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Abstract

splm is an R package for the estimation and testing of various spatial panel data spec-
ifications. We consider the implementation of both maximum likelihood and generalized
moments estimators in the context of fixed as well as random effects spatial panel data
models. This paper is a general description of splm and all functionalities are illustrated
using a well-known example taken from Munnell (1990) with productivity data on 48 US
states observed over 17 years. We perform comparisons with other available software;
and, when this is not possible, Monte Carlo results support our original implementation.
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1. Introduction

The analysis of spatial panel data is a field of econometrics that is experiencing increased
methodological progress. Recent contributions include, among others: Anselin, Le Gallo, and
Jayet (2008), Kapoor, Kelejian, and Prucha (2007), Baltagi, Song, Jung, and Koh (2007b),
Baltagi, Song, and Koh (2003), Baltagi and Liu (2008), Baltagi, Egger, and Pfaffermayr
(2007a), Baltagi, Egger, and Pfaffermayr (2009), Debarsy and Ertur (2010), Elhorst (2003),
Elhorst and Freret (2009), Elhorst (2008), Elhorst (2009), Elhorst (2010), Elhorst, Piras, and
Arbia (2010), Lee and Yu (2010a), Lee and Yu (2010c), Lee and Yu (2010d), Lee and Yu
(2010b), Mutl (2006), Mutl and Pfaffermayr (2011), Pesaran and Tosetti (2011), Yu and Lee
(2010), Yu, de Jong, and Lee (2008). Empirical applications are hindered by the lack of readily
available software. Although there are packages to estimate cross-sectional spatial models in
R (R Development Core Team 2012, see e.g., Bivand 2001, 2002, 2006; Bivand and Gebhardt
2000; Bivand and Portnov 2004; Piras 2010), MATLAB (The MathWorks, Inc. 2010, see e.g.,
LeSage 1999; LeSage and Pace 2009) and Stata (StataCorp. 2007, see e.g., Drukker, Peng,
Prucha, and Raciborski 2012, 2011a; Drukker, Prucha, and Raciborski 2011¢,b), procedures
for estimating spatial panel data models are sparse. Notable exceptions include the MATLAB
functions available from Elhorst (2011) and the Stata code supplementing Kapoor et al. (2007).
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The R package splm — available from the Comprehensive R Archive Network at http://CRAN.
R-project.org/package=splm — fills this gap by providing a comprehensive and consistent
tool for the estimation of various spatial panel data models. The R environment is ideal for
its development because of the vast infrastructure already in place for analyzing spatial data.

The panel literature has recently considered panel regression models with spatially auto-
correlated disturbances, both in the context of fixed (FE) as well as random effects (RE)
specifications. In an error components setting, Baltagi et al. (2003) introduce a model (also
considered in Anselin 1988) where the idiosyncratic errors are spatially autocorrelated, while
the individual effects are not. The variance matrix of such a model is complicated and the
inverse computationally demanding. Kapoor et al. (2007) consider a model where spatial cor-
relation in both the individual and error components share the same spatial parameter; and,
therefore, the expression of the variance matrix is simpler and its inverse computationally eas-
ier. splm takes into consideration both specifications and several methods for the estimation
of the regression coefficients.

The present paper describes the maximum likelihood implementation of both models (i.e.,
with individual effects that are/are not spatially autocorrelated). We consider fixed as well as
random effects models in the context of a general spatial Cliff-Ord type model that includes
a spatially lagged dependent variable and a spatially autocorrelated error term.

Additionally, splm features generalized moments estimators of a Cliff-Ord type model where
individual effects are spatially autocorrelated. Again, random as well as fixed effects models
are implemented. When other implementations were available, the estimates obtained by our
implementation were tested against results available from other software. As an example, the
maximum likelihood estimation of the fixed effects and random effects models were tested
against the MATLAB routines made available by Elhorst (2011). For all other estimation
procedures we performed Monte Carlo simulations to verify the properties of our estimator.
Results are presented in Section 8.

Among other testing procedures, we also implement the joint, marginal and conditional specifi-
cation (zero-restriction) Lagrange multiplier tests for individual effects and spatial correlation
introduced by Baltagi et al. (2003).

Section 2 describes the data structure. In Section 3 we discuss the definition of classes and
methods. The description of a general spatial panel regression model follows in Section 4
along with the treatment of two different specifications for the innovations of the model.
Section 5 is devoted to the maximum likelihood (ML) implementation. In particular, Sec-
tion 5.1 discusses and illustrates spatial random effects (RE) models, while Section 5.2 deals
with the estimation of fixed effects (FE) models. Section 6 describes the implementation
of the generalized moments estimators. As before, spatial RE models are discussed first in
Section 6.1. Section 6.2 present the estimation theory and the generalized moments (GM)
implementation of fixed effects models. Section 7 describes the implementation of various
testing procedures and Section 8 discusses the numerical checks. Conclusions and indications
for future developments conclude the paper.

2. Data structures

Panel data refer to a cross section of observations (individuals, groups, countries, regions)
repeated over several time periods. When the number of cross sectional observations is con-
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stant across time periods the panel is said to be balanced. The present paper only focuses
on such balanced panels. In a spatial panel setting, the observations are associated with a
particular position in space. Data can be observed either at point locations (e.g., housing
data) or aggregated over regular or irregular areas (e.g., countries, regions, states, counties).
The structure of the interactions between each pair of spatial units is represented by means
of a spatial weights matrix.

The spatial weights matrix W is a N x N positive matrix.! Observations appear both in rows
and columns. Hence, the non-zero elements of the matrix indicate whether two locations
are neighbors. As a consequence, the element w;; indicates the intensity of the relationship
between cross sectional units ¢ and j. By convention, the diagonal elements w;; are all set
to zero to exclude self-neighbors. The weights matrix is generally used in row standardized
form.

A possible source of confusion when developing ad-hoc routines stems from the different
notation that characterizes spatial panel data models compared to traditional panel data
models. On one hand, panel data are generally ordered first by cross-section and then by
time period (i.e., with time being the “fast” index). On the other hand, spatial panel data are
stacked first by time period and then by cross-section. In splm, this is treated transparently
for the user. The internal ordering of the estimation functions is usually (but not always)
the spatial panel data one. Nonetheless, data can be supplied according to the conventions
implemented in the plm package for panel data econometrics (Croissant and Millo 2008).
Three possibilities are available:

e a data.frame whose first two variables are the individual and time indexes. The index
argument should be left to the default value (i.e., NULL)

e a data.frame and a character vector indicating the indexes variables

e an object of the class pdata.frame

pdata.frames are special objects created to deal with panel data. They are part of a general
infrastructure made available in plm and meant to handle (serial) lag and difference opera-
tions. The methods available in splm are geared towards static panels; nonetheless, defining
data as a pdata.frame might simplify the calculation of (time) lags of the regressors.?

The spatial weights matrix W can be a matrix object (with the estimators performing a
minimal check for dimension compatibility) or a 1istw object from the class defined in spdep
(Bivand 2011). The class is an efficient format and has the advantage of being well established
in the R environment. Functionalities for switching between the two formats are available as
functions listw2mat and mat2listw from the spdep package.

!The spatial weights matrix may or may not be symmetric. When it is standardized, it is generally not
symmetric. splm can deal with all types of matrices. However, some of the methods for the calculation of the
Jacobian are only used with symmetric weights. We will elaborate more on this later.

2Tt should be made clear that the inclusion of time lags would potentially lead to incorrect results for a
dynamic model estimated with the procedures currently available. However, future improvements may include
dynamic panel data models in which case pdata.frame objects would be extremely useful.

3Some of the functions internally transform the object of class listw into a sparse Matrix making use of
code from the Matrix package (Bates and Michler 2012).
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3. Classes and methods for spatial panel models

The two main goals of splm are estimation and testing of spatial panel data models. On the
one hand, the information provided in the output of the test procedures is similar to an object
of class htest; and, hence, produces a similar output report. On the other hand, spatial panel
models require different structures and methods from the classes available in plm. By and
large, this is because spatial panel models involve the estimation of extra coefficients (e.g., the
coefficient for the spatial lag term in the fixed effects spatial lag model or the error correlation
coefficient and the variance components in the random effects specifications).

The new class splm inherits the general structure of 1m objects. The splm object is a 1ist
of various elements including: the estimated coefficients, the vector of residuals and
fitted.values, the most recent call and a model element containing the data employed in
the estimation. As it is common for most models that are estimated by maximum likelihood,
splm also comprises a LlogLik component with the value of the log-likelihood at the parameter
optimum. This can be easily extracted and reused for testing or model selection purposes.

Some elements from 1m objects have been excluded though. These omissions are partly due to
the nature of the estimation process (which does not use, for instance, the “qr” decomposition).
Specific elements have been added to accommodate for spatial and covariance parameters.
In addition to the usual vcov element giving the coefficients’ variance covariance matrix,
the element vcov.errcomp contains the covariance matrix of the estimated error covariance
coefficients.

A new class is defined for the summaries of splm objects. Consistent with 1m and plm objects,
the method provides diagnostic tables for the elements of splm objects. print methods are
also available with a minimal description of the model object (including call, coefficients and
covariance parameters). Additionally, extractor methods have been defined for a few relevant
elements of model objects. Along with the standard coef, residuals, and vcov, extractor
methods are provided for the covariance matrices of the estimated spatial autoregressive
coefficient and covariance components.

The availability of these extractors is consistent with the general modeling framework of the
R project and favors the interoperability of splm objects with generic diagnostics based on
Wald tests. In particular we refer to the functions waldtest (for joint zero-restrictions) in
Imtest (Zeileis and Hothorn 2002) and linearHypothesis (for generic linear restrictions) in
car (Fox and Weisberg 2010).

Finally, an extractor method for fixed effects and a summary method for displaying them are
also available.

Throughout the paper, all functionalities are illustrated using the well-known Munnell (1990)
data set on public capital productivity in 48 US states observed over 17 years (available in R
in the Ecdat package, Croissant 2011). A binary contiguity spatial weights matrix for the US
states is included in the package.

R> data("Produc", package = "Ecdat")
R> data("usaww")

Munnell (1990) specifies a Cobb-Douglas production function that relates the gross social
product (gsp) of a given state to the input of public capital (pcap), private capital (pc), labor
(emp) and state unemployment rate (unemp) added to capture business cycle effects. The
model formula is defined once and includes a constant term:
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R> fm <- log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp

We also transform the weights matrix into a 1istw object using infrastructure from the spdep
package:

R> library("spdep")
R> usalw <- mat2listw(usaww)

4. Spatial panel data models

Spatial panel data models capture spatial interactions across spatial units and over time.
There is an extensive literature on both static as well as dynamic models.* We start from a
general static panel model that includes a spatial lag of the dependent variable and spatial
autoregressive disturbances:

y=AXIrWn)y+ X5+u (1)

where y is an NT x 1 vector of observations on the dependent variable, X is a NT' x k matrix
of observations on the non-stochastic exogenous regressors, I an identity matrix of dimension
T, Wy is the N x N spatial weights matrix of known constants whose diagonal elements are
set to zero, and A the corresponding spatial parameter. The disturbance vector is the sum of
two terms

u=(r@IN)pu+e (2)

where ¢ is a T' x 1 vector of ones, Iy an N x N identity matrix, u is a vector of time-
invariant individual specific effects (not spatially autocorrelated), and ¢ a vector of spatially
autocorrelated innovations that follow a spatial autoregressive process of the form

e=p(Ir@Wn)e+v (3)

with p (|p| < 1) as the spatial autoregressive parameter, Wy the spatial weights matrix,
vit ~ IID(0,02) and e ~ I1D(0,02).”

As in the classical panel data literature, the individual effects can be treated as fixed or
random. In a random effects model, one is implicitly assuming that the unobserved individual
effects are uncorrelated with the other explanatory variables in the model. In this case,
wi ~ I1D(0, aﬁ), and the error term can be rewritten as:

e = (Ir ® By v (4)
where By = (Ixy — pWy). As a consequence, the error term becomes

u= (10 @ IN)p+ (It © By')v (5)

4In our discussion, as well as in our implementation, we concentrate on static models only and leave the
dynamic case as a possible extension for future research.

5Note that the spatial weights matrices in the regression equation and the error term can differ in many of
our implementations. However, in our discussion of the models they are assumed to be the same for simplicity.
It is also assumed that Iy — pWy is non-singular where In is an identity matrix of dimension N.
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and the variance-covariance matrix for € is
Qu = o (urip ® In) + oo[Ir ® (ByBn) '] (6)

In deriving several Lagrange multiplier (LM) tests, Baltagi et al. (2003) consider a panel
data regression model that is a special case of the model presented above in that it does not
include a spatial lag of the dependent variable. Elhorst (2003, 2009) defines a taxonomy for
spatial panel data models both under the fixed and the random effects assumptions. Following
the typical distinction made in cross-sectional models, Elhorst (2003, 2009) defines the fixed
as well as the random effects panel data versions of the spatial error and spatial lag models.
However, he does not consider a model including both the spatial lag of the dependent variable
and a spatially autocorrelated error term. Therefore, the models reviewed in Elhorst (2003,
2009) can also be seen as a special case of this more general specification.

A second specification for the disturbances is considered in Kapoor et al. (2007). They as-
sume that spatial correlation applies to both the individual effects and the remainder error
components. Although the two data generating processes look similar, they do imply different
spatial spillover mechanisms governed by a different structure of the implied variance covari-
ance matrix. In this case, the disturbance term follows a first order spatial autoregressive
process of the form:

u=p(Ir @Wn)u+e¢ (7)

where Wy is the spatial weights matrix and p the corresponding spatial autoregressive param-
eter. To further allow for the innovations to be correlated over time, the innovations vector
in Equation 7 follows an error component structure

e=(r®IN)p+v (8)

where p is the vector of cross-sectional specific effects, v a vector of innovations that vary
both over cross-sectional units and time periods, ¢p is a vector of ones and Iy an N x N
identity matrix. In deriving a Hausman test for a Cliff and Ord spatial panel data model,
Mutl and Pfaffermayr (2011) consider the model presented above and discuss instrumental
variables estimation under both the fixed and the random effects specifications. They extend
the work of Kapoor et al. (2007) who did not include a spatially lagged dependent variable
in the regression equation. Under the random effects assumption that the individual effects
are independent of the model regressors, one can rewrite Equation 7 as

u = [IT ® Iy — pWN)fl]E 9)
It follows that the variance-covariance matrix of w« is
Q= [Ir® Iy — pWn) ' Q:[Ir ® (In — pWy) ] (10)

where Q. = 02Qq + 07Q1, with 0} = 02 + Tai, Qo = <IT — JTT) ® Iy, Q1 = JTT ® In and
Jr = LTLr}— , is the typical variance-covariance matrix of a one-way error component model

adapted to the different ordering of the data.

As it should be clear from the above discussion, these two panel models differ in terms of
their variance matrices. The variance matrix in Equation 6 is more complicated than the one
in Equation 10, and, therefore, its inverse is more difficult to calculate. In the present paper,
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we consider the implementation of both error term specifications. For the first specification,
we implement maximum likelihood estimation of the random as well as the fixed effects
models. For the second (simpler) specification, we implement both maximum likelihood and
instrumental variables estimation under the random as well as the fixed effects assumption.
The next section is devoted to the discussion of the ML implementation of the two models
and Section 6 to the GM implementation of the second error specification.

5. ML implementation

Both random and fixed effects models are implemented within the same software framework.
spml is the general wrapper function and the argument model controls the specification. In
accordance with the syntax in plm, model takes up the value "within" for fixed effects,
"random" for random effects, and "pooling" for no effects. The spatial structure is specified
by combining the logical arguments lag (that, if true, adds a spatial autoregressive term in
the dependent variable) and spatial.error. This last argument takes three possible values:
"b" (“Baltagi”) for the specification in Equation 3, "kkp" (“Kapoor, Kelejian and Prucha”)
for the specification in Equation 7, and "none" for no spatial error correlation.

5.1. Random effects model

For a model with spatially autocorrelated error components, ordinary least squares (OLS) is
inefficient even when UZ = 0. Analogously, OLS on a random effects model (even without
spatial components) is also inefficient. An alternative (i.e., more efficient) way of estimat-
ing the model is via maximum likelihood. In the present section we discuss the estimation
approach of the full specification, i.e., the one with a spatial lag, random effects and spatial
correlation of the form specified in Equation 3.

Scaling the error covariance matrix by the idiosyncratic error variance o2, and denoting

o= JZ/J?, Jr = Jr/T, Er = It — Jr and Ay = (Iy — AWy), the expressions for the scaled
error covariance matrix ¥, its inverse !, and its determinant || can be written respectively
as

Y =¢(Jr®Iy)+Ire(B'B)™!

Y l=Jr®(Telx +(B"'B)y")" '+ Er®@B'B

S| = [ToIy + (BT B)~Y||(BT B)1[1-L,

Substituting into the general formula given in Anselin (1988, Ch. 6), one can derive the
expression of the likelihood:

L(ﬁaggagb’)\ap) = _¥27‘- - %mag +T1H’A|
— %In |ToIy + (BTB)™!
+ (T —1)In|B| - ﬁu—rz_lu
We implement an iterative procedure to obtain the maximum likelihood estimates. Starting
from initial values for \, p and ¢, we obtain estimates for 3 and o2 from the first order
conditions:

B = (X' 'X)IxTutay
(Ay — XpB) TS~ (Ay — XB)/NT.

[\
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The likelihood can be concentrated and maximized with respect to A, p and ¢. The estimated
values of A\, p and ¢ are in turn used to update the expression for A and ¥ ~!. These steps
are then repeated until a convergence criterion is met. In other words, for a specific % the
estimation can be operationalized by a two step iterative procedure that alternates between
generalized least squares (GLS, for 8 and ¢2) and concentrated likelihood (for the remaining
parameters) until convergence.® From an implementation point of view there are (at least) a
couple of different ways to proceed. First of all, we decided to include the GLS step within
the objective function to be maximized (i.e., the function to be used as an argument to the
optimizer). In other words, the GLS step is part of the optimization process of the likelihood.”
We obtain standard errors for 5 from GLS, and we employ a numerical Hessian to perform
statistical inference on the error components.®

Hlustration

ML estimation of spatial panel random effects models is performed by spml with the argument
model set to "random". The arguments lag and spatial.error allow the estimation of all
combinations of a spatial lag with the different specifications for the error term. The same
specifications but without random effects can be estimated by setting the model to "pooling".

It should be noted that the effects argument can only be set to "individual" in the random
effects context, and it will turn out to be more useful when discussing fixed effects models.

As for other specific parameters, we provide two ways to set the initial values of the parameters
managed through the optional argument initval.® The first option is to specify a numeric
vector of initial values. As an alternative, when initval is set to "estimate" the initial values
are retrieved from the estimation of nested specifications. As an example, when estimating the
full model, the initial value for the spatial correlation parameter is taken to be the estimated
p from a panel regression with spatially correlated errors. Analogously, the initial value of
A is the estimated spatial autocorrelation coefficient from the spatial autoregressive model,
and, finally, an initial value for ¢ is obtained by estimating a random effects model.

Assuming that both the spatial lag and the spatial error are defined according to the same
weights matrix, Munnell’s data lead to the following results for the most general model:

R> sararremod <- spml(formula = fm, data = Produc, index = NULL,
+ listw = usalw, model = "random", lag = TRUE, spatial.error = "b")
R> summary (sararremod)

Spatial panel random effects ML model

Call:
spml (formula = fm, data = Produc, index = NULL, listw = usalw,
model = "random", lag = TRUE, spatial.error = "b")

6 Note that these steps remain valid when the model to be estimated is one of the nested specifications
where, for example, one of the spatial coefficients is restricted to zero.

"There are many optimizers available under R. Our final choice was to use nlminb. While leading to similar
values for the estimated parameters, it proved to be faster than other optimizers.

8The numerical Hessian is implemented in the function fdHess available from nlme. The Hessian is evaluated
at the ML parameter values using finite differences.

9 If none of the two options is specified, the optimization will start at zero.



Journal of Statistical Software

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.2480 -0.0411 0.0123 0.0191 0.0726 0.4840

Error variance parameters:

Estimate Std. Error t-value Pr(>|tl)
phi 7.530808 1.743935 4.3183 1.572e-05 *x*x*
rho 0.536835 0.034481 15.5690 < 2.2e-16 *x*x

Spatial autoregressive coefficient:
Estimate Std. Error t-value Pr(>|t])
lambda 0.0018174 0.0058998 0.3081 0.758

Coefficients:
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 2.3736012 0.1394745 17.0182 < 2.2e-16 *x*x

log(pcap) 0.0425013 0.0222146 1.9132 0.055721 .

log(pc) 0.2415077 0.0202971 11.8987 < 2.2e-16 ***

log(emp) 0.7419074 0.0244212 30.3797 < 2.2e-16 ***

unemp -0.0034560 0.0010605 -3.2589 0.001119 *x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Using the same function, but changing the argument spatial.error = "kkp" and the lag

= FALSE, results for the Kapoor et al. (2007) model are obtained:

R> semremod <- spml(formula = fm, data = Produc, index = NULL,
+ listw = usalw, model = "random", lag = FALSE, spatial.error = "kkp")
R> summary (semremod)

Spatial panel random effects ML model

Call:
spml (formula = fm, data = Produc, index = NULL, listw = usalw,
model = "random", lag = FALSE, spatial.error = "kkp")

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.27000 -0.06430 -0.01120 -0.00448 0.04890 0.46900

Error variance parameters:

Estimate Std. Error t-value Pr(>|tl)
phi 6.624775  1.548063 4.2794 1.874e-05 *x*x*
rho 0.526465 0.033344 15.7891 < 2.2e-16 *x*x

Coefficients:
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Estimate Std. Error t-value Pr(>|t|)
(Intercept) 2.3246707 0.1415894 16.4184 < 2.2e-16 *x*x
log(pcap) 0.0445475 0.0220377 2.0214 0.0432362 *

log(pc) 0.2461124 0.0211341 11.6453 < 2.2e-16 **x*
log(emp) 0.7426319 0.0254663 29.1614 < 2.2e-16 **x*
unemp -0.0036045 0.0010637 -3.3887 0.0007022 **x*
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Consistent with the conventions in the R environment, the summary method prints a short
description of the model, the most recent call, a summary of the residuals and the table of
estimated coefficients. The spml specific part of the output (printed between the summary of
the residuals and the table of the estimated coefficients) reports the estimated error compo-
nents and, if any, the spatial autoregressive coefficient A along with standard errors from the
numerical Hessian.

5.2. Fixed effects model

For large N, consistent estimation of the individual fixed effects is not possible because of
the incidental parameter problem. Elhorst (2003) has pointed out that when the interest is
primarily in the regression parameters vector 5 an extension of the fixed effects model to a
spatial context may still be appropriate. Elhorst (2003) only considers the spatial lag and
error models separately but not the specification that includes both a spatially autocorrelated
error term and a spatial lag of the dependent variable.

A fixed effect spatial lag model can be written in stacked form as
y=AXIr@WN)y+ (tr @ IN)p+ XS +¢ (11)

where A is the spatial autoregressive coefficient, Wy a non-stochastic spatial weights matrix,
7 a column vector of ones of dimension 7', Iy an N x N identity matrix and ; ~ N (0, 052).10
The general estimation theory for maximum likelihood resembles the cross-sectional case. The
presence of the spatial lag introduces a form of endogeneity that violates the assumption of
standard regression models (i.e., the regressors are uncorrelated with the error term). Elhorst
(2003) suggests transforming the variables in Equation 11 by eliminating the time invariant
individual effects and use these transformed variables to maximize the likelihood function.
The transformation is obtained by subtracting the average for each cross-section over time.
As a consequence, the fixed effects and the constant term (as well as other variables that
do not vary over time) are wiped out from the model. Formally, the transformation can be
written as

Yy =AIr @WN)y" + X" B +¢" (12)
where y* = Quy, X* = Qo X, €* = Qpe and Qg was defined in Section 4. The log-likelihood

function of Equation 11 is:

NT NT
L= 5 In(2702) + Tln |[Iy — A\Wx| — FeTe (13)
UE

OFor simplicity we only discuss the one-way error component model. However, the function spml also allows
the estimation of a two-way error component model.
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where e = y — A\(IT ® Wy )y — X3 and In|Iy — AWy| is the Jacobian determinant.!! Elhorst
(2009) suggests a concentrated likelihood approach for maximizing Equation 13. The esti-
mation procedure is substantially analogous to the one employed in the cross-sectional case.
After the transformation, two auxiliary regressions of y* and (Iy ® Wy)y* on X* are per-

formed. The corresponding residuals (say ejj and e]) are combined to obtain the concentrated
likelihood:

NT
L=C+Th|Iy - AWy| = =~ In[(c; — Xep) (e — Aeb)] (14)

with C' a constant not depending on A. A numerical optimization procedure is needed to
obtain the value of A that maximizes Equation 14. Finally, estimates for 8 and o2 are
obtained from the first order conditions of the likelihood function by replacing A with its
estimated value from the ML. Analogous to the cross sectional model, the estimator for 3
can also be seen as the generalized least square estimator of a linear regression model with
disturbance variance matrix 02Qo.'? Statistical inference on the parameters of the model can

be based on the expression for the asymptotic variance covariance matrix derived in Elhorst
(2009) and Elhorst and Freret (2009): AsyVar(3,\,02) =

-1

UigX*TX* ?éX*T(IT®W)X*ﬁ
LBTX T (Ir @ WIW)X*B+ T tx(WW + W'W) (15)
L (W) s

where W = W (In — AW)~! and the missing elements that cannot be filled in by symmetry
are zeros. The computational burden involved in the calculation of the asymptotic standard
error of the spatial parameter can be very costly for large problem dimensions (mainly because
of the inverse of the N x N matrix involved in the computation). The block of the coeffi-
cient covariance matrix relative to the parameter vector 5 does not present any particular
computational difficulties. Fixed effects can be recovered by
1 T N
i =g D (i =AY wigyje — xal) (16)

t=1 j=1

Averaging across all observations one can also recover the intercept under the restriction that
the individual effects sum to zero (see also Baltagi 2008, p. 13).

A fixed effects spatial error model can be written as

y = (r®IN)p+XB+u
u = p(Ir@Wn)u+e (17)

' Sometimes the likelihood is expressed in terms of the log Jacobian > In(1 — Mw;) where w; are the
eigenvalues of the spatial weights matrix. The default method to compute the Jacobian is based on the
eigenvalues decomposition using the functions eigenw. In line with the changes and improvements recently
made in spdep (Bivand 2010), other methods are available, including the use of sparse matrices, and the
Chebyshev and Monte Carlo approximations (LeSage and Pace 2009).

12 Anselin et al. (2008) point out that various aspects of the fixed effects spatial lag model deserve further
investigation. The main issue relates to the properties of Qo. By definition Qo is singular and therefore |Qo|
does not exist. While this is not a problem in the non-spatial case, the log-likelihood for the spatial model
should be based on multivariate normality of the error term. Hence because of the the properties of Qo, the
joint unconditional likelihood becomes degenerate. Although theoretically relevant, these considerations should
not be an issue in practice. To cope with this, Lee and Yu (2010d) suggest using a different transformation
based on the orthonormal matrix of Q.

11
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where p is the spatial autocorrelation coefficient and ¢ is a well-behaved error term.

The estimation strategy for the cross-sectional spatial error model can be easily extended to
the panel context. Again a concentrated likelihood approach can be taken but an iterative
procedure is needed to estimate the parameters of the spatial error model. The general idea
is to iterate between ML and generalized least squares (GLS) until a convergence criterion is
met. The model is transformed according to Equation 12, to eliminate fixed effects. More
formally, the log-likelihood function for model Equation 17 can be written as:

NT

L= —Tln(%’ag) +Thn|By| - 5

1

3 e'[Ir ® (ByBy)le (18)
&

with e =y — X and By = (Iy — pW).

Given p, estimators for 8 and ag are derived from the first order conditions as

B=[XT(Ir ® BYyBy)X] ' X T (Ir ® BYBy)y (19)
and (p)Telp)
e(p) elp

S (20)

where the notation indicates the explicit dependence of the residuals on p. By substituting
Equation 19 and Equation 20 back into Equation 18, the concentrated log-likelihood function
can be derived as:
NT T

L=C~ 5 Ile(p) Te(p)] + Tn| By (21)
where C' is a constant not depending on p and By was defined above. The estimation
procedure can be summarized as follows. Estimated OLS residuals (of the transformed model)
can be used to obtain an initial estimate of p. The initial estimate of p can in turn be used
to compute a (spatial) feasible GLS (FGLS) estimator of the regression coefficients, the error
variance and a new set of estimated GLS residuals. An iterative procedure may then be
employed: the concentrated likelihood and the GLS estimators are alternately computed
until convergence. The asymptotic variance covariance matrix of the parameters is (Elhorst

2009)
%X*TX* -1
: ~ =T=
AsyVar(B, p,02) = Ttr(WW +W W) (22)

U% tr(W) %
where W = W (Ixy — AW)~L. Considerations made for the spatial lag case also apply here,
and individual effects can be recovered by

1 T

Wi = > (i — zaB) (23)

t=1

Tllustration

The ML estimation of a spatial panel fixed effects model is performed through spml by setting
the model argument to "within".
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The spml function allows the estimation of a model specified in terms of both spatial effects.
This can be done by combining the arguments lag and spatial.error as in the following
example:

R> sararfemod <- spml(formula = fm, data = Produc, index = NULL,

+ listw = usalw, lag = TRUE, spatial.error = "b", model = "within",
+ effect = "individual", method = "eigen", na.action = na.fail,

+ quiet = TRUE, zero.policy = NULL, interval = NULL,

+ tol.solve = 1e-10, control = list(), legacy = FALSE)

R> summary (sararfemod)

Spatial panel fixed effects sarar model

Call:

spml (formula = fm, data = Produc, index = NULL, listw = usalw,
model = "within", effect = "individual", lag = TRUE, spatial.error = "b",
method = "eigen", na.action = na.fail, quiet = TRUE, zero.policy = NULL,
interval = NULL, tol.solve = le-10, control = list(), legacy = FALSE)

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.1340 -0.0221 -0.0032 0.0172 0.1750

Coefficients:
Estimate Std. Error t-value Pr(>|t])
rho 0.4553116 0.0504043 9.0332 < 2.2e-16 *x*x
lambda 0.0885760 0.0300044 2.9521 0.003156 x**
log(pcap) -0.0103497 0.0252725 -0.4095 0.682156
log(pc) 0.1905781 0.0230505 8.2678 < 2.2e-16 **x*
log(emp) 0.7552372 0.0277505 27.2152 < 2.2e-16 ***
unemp -0.0030613 0.0010293 -2.9741 0.002939 *x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

As is well known, the within transformation eliminates the individual effects. Thus, from
an empirical point of view, it also makes the two specifications (individuals effects are/are
not spatially autocorrelated) indistinguishable. Therefore, the argument spatial.error can
equivalently take the values b or kkp, thus leading to the estimation of the same specification.

There are specific arguments to spml for spatial within models that can be passed on through
the special ‘. .." argument. The argument method sets the technique for the calculation of the
determinant. The default ("eigen") is to express the Jacobian in terms of the eigenvalues of
the spatial weights matrix. Other available options include methods based on sparse matrices
("spam", "Matrix" or "LU"), and the Chebyshev ("Chebyshev") and Monte Carlo ("MC")
approximations.

As an example, to estimate a model with only individual fixed effects:

R> sarfemod <- spml(formula = fm, data = Produc, index = NULL, listw = usalw,
+ model = "within", effect = "individual", method = "eigen",
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+ na.action = na.fail, quiet
+ tol.solve le-10, control
R> summary (sarfemod)

TRUE, zero.policy = NULL, interval = NULL,
list(), legacy = FALSE)

Spatial panel fixed effects error model

Call:
spml (formula = fm, data = Produc, index = NULL, listw = usalw,
model = "within", effect = "individual", method = "eigen",
na.action = na.fail, quiet TRUE, zero.policy = NULL, interval = NULL,

tol.solve = 1e-10, control = list(), legacy = FALSE)
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.

-0.1250 -0.0238 -0.0035 0.0171 0.1880

Coefficients:
Estimate Std. Error t-value Pr(>|t])
rho 0.5574013 0.0330749 16.8527 < 2e-16 ***
log(pcap) 0.0051438 .0250109 0.2057 0.83705
log(pc) 0.2053026 .0231427 8.8712 < 2e-16 *x*x
<
0

O O O O

log(emp) 0.7822540 .0278057 28.1328 2e-16 *xx
unemp -0.0022317 .0010709 -2.0839 .03717 *
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Again, an object of class splm is generated, for which an appropriate summary method is
available. The summary method gives information about the call, a summary of the residuals
and the table of estimated coefficients (where rho is the coefficient of the spatially lagged
dependent variable). Fixed effects can be extracted using the function effects:

R> eff <- effects(sarfemod)

The result is an object of class effects.splm for which print and write methods are avail-
able. The print method displays the type of effects (with significance levels) and the constant
term. The write method is used to write the corresponding matrix to a file. The name of
the file can be controlled by the argument filename.

Analogously, one can estimate a spatial error model with time period fixed effects as:

R> semfemod <- spml(formula = fm, data = Produc, listw = usalw,

+ model = "within", effect = "time", method = "eigen',

+ na.action = na.fail, quiet TRUE, zero.policy = NULL, interval = NULL,
+ tol.solve = le-10, control = list(), legacy = FALSE)

R> summary (semfemod)

Spatial panel fixed effects error model
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Call:

spml (formula = fm, data = Produc, listw = usalw, model = "within",
effect = "time", method = "eigen", na.action = na.fail, quiet = TRUE,
zero.policy = NULL, interval = NULL, tol.solve = le-10, control = list(),
legacy = FALSE)

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.219000 -0.064500 -0.000592 0.055400 0.317000

Coefficients:
Estimate Std. Error t-value Pr(>|tl)

rho 0.4962301 0.0357912 13.8646 < 2.2e-16 **x
log(pcap) 0.1432725 0.0165720 8.6455 < 2.2e-16 *x*x

log(pc) 0.3636539 0.0109631 33.1707 < 2.2e-16 **x

log(emp) 0.5619649 0.0143684 39.1113 < 2.2e-16 **x

unemp -0.0078930 0.0018665 -4.2288 2.349e-05 **x*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

As before, time period fixed effects and the intercept can be recovered as follows:

R> eff <- effects(semfemod)
R> eff

Intercept:
Estimate Std. Error t-value Pr(>|tl)
(Intercept) 1.412536  0.050965 27.716 < 2.2e-16 **x*

Time period fixed effects:
Estimate Std. Error t-value Pr(>|tl)

1 -0.00515318 0.05167995 -0.0997 0.9206
2 0.00103556 0.05200686 0.0199 0.9841
3 0.01161188 0.05193737 0.2236 0.8231
4 0.02086866 0.05182860 0.4026 0.6872
5 -0.01243892 0.05194369 -0.2395 0.8107
6 -0.01638407 0.05254389 -0.3118 0.7552
7 -0.01602721 0.05238016 -0.3060 0.7596
8 -0.00817852 0.05217527 -0.1568 0.8754
9 -0.00108650 0.05184557 -0.0210 0.9833
10 -0.00714318 0.05177969 -0.1380 0.8903
11 -0.02071186 0.05204947 -0.3979  0.6907
12 -0.00791710 0.05222694 -0.1516 0.8795
13 -0.01409039 0.05284233 -0.2666  0.7897
14 0.00042906 0.05286077 0.0081 0.9935
15 0.01861529 0.05225588 0.3562 0.7217

15
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16 0.02531034 0.05216326 0.4852 0.6275
17 0.03126013 0.05219134 0.5990 0.5492

6. GM implementation

To simplify the exposition, we follow Kapoor et al. (2007) and describe the estimation theory
of a model that does not include the spatial lag of the dependent variable. For the estimation
of the full model we refer the interested reader to Mutl and Pfaffermayr (2011) and Piras
(2011).

6.1. Random effects model

The estimation procedure for a random effects model is a combination of the traditional
panel data literature on error component models and the GM approach to spatial models.
Kapoor et al. (2007) suggest a generalization of the generalized moment estimator suggested
in Kelejian and Prucha (1999) for estimating the spatial autoregressive parameter (p) and
the two variance components of the disturbance process (0? and o2). Specifically, they define
three sets of GM estimators based on the following moment conditions:

[ vr—pe Qe ] T ol T
N(%_I)E:QOE ol ttr(WTW)
E| ¥Tqf Q¢ | 0 (24)
1 )r 2
ye e 21 o1 T
LeTQie o ytr(W W)
L %éTng ] L 0 i

where € = u — pti, £ = U — pi, 4 = (It ® Wx)u, and a4 = (It @ Wy)u.'?

The first set of GM estimators is based only on a subset of these moment conditions (the first

three equations) and assigns equal weights to each of them. This first set of estimators should
therefore be intended as initial estimators.

The second set of GM estimators uses all of the moment conditions and an optimal weighting
scheme. It is indeed well known from the theory of GM estimators that for asymptotic
efficiency the ideal weighting matrix is the inverse of the variance covariance matrix of the
sample moments at the true parameter values. Kapoor et al. (2007) derive this matrix under
the assumption of normally distributed innovations. They point out that, although the use
of such a matrix is not strictly optimal in the absence of normality, it can be viewed as a
reasonable approximation of the true and more complex variance covariance matrix.

The third set of GM estimators is motivated by computational difficulties. The elements of
the asymptotic variance covariance matrix of the sample moments involve a computational
count of up to O(n?). Although one could take advantage of the particular structure of W,
the computation of such a matrix can still be difficult in many cases. The third set of GM
estimators uses all moment conditions but a simplified weighting scheme.

13 In a random effects model without a spatial lag of the dependent variable, the OLS estimator of j3 is
consistent, and thus it can be used to calculate the estimated disturbances (u) employed in the GM procedure.
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Using any of the previously defined estimators for the spatial coefficient and the variance
components, a feasible GLS estimator of S can be defined based on a spatial Cochrane-Orcutt
type transformation of the original model. However, following the classical error component
literature, a convenient way of calculating the GLS estimator is to further transform the
(spatially transformed) model by premultiplying it by Iy — 0Q1, where 6 =1 — 0, /01. The
feasible GLS estimator is then identical to an OLS calculated on the “doubly” transformed
model. Finally, small sample inference can be based on the following expression for the
coeflicient’s variance-covariance matrix

U= (x*"To tx")! (25)

where the variables X™* can be viewed as the result of a spatial Cochrane-Orcutt type trans-
formation of the original model, and X* and Q! depend on the estimated values of p, o2
and o? respectively.

Hlustration

spgm is a general interface to estimate various nested specifications of the model presented
in Section 4. The function also gives the possibility of including additional (other than the
spatial lag) endogenous variables. To make sure that we are estimating a random effects
specification, the argument effects should be set to "random". Along with a mandatory
formula object to describe the model, the function consists of a series of optional arguments.
Among them, there are two logical vectors that control for the basic model specification:
spatial.error and lag. When both arguments are FALSE, an endogenous variable should
be specified (endog) along with a set of instruments. In this particular case, the function
uses an estimation engine (ivsplm) to perform instrumental variables estimation for panel
data models. The argument method can be used to select among different estimators.

When spatial.error is TRUE and lag is FALSE, the model corresponds to the one in Kapoor
et al. (2007) and the residuals employed in the GM estimator come from an OLS regression.
The argument moments allows to opt for one of the three sets of GM estimators. The default
is to perform the initial estimator. If the argument moments is set to "fullweights", the
second estimator (i.e., the one involving the full expression of the variance covariance matrix of
the moments conditions) is performed.'® Finally, to obtain the third estimator the argument
moments should be set to "weights".

On Munnell’s data this would lead to:
R> GM_error <- spgm(formula = fm, data = Produc, listw = usaww,

+ moments = "fullweights", model = "random", spatial.error = TRUE)
R> summary(GM_error)

Spatial panel random effects GM model

MThose are a within two stage least squares estimator ("w2sls"), a between two stage least squares estimator
("b2sls"), the GLS random effects two stage least squares estimator ("g2sls"), and the error component two
stages least squares ("ec2sls") of Baltagi (1981). These estimators are also implemented in plm. We only
extended them to deal with the case of a spatially lagged dependent variable.

5The calculation of the trace terms in the expression of the variance covariance matrix of the sample
moments uses code from the Matrix package.

17
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Call:
spgm(formula = fm, data = Produc, listw = usaww, model = "random",
spatial.error = TRUE, moments = "fullweights")

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.26600 -0.06560 -0.00717 -0.00480 0.04850 0.45900

Estimated spatial coefficient, variance components and theta:
Estimate

rho 0.5480458

sigma”“2_v 0.0011228

sigma~2_1 0.0880980

theta 0.8871080

Coefficients:
Estimate Std. Error t-value Pr(>|tl)
(Intercept) 2.2273109 0.1350925 16.4873 < 2.2e-16 x*xxx

log(pcap) 0.0540235 0.0219720 2.4587 0.013942 x*

log(pc) 0.2565950 0.0209339 12.2574 < 2.2e-16 **x*
log(emp) 0.7278192 0.0252306 28.8466 < 2.2e-16 ***

unemp -0.0038108 0.0011004 -3.4631 0.000534 *x*x*
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The summary method, after a short description of the model, prints the most recent call, a
summary of the residuals and the table of estimated coefficients. The output also contains
a print out of the estimated spatial coefficient, the variance components o2 and of, and
f. One of the main advantages of the GM approach compared to ML is that the former
is computationally less intensive than the latter (mostly because it does not involve the
computation of Jacobian terms). The function spgm can deal with the estimation of very large
datasets. As an example, we estimated a model with NV = 10,000 cross-sectional observations
over T' = 20 time periods. Considering K = 11 explanatory variables, the time to perform
the second set of GM estimators was slightly more than 28 seconds on an Intel Core Duo
MacBook with 4 GB of memory and a processor speed of 2.4 GHz.

When both spatial.error and lag are TRUE the complete model is estimated (i.e., one
that has the spatial lag of the dependent variable and spatially autocorrelated residuals and
individual effects). In this case, OLS residuals are no longer consistent because of the spatially
lagged dependent variable and the estimation procedure should be modified accordingly (for
details see Mutl and Pfaffermayr 2011; Piras 2011; Baltagi and Liu 2011).

A simple example using the Munnell’s data would produce the following output:

R> GM_full <- spgm(formula = fm, data = Produc, listw = usaww, lag = TRUE,
+ moments = "fullweights", model = "random", spatial.error = TRUE)
R> summary(GM_full)

Spatial panel random effects GM model
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Call:
spgm(formula = fm, data = Produc, listw = usaww, model = "random",
lag = TRUE, spatial.error = TRUE, moments = "fullweights")

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.27400 -0.06050 -0.00206 -0.00194 0.05260 0.47100

Estimated spatial coefficient, variance components and theta:
Estimate

rho 0.3409051

sigma~2_v 0.0011002

sigma®2_1 0.0928450

theta 0.8911412

Coefficients:
Estimate Std. Error t-value Pr(>|tl)

lambda 0.02185030 0.01350631 1.6178  0.1057
(Intercept) 2.01866772 0.16797180 12.0179 < 2.2e-16 **x*
log(pcap)  0.04668406 0.02244161 2.0802  0.0375 *
log(pc) 0.26596681 0.02036336 13.0610 < 2.2e-16 ***
log(emp) 0.72160852 0.02473123 29.1780 < 2.2e-16 ***
unemp -0.00513207 0.00097481 -5.2647 1.404e-07 **x
Signif. codes: O '#*k' 0.001 'x*' 0.01 'x¥' 0.05 '.' 0.1 ' ' 1

The first row of the table of estimated coefficients produced by the summary method reports
the estimated coefficient of the spatially lagged dependent variable. Interestingly the results
for the other coefficients are very stable when such a variable is included.

6.2. Fixed effects model

When the random effects assumption is questionable, one can estimate a fixed effects model
instead. Mutl and Pfaffermayr (2011) note that under the fixed effects assumption OLS
estimation of the regression equation is no longer consistent and the method of moment
estimator can no longer be based on OLS residuals. They suggest to replace OLS with spatial
two stage least squares within residuals (Baltagi and Liu 2011). Since in our discussion we
are focusing on a model without the spatial lag of the dependent variable, a simple within
estimator will produce consistent estimates of the model parameters. The first three moment
conditions in Kapoor et al. (2007) can be reformulated in terms of these within residuals (see
Mutl and Pfaffermayr 2011, for details). One can then estimate the spatial parameter p using
the GM procedure described in Kapoor et al. (2007) based only on these first three moments
conditions. With an estimate of the spatial parameter, one can take a spatial Cochrane-Orcutt

type transformation of the within transformed variables and estimate the resulting model by
OLS.

19
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llustration

The function spgm serves as an interface also for the fixed effects once the argument model
is set to "within". There is no need to specify the argument moments. The usual model
specification using the Munnell’s data leads to the following results:

R> GM_error <- spgm(formula = fm, data = Produc, lag = TRUE,
+ listw = usaww, model = "within", spatial.error = TRUE)
R> summary(GM_error)

Spatial panel fixed effects GM model

Call:
spgm(formula = fm, data = Produc, listw = usaww, model = "within",
lag = TRUE, spatial.error = TRUE)

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.83 2.10 2.20 2.21 2.30 2.70

Estimated spatial coefficient, variance components and theta:
Estimate

rho 0.3328374

sigma”2_v 0.0011278

Coefficients:
Estimate Std. Error t-value Pr(>ltl|)
lambda 0.1313010 0.0245669 5.3446 9.060e-08 *xx

log(pcap) -0.0201442 0.0268540 -0.7501 0.4531718

log(pc) 0.1931190 0.0255344 7.5631 3.936e-14 **x*

log(emp) 0.7304211 0.0303485 24.0678 < 2.2e-16 ***

unemp -0.0036698 0.0010261 -3.5763 0.0003484 x*x*x*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Note that the results in terms of the estimated spatial coefficients are reasonably close to
those obtained using the ML estimator. On the one hand, the value of p is 0.455 if the model
is estimated by ML, and it drops to 0.333 when the model is estimated by GM. On the other
hand, A changes from 0.088 (ML) to 0.131 (GM). Furthermore, there is almost no difference
between the ML and GM estimates for the coefficients other than the spatial ones.

7. Tests

In this section we describe the implementation of several LM tests for the panel data regression
model with spatial error correlation derived in Baltagi et al. (2003). In the spirit of Mutl and
Pfaffermayr (2011), we also implemented a spatial Hausman test.



Journal of Statistical Software

7.1. LM tests

Since the seminal work of Breusch and Pagan (1980), Lagrange multiplier (LM) tests have
been extensively employed to test for random effects and serial or cross-sectional correlation
in panel data models. Requiring only the estimation of the restricted specification, LM tests
are particularly appealing in a spatial random effects setting because of the computational
difficulties related to the estimation of the full model.

Baltagi et al. (2003) derive joint, marginal and conditional tests for all combinations of random
effects and spatial correlation for the model specification presented in Section 4. In particular,
the hypotheses under consideration are:

1. Hy: A= UZ = 0 under the alternative that at least one component is not zero

2. H) : O'Z = 0 (assuming A = 0), under the one-sided alternative that the variance

component is greater than zero

3. H§ : A = 0 assuming no random effects (ai = 0), under the two-sided alternative that
the spatial autocorrelation coefficient is different from zero

4. Hg : A = 0 assuming the possible existence of random effects (UZ may or may not

be zero), under the two-sided alternative that the spatial autocorrelation coefficient is
different from zero

5. Hf: ai = 0 assuming the possible existence of spatial autocorrelation (A may or may

not be zero) and the one-sided alternative that the variance component is greater than
Zero

The joint LM test for the first hypothesis of no random effects and no spatial autocorrelation
(H§) is given by:

NT ., N°T
-0 T

where, G = @' (Jr @ Iy)u/t'a — 1, H = @' (It @ (W + W')/2)a/iWa, b = tr(W + W’)?/2 and
o denotes OLS residuals.

H? (26)

LM, =

Equation 26 is also the point of departure for the derivation of the marginal LM tests used
to verify Hg and H§. The standardized version of the marginal LM test of no random effects
assuming no spatial correlation is given by

LM, — E(LM1)

SLM; =
Var(LMy)

(27)

where LM is the square root of the first term in Equation 26. Analogously, the standardized
version of the marginal LM test of no spatial autocorrelation assuming no random effects is
given by

LM, — E(LM>)

SLMs
Var(LMa)

(28)

where LM, is now the square root of the second term in Equation 26. Note that both
Equation 27 and Equation 28 should be asymptotically normally distributed as N — oo (for
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fixed T') under Hg and H§ respectively.'® Based on Equation 27 and Equation 28, a useful
one-sided test statistic for Hf : A = UZ = 0 can be derived as:

LMy = (LM + LM))/V2 (29)
which is asymptotically distributed N (0, 1). A test for the joint null hypothesis can, therefore,
be based on the following decision rule:

LM? + LM2 if LMy >0,LM; >0

s ) LM? if LM;>0,LM;<0
Xm =\ L2 if LM, <0,LMy >0
0 if LM; <0,LM;<0

Under the null the test statistic x2, has a mixed y2-distribution given by:

Xin = (1/4)x2(0) + (1/2)x* (1) + (1/4)x*(2) (30)
When using LM2, one is assuming that random individual effects do not exist. However,
especially when the variance component is large, this may lead to incorrect inference. This
is why Baltagi et al. (2003) derive a conditional LM test against the spatial autocorrelation
coefficient being zero assuming that the variance component may or may not be zero. The
expression for the test assumes the following form:

D())?

LM, =
YT 1) +6k/60b

(31)

where, D(\)? = L&/ %(jT QW'+ W))+ &—%(ET ®@ (W' +W))| 4. Also, 6f = @'(Jr ®
Iy)a/N, 64 = @/ (Er ® In)a/N(T —1) and, contrary to previous tests that use OLS residuals,
the residuals u are ML. The comparative disadvantage of this last test is that its implemen-
tation is slightly more complicated because it is based on ML residuals. A one sided test is
simply obtained by taking the square root of Equation 31. The resulting test statistic should
be asymptotically distributed N (0, 1). Similarly, when using LM 1 one is assuming no spatial
error correlation. This assumption may lead to incorrect inferences particularly when A is
not very close to zero. A conditional LM test assuming the possible existence of spatial error
correlation can be derived as:
~4
LM, = (D,)? (2;”> (TNéjec — Noud® — Térg%e + 26,ghd — 64h%c) " x (N6 — 6,,9%)

where, g = tr[(W'B + B'W)(B'B)™'|, h = tr[B'B], d = tr[(W'B + B'W)], ¢ = tr[(W'B +
B'W)(B'B)™1)?] and e = tr[(B'B)?]. A one-sided test can be defined by taking the square
root of Equation 32 based on ML residuals. The test statistic should be asymptotically
distributed N(0,1).

THlustration

The bsktest function can compute the joint, marginal or conditional tests for random effects
and spatial error correlation. There are currently five options to the argument test, corre-
sponding to the tests in the Baltagi et al. (2003): "LM1", "LM2", "LMJOINT", "CLMlambda", and

16 For details on the expressions for the expected values and the variances of both tests see Baltagi et al.
(2003).
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"CLMmu". An optional logical parameter standardize is available to compute the standard-
ized SLM; and SLM> marginal tests in place of LM; and LM>. In the following example we
perform the standardized test of Equation 27. The alternative hypothesis is one of no random
regional effects.

R> testl <- bsktest(x = fm, data = Produc, listw = mat2listw(usaww),
+ test = "LM1")
R> print(class(testl))

[1] "htest"
R> testl
Baltagi, Song and Koh SLM1 marginal test

data: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
SLM1 = 0.083, p-value = 0.9338
alternative hypothesis: Random effects

The function bsktest returns an object of class htest for which a print method is avail-
able. The next example shows how to calculate the standardized test in Equation 28. The
alternative hypothesis is one of no random regional effects.

R> test2 <- bsktest(x = fm, data = Produc, listw = mat2listw(usaww),
+ test = "LM2")
R> test2

Baltagi, Song and Koh LM2 marginal test

data: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
SLM2 = 0.0151, p-value = 0.988
alternative hypothesis: Spatial autocorrelation

The conditional tests LMy and LM, are perhaps the most useful tests in this framework,
because they test for one effect, and are robust against the other. This last example shows
how to check for spatial correlation in the errors of a model that possibly incorporates random
effects. This time we print the output directly:

R> bsktest(x = fm, data = Produc, listw = mat2listw(usaww),
+ test = "CLMlambda'")

Baltagi, Song and Koh LM*-lambda conditional LM test
(assuming sigma“2_mu >= 0)

data: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
LM*-lambda = 9.7157, p-value < 2.2e-16
alternative hypothesis: Spatial autocorrelation

23
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7.2. Spatial Hausman test

The Hausman test (Hausman 1978) compares random and fixed effects estimators and tests
whether or not the random effects assumption is supported by the data. Mutl and Pfaffermayr
(2011) show how to extend this procedure to a spatial framework. The Hausman test statistic
takes the form

H = NT(éFGLS — éw)T<2W - ZAIFGLS)_l(éFGLS - éW) (32)

where Opcrs and Oy are, respectively, the spatial GLS and within estimators, and Sw and
)y rarLs the corresponding estimates of the coefficients’ variance covariance matrices. H is
asymptotically distributed x? with k& degrees of freedom where k is the number of regressors
in the model.

Hlustration

The method sphtest computes the spatial Hausman test described in the previous sec-
tion. The argument can either be a formula describing the model to be estimated, or
an object of class splm. If the argument is a formula, it should be specified along with
three additional arguments: an object of class listw, a description of the model to be esti-
mated (spatial.model) and the estimation method (method). Furthermore, if the estimation
method is ML, the argument errors indicates which specification of the error term has to be
considered.

The following example illustrates the function when the argument is a formula. We estimate
a model without a spatial lag but with an autocorrelated error term. Since the estimation
method is "GM" there is no need to specify the structure of the error term.

R> testl <- sphtest(x = fm, data = Produc, listw = mat2listw(usaww),
+ spatial.model = "error", method = "GM")
R> testl

Hausman test for spatial models

data: x
chisq = 7.4824, df = 4, p-value = 0.1125
alternative hypothesis: one model is inconsistent

The function sphtsest returns an object of class htest for which a print method is available.
The next example shows that if the two models are estimated separately, the two objects of
class splm can be given as arguments to the function.

R> modl <- spgm(formula = fm, data = Produc, listw = usaww, lag = TRUE,
+ moments = "fullweights", model = "random", spatial.error = TRUE)
R> mod2 <- spgm(formula = fm, data = Produc, listw = usaww, lag = TRUE,
+ model = "within", spatial.error = TRUE)

R> test2 <- sphtest(x = modl, x2 = mod2)

R> test2



Journal of Statistical Software

Hausman test for spatial models

data: fm
chisq = 41.7396, df = 5, p-value = 6.65e-08
alternative hypothesis: one model is inconsistent

7.3. Linear hypothesis testing

Many functions for model estimation in R (e.g., 1m, glm and all of the estimators in package
plm) return objects that are compatible with generic extractor functions such as coef and
methods such as vcov. In general, this is done to allow interoperability with functions calcu-
lating linear hypothesis tests such as coeftest from package Imtest (Zeileis and Hothorn 2002)
for zero-restrictions, and linearHypothesis from package car (Fox and Weisberg 2010) for
linear hypotheses. The model object produced by splm is consistent with such a framework,
and, among other things, enable users to perform restriction tests on the model parameters.
In the following example, a compact table of regressors’ coefficient estimates is printed:

R> library("lmtest")
R> coeftest (sararremod)

z test of coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 2.3736012 0.1394745 17.0182 < 2.2e-16 **x

log(pcap) 0.0425013 0.0222146 1.9132 0.055721 .

log(pc) 0.2415077 0.0202971 11.8987 < 2.2e-16 *x*x
log(emp) 0.7419074 0.0244212 30.3797 < 2.2e-16 **x

unemp -0.0034560 0.0010605 -3.2589 0.001119 **

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Next, a test for the hypothesis that the elasticity of growth to public capital (pcap) and
private capital (pc) are the same is performed:

R> library("car")
R> linearHypothesis(sararremod, "log(pcap) = log(pc)")

Linear hypothesis test

Hypothesis:
log(pcap) - log(pc) =0

Model 1: restricted model
Model 2: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp

Df Chisq Pr(>Chisq)
1
2 1 38.145 6.566e-10 *x*x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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8. Numerical checks

The complexity of the estimation procedures implemented in the package requires that some
checks be performed. We have done this in two ways. When it was possible, we compared our
results against those of other available software. At the same time, we carried out a Monte
Carlo simulation for the cases in which this was not possible.

8.1. Numerical check against other software

As a first step, we compare the estimators in the package with the MATLAB routines made
available by Elhorst (2011). The comparison is performed on the Baltagi and Griffin (2001)
cigarette consumption data set for 46 US states over a period of six years. The parameter
estimates from the two implementations are presented along with the relevant ¢ statistics for
six model specifications: pooling, fixed, and random effects for both the spatial lag and the
spatial error models.!”

The first step is to load the data and the spatial weighting matrix that is then standardized
and transformed in a listw object:!®

R> cigar <- read.table('"cigardemo.txt", header = TRUE)
R> fm <- logc ~ logp + logpn + logy

R> wcig <- as.matrix(read.table("spat-sym-us.txt"))
R> wcig <- wcig/apply(wcig, 1, sum)

R> lwcig <- mat2listw(wcig)

Running the procedure demopanelscompare.m (from Elhorst 2011) in MATLAB 7.1.0 on Win-
dows 2000 gives the results reported in the first (coefficient) and third (¢ statistic) columns
of Table 1 (fixed effects) and Table 2 (random effects). These figures are compared with
the corresponding values from splm obtained through the following code (second and fourth
column).

R> sarfe <- spml(formula = fm, data = cigar, listw = lwcig, lag = TRUE,

+ model = "within", effect = "individual", spatial.error = "none")
R> semfe <- spml(formula = fm, data = cigar, listw = lwcig, lag = FALSE,
+ model = "within", effect = "individual", spatial.error = "b")

R> sarre <- spml(formula = fm, data = cigar, listw = lwcig, lag = TRUE,
+ model = "random", spatial.error = "none")

R> semre <- spml(formula = fm, data = cigar, listw = lwcig, lag = FALSE,
+ model = "random", spatial.error = "b")

The results of the fixed effects specifications are very similar, both in terms of the parameters
and the t statistics. The use of different optimization routines is a possible source of the
(extremely small) numerical differences.

As explained before, the random effects estimators in splm optimize the original likelihood
with the random effects explicitly considered in the error covariance matrix X. On the other

"Note that Elhorst’s routines do not report standard errors but only ¢ statistics and p values. For the
convenience of the readers, we report ¢ statistics instead of p values, since the latter are often very small.

8The original data from the web page of Elhorst (2011) are in spreadsheet format and have been saved to
text before importing them into R.
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Coefficient estimate t statistic
MATLAB splm MATLAB splm
FE lag A 0.198966 0.198648 2.952892 2.9477

logp —0.608632 —0.608614 —12.653520 —12.6529
logpn 0.233016 0.232903 3.559311 3.5575
logy 0.294657 0.294722 7.708424 7.7099
FE error p 0.299957 0.302676 4.263236 4.3099
logp —0.618106 —0.618338 —13.173769 —13.1806
logpn 0.129409 0.128986 2.020166 2.0124
logy 0.335804 0.335879 7.491027 7.4753

Table 1: Comparison of estimated coefficients and ¢ statistics, spatial lag and spatial error
models with individuals fixed effects. Elhorst’s MATLAB routines as in demopanelscompare.m
file and the spml function from the splm package, default settings (see code).

Coeflicient estimate t statistic
MATLAB splm MATLAB splm
RE lag A 0.183991 0.18127 2.693161 2.9243

Const. 2.510781 2.521162 8.101490 14.8281
logp —0.619098 —0.618952 —11.871057 —11.8683
logpn 0.229340 0.228368 3.287806 3.5016
logy 0.313008 0.313567 7.650605 8.1882
RE error p 0.311347 0.310914 4.081663 4.2105
Const. 3.150075 3.157798 14.779637 14.8385
logp —0.627936 —0.629792 —12.385034 —12.4393
logpn 0.123410 0.123491 1.793438 1.8052
logy 0.364420 0.361601 7.629106 7.5787

Table 2: Comparison of estimated coefficients and ¢ statistics, spatial lag and spa-
tial error models with individuals random effects. Elhorst’s MATLAB routines as in
demopanelscompare.m file and the spml function from the splm package, default settings.

hand, Elhorst’s routines applies the quasi-demeaning principle that is standard in non-spatial
panel data estimators to eliminate the random effects. The likelihood is then optimized on
the transformed data. As for the parameter variance covariance matrix, Elhorst (by default)
relies on exact expressions, while the splm implementation uses the numerical Hessian ap-
proximation. The software approach is therefore substantially different. Given the differences
in the environment and the optimizer, there is, in principle, room for larger differences than
those found in the fixed effects case. However, the parameter estimates are almost identical;
and only slightly larger differences are found in the ¢ statistics. Almost none of these differ-
ences is relevant, with only the exception of the ¢ statistic on the intercept of the spatial lag
model, where the MATLAB procedure yields 8.10, and the value in splm is 14.83.

Finally, we perform a comparison on the pooled specification, i.e., without individual effects.
Table 3 compares the results of spml with those of Elhorst’s routines on a pooled specifica-
tion, and with results in spdep. In fact, the pooled model can be reproduced also in spdep
using the functions lagsarlm and errorsarlm. The user only needs to construct a block
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Coefficient estimate p value/t statistic
MATLAB splm spdep MATLAB splm spdep
Lag A 0.081949 0.082250 0.08225 0.238648 0.1612 0.1629

model Const. 1.305900 1.304801 1.304801 3.623877 4.4698 3.6211
logp —1.038360 —1.038347 —1.038347 —8.655961 —8.6811 —8.6559
logpn 0.180022 0.180146 0.180146 1.429878 1.4654 1.4309
logy 0.683524 0.683452 0.683452 9.722431  10.4750 9.7213
Error p 0.144970 0.147554 0.14755 0.058506  0.02949 0.030924
model Const. 1.486675 1.484186 1.484186 4.758165 4.7444 4.7444
logp —1.060017 —1.060385 —1.060385 —8.968419 —8.9732 —8.9732
logpn 0.150345 0.150483 0.150483 1.200308 1.2009 1.2009
logy 0.729537 0.730092 0.730092 10.461687 10.4572  10.4572

Table 3: Comparison of estimates and diagnostics (p values for A/p, t statistics for the re-
maining coefficients) for the pooled spatial lag and error models. Elhorst’s MATLAB routines
as in demopanelscompare.m file, spml function from the splm package (default settings) and
lagsarlm/errorsarlm functions from the spdep package (default settings).

diagonal matrix whose diagonal elements are the spatial weighting matrix W (i.e., generating
Wpooted = I @ W). Since spdep only reports an asymptotically equivalent likelihood ratio
test comparing the specification at hand with a non-spatial model but no significance test for
spatial parameters, p values are reported for the spatial parameters instead of ¢ statistics.

The code for reproducing pooled panel specifications in splm and spdep is as follows:

R> sarpool <- spml(formula = fm, data = cigar, listw = lwcig,

+ model = "pooling", spatial.error = "none", lag = TRUE)

R> sempool <- spml(formula = fm, data = cigar, listw = lwcig,

+ model = "pooling", spatial.error = "b", lag = FALSE)

R> pool.lwcig <- mat2listw(kronecker(diag(l, 6), listw2mat(lwcig)))

R> sarpool.2 <- lagsarlm(formula = fm, data = cigar, listw = pool.lwcig)
R> sempool.2 <- errorsarlm(formula = fm, data = cigar, listw = pool.lwcig)

Despite some implementation differences, the parameter estimates of splm and spdep are
identical up to the sixth decimal. Those from MATLAB are also very similar. In terms of the
t statistics (and p values, for the spatial parameters), spdep and MATLAB (both based on
exact analytical covariances) show almost identical values for the fs. Interestingly, the values
for the spatial parameters presents some differences (0.24 vs. 0.16 and 0.06 vs. 0.03). Although
the covariance in splm is derived from a numerical Hessian, the results are very similar with
those from spdep. The only exception is the value of the ¢ statistic for the intercept, which is
higher in splm: 4.47 against 3.62.

8.2. Monte Carlo simulation

Since there is no available software to estimate the general model, we also performed a (small)
Monte Carlo simulation. The design is based on the two different specifications for the random
effects. For the fixed effects case, the demeaning technique used in estimation removes the
effects; and, therefore, the two specifications are indistinguishable.
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Estimate of A Estimate of p

A=-04 A=0.2 A=0.6 A=-04 A=0.2 A=0.6

p=-04 0.00016 —0.00077 —0.00078 —0.00579 —0.00288 —0.00865
(0.026) (0.022) (0.014) (0.091) (0.092) (0.090)

p=0.2 0.00028 —0.00121 —0.00163 —0.00521 —0.00637 —0.00549
(0.028) (0.026) (0.019) (0.085) (0.083) (0.083)

p=0.6 —0.00013 —0.00134 —0.00246 —0.00611 —0.00719 —0.00561
(0.030) (0.033) (0.028) (0.057) (0.058) (0.060)

Table 4: ML estimation results for all combinations of spatial parameters over 2,000 simulation
runs for the complete model with “Baltagi-type” random effects. Bias and RMSE (in brackets).

Estimate of A Estimate of p

A=-04 A=0.2 A=0.6 A=-04 A=0.2 A=0.6

p=-04 —0.00007 —0.00056 —0.00055 —0.0043 —0.00304 —0.00483
(0.026) (0.022) (0.014) (0.091) (0.090) (0.091)

p=0.2 —0.00034 0.00002  —0.00053 —0.00564 —0.00594 —0.00789
(0.028) (0.026) (0.019) (0.083) (0.082) (0.085)

p=0.6 0.00004 —0.00085 —0.00066 —0.00423 —0.00416 —0.00683
(0.032) (0.032) (0.027) (0.057) (0.057) (0.063)

Table 5: ML estimation results for all combinations of spatial parameters over 2,000 simulation
runs for the complete model with fixed effects. Bias and RMSE (in brackets).

The idiosyncratic innovations are distributed as a standard Normal, and the individual effects
as N(0,2). Along with an intercept term, we consider two regressors: x is sampled from a
Uniform [—7.5,7.5], z2 is drawn from a standard Normal.'? The coefficients for the intercept
as well as for the other regressors are set to 1. Our spatial layout is given by the 48 states
of the continental US. The spatial weighting matrix is a simple binary contiguity one. We
consider only one value for the number of time periods and set T' = 7. We allow three different
values for both A and p, namely —0.4, 0.2, and 0.6. For all experiments, 2,000 replications
are performed.

In the following tables, we report bias and root mean-squared error (RMSE) for all the
combinations of the spatial parameters. The tables on the left are relative to the estimate of
A, the ones on the right refer to p. Results are presented only for the two spatial parameters.2’

Tables 4-5 are relative to the maximum likelihood estimators. In particular, Table 4 presents
the results for the “Baltagi” random effects specification, Table 5 displays the results for the
fixed effects, and Table 6 is devoted to the “KKP” random effects specification. Tables 7
and 8 present results from the generalized moments estimator: the random effects model is
contained in Table 7, and the fixed effects model is displayed in Table 8.

When the true data generating process is assumed to be known, all estimators in the simulation
show negligible bias and low root mean squared error. The results are satisfactory, especially
considering our moderate sample size.

9The simulation parameters are chosen with a target R? of 0.7.
20Results for the other parameters are available from the authors.
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Estimate of A Estimate of p

A=-04 A=0.2 A=0.6 A=-04 A=0.2 A=0.6

p=-04 —-0.00028 —0.00053 —0.00043 —0.00516 —0.00934 —0.00857
(0.027) (0.022) (0.014) (0.083) (0.083) (0.084)

p=0.2 0.00159 —0.00089 —0.00079 —0.01408 —0.01342 —0.01276
(0.027) (0.026) (0.018) (0.079) (0.081) (0.077)

p=0.6 0.00143 0.00152 —0.00149 —0.0091 —0.01109 —0.01091
(0.030) (0.034) (0.027) (0.054) (0.055) (0.060)

Table 6: ML estimation results for all combinations of spatial parameters over 2,000 simulation
runs for the complete model with “KKP-type” random effects. Bias and RMSE (in brackets).

Estimate of A Estimate of p
A=—-04 A=02 X=06 A=-04 A=0.2 A=0.6
p=-—04 0.00022 0.00021 0.00034 —0.00706 —0.00256 —0.00287
(0.027)  (0.022) (0.014) (0.093) (0.093) (0.095)
p=0.2 0.00177 0.00078 0.00142 —0.00572  —0.0086 —0.01137
(0.028)  (0.026) (0.019) (0.081) (0.081) (0.085)
p=0.6 0.00089 0.00316 0.00357 0.00739 0.0072 0.00281
(0.033)  (0.034) (0.028) (0.159) (0.169) (0.151)

Table 7: Generalized moments estimation results for all combinations of spatial parameters
over 2,000 simulation runs for the complete model with “KKP-type” random effects. Bias and
RMSE (in brackets).

Estimate of A Estimate of p

A=-04 A=0.2 A=0.6 A=-04 A=0.2 A=0.6

p=-—04 —0.00007 —0.00010 —0.00047 0.00271 —0.00272 0.00155
(0.026) (0.022) (0.014) (0.095) (0.095) (0.094)

p=0.2 0.00088 0.00014  —0.00004 —0.00909 —0.01093 —0.00673
(0.028) (0.026) (0.019) (0.081) (0.082) (0.081)

p=20.6 0.00126 0.00147 0.00147 —0.01098 —0.00938 —0.01446
(0.032) (0.034) (0.028) (0.062) (0.062) (0.064)

Table 8: Generalized moments estimation results for all combinations of spatial parameters
over 2,000 simulation runs for the complete model with fixed effects. Bias and RMSE (in

brackets).

8.3. Numerical check of covariances

In the previous section we performed a numerical check of the precision of the estimates. We
now focus on the estimation of the coefficients covariance, and, hence, on the reliability of
inference.

We report the empirical 5% rejection rate for the z test of significance for both the spatial
autoregressive parameter A and the spatial autocorrelation coefficient p, for all combinations
of the two. The results can be interpreted as a measure of the empirical power (for nonzero
parameter values), and of the empirical size (for zero parameter values). The magnitude of
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RE (B) ML, test A =0 RE (B) ML, test of p =0
A=—-02 A=0 X=0.2 A=—-02 A=0 A=0.2
p=—0.2 1.000 0.056 1.000 p=—0.2 0.628 0.610 0.627
p=20 1.000 0.069 1.000 p=0 0.065 0.068 0.060
p=02 1.000 0.055 1.000 p=02 0.663 0.662 0.663
RE (KKP) ML, test A =0 RE (KKP) ML, test of p =0
A=—-02 A=0 A=02 A=—-02 A=0 A=02
p=—02 1.000 0.052 1.000 p=—0.2 0.680 0.708 0.686
p=20 0.999 0.065 1.000 p=0 0.059 0.067 0.056
p=0.2 1.000 0.059 1.000 p=0.2 0.696 0.684 0.686
FE ML, test A=10 FE ML, test of p =0
A=-02 A=0 X=0.2 A=-02 A=0 X=0.2
p=—02 1.000 0.076 1.000 p=—02 0.676 0.674 0.670
p=20 1.000 0.099 1.000 p=0 0.083 0.087 0.080
p=02 1.000 0.067 1.000 p=02 0.709 0.725 0.708

RE GM, test A = 0

A=-02 A= A=0.2
p=-—0.2 1.000 0.056 1.000
p=0 1.000 0.058 1.000
p=0.2 1.000 0.048 1.000

FE GM, test A =10
A=-02 A=0 AX=0.2

p=-—02 1.000 0.061 1.000
p=20 1.000 0.050 1.000
p=0.2 1.000  0.056 1.000

Table 9: Evaluation of covariance estimates: low correlation scenario. Empirical 5% rejection
rates of significance z tests for A (left column) and p (right column) for all combinations of
spatial parameters in (—0.2,0,0.2). Rejection rates are a measure of empirical size where the
parameter is set to zero, of empirical power elsewhere.

the deviation from the nominal size is assessed using the outcome of the test as a sample
from a binomial variate with probability equal to the nominal size and number of draws equal
to the sample size so that the standard error is 1/0.05 x 0.95/2000 and the 95% confidence
interval is approximately 0.04 — 0.06.

Table 9 reports the empirical rejection rates for all nine combinations of A = (—0.2,0,0.2)
and p = (—0.2,0,0.2).2" The low levels of spatial correlation are chosen in order to check
power against weak spatial dependence.

In Table 10 we report the same measures for a more clear-cut situation where the values of the

2 Tn both scenarios, in one simulation run of the combination A = 0,p = 0 both the RE (B) and the FE
maximum likelihood estimators returned a singular matrix error: both these results were discarded and in
these two cases the report is based on 1999 out of 2000 runs.
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RE (B) ML, test A =0 RE (B) ML, test of p =0
A=—06 A=0 X=0..6 A=—-06 A=0 X=0.56
p=—0.6 1.000 0.056 1.000 p=—0.6 1.000 1.000 1.000
p=20 1.000 0.069 1.000 p=0 0.068 0.068 0.058
p=0.6 1.000 0.051 1.000 p=0.6 1.000 1.000 1.000
RE (KKP) ML, test A =0 RE (KKP) ML, test of p =0
A=—-06 A=0 A=06 A=—-06 A=0 AX=06
p=—0.6 1.000 0.051 1.000 p=—0.6 1.000 1.000 1.000
p=20 1.000 0.065 1.000 p=0 0.058 0.067 0.054
p=0.6 1.000 0.067 1.000 p=20.6 1.000 1.000 1.000
FE ML, test A=10 FE ML, test of p =0
A=—-06 A=0 X=0.6 A=—-06 A=0 X=06
p=—0.6 1.000 0.077 1.000 p=—0.6 1.000 1.000 1.000
p=20 1.000 0.099 0.997 p=0 0.082  0.087 0.078
p=0.6 1.000 0.065 0.989 p=0.6 1.000 1.000 1.000

RE GM, test A = 0
A=-06 A=0 A=06

p=—0.6 1.000 0.056 1.000
p=0 1.000 0.058 1.000
p=0.6 1.000 0.058 1.000

FE GM, test A =10
A=—-06 A=0 X=0.6

p=—0.6 1.000 0.060 1.000
p=20 1.000 0.050 1.000
p=0.6 1.000 0.061 1.000

Table 10: Evaluation of covariance estimates: mpderate correlation scenario. Empirical 5%
rejection rates of significance z tests for A (left column) and p (right column) for all combi-
nations of spatial parameters in (—0.6,0,0.6). Rejection rates are a measure of empirical size
where the parameter is set to zero, of empirical power elsewhere.

spatial parameters are chosen over combinations of —0.6,0,0.6. This simulation is designed
to assess power against substantial spatial correlation.

Empirical size is generally reasonable in both scenarios, with the partial exception of FE
models (discussed below). As for the rest, the “significance region” (0.4 — 0.6) contains most
of the results. In both maximum likelihood RE cases, slight overrejection happens mostly
in the rather overparameterized case when our SARAR specification is applied to the DGP
where both A\ = p = 0; yet, the rejection rate never reaches 7%. The rejection rate is also
consistently satisfactory for all combinations of A and p for the GM estimators, especially
when the small size of the test sample has been taken into account.

Test power is also reasonably good, especially for the test on A, where even in the low spatial
correlation scenario the covariance estimates are precise enough to always tell its presence in
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any of the models considered. The test on p is not applicable to the GM models, which do
not allow estimating the covariance of this parameter. As for the ML estimators, in the low
spatial correlation scenario, estimates of the power of the test are all close to 70%. When the
level of spatial correlation is higher, the power approaches one.

The FE case deserves special attention. Some of the rejection rates (8%,) are well above the
upper limit of the “significance region”. This result might at first be considered a sign of lack of
precision of the numerical Hessian approximation used in the FE SARAR estimator. However,
the same evidence is confirmed for the FE SAR and SEM estimators, which implement the
analytical expression of the parameter covariance. We believe that this result might be due to
the serial correlation induced in the residuals by the demeaning transformation. We performed
simulation experiments that seem to confirm our hypothesis. From those experiments, the
results indicate that the overrejecting behavior is more serious for small 7' (i.e., T' = 3), with
rejection rates over 12%, and disappears when T is large (i.e., T' = 25). This seems therefore
a methodological issue that merits further research, rather than a software implementation
problem.?? Considering that in fixed effects models the distinction between the Baltagi and
KKP specifications vanishes, in light of the above result it is advisable to use the spgm function
for estimating panels of short-to-moderate time dimension.

Covariance estimation through numerical Hessians proved reliable and precise, also when
compared with analytical expressions.?> One final issue relates to the emergence of negative
estimates for the parameters’ variance. This occurs almost exclusively when the data gen-
erating process is one of the nested specifications (i.e., the value of the spatial parameter is
zero), with frequencies of around 3%. Generalized moments estimators, on the other hand,
are completely free from this problem.

9. Conclusions

The analysis of spatial panel data is a sub-field of econometrics that has lately been experi-
encing increased methodological progress. Applied applications however are hindered by the
lack of readily available software. The R environment is ideal for its development because of
the vast infrastructure already in place for analyzing spatial data.

splm is a new package for the estimation and diagnostic testing of various spatial panel models.
Supported estimation techniques include ML as well as GM. Lagrange multiplier tests along
with a spatial version of the Hausman test are also provided.

The available techniques cover a good part of the recent developments in the spatial panel
data literature, providing easy access to estimation and tests procedures not yet available in
any commercial software. Some of the functionalities in splm are also available as MATLAB or
Stata code, but this is the first attempt to provide a comprehensive tool within an organized
statistical programming environment.

22The fact that time-demeaning of serially uncorrelated residuals induces serial correlation with a coefficient
of =1/(T — 1) is documented in Wooldridge (2002, p. 270, Equation 10.52). The Monte Carlo simulations on
which these considerations are based are available in the supplementary files. This problem was first recognized
by Lee and Yu (2010c). They show that the direct approach will produce inconsistent estimates of some of
the parameters (including the variance). As already mentioned in Footnote 12, they suggest an alternative
transformation which corrects for this bias. In a future release of splm we plan to add this feature.

2Gimulation results regarding the comparison between numerical and analytical Hessian-based covariance
estimation are available in the supplementary files.
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Whenever possible, the package is consistent with the standard conventions of the R environ-
ment and in particular it borrows functionalities from spdep and plm. A new class had to
be defined for spatial panel model objects, along with methods for providing the standards
expected by the average R user. We also achieved interoperability with generic functions, e.g.,
those available in other packages such as car or Imtest.

The main developments in the foreseeable future should be directed toward the inclusion
of new methodologies (e.g., Lee and Yu 2010a,c; Pesaran and Tosetti 2011, among others).
Furthermore, we plan to extend the package and open it to the development of dynamic
spatial panel data models. Different approaches to the implementation of the VC matrix of
the estimators are also on our research agenda.
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