject for the relapse times could exist, in which cases a shared frailty
model would be more accurate. The change with regard to the code for a Cox model is that:
Frailty = TRUE.

R> mod.sha.gap <- frailtyPenal(Surv(time, event) ~ cluster(id) + dukes +

+ charlson + sex + chemo, Frailty = TRUE, n.knots = 10, kappa1 = 1,

+ data = readmission, cross.validation = TRUE)

R> print(mod.sha.gap, digits = 4)

Call:

frailtyPenal(formula = Surv(time, event) ~ cluster(id) + dukes +

charlson + sex + chemo, data = readmission, Frailty = TRUE,



16 frailtypack: Frailty Models for Correlated Survival Data in R

cross.validation = TRUE, n.knots = 10, kappa1 = 1)

Shared Gamma Frailty model parameter estimates

using a Penalized Likelihood on the hazard function

coef exp(coef) SE coef (H) SE coef (HIH) z p

dukesC 0.2976 1.3466 0.1608 0.1608 1.850 6.43e-02

dukesD 1.0560 2.8749 0.1947 0.1947 5.424 5.82e-08

charlson1-2 0.4516 1.5708 0.2589 0.2589 1.744 8.11e-02

charlson3 0.4103 1.5072 0.1370 0.1370 2.995 2.75e-03

sexFemale -0.5378 0.5841 0.1388 0.1387 -3.874 1.07e-04

chemoTreated -0.2065 0.8134 0.1430 0.1429 -1.444 1.49e-01

Frailty parameter, Theta: 0.6723 (SE (H): 0.1423 ) (SE (HIH): 0.1423 )

penalized marginal log-likelihood = -3236.42

LCV = the approximate likelihood cross-validation criterion

in the semi parametrical case = 3.781

n= 861

n events= 458 n groups= 403

number of iterations: 9

Exact number of knots used: 10

Best smoothing parameter estimated by

an approximated Cross validation: 208159031, DoF: 11.00

The variance of the frailty term theta is significantly different from 0, meaning that there
is heterogeneity between subjects. We can deduce this by using a modified Wald test:
Wm(θ) = 0.672/0.142 = 4.73 > 1.64, with 1.64 the critical value for a normal one-sided
test. The modified Wald test (Wm) is a significance test for the variance of the random effects
distribution occurring on the boundary of the parameter space. The usual squared Wald
statistic is simplified to a mixture of two distributions and hence the critical values must be
derived from this mixture (Molenberghs and Verbeke 2007). We have a p value < 0.05 for the
covariates dukes = 3, charlson = 3 and sex. This suggests the existence of a higher risk to
be rehospitalized for men with a Dukes’s stage at 3 and a Charlson index at 3.

Shared frailty model with stratification

Stratified analysis can be conducted using frailtypack if the stratified variable has 2 modalities
(maximum number of strata = 2). We need to set the value of the two smoothing parameters
(kappa1 and kappa2) and introduce the function strata in the formula of the model. As the
cross-validation method is not possible in this case, we use the estimation of kappa in the
previous model mod.sha for the initial of the kappas in the stratified model. This stratification
procedure is the same for all models. We will see below that stratification is allowed for nested
and additive frailty models but not for joint frailty models.
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R> mod.sha.str.gap <- frailtyPenal(Surv(time, event)~ cluster(id) +

+ charlson + dukes + chemo + strata(sex), Frailty = TRUE,

+ n.knots = 10, kappa1 = 2.11e+08, kappa2 = 2.11e+08, data = readmission)

R> print(mod.sha.str.gap, digits = 4)

Call:

frailtyPenal(formula = Surv(time, event) ~ cluster(id) + charlson +

dukes + chemo + strata(sex), data = readmission, Frailty = TRUE,

n.knots = 10, kappa1 = 2.11e+08, kappa2 = 2.11e+08)

Shared Gamma Frailty model parameter estimates

using a Penalized Likelihood on the hazard function

(Stratification structure used)

coef exp(coef) SE coef (H) SE coef (HIH) z p

charlson1-2 0.4385 1.5504 0.2584 0.2584 1.697 8.96e-02

charlson3 0.4036 1.4972 0.1369 0.1369 2.949 3.19e-03

dukesC 0.2993 1.3489 0.1603 0.1603 1.867 6.19e-02

dukesD 1.0706 2.9170 0.1948 0.1948 5.496 3.89e-08

chemoTreated -0.2136 0.8077 0.1429 0.1428 -1.495 1.35e-01

Frailty parameter, Theta: 0.6662 (SE (H): 0.1417 ) (SE (HIH): 0.1417 )

penalized marginal log-likelihood = -3229.92

LCV = the approximate likelihood cross-validation criterion

in the semi parametrical case = 3.786

n= 861

n events= 458 n groups= 403

number of iterations: 22

Exact number of knots used: 10

Value of the smoothing parameter: 2.11e+08 2.11e+08, DoF: 11.00

In the dataset readmission, there is a death indicator named death. Thus, we can take into
account the subject’s death by using a joint frailty model (death could be associated with
recurrent events). However, stratification and cross-validation methods are not possible for
joint models.

Joint frailty model

The following code is used for fitting a joint frailty model:

R> modJoint.gap <- frailtyPenal(Surv(time, event)~ cluster(id) + dukes +

+ charlson + sex + chemo + terminal(death),

+ formula.terminalEvent = ~ dukes + charlson + sex + chemo,
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+ data = readmission, n.knots = 8, kappa1 = 2.11e+08, kappa2 = 9.53e+11,

+ Frailty = TRUE, joint = TRUE)

The smoothing parameter kappa1 has been obtained from a shared frailty model with recur-
rent event as the outcome using the cross-validation method (see Section 4.2 – output of the
model mod.sha.gap). Similarly, the smoothing parameter kappa2 has been obtained from a
shared frailty model with death as the outcome using the cross-validation method.

R> print(modJoint.gap, digits = 4)

Call:

frailtyPenal(formula = Surv(time, event) ~ cluster(id) + dukes +

charlson + sex + chemo + terminal(death), formula.terminalEvent =

~dukes + charlson + sex + chemo, data = readmission, Frailty = TRUE,

joint = TRUE, n.knots = 8, kappa1 = 2.11e+08, kappa2 = 9.53e+11)

Joint gamma frailty model for recurrent and a terminal event processes

using a Penalized Likelihood on the hazard function

Recurrences:

-------------

coef exp(coef) SE coef (H) SE coef (HIH) z p

dukesC 0.3440 1.4106 0.1657 0.1657 2.076 3.79e-02

dukesD 1.2606 3.5276 0.2063 0.2063 6.111 9.89e-10

charlson1-2 0.4110 1.5083 0.2566 0.2566 1.602 1.09e-01

charlson3 0.4132 1.5116 0.1371 0.1371 3.013 2.59e-03

sexFemale -0.5375 0.5842 0.1415 0.1414 -3.799 1.45e-04

chemoTreated -0.1544 0.8569 0.1471 0.1470 -1.050 2.94e-01

Terminal event:

----------------

coef exp(coef) SE coef (H) SE coef (HIH) z p

dukesC 1.3184 3.7374 0.3678 0.3676 3.585 3.37e-04

dukesD 3.1853 24.1752 0.4326 0.4324 7.364 1.79e-13

charlson1-2 0.5071 1.6605 0.6347 0.6347 0.799 4.24e-01

charlson3 1.2746 3.5771 0.2576 0.2575 4.949 7.47e-07

sexFemale -0.2347 0.7908 0.2302 0.2302 -1.020 3.08e-01

chemoTreated 1.0961 2.9925 0.2581 0.2580 4.247 2.17e-05

Frailty parameters:

theta (variance of Frailties, Z): 0.7384 (SE (H): 0.1052 )

(SE (HIH): 0.1052 )

alpha (Z^alpha for terminal event): 0.862 (SE (H): 0.2502 )

(SE (HIH): 0.2501 )

penalized marginal log-likelihood = -4133.26
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LCV = the approximate likelihood cross-validation criterion

in the semi parametric case = 4.84

n= 861

n recurrent events= 458 n groups= 403

n terminal events= 109

number of iterations: 9

Exact number of knots used: 8

Value of the smoothing parameters: kappa1=2.11e+08 and kappa2=9.53e+11

The interest of this model is that we can see the covariates’ effect for the two events (recurrent
and terminal).

In this model, for instance, a chemotherapy does not seem to be a useful treatment to decrease
relapses (p = 0.29). However, chemotherapy was positively associated with death, i.e., people
treated with chemotherapy have a higher risk of death (probably because they have a more
severe form of disease in the first place) (p = 0.000022 < 0.05 and the hazard ratio is 2.99).
Similar conclusions about the influence of chemotherapy or gender are not possible with
the previous models (Cox, shared or shared + stratification). Indeed, only one event of
interest is analyzed using these models whereas joint frailty models allow to link two events
of interest. The variance of the frailty (theta): θ = 0.738, (SE (H): 0.1052) means that
there is heterogeneity between subjects explained by non-observed covariates. The positive
value of the coefficient alpha: α = 0.862, (SE (H): 0.2502) in the joint model indicates
that the incidence of recurrences is positively associated with death. We can deduce this by
using the modified Wald test: Wm = 0.738/0.105 = 7.03 > 1.64 for the frailty variance. For
the coefficient α we do a classical Wald test: W = 0.862/0.250 = 3.45 > 1.96.

The likelihood cross-validation criterion (LCV) is adopted here to guide the choice of the
model used in the analysis. As LCV is particularly computationally demanding when n is
large, an approximate version LCVa has been proposed by O’Sullivan (Sullivan 1988) for the
estimation of the hazard function in a survival case and adapted recently by Commenges et al.
(2007). Lower values of LCVa indicate a better fitting model. The LCVa is then defined as:

LCVa =
1

n
(tr(H−1pl Hl)− l(·))

with Hpl minus the converged hessian of the penalized log-likelihood, Hl minus the converged
hessian of the log-likelihood and l(·) is the full log-likelihood. In the case of a parametric
approach tr(H−1pl Hl) − l(·) will represent the number of parameters and LCVa will be ap-
proximately equivalent to the AIC criterion. The LCVa for parametric approaches is defined
as:

LCV =
1

n
(np− l(·))

with np the total number of parameters. The LCVa criteria is included in the package by
default frailtypack.

For instance when comparing the two previously fitted shared frailty models (non stratified
or stratified) we observe similar results : LCVa = 3.78 vs. LCVa = 3.79. The gain of using
a joint model instead of a shared model can be evaluated by comparing the LCVa = 4.84
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from the joint frailty model and the LCVa computed by pooling the likelihoods from the two
shared frailty models (for recurrent event and for death) with the total number of parameters
in these two models LCVa = 3.78 + 1.02 = 4.80. In our case, the LCVa from the joint model
was not better.

Nested frailty model

The following code is an example for fitting a nested frailty model. An extract from the
dataset dataNested is provided in Table 2 of the previous section.

R> data("dataNested")

R> modNested <- frailtyPenal(Surv(t1, t2, event) ~ cluster(group) +

+ subcluster(subgroup) + cov1 + cov2, data = dataNested, n.knots = 8,

+ kappa1 = 10000, cross.validation = TRUE)

R> print(modNested, digits = 4)

Call:

frailtyPenal(formula = Surv(t1, t2, event) ~ cluster(group) +

subcluster(subgroup) + cov1 + cov2, data = dataNested,

cross.validation = TRUE, n.knots = 8, kappa1 = 10000)

left truncated structure used

Nested Frailty model parameter estimates using

using a Penalized Likelihood on the hazard functions

coef exp(coef) SE coef (H) SE coef (HIH) z p

cov1 -0.4798 0.6189 0.1311 0.1300 -3.659 0.000253

cov2 1.2838 3.6103 0.1445 0.1437 8.885 0.000000

Frailty parameters:

alpha (group effect): 0.4284 (SE(H):0.1043) (SE(HIH):0.09853)

eta (subgroup effect): 0.1243 (SE(H):0.0563) (SE(HIH):0.05451)

penalized marginal log-likelihood = -1027.4

LCV = the approximate likelihood cross-validation criterion

in the semi parametrical case = 2.59

n= 400

n events= 287 n groups= 20

number of iterations: 8

Exact number of knots used: 8

Value of the smoothing parameter: 60026, DoF: 5.61

Using the modified Wald test, we can deduce that both the group effect (Wm = 0.428/0.104 =
4.12 > 1.64) and the subgroup effect ar (Wm = 0.124/0.0563 = 2.20 < 1.64) are significant.
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Additive frailty models with no correlation between the random effects

In the model modAdd2cov.withoutCorr, we suppose that the random effects are not correlated
(correlation = FALSE). An extract from the dataset dataAdditive is provided in Table 3
of the previous section.

R> library("frailtypack")

R> data("dataAdditive")

R> modAdd2cov.withoutCorr <- additivePenal(Surv(t1, t2, event) ~

+ cluster(group) + var1 + var2 + slope(var1), cross.validation = TRUE,

+ correlation = FALSE, data = dataAdditive, n.knots = 10, kappa1 = 1)

R> print(modAdd2cov.withoutCorr, digits = 4)

Call:

additivePenal(formula = Surv(t1, t2, event) ~ cluster(group) +

var1 + var2 + slope(var1), data = dataAdditive, correlation = FALSE,

cross.validation = TRUE, n.knots = 10, kappa1 = 1)

Additive gaussian frailty model parameter estimates

using a Penalized Likelihood on the hazard function

coef exp(coef) SE coef (H) SE coef (HIH) z p

var1 -0.05211 0.9492 0.09000 0.09000 -0.579 0.563

var2 0.02543 1.0258 0.08769 0.08769 0.290 0.772

Variance for random intercept: 0.07627 (SE (H): 0.05171 )

(SE (HIH): 0.05156 )

Variance for random slope: 0.002776 (SE (H): 0.01696 )

(SE (HIH): 0.01696 )

penalized marginal log-likelihood = -2411.92

LCV = the approximate likelihood cross-validation criterion

in the semi parametrical case = 3.035

n= 800

n events= 540 n groups= 8

number of iterations: 6

Exact number of knots used: 10

Smoothing parameter estimated by Cross validation: 84.5, DoF: 11.65

We can see that neither of the two variances is significantly different from 0, which means
that there is no heterogeneity between trials and no heterogeneity of the treatment effect
across trials: Wm = 0.0763/0.0517 = 1.48 < 1.64 for the random intercept variance and
Wm = 0.0028/0.017 = 0.16 < 1.64 for the random slope variance. Thus, a simple shared
frailty model seems to be sufficient.
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Additive frailty models with a correlation between the random effects

If we suppose that the two random effects are correlated, we have to change the option
correlation to: correlation = TRUE.

R> modAdd2cov.withCorr <- additivePenal(Surv(t1, t2, event) ~

+ cluster(group) + var1 + var2 + slope(var1), cross.validation = TRUE,

+ data = dataAdditive, correlation = TRUE, n.knots = 10, kappa1 = 1)

R> print(modAdd2cov.withCorr, digits = 4)

Call:

additivePenal(formula = Surv(t1, t2, event) ~ cluster(group) +

var1 + var2 + slope(var1), data = dataAdditive, correlation = TRUE,

cross.validation = TRUE, n.knots = 10, kappa1 = 1)

Additive gaussian frailty model parameter estimates

using a Penalized Likelihood on the hazard function

coef exp(coef) SE coef (H) SE coef (HIH) z p

var1 -0.05199 0.9493 0.10561 0.1057 -0.4923 0.623

var2 0.02406 1.0244 0.08801 0.0880 0.2734 0.785

Covariance (between the two frailty terms,

the intercept and the slope): -0.04634 (SE: 0.04894 )

Corresponding correlation between the two frailty terms : -0.8971

Variance for random intercept: 0.1086 (SE (H): 0.07487 )

(SE (HIH): 0.07491 )

Variance for random slope: 0.02456 (SE (H): 0.04535 )

(SE (HIH): 0.04536 )

penalized marginal log-likelihood = -2409.86

LCV = the approximate likelihood cross-validation criterion

in the semi parametrical case = 3.033

n= 800

n events= 540 n groups= 8

number of iterations: 10

Exact number of knots used: 10

Smoothing parameter estimated by Cross validation: 84.5, DoF: 11.65

The covariance between the two frailty terms (= −0.0463, SE = 0.0489) is not significantly
different from 0 (Wm = 0.0463/0.0489 = 0.95 < 1.96). So these two random effects appear
to be independent. The parameter estimates for an additive frailty model with correlated
random effects have slightly changed.
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4.3. Print the hazard ratios

The package allows to estimate the hazard ratios using the R function named summary, e.g.,
summary(model, level = 0.95). The option level = 0.95 indicates the level of confidence
(here it is 95 percent). For instance, the summary function for the joint frailty models gives
the following output:

R> summary(modJoint.gap, level = 0.95)

Recurrences:

-------------

hr 95% C.I.

dukesC 1.41 ( 1.02 - 1.95 )

dukesD 3.53 ( 2.35 - 5.29 )

charlson1-2 1.51 ( 0.91 - 2.49 )

charlson3 1.51 ( 1.16 - 1.98 )

sexFemale 0.58 ( 0.44 - 0.77 )

chemoTreated 0.86 ( 0.64 - 1.14 )

Terminal event:

---------------

hr 95% C.I.

dukesC 3.74 ( 1.82 - 7.68 )

dukesD 24.18 ( 10.36 - 56.44 )

charlson1-2 1.66 ( 0.48 - 5.76 )

charlson3 3.58 ( 2.16 - 5.93 )

sexFemale 0.79 ( 0.50 - 1.24 )

chemoTreated 2.99 ( 1.80 - 4.96 )

4.4. Draw the survival or hazard baseline functions

With frailtypack survival or hazard baseline functions may be drawn using a method to the
generic function plot. The same code is used to draw hazard baseline functions for a Cox
model, a shared, a nested or an additive frailty model:

plot(model, type.plot = "hazard", level = 0.95, conf.bands = TRUE,

pos.legend = "topright", cex.legend = 0.7)

conf.bands = TRUE means that the confidence bands are drawn too. To draw survival base-
line functions, the option type.plot has to be replaced by: type.plot = "survival". The
location of the legend in the graph can be specified by setting the argument pos.legend to a
single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft",
"top", "topright", "right", and "center". The default is "topright". The argument
cex.legend allows to change the size of the legend which could otherwise hide the curves,
the default value is 0.7.

Figure 1 represents the baseline survival functions for the Cox model or the shared frailty
model with and without stratification.
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Figure 1: Baseline survival functions (Cox model, Shared frailty model).
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Figure 2: Baseline hazard functions (additive frailty model).

R> plot(mod.cox.gap, type.plot = "survival", main = "Cox model",

+ conf.bands = TRUE)

R> plot(mod.sha.gap, type.plot = "survival", main = "Shared",

+ conf.bands = TRUE)

R> plot(mod.sha.str.gap, type.plot = "survival",

+ main = "Shared + Stratification", conf.bands = TRUE,

+ pos.legend = "bottomleft", cex.legend = 1)

Figure 2 represents the baseline hazard functions for the additive frailty models as previously
fitted.
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Figure 3: Survival baseline functions for death and recurrent events (joint frailty model).

R> plot(modAdd2cov.withoutCorr, type.plot = "hazard",

+ main = "Correlation=False", conf.bands = TRUE)

R> plot(modAdd2cov.withCorr, type.plot = "hazard",

+ main = "Correlation=True", conf.bands = TRUE)

For nested frailty models, the same as the Cox, shared or additive frailty models may be done.

R> plot(modNested, type.plot = "hazard", conf.bands = TRUE)

For a joint frailty model, a supplementary option exists called event allows to draw the base-
line functions for the recurrent event only (event = "recurrent"), the terminal event only
(event = "terminal") or both (event = "both"). The code for drawing survival baseline
functions for both these two rates is (see Figure 3):

R> plot(modJoint.gap, type.plot = "survival", event = "recurrent",

+ main = "Recurrent", conf.bands = TRUE, pos.legend = "topleft",

+ cex.legend = 1.2, ylim = c(0, 1.2))

R> plot(modJoint.gap, type.plot = "survival", event = "terminal",

+ main = "Terminal", conf.bands = TRUE, pos.legend = "topleft",

+ cex.legend = 1.2, ylim = c(0, 1.2))

R> plot(modJoint.gap, type.plot = "survival", event = "both", main = "Both",

+ conf.bands = TRUE, pos.legend = "topleft", cex.legend = 1,

+ ylim = c(0, 1.2))

Figure 3 represents baseline survival functions for death and recurrent events (joint frailty
model).

5. Conclusion

The new version of the package frailtypack allows to deal with correlated survival data using
shared, nested, joint, additive frailty models or the Cox model (Rondeau et al. 2012). These
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models can be used when survival data are clustered into several levels, when the terminal
event is considered as an informative censoring data, for meta-analysis studies or multicentric
datasets. This article shows how to build the database according to the model, how to code
for getting parameter estimates, hazard ratios and hazard or survival function curves and how
to interpret the results.

By developing the frailtypack package in R we hope to have provided a useful, easy and
pertinent tool which addresses many biomedical issues. We included recently parametric
hazard functions and we plan to include prediction methods in the near future and to extend
it regularly by adding more functions and other frailty models.
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