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Abstract

It has been well documented that ignoring measurement error may result in substan-
tially biased estimates in many contexts including linear and nonlinear regressions. For
survival data with measurement error in covariates, there has been extensive discussion in
the literature with the focus typically centered on proportional hazards models. The im-
pact of measurement error on inference under accelerated failure time models has received
relatively little attention, although these models are very useful in survival data analysis.
He et al. (2007) discussed accelerated failure time models with error-prone covariates and
studied the bias induced by the naive approach of ignoring measurement error in covari-
ates. To adjust for the effects of covariate measurement error, they described a simulation
and extrapolation method. This method has theoretical advantages such as robustness
to distributional assumptions for error prone covariates. Moreover, this method enjoys
simplicity and flexibility for practical use. It is quite appealing to analysts who would
like to accommodate covariate measurement error in their analysis. To implement this
method, in this paper, we develop an R package for general users. Two data sets arising
from clinical trials are employed to illustrate the use of the package.

Keywords: accelerated failure time models, measurement error, R package, simulation and
extrapolation algorithm, survival data.

1. Introduction

There has been extensive interest in discussing inference methods for survival data with
covariates subject to measurement error. It is known that standard inferential procedures
may produce biased estimation if measurement error is not properly taken into account (e.g.,
Carroll et al. 2006). With proportional hazards models a number of methods have been
proposed to correct bias induced by measurement error (e.g., Prentice 1982; Li and Lin 2003;
Yi and Lawless 2007).
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Although the impact of covariate measurement error on inferential procedures is well un-
derstood for proportional hazards models, there is little discussion about its impact under
accelerated failure time (AFT) models, which have proved to be useful in survival analysis
(e.g., Lawless 2003).

Unlike the proportional hazards model that focuses modeling on the hazard function, an AFT
model directly facilitates the relationship between the failure time (or its transformation)
and covariates via a regression model. This formulation allows a direct and transparent
interpretation of covariate effects on the change of the failure time. As noted by D. R. Cox
(Reid 1994, p. 450), an AFT model is “in many ways more appealing because of its quite
direct physical interpretation”. In certain applications AFT models could provide better fit
to data than proportional hazards models (e.g., Zeng and Lin 2007).

Under Weibull regression models, Giménez et al. (1999, 2006) investigated inference methods
using the corrected score approach discussed by Nakamura (1992). With general AFT models,
He et al. (2007) discussed inference procedures to account for effects of covariate measurement
error using a simulation-extrapolation (SIMEX) approach. The developed SIMEX method
for AFT models is simple to implement and flexible to cover many applications. Moreover,
this method is robust in a sense that distributions of covariates, including error-prone covari-
ates, are left unspecified. Because of those features, this method becomes quite appealing
to analysts who would like to accommodate covariate measurement error in their analysis of
survival data.

Despite that there have been great advances on methodology of addressing covariate mea-
surement error for survival analysis, the methods developed in the literature have not enjoyed
widespread use in practice. Reluctance to adopt these methods may be due, in part, to the
lack of available software to implement these methods. To address this practical issue, we
develop an R package (R Development Core Team 2011), entitled simexaft, to implement the
SIMEX method discussed in He et al. (2007) so that this method can be accessible for general
users.

The remainder is organized as follows. Section 2 introduces the notation and model for-
mulation. In Section 3 we describe the SIMEX method and its implementation in R. The
developed R package is illustrated in Section 4 with two survival data sets: one arising from
a subset of Busselton Health Study (Knuiman et al. 1994), and the other from a multi-center
clinical trial (Fuchs et al. 1994). General discussion is included in the last section. The
developed R package is available from the Comprehensive R Archive Network (CRAN) at
http//CRAN.R-project.org/package=simexaft.

2. Notation and framework

For i = 1, 2, . . . , n, let Ti and Ci be the failure and censoring times for subject i, respectively,
and δi be the censoring indicator variable taking value 1 if Ti ≤ Ci and 0 otherwise. Denote
ti = min(Ti, Ci). Independent censoring is assumed. Let xi = (xi1, xi2, . . . , xip)

> be the p× 1
covariates subject to possible measurement error, and zi the vector of covariates free of error.

Response variable Yi = log(Ti) is characterized by the AFT model, given by

Yi = β>x xi + β>z zi + εi (1)

where β = (β>x ,β
>
z )> is the vector of regression parameters of interest, and βz may include
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the intercept coefficient. Here εi assumes a distribution G(·) with parameters α. Common
choices of the distribution G(·) include Weibull, exponential, Gaussian, logistic, log-normal
and log-logistic distributions (e.g., Lawless 2003).

Let Wi be an observed version of covariate xi. Wi and xi are assumed to follow a classical
additive measurement error model. That is, conditional on xi and zi,

Wi = xi + ei, (2)

where ei follows, independent of xi and zi, a normal distribution with mean 0 and co-
variance matrix Σe = [σjk]p×p. Here we assume nondifferential measurement error, i.e.,
f(Yi|xi, zi,Wi) = f(Yi|xi, zi). This mechanism says that the contribution from the observed
Wi is not informative, given the true covariates xi and zi. This mechanism applies commonly
to many practical problems, especially when the true and observed covariates occur at a fixed
time point and the response is measured at a later time (Carroll et al. 2006, p. 36).

The parameters in Σe can be estimated, for example, when repeated measurements for xi
are available. In other situations, the parameters in Σe may be assumed known which is,
for instance, based on prior knowledge or other similar studies. When conducting sensitivity
analysis to assess the impact of different degrees of measurement error on estimation of the
response parameters, the parameters in Σe are typically specified to be known based on
background information about the measurement process.

Let θ = (β>,α>)> be the parameters for the response model and q be its dimension. Primary
interest often centers on estimating parameters β in order to study the relationship between
the response Yi and covariates (x>i , z

>
i )>. Under the true response model (1) let

Li(θ; yi,xi, zi) = [g(yi − β>x xi − β>z zi;α)]δi [1−G(yi − β>x xi − β>z zi;α)]1−δi

be the likelihood contributed from subject i, where g(·) is the density function corresponding
to the distribution function G(·), and yi = log(ti). Denote the log likelihood as

`(θ; y,x, z) =
n∑
i=1

`i(θ; yi,xi, zi)

where `i(θ; yi,xi, zi) = logLi(θ; yi,xi, zi). If there is no measurement error present in covari-
ates, then the maximum likelihood estimator θ̂ is obtained by solving

∂`(θ; y,x, z)

∂θ
= 0, (3)

and this estimator is consistent for θ and has an asymptotic normal distribution. However,
when error is present in covariates, the resulting estimator can be substantially biased (e.g.,
Li and Lin 2003; Yi and He 2006; He et al. 2007).

3. Simulation extrapolation method

3.1. SIMEX algorithm

To conduct valid inference for θ in the presence of covariate measurement error, He et al.
(2007) developed a SIMEX method. The basic idea of SIMEX adjustment is to add additional
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variability to the observed measurement Wi in order to establish the trend how measurement
error-induced bias may be related to the variance of induced measurement error, and then
extrapolate this trend back to the case without measurement error. (Carroll et al. 2006,
p. 97). This method is robust in a sense that the distribution of xi is unspecified. Moreover,
it is easy to implement. In this subsection we describe the SIMEX method developed in He
et al. (2007). Typically, we consider two practical cases for the parameters in Σe: (i) the
parameters in Σe are given as fixed values; and (ii) the parameters in Σe are not known, but
repeated measurements of xi are available. The SIMEX method applies to both cases with
the same steps except for the first step of data simulation. Details are given as follows.

Given an integer B and a sequence Λ = {λ1, λ2, . . . , λM} taken from [0, λM ], where λ1 = 0,
we use the following algorithm to obtain the estimates and associated standard errors of the
parameters θ.

Simulation step

In case (i) in which the parameters in Σe are known, we generate, for each i = 1, . . . , n, a
sequence of variables uib ∼MVN(0,Σe) for b = 1, 2, . . . , B. For each λ ∈ Λ, set

Wi(b, λ) = Wi +
√
λ · uib. (4)

The array {Wi(b, λ)} of artificially simulated data will be used in the next step for estimation
of the parameters.

In case (ii) in which the parameters in Σe are unknown but repeated measurements for xi
are available, we need to modify Equation 4 by making it be computable because Σe contains
unknown parameters. To be specific, let Vij , j = 1, . . . ,mi, denote the repeated measurements
for true covariate xi, i.e., Vij and xi are linked by the model

Vij = xi + eij eij
iid∼ MVN(0,Σe), j = 1, . . . ,mi,

where Σe is unknown, and eij ’s are independent of xi, zi,Yi. Instead of using Equation 4 to
generate Wi(b, λ), we set, for given b and λ,

Wi(b, λ) = V̄i +
√
λ/mi

mi∑
j=1

cij(b)Vij ,

where V̄i = 1
mi

∑mi
j=1 Vij , and ci(b) = (ci1(b), . . . , cimi(b))

′ is any normalized contrast satisfy-

ing
∑mi
j=1 cij(b) = 0 and

∑mi
j=1 c

2
ij(b) = 1. A simple way to generate such a contrast ci(b) is to

use a normal variate generation. That is, for each b and i = 1, . . . , n, independently generate
mi normal random variates dij(b), j = 1, . . . ,mi, from a standard normal distribution N(0, 1),

then calculate d̄i(b) = 1
mi

∑mi
j=1 dij(b). Setting cij(b) =

dij(b)−d̄i(b)√∑mi
l=1

(dil(b)−d̄i(b))2
would result in the

required contrasts ci(b) (Devanarayan and Stefanski 2002).

Estimation step

For given λ and b, we obtain an estimate θ̂(b, λ) by solving Equation 3 with xi replaced by
Wi(b, λ). For r = 1, 2, . . . , q, let θ̂r(b, λ) denote the rth component of θ̂(b, λ), and Ω̂r(b, λ) be
the corresponding variance estimate, given by the rth diagonal element of[

−
n∑
i=1

∂2

∂θ∂θ>
`i(θ; yi,Wi(b, λ), zi)|θ=θ̂(b,λ)

]−1

.
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The following quantities are then calculated: θ̂r(λ) = 1
B

∑B
b=1 θ̂r(b, λ), Ω̂r(λ) = 1

B

∑B
b=1 Ω̂r(b, λ),

Ŝr(λ) = 1
B−1

∑B
b=1(θ̂r(b, λ)− θ̂r(λ))2, and τ̂r(λ) = Ω̂r(λ)− Ŝr(λ).

Extrapolation step

For r = 1, 2, . . . , q, fit a regression model to each of the sequences {(λ, θ̂r(λ)) : λ ∈ Λ} and
{(λ, τ̂r(λ)) : λ ∈ Λ}, respectively, and extrapolate it to λ = −1. Let θ̂r and τ̂r denote the
corresponding predicted values at λ = −1. Then θ̂ = (θ̂1, θ̂2, . . . , θ̂q)

> is the SIMEX estimator

of θ, and
√
τ̂r is the associated standard error for the estimator θ̂r (r = 1, 2, . . . , q).

Although the theory of the SIMEX method is not trivial, an example from simple linear
regression can well illustrate the idea of this method. Suppose the response variable Y and
the covariate x is modeled as

Y = β0 + βxx+ ε,

where ε has mean 0. If replacing x with its observed measurement W , modeled by W = x+ e
where e has mean 0 and variance σ2

e , and is independent of ε and x, then the resulting least
squares estimator β̂∗x for βx converges in probability to β∗x = (σ2

x/(σ
2
x + σ2

e))βx, instead of βx.
Here σ2

x is the variance of x. To see how the bias may be related to the degree of measurement
error in x, we perturb W by adding additional error to create W (b, λ) = W +

√
λub where ub

is independently generated from a N(0, σ2
e) distribution. Intuitively, if regressing Y over the

perturbed version W (b, λ), then the resulting estimator β̂x(b, λ) would converge in probability
to β∗x(b, λ) = (σ2

x/(σ
2
x + (1 + λ)σ2

e))βx. This expression indicates the dependence of the
asymptotic bias on the magnitude of measurement error - the less degree of measurement
error (equivalently, a smaller λ), the smaller asymptotic bias. In particular, if λ shrinks to
0, β̂x(b, 0) recovers the naive estimator β̂∗x; but if λ takes value -1, then the limit β∗x(b,−1) is
identical to the true parameter βx.

The SIMEX method was initially proposed by Cook and Stefanski (1994) for analyzing com-
plete univariate data with error-prone covariates under parametric models. He et al. (2007)
generalized this method to handle survival data for which censoring is a typical feature. The
SIMEX approach is very appealing because of its simplicity to implement and no requirement
of modeling the true covariates xi (often not observable). To implement this method, we need
to address a few issues. The specification of B or Λ is not unique. Technically speaking, a
larger value of B leads to a better SIMEX estimator in the sense that Monte Carlo sampling
error in the simulation step can be reduced. For practical use, however, choosing B = 50, 200
or 500, and taking Λ to be the equal cut points of interval [0, 1] or [0, 2] with M = 5, 10 or 20,
can often lead to fairly reasonable SIMEX estimates (e.g., Carroll et al. 2006). Another source
of variation in obtaining SIMEX estimators lies in the choice of an extrapolation function. The
exact extrapolation function is usually not known. Instead, a user-specified approximation is
employed, hence SIMEX estimators are usually approximately consistent. Linear regression
or quadratic regression function tends to be the most widely used replacement of the exact
extrapolation function. Although SIMEX estimators are often not exactly consistent, they
greatly outperform naive estimators for which measurement error is not properly taken into
account. The performance of the SIMEX method has been shown superior in some highly
nonlinear models (e.g., Carroll et al. 1996; Wang et al. 1998).
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3.2. Implementation in R

The SIMEX procedures described above are implemented in the package simexaft (which
depends on packages survival, Therneau and Lumley 2011, and mvtnorm, Genz et al. 2011
and Genz and Bretz 2009).

Specifically, the function simexaft produces the SIMEX estimates for interesting parameter
β and other parameters along with their associated SIMEX standard errors and p values. The
form of calling function simexaft is given by

simexaft(formula = formula(data), data = parent.frame(),

SIMEXvariable = indicator, repeated = FALSE, repind = list(),

err.mat = err.mat, B = 50, lambda = seq(0, 2, 0.1),

extrapolation = "quadratic", dist = "weibull")

with the arguments being described as follows:

� formula: specifies the model to be fitted, with the variables coming with data. This
argument has the same format as the formula argument in the function survreg from
survival, taking the form Surv(time, censoring indicator) ~ covariates.

� SIMEXvariable: the index of the covariate variables that are subject to measurement
error.

� repeated: set to TRUE or FALSE to indicate if there are repeated measurements for the
mis-measured variables, i.e., corresponding to cases (i) and (ii) in Section 3.1, respec-
tively.

� repind: the index of the repeated measurement variables for each mis-measured vari-
able. It is of an R list form. If repeated = TRUE, repind must be specified.

� err.mat: specifies the covariance matrix in error model (2). If repeated = FALSE,
err.mat must be specified.

� B: the number of simulated samples for the simulation step. The default is set to be 50.

� lambda: the set of Λ = {λ1, . . . , λM} with λ1 = 0 that is used as the grids for the
extrapolation step.

� extrapolation: specifies the function form for the extrapolation step. The options are
"linear" and quadratic". The default is set to be "quadratic".

� dist: specifies a parametric distribution that is assumed in AFT model (1). This ar-
gument is the same as the dist option in the function survreg, and it can take distri-
butions such as "weibull", "exponential", "gaussian", "logistic", "lognormal",
and "loglogistic".

4. Examples

To illustrate the usage of the developed R package simexaft, we apply the package to two
real data sets, corresponding to cases with or without repeated measurements for error-
contaminated covariates.
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The first example is based on a subset of the real data arising from the Busselton Health
Study (Knuiman et al. 1994). The original data were analyzed in He et al. (2007). The
data set analyzed here includes survival information for a randomly selected subset of 100
females. The survival time is taken as the age at death, as in He et al. (2007). Systolic
blood pressure (xi1), cholesterol level (xi2), age at registration (zi1), body mass index (zi2)
and smoking status are risk factors related to mortality. Systolic blood pressure is rescaled as
log(xi1 − 50), as in Carroll et al. (2006, p. 113). Smoking status is classified by two dummy
indicators, denoted by zi3 and zi4, where zi3 = 1 indicates an individual is an ex-smoker, and
0 otherwise; zi4 = 1 represents that an individual is a current smoker, and 0 otherwise. It is
known that measurements of risk factors xi1 and xi2 are subject to substantial error due to
the nature of these covariates.

The logarithms of the failure times are postulated by model

Yi = β0 + βx1xi1 + βx2xi2 + βz1zi1 + βz2zi2 + βz3zi3 + βz4zi4 + εi/α

where error εi follows a specific distribution. The standard extreme value distribution is
assumed for an illustration. We assume that errors in both risk factors xi1 and xi2 can be
represented by model (2).

The developed R package simexaft can be downloaded and installed from CRAN. The package
can then be loaded in R:

R> library("simexaft")

Next, load the data that are properly organized with the variable names specified. In the
example here, the data set named as BHS is included by issuing

R> data("BHS")

R> dataset <- BHS

R> dataset$SBP <- log(dataset$SBP - 50)

For illustrative purposes, we use settings with B = 50, λM = 2 and M = 20. In this example,
we assume the parameters in Σe are known. This is a typical case when conducting sensitivity
analysis. Here set σ2

11 = σ2
22 = 0.752 and σ12 = σ21 = 0 as an example.

The naive AFT approach without considering measurement errors in covariates gives the
output:

R> formula <- Surv(SURVTIME,DTHCENS) ~ SBP + CHOL + AGE + BMI +

+ SMOKE1 + SMOKE2

R> out1 <- survreg(formula = formula, data = dataset, dist = "weibull")

R> summary(out1)

Call:

survreg(formula = formula, data = dataset, dist = "weibull")

Value Std. Error z p

(Intercept) 12.5302 3.3587 3.731 0.000191

SBP -1.2524 0.7766 -1.613 0.106807

CHOL -0.0512 0.1096 -0.467 0.640360



8 SIMEX R Package for Accelerated Failure Time Models

AGE -0.0603 0.0223 -2.712 0.006692

BMI 0.0337 0.0400 0.842 0.399920

SMOKE1 -0.7392 0.3993 -1.851 0.064158

SMOKE2 -0.8232 0.4178 -1.970 0.048805

Log(scale) -0.5142 0.2079 -2.474 0.013375

Scale= 0.598

Weibull distribution

Loglik(model)= -83.5 Loglik(intercept only)= -98.5

Chisq= 30.02 on 6 degrees of freedom, p= 3.9e-05

Number of Newton-Raphson Iterations: 9

n= 100

To adjust for possible effects of measurement error in variables SBP and CHOL, we call the
developed function simexaft for the analysis:

R> set.seed(120)

R> ind <- c("SBP", "CHOL")

R> err.mat <- diag(rep(0.5625, 2))

R> out2 <- simexaft(formula = formula, data = dataset, SIMEXvariable = ind,

+ repeated = FALSE, repind = list(), err.mat = err.mat, B = 50,

+ lambda = seq(0, 2, 0.1), extrapolation = "quadratic", dist = "weibull")

R> summary(out2)

$coefficients

Estimate Std. Error P value

Intercept 16.33008771 3.91664272 3.053897e-05

SBP -2.40116761 0.93348413 1.010358e-02

CHOL -0.05630569 0.12982884 6.645124e-01

AGE -0.04846142 0.02063056 1.882334e-02

BMI 0.05933523 0.04278722 1.655177e-01

SMOKE1 -0.60168913 0.36963556 1.035694e-01

SMOKE2 -0.79819843 0.39230144 4.188551e-02

$scalereg

(Intercept)

0.5791607

$extrapolation

[1] "quad"

$SIMEXvariable

[1] "SBP" "CHOL"

attr(,"class")

[1] "summary.simaxaft"
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Now we demonstrate the use of simexaft for the case that the parameters in Σe is unknown,
but repeated measurements for error-prone covariates are available. This is illustrated by
an example from a study of pulmonary exacerbations and rhDNase. Fuchs et al. (1994)
reported on a double-blind randomized multicenter clinical trial designed to assess the effect
of rhDNase, a recombinant deoxyribonuclease I enzyme, versus placebo on the occurrence
of respiratory exacerbations among patients with cystic fibrosis. The rhDNase operates by
digesting the extracellular DNA released by leukocytes that accumulate in the lung as a result
of bacterial infection, and so it was expected that aerosol administration of rhDNase would
reduce the incidence of exacerbations (Cook and Lawless 2007, p. 365).

Six hundred and forty five patients were recruited in this trial. Each subject was randomly
assigned to treatment or placebo group, and was followed up approximately 169 days for
pulmonary exacerbations. Data on the occurrence and resolution of all exacerbations were
recorded. The forced expiratory volume (FEV) was considered a risk factor and was mea-
sured twice at randomization. The response is defined as the logarithm of the time from
randomization to the first pulmonary exacerbation.

To investigate the effect of the FEV on the time to first pulmonary exacerbation, we postulate
the model

Yi = β0 + β1 · FEV + β2 · trt + εi/α

where trt is the indicator of treatment, and error εi follows a specific distribution. The stan-
dard extreme value distribution is taken again for illustrations. We assume that measurement
errors in risk factors FEV can be represented by model (2).

First, load the data, named rhDNase, into R by issuing

R> data("rhDNase")

Two repeated measurements for covariate FEV , fev and fev2, are called in simexaft using
the option repeat = TRUE, along with a list of index of the repeated measurements.

Existing survreg can provide the analysis with no measurement error effects properly taken
into account, by merely taking the FEV measurement as the average of the two repeated
observations:

R> rhDNase$fev.ave <- (rhDNase$fev + rhDNase$fev2)/2

R> output1 <- survreg(Surv(time2, status) ~ trt + fev.ave, data = rhDNase,

+ dist = "weibull")

R> summary(output1)

Call:

survreg(formula = Surv(time2, status) ~ trt + fev.ave, data = rhDNase,

dist = "weibull")

Value Std. Error z p

(Intercept) 4.5183 0.15470 29.21 1.61e-187

trt 0.3570 0.12179 2.93 3.38e-03

fev.ave 0.0193 0.00275 7.00 2.50e-12

Log(scale) -0.0782 0.05959 -1.31 1.89e-01

Scale= 0.925
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Weibull distribution

Loglik(model)= -1617.5 Loglik(intercept only)= -1652.9

Chisq= 70.98 on 2 degrees of freedom, p= 3.3e-16

Number of Newton-Raphson Iterations: 5

n= 641

Similar analysis results can be obtained if using the simexaft function to accommodate co-
variate error effects. In this example, we note that variation in the two repeated measurements
of FEV is too minor to suggest different results obtained from the methods of ignoring or
accounting for covariate measurement error. Here we perturb the two repeated observations
by adding additional noise, e.g., 15% of sample standard error, and then apply the developed
R function to produce the output. This artificial procedure may not be customary when one
focuses on a genuine data analysis. However, it is useful for illustration purposes. Moreover,
this approach can provide some insights if conducting sensitivity analyses is of prime interest.

R> set.seed(120)

R> fev.error <- rhDNase$fev + rnorm(length(rhDNase$fev),

+ mean = 0, sd = 0.15 * sd(rhDNase$fev))

R> fev.error2 <- rhDNase$fev2 + rnorm(length(rhDNase$fev2),

+ mean = 0, sd = 0.15 * sd(rhDNase$fev2))

R> dataset2 <- cbind(rhDNase[, c("time2", "status", "trt")],

+ fev.error, fev.error2)

R> formula <- Surv(time2, status) ~ trt + fev.error

R> ind <- "fev.error"

Below is the output obtained from the naive approach that ignores covariate measurement
error for perturbed data.

R> fev.error.c <- (fev.error + fev.error2)/2

R> output2 <- survreg(Surv(time2, status) ~ trt + fev.error.c,

+ data = rhDNase, dist = "weibull")

R> summary(output2)

Call:

survreg(formula = Surv(time2, status) ~ trt + fev.error.c, data = rhDNase,

dist = "weibull")

Value Std. Error z p

(Intercept) 4.5303 0.15413 29.39 6.66e-190

trt 0.3555 0.12191 2.92 3.54e-03

fev.error.c 0.0190 0.00273 6.98 3.05e-12

Log(scale) -0.0772 0.05962 -1.30 1.95e-01

Scale= 0.926

Weibull distribution

Loglik(model)= -1617.9 Loglik(intercept only)= -1652.9

Chisq= 70.02 on 2 degrees of freedom, p= 6.7e-16
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Number of Newton-Raphson Iterations: 5

n= 641

Now we apply the developed function simexaft to adjust for the measurement error effects,
with the perturbed data analyzed using the repeated measurements option.

R> formula <- Surv(time2, status) ~ trt + fev.error

R> output3 <- simexaft(formula = formula, data = dataset2,

+ SIMEXvariable = ind, repeated = TRUE,

+ repind = list(c("fev.error", "fev.error2")),

+ err.mat = NULL, B = 50, lambda = seq(0, 2, 0.1),

+ extrapolation = "quadratic", dist = "weibull")

R> summary(output3)

$coefficients

Estimate Std. Error P value

Intercept 4.51642881 0.155619376 0.000000e+00

rhDNase$trt 0.36127209 0.121934403 3.048152e-03

fev.error 0.01924672 0.002755194 2.836176e-12

$scalereg

(Intercept)

0.9252959

$extrapolation

[1] "quad"

$SIMEXvariable

[1] "fev.error"

attr(,"class")

[1] "summary.simaxaft"

The function simexaft can store individual estimated covariate coefficients in the simulation
step, and this enables us to show the extrapolation curve through the developed R function
plotsimexaft. The plotsimexaft function plots the extrapolation of the estimate of each
covariate effect with the option of "linear", "quadratic", or "both" to view the performance
of different extrapolants. Figure 1 displays the graph for the variable SBP in the first example
for which both linear and quadratic extrapolants are applied from the following command

R> plotsimexaft(out2, "SBP", "both", ylimit = c(-3, 1))

5. Discussion

The impact of measurement error in covariates is well documented for survival data that are
typically postulated by proportional hazards models, but there is relatively little discussion
on AFT models. Yi and He (2006) explored the measurement error problem for bivariate



12 SIMEX R Package for Accelerated Failure Time Models

●

●

●

●
● ● ● ● ●

● ● ●
●

●
● ● ● ● ● ● ●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
3

−
2

−
1

0
1

Extrapolation Effect on SBP

λ

E
st

im
at

ed
 C

oe
ffi

ci
en

t

●

●

Linear Extrapolation
Quadratric Extrapolation

Figure 1: Display of the SIMEX estimate for the first example: Green dots represent the
estimates β̂x1(λ) for different values of λ; the red dot is the SIMEX estimate obtained from
the linear extrapolation; and the blue dot is the SIMEX estimate obtained from the quadratic
extrapolation.

survival data under AFT models, but their discussion focused on the AFT models with normal
error distributions. To accommodate general distributional forms, He et al. (2007) describe a
simulation based method that is simple to implement. For practical interest, we develop an
R package simexaft to adjust for biases induced by covariate measurement error under AFT
models. Our illustrations show that the developed package is simple to use. It is anticipated
that such development is of great interest to data analysts when handling survival data with
covariate measurement error. The R package simexaft is available from the Comprehensive R
Archive Network at http//CRAN.R-project.org/package=simexaft.

Acknowledgments

The authors acknowledge the two anonymous reviewers for their comments. The research
of He and Yi was supported by the Natural Sciences and Engineering Research Council of
Canada.

References
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