
JSS Journal of Statistical Software
January 2012, Volume 46, Issue 5. http://www.jstatsoft.org/

Multi-Objective Parameter Selection for Classifiers

Christoph Müssel
University of Ulm

Ludwig Lausser
University of Ulm

Markus Maucher
University of Ulm

Hans A. Kestler
University of Ulm

Abstract

Setting the free parameters of classifiers to different values can have a profound im-
pact on their performance. For some methods, specialized tuning algorithms have been
developed. These approaches mostly tune parameters according to a single criterion, such
as the cross-validation error. However, it is sometimes desirable to obtain parameter
values that optimize several concurrent – often conflicting – criteria. The TunePareto
package provides a general and highly customizable framework to select optimal param-
eters for classifiers according to multiple objectives. Several strategies for sampling and
optimizing parameters are supplied. The algorithm determines a set of Pareto-optimal
parameter configurations and leaves the ultimate decision on the weighting of objectives
to the researcher. Decision support is provided by novel visualization techniques.

Keywords: classification, parameter tuning, multi-objective optimization, R.

1. Introduction

Many state-of-the-art classifiers have free parameters that influence their behavior like gen-
eralization performance and robustness to noise. Choosing the proper parameters is an im-
portant aspect of adapting classifiers to specific types of data. For example, tuning the cost
and kernel parameters of support vector machines is essential for obtaining sensible results
(Chang and Lin 2001; Fröhlich and Zell 2005; Pontil and Verri 1998). Specialized param-
eter tuning approaches for classifiers have been developed. Chapelle et al. (2002) optimize
support vector machine (SVM) parameters by a gradient descent of different estimates of
the generalization error. Various evolutionary algorithms and swarm algorithms have been
designed to optimize SVM parameters (e.g., Chunhong and Licheng 2004; Zhang et al. 2009;
de Souza et al. 2006; Kapp et al. 2009). Kalos (2005) suggests a particle swarm optimization
algorithm to determine the structure of neural networks. Kohavi and John (1995) introduce
a general framework that optimizes a classifier according to its cross-validation error in a
best-first search algorithm. Sequential parameter optimization (Bartz-Beielstein et al. 2005;

http://www.jstatsoft.org/

2 Multi-Objective Parameter Selection for Classifiers

Bartz-Beielstein 2006) is another parameter tuning framework that tries to cope with the
stochastically disturbed results of search heuristics by repeated evaluations. For this method-
ology, the R (R Development Core Team 2011) package SPOT (Bartz-Beielstein et al. 2011)
has been developed. Also other R packages include specialized tuning functions for classifiers.
The e1071 package (Dimitriadou et al. 2010) provides a generic tuning function that opti-
mizes the classification error for some classifiers, such as k-nearest neighbour, SVMs (Vapnik
1998), decision trees (Breiman et al. 1984), and random forests (Breiman 2001). The tuneRF

function in the randomForest package tunes the number of variables per split in a random
forest with respect to the out-of-bag error (Liaw and Wiener 2002).

Most frequently, parameters are tuned in such a way that they optimize a single criterion, such
as the cross-validation error, which can be a good estimate of the generalization performance.
However, it is sometimes desirable to obtain parameter values that optimize several concurrent
criteria at the same time. In this context, it is often hard to decide which trade-off of these
criteria matches the requirements best. The discipline of multiple criteria decision analysis
(MCDA) analyzes formal approaches to support decision makers in the presence of conflicting
criteria (see, e.g., Belton and Stewart 2002).

One possibility of optimizing a number of criteria is combining them in a weighted sum of
objective functions. Still, this requires the definition of a fixed weighting, which is often
highly subjective and sensitive to small changes in these weights (Deb 2004). A more flexible
way of optimization is based on the identification of Pareto-optimal solutions (Laux 2005).
Here, all objectives are treated separately, which means that there is no strict ordering of
solutions. This selection procedure retrieves all optimal trade-offs of the objectives and leaves
the subjective process of selecting the desired one to the researcher. To date, parameters are
almost always tuned in a single-objective manner. Exceptions are a specialized two-objective
genetic algorithm that tunes the parameters of SVMs according to training error and model
complexity in terms of number and influence of the support vectors (Igel 2005; Suttorp and
Igel 2006). Also Zhang (2008) converts a multi-objective optimization of SVM parameters into
a single-objective optimization by introducing weight parameters to control the trade-offs.

We developed the TunePareto package for the statistical environment R (R Development Core
Team 2011) that allows for a flexible selection of optimal parameters according to multiple
objectives. Unlike previously published specialized tuning algorithms, this general approach is
able to identify optimal parameters for arbitrary classifiers according to user-defined objective
functions. Parallelization support via the snowfall package (Knaus et al. 2009) is also included.
The software further provides multiple visualization methods to analyze the results. It is
freely available from the Comprehensive R Archive Network at http://CRAN.R-project.

org/package=TunePareto.

2. Multi-objective parameter selection

As briefly mentioned, most existing parameter tuning approaches optimize classifier parame-
ters according to a single objective, which is most often the cross-validation error. However,
in some contexts, a classifier may have to meet several criteria. These criteria are usually
conflicting, such that optimizing one leads to a deterioration of another. Imagine one would
like to determine a predictor for a disease. Important properties of such a classifier are the
sensitivity (i.e., the fraction of cases predicted correctly by the classifier) and the specificity

http://CRAN.R-project.org/package=TunePareto
http://CRAN.R-project.org/package=TunePareto

Journal of Statistical Software 3

(i.e., the fraction of controls predicted correctly by the predictor). It is somehow intuitive
that these objectives usually cannot be optimized at the same time: e.g., a classifier that
classifies all examples as cases has a perfect sensitivity, but a worst-case specificity and vice
versa. A trade-off of sensitivity and specificity is often the desired result. This raises the
question of how to optimize a classifier according to more than one objective. One possibility
is to join the objectives in a weighted sum, i.e., f(c) = w1 · Sensd(c) + w2 · Specd(c), where
Sensd(c) is the sensitivity of a classifier c on data set d, and Specd(c) is the specificity of c.
However, it remains unclear how to choose the weights w1 and w2 appropriately. Usually,
it is not known which weight combination is associated with the desired trade-off. Often,
several trade-offs may be valid. Furthermore, weighted sums of objectives cannot retrieve all
individually optimal solutions if the optimization problem is non-convex (Deb 2004). As it is
generally unknown whether an optimization problem is convex, it is often more desirable to
determine optimal classifier parameter configurations according to dominance-based methods.
These include multiple trade-offs, which may later be analyzed manually by the user to choose
the most appropriate one for a specific scenario. For example, a classical method of choosing
a good trade-off would be to test several classifiers and parameters, to plot them in a ROC
curve, and to choose a good classifier on the basis of this curve. This is a special case of a
multi-objective optimization.

2.1. Pareto optimality

Dominance-based selection techniques provide a means of including all possible trade-offs
in the set of solutions (i.e., classifier parameter configurations) by considering the objective
functions separately. So-called Pareto-optimal solutions are those solutions that cannot be
improved in one objective without getting worse in another objective. Here, we do not consider
reflexive partial orders such as the Pareto-order (see, e.g., Pappalardo 2008; Luc 2008). The
objective function values of Pareto-optimal solutions with different trade-offs form the so-
called Pareto front. An example is depicted in Figure 1. When there are multiple optimal
solutions representing different trade-offs, it is often advisable to leave the final decision of
the preferred trade-off to a human expert.

We now introduce a formal definition of the optimization problem (see also Deb 2004). Define
a set of classifiers C = c1, . . . , cn with different parameter configurations. The classifiers are
rated according to M objective functions F (c) = (f1(c), . . . , fM (c)).

� A classifier ci ∈ C dominates a classifier cj ∈ C if for all objective functions fm, fm(ci) �
fm(cj),m ∈ {1, . . . ,M}, and if there is at least one objective fm∗ ,m∗ ∈ {1, . . . ,M} with
fm∗(ci) ≺ fm∗(cj). Here, ≺ and � are the general “better” and “better or equal” rela-
tions, depending on whether the objectives are maximization or minimization objectives.

� A classifier is called Pareto-optimal if there is no classifier in C that dominates it.

� All Pareto-optimal classifiers form the (first) Pareto-optimal set P1(C). Furthermore,
we inductively define the i-th Pareto-optimal set Pi(C) as the Pareto-optimal set among
the solutions that are not in one of the preceding Pareto-optimal sets, i.e., the Pareto-
optimal solutions of C \

⋃i−1
j=1 Pj(C).

� The i-th Pareto front PF i(C) = {F (c) | c ∈ Pi(C)} is the set of fitness values of the
combinations in the i-th Pareto set.

4 Multi-Objective Parameter Selection for Classifiers

Figure 1: Solutions of two minimization objectives f1 and f2. The solutions on the first
Pareto front (in red, e.g., s1 and s2) are not dominated by any other solution. Solutions
on the second front (in green, such as s3) are dominated by solutions on the first front, but
dominate solutions on subsequent fronts.

Dominance imposes a strict partial order on the classifier set C:

� It is transitive, i.e., if a classifier ci dominates another classifier cj and cj dominates ck,
then ci automatically dominates ck.

� It is not reflexive, i.e., a classifier ci cannot dominate itself.

� In particular, it is not complete: If ci does not dominate cj , cj does not necessarily
dominate ci, as one classifier may be better in one objective, and the other classifier
may be better in another objective.

Hasse diagrams visualize the transitive reduction of a partially ordered set in form of a directed
acyclic graph: The elements are the nodes of the graph, and the precedence (dominance)
relations are represented by edges. The transitive reduction yields only direct dominance
relations, i.e., transitive edges are removed. An example of a Hasse diagram is depicted in
Figure 2.

In the case of classifier parameter optimization, several stochastic factors are introduced to
the strict partial order: If the ranges of optimized parameters are non-finite (e.g., continu-
ous or unbounded), not all parameter configurations can be evaluated. Sampling strategies
and search heuristics often introduce a high amount of randomness, e.g., random sampling
approaches or evolutionary algorithms. Furthermore, the objective functions are always ap-
proximations of theoretical measures (e.g., the cross-validation error is an estimate of the true
classification risk on the fixed, but unknown distribution of the data set). Some classifiers
also introduce inherent stochasticity if they involve random decisions (e.g., random forests

Journal of Statistical Software 5

40 60 50

50 60 50 40 70 50 40 60 66

50 76 65 53 60 67 44 62 66

77 78 73

objective 1
objective 2
objective 3

Figure 2: Hasse diagram of a strict partial order according to three maximization objectives
(each color represents one objective). Edges denote domination relations, i.e., a higher-level
node dominates a lower-level node. The node levels correspond to the series of Pareto fronts.
The first Pareto front consists of only one solution represented by the top node.

Figure 3: Left: Sensitivity and specificity of a set of Pareto-optimal solutions. In this
example, the Pareto front corresponds to a ROC curve. The feasible region (shaded
in blue) was restricted to a sensitivity of at least 0.6 and a specificity of 0.8. Right:
The same Pareto-optimal solutions embedded in a desirability landscape. The desir-
ability was calculated using two one-sided Harrington functions aggregated by the ge-
ometric mean. Similar to the above feasible region, the parameters for the functions
were chosen as

(
y(1) = 0.6, d(1) = 0.01

)
and

(
y(2) = 0.99, d(2) = 0.99

)
for the sensitivity and(

y(1) = 0.8, d(1) = 0.01
)

and
(
y(2) = 0.99, d(2) = 0.99

)
for the specificity. For comparison, the

feasible region of the strict clipping at a sensitivity of 0.6 and a specificity of 0.8 is again
highlighted in blue.

6 Multi-Objective Parameter Selection for Classifiers

build their trees at random). This means that the resulting partially ordered set constitutes
an approximation of the true ordering.

In some cases, certain extreme trade-offs may be inappropriate. For example, one usually does
not want to obtain a classifier with a perfect reclassification error, but a bad generalization
performance in cross-validation experiments.

A simple way of handling this is to “clip” the Pareto front to a desired range of trade-offs
(Figure 3, left). This is accomplished by specifying upper bounds for minimization objectives
or lower bounds for maximization objectives, i.e., restricting the feasible region to a hypercube.
In some cases, none of the solutions may be located in the feasible region.

Another way of imposing restrictions on objectives are desirability functions originally pro-
posed by Harrington (1965). Essentially, the approach consists of transforming the objective
scores according to their desirability (usually to a range of [0, 1], where a value of 0 means
that this score is inappropriate and a value of 1 means that this is a desired value), and of
combining them to an overall desirability index, often the geometric mean or the minimum.
The desirability transformation can help to add additional properties of utility, e.g., instead of
solely using specification limits like in “clipping” these transformations can emphasize notions
of mid-specification quality. The transformation also ensures that all objectives operate on
a comparable scale. The desirability indices for the Pareto-optimal parameter configurations
can then be calculated, and the configurations can be ranked according to their desirability.
This usually yields low ranks for the more balanced solutions and high ranks for the config-
urations in which only one objective has an extreme value. However, unlike in the clipping
approach, these extreme configurations are not thrown away. Thus, the desirability ranking
approach is a softer way of handling constraints.

A well-known desirability function is Harrington’s one-sided desirability function, which re-
alizes a special form of the Gompertz sigmoidal curve (see Harrington 1965; Wagner and
Trautmann 2010):

d(y) = exp(− exp(−b0 + b1 · y))),

where b0 and b1 can be calculated from two tuples of given objective values and the corre-
sponding desirabilities, (y(1), d(1)) and (y(2), d(2)):

b0 = − log(− log(d(1)))− b1y(1)

b1 = (− log(− log(d(2))) + log(− log(d(1))))/(y(2) − y(1))

In practice, often the corresponding objective values for the desirabilities d(1) = 0.01 and
d(2) = 0.99 are chosen (see Figure 3 for an example).

2.2. Sampling strategies

The input of our method are intervals or lists of values for the parameters to optimize. The
algorithm trains a classifier for combinations of parameter values and applies user-defined
objective functions, such as the classification error, the sensitivity, or the specificity in re-
classification or cross-validation experiments. It returns the Pareto set (or an approximation
thereof) which comprises optimal parameter configurations with different trade-offs.

The choice of parameter configurations to rate is a crucial step for the optimization. If
all parameters have a (small) finite number of possible values, a full search of all possible

Journal of Statistical Software 7

combinations can be performed. In case of continuous parameters or large sets of possible
values, sampling strategies have to be applied to draw a subset of n∗ parameter configurations.

The most obvious strategy is to simply draw parameter values uniformly at random from the
specified ranges or sets. However, this strategy does not ensure that parameter configurations
are distributed evenly in the d-dimensional parameter space.

A well-known strategy to ensure a good coverage of the multivariate parameter space is
Latin hypercube sampling (McKay et al. 1979). This strategy places each parameter range
on one side of a d-dimensional hypercube. Continuous parameters are then divided into n∗

subintervals, and for each of these intervals, one value is drawn uniformly at random. Discrete
parameters are placed on a grid with n∗ points such that the difference in the frequencies of
any two parameter values on the grid is at most 1. Finally, the n∗ values in the d dimensions
are joined to form n∗ parameter configurations.

Another possibility of covering the parameter space is the use of quasi-random low-discrepancy
sequences (Niederreiter 1992). These sequences are designed to distribute points evenly in
an interval or hypercube (see, e.g., Maucher et al. 2011 for an application). Low discrepancy
guarantees that any optimal parameter combination is in close distance to a configuration in
the sample. As there is no such guarantee in random strategies such as uniform selection or
Latin hypercube sampling, we generally recommend the usage of such sequences rather than
these strategies.

We use three multi-dimensional quasi-random sequences:

� The Halton sequence in the bases b1, ..., bd is defined as XH(n) = (Θb1(n), . . . ,Θbd(n)),
where Θb is a van der Corput sequence (van der Corput 1935) with base b, i.e.

Θb(n) =

∞∑
j=0

aj(n)b−j−1 .

Here, the aj are digits of the base b representation of n, i.e., n =
∑∞

j=0 aj(n)bj and
aj ∈ {0, 1} for all j.

� A one-dimensional Sobol sequence XS(n) is computed from a sequence of states defined
by the recursion

mi =

 s⊕
j=1

2jmi−jcj

⊕mi−s

via

XS(n) =

k−1⊕
i=0

ai(n)mi2
−i−1 ,

where p = xs + c1x
s−1 + . . .+ cs−1 + 1 is a primitive polynomial of degree s in the field

Z2 and the ai denote the binary representation of n. Here, x ⊕ y denotes the bitwise
XOR of the binary representations of x and y.
For a multi-dimensional Sobol sequence, one-dimensional Sobol sequences are combined,
i.e.

XS(n) = (x1(n), . . . , xd(n))

8 Multi-Objective Parameter Selection for Classifiers

where xi(n) is the n-th element of a one-dimensional Sobol sequence obtained from a
polynomial pi and all polynomials p1, . . . , pd are pairwise different. For an exemplary
implementation, see Bratley and Fox (1988).

� The Niederreiter sequence of dimension d and base b is defined as

XN (n) = (x1(n), . . . , xd(n))

with

xi(n) =
∞∑
j=1

b−jλij

(∞∑
r=0

c
(i)
jr ψr(ar(n− 1))

)
,

where computations are performed in a commutative ring R with identity and cardinality
b, ψr : {0, 1, . . . , b − 1} → R and λij : R → {0, 1, . . . , b − 1} are appropriately chosen

bijections and c
(i)
jr are appropriately chosen elements of R. The ar denote the digits of

the base b representation of n. For more details, e.g., about the choice of the bijections,
see Niederreiter (1988) and references cited therein.

Figure 4 shows 100 data points sampled from [0, 1]2 using uniform random numbers (Panel 1),
Latin hypercube sampling (Panel 2), and two dimensional quasi-random sequences (Panels 3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(1)

x

y

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(2)

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(3)

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(4)

y

Figure 4: Two-dimensional samples with 100 points chosen according to (1) uniform random
numbers, (2) Latin hypercube sampling, (3) a Halton sequence and (4) a Niederreiter sequence.

Journal of Statistical Software 9

and 4). In this low-dimensional example, the Niederreiter sequence and the Sobol sequence
(Panel 4) are identical. The examples show that quasi-random sequences achieve a more
regular coverage of the search space than random numbers and Latin hypercube sampling.
In the context of quasi-Monte Carlo integration, Morokoff and Caflisch (1995) showed that
Halton sequences generally give better results for up to 6 dimensions, whereas Sobol sequences
(and Niederreiter sequences, as they are a generalization of Sobol sequences) perform better
for higher dimensions. This may give a rough guidance for choosing the proper sequence.

For very large parameter spaces and in particular for continuous parameters, too many con-
figurations may be required to cover the search space in a sufficient resolution. For such cases,
it may be preferable to tune parameters according to a search heuristic. TunePareto imple-
ments a multi-objective evolutionary algorithm for this purpose. The employed algorithm
is based on the well-known NSGA-II approach (Deb et al. 2002). This approach employs a
multi-objective selection procedure in conjunction with a crowding distance to obtain a good
coverage of the Pareto front.

Unlike the original NSGA-II, our implementation introduces some features known from Evo-
lution Strategies (see, e.g., Eiben and Smith 2003; Beyer and Schwefel 2002), in particular a
self-adaptation of mutation rates. This reduces the number of parameters of the algorithm,
as the distribution parameters for mutation and recombination do not have to be specified.
It also allows for a more differentiated mutation scheme, as the genes (i.e., the classifier pa-
rameters) are mutated using individual mutation rates. The following briefly characterizes
the algorithm implemented in TunePareto:

Representation An individual c consists of genes g1, . . . , gd corresponding to the d param-
eters to optimize. For each continuous parameter gk, an individual has a mutation rate
σk.

Initialization The first generation of µ individuals is drawn at random from the parameter
space using Latin hypercube sampling.

Fitness measurement The fitness of an individual c is the vector of the M objective func-
tion values F (ci) = (f1(ci), . . . , fM (ci)). In addition, a crowding distance is assigned
to each individual. This crowding distance quantifies the uniqueness of a fitness vector
compared to other vectors and preserves diversity on the Pareto front. Let rkm(ci) be
the rank of configuration ci when sorting the configurations according to objective fm
in increasing order. For each objective fm and each configuration ci, the cuboid formed
by the nearest neighbours with respect to this configuration is

dm(ci) =

∞ rkm(ci) = 1
∞ rkm(ci) = n
fm(crkm(ci)+1)− fm(crkm(ci)−1) otherwise

Here, we assume that the range of fm is [0, 1], which means that objective functions with
different ranges have to be normalized. The total crowding distance of configuration ci
is then

D(ci) =

M∑
m=1

dm(ci).

This crowding distance is employed both for parent selection and survivor selection.

10 Multi-Objective Parameter Selection for Classifiers

Recombination In each generation, λ offspring are created from the µ parents by randomly
mating two parents. For each of the λ offspring, two parents are chosen according to a
tournament selection using the crowded-comparison operator ≺n by Deb et al. (2002):

ci ≺n cj if

{
ci ∈ Pl1 , cj ∈ Pl2 and l1 < l2
ci, cj ∈ Pl and D(ci) > D(cj)

That is, a configuration ci is better than a configuration cj if it is in a better Pareto
set than cj or if it is in the same Pareto set, but has a higher crowding distance. A
discrete recombination scheme is used to determine the classifier parameter values of
the children: For each parameter, the value of one of the parents is chosen at random.
For the mutation rates, intermediate recombination is used (i.e., the mean of the two
parent mutation rates is taken for the child). This corresponds to a commonly used
recombination scheme in Evolution Strategies.

Mutation Each of the offspring is mutated. For the continuous parameters, we use uncor-
related mutations, i.e.

σ′k = σk · exp
(
N(0, τ ′) +N(0, τ)

)
g′k = gk +N(0, σ′k)

with τ ′ = 1/
√

2d, τ = 1/
√

2
√
d and N(m, s) being a value drawn from the normal

distribution with mean m and standard deviation s.

Discrete parameters are mutated with a probability of 1
d . For integer parameters, muta-

tions are applied by choosing one of {gk − 1, gk + 1}. For nominally scaled parameters,
a new value is chosen uniformly at random.

Survivor selection The next generation is selected in a µ+λ strategy by merging the previ-
ous generation and the offspring and then applying the non-dominated sorting procedure
also used in NSGA-II (Deb et al. 2002): The Pareto sets Pi of the configurations are
determined, and parameter configurations are taken from the successive sets (starting
with P1) until the desired generation size µ is reached. If there are more configurations
in the current Pareto set than required to obtain the generation size µ, configurations
are chosen according to their crowding distances, taking the configurations with the
highest crowding distances D.

3. The TunePareto package

At the core of the package is the general function tunePareto, which can be configured to
select parameters for most standard classification methods provided in R. Classifiers are en-
capsulated in TuneParetoClassifier objects. These objects constitute a way of describing
the calls to training and prediction methods of a classifier in a very generic way. TunePareto
includes predefined comfortable interfaces to frequently used classifiers, i.e., for k-nearest
neighbour (k-NN), support vector machines (SVM, Vapnik 1998), decision trees (Breiman
et al. 1984), random forests (Breiman 2001), and näıve Bayes (Duda and Hart 1973; Domin-
gos and Pazzani 1997). For all other classifiers, such wrappers can be obtained using the
tuneParetoClassifier function.

Journal of Statistical Software 11

Parameters are selected according to one or several objective functions. A set of objective
functions are predefined in TunePareto, such as the error, sensitivity and specificity, the con-
fusion of two classes in reclassification and cross-validation experiments, or the error variance
across several cross-validation runs. Cross-validation experiments can be performed by using
a stratified or a non-stratified cross-validation. It is also possible to define custom objective
functions, which is supported by various helper functions.

In the following example, we apply a random forest classifier (Breiman 2001) to the Parkin-
son data set (Little et al. 2009) available from the University of California at Irvine (UCI)
machine learning repository (Frank and Asuncion 2010) at http://archive.ics.uci.edu/

ml/datasets/Parkinsons. This dataset consists of biomedical voice measurements and has
195 samples with 23 features each. 48 of the samples belong to healthy individuals, and 147
belong to patients with Parkinson’s disease. The number of trees is optimized according to
the average error and the average sensitivity in a 10-fold cross-validation which is repeated
10 times. In this example, we use a stratified cross-validation. A stratified cross-validation
ensures that the percentage of samples from a certain class in each fold of the cross-validation
corresponds to the percentage of samples in this class in the entire data set. By default,
the cross-validation is not stratified. The example uses the randomForest package (Liaw and
Wiener 2002).

R> d <- read.table("parkinsons.data", sep=",", header = TRUE)

R> parkinsons <- d[, colnames(d) != c("name","status")]

R> parkinsons.labs <- d[, "status"]

R> result <- tunePareto(data = parkinsons, labels = parkinsons.labs,

+ classifier = tunePareto.randomForest(), ntree = seq(20, 300, 20),

+ objectiveFunctions = list(

+ cvError(nfold = 10, ntimes = 10, stratified = TRUE),

+ cvSensitivity(nfold = 10, ntimes = 10, stratified = TRUE,

+ caseClass = 1)))

tunePareto is supplied with the data set, the corresponding class labels, the tuned parame-
ters, and the objective functions. The tuned parameters are supplied in the . . . argument (in
this case the single parameter ntree). Possible values of parameters can either be specified
as lists of possible values, or as continuous parameter ranges using the function as.interval.
From the specified ranges of all optimized parameters, combinations of values are generated
and tested. By default, all possible combinations are tested. If one would like to specify a
certain set of combinations to be tested, the parameterCombinations parameter can be set
instead of supplying the value ranges in the . . . argument.

Printing the resulting object shows the Pareto-optimal solutions among the tested configura-
tions and their objective values:

R> result

Pareto-optimal parameter sets:

CV.Error CV.Sensitivity

ntree = 220 0.08564103 0.9727891

In this case, there are three Pareto-optimal solutions. The objective scores of all (not only
the optimal) solutions can be viewed by printing result$testedObjectiveValues.

http://archive.ics.uci.edu/ml/datasets/Parkinsons
http://archive.ics.uci.edu/ml/datasets/Parkinsons

12 Multi-Objective Parameter Selection for Classifiers

3.1. Sampling strategies

If continuous parameters are used, a full search is not possible. Here, we have to apply a
sampling strategy in order to obtain a good coverage of the parameter space. The following
example uses Latin hypercube sampling to optimize the cost and gamma parameters of an
RBF support vector machine using 30 samples. The sampling strategy is specified using the
sampleType parameter. Parameters are tuned according to sensitivity and the mean class-wise
cross-validation error (CV.WeightedError). This error rate accounts for unbalanced classes as
in the Parkinsons data set. As we would like to compare the results of the tuning process with
other sampling strategies, we generate the partition for the cross-validation in advance using
generateCVRuns. This returns a list structure specifying the folds for the different repetitions
of the cross-validation. This structure can be supplied to the cross-validation objectives in the
foldList parameter, ensuring that all experiments are based on the same cross-validation
partition.

R> foldList <- generateCVRuns(labels = parkinsons.labs, nfold = 10,

+ ntimes = 10, stratified = TRUE)

R> result <- tunePareto(data = parkinsons, labels = parkinsons.labs,

+ classifier = tunePareto.svm(), gamma = as.interval(0.01, 1),

+ cost = as.interval(0.01, 10), kernel = "radial", sampleType = "latin",

+ numCombinations = 30, objectiveFunctions = list(

+ cvWeightedError(foldList = foldList),

+ cvSensitivity(foldList = foldList, caseClass = 1)))

R> result

Pareto-optimal parameter sets:

CV.WeightedError CV.Sensitivity

gamma = 0.44602, cost = 1.7387 0.13112245 0.9877551

gamma = 0.19065, cost = 6.8612 0.08095238 0.9714286

gamma = 0.91161, cost = 7.5325 0.29479167 1.0000000

gamma = 0.31212, cost = 6.5798 0.10710034 0.9816327

gamma = 0.87278, cost = 3.6721 0.27602041 0.9979592

gamma = 0.51687, cost = 5.8632 0.15372024 0.9904762

gamma = 0.082996, cost = 0.87533 0.22670068 0.9965986

gamma = 0.38107, cost = 2.4217 0.11305272 0.9863946

gamma = 0.85638, cost = 5.0885 0.26906888 0.9972789

gamma = 0.54799, cost = 8.5803 0.17285289 0.9938776

...

As outlined in the previous section, TunePareto also includes sampling strategies based on
quasi-random sequences. In the next example, we perform the same type of optimization (with
the same cross-validation partitions), but use Halton sequences instead of Latin hypercube
sampling.

R> result <- tunePareto(data = parkinsons, labels = parkinsons.labs,

+ classifier = tunePareto.svm(), gamma = as.interval(0.01, 1),

+ cost = as.interval(0.01, 10), kernel = "radial", sampleType = "halton",

+ numCombinations = 30, objectiveFunctions = list(

Journal of Statistical Software 13

+ cvWeightedError(foldList = foldList),

+ cvSensitivity(foldList = foldList, caseClass = 1)))

R> result

Pareto-optimal parameter sets:

CV.WeightedError CV.Sensitivity

gamma = 0.505, cost = 3.34 0.14849065 0.9884354

gamma = 0.2575, cost = 6.67 0.09145408 0.9795918

gamma = 0.7525, cost = 1.12 0.26281888 0.9972789

gamma = 0.13375, cost = 4.45 0.07954932 0.9700680

gamma = 0.38125, cost = 2.23 0.11513605 0.9863946

gamma = 0.87625, cost = 5.56 0.27914541 0.9979592

gamma = 0.44312, cost = 8.15 0.12625425 0.9870748

gamma = 0.93812, cost = 2.6 0.30104167 1.0000000

gamma = 0.53594, cost = 9.26 0.16311650 0.9925170

gamma = 0.28844, cost = 0.75 0.19128401 0.9965986

...

An entirely different way of exploring the parameter space is TunePareto’s evolutionary search
algorithm as described in Section 3.1. Although the repeated fitness evaluations can be costly,
it is advantageous if the parameter space is large. The following example optimizes the
SVM parameters using a population of mu = 20 individuals with lambda = 20 offspring and
50 generations. With around 1000 fitness evaluations, this example takes 20 minutes on a 2
Intel Xeon CPUs with 3.2 GHz. In real tuning problems, the population size and the number
of generations might be increased at the cost of higher computation times. The example
also shows how overall computation time can be reduced using parallelization: By setting
the parameter useSnowfall to TRUE, tunePareto starts multiple parameter evaluations in
parallel on a previously initialized snowfall cluster (Knaus et al. 2009). This allows for both
multicore and network computing.

R> library("snowfall")

R> sfInit(parallel = TRUE, cpus = 2, type = "SOCK")

R> result <- tunePareto(data = parkinsons, labels = parkinsons.labs,

+ classifier = tunePareto.svm(), gamma = as.interval(0.01, 1),

+ cost = as.interval(0.01, 10), kernel = "radial",

+ sampleType = "evolution", numIterations = 50, mu = 20, lambda = 20,

+ objectiveFunctions = list(cvWeightedError(foldList = foldList),

+ cvSensitivity(foldList = foldList, caseClass = 1)),

+ useSnowfall = TRUE)

R> sfStop()

R> result

Pareto-optimal parameter sets:

CV.WeightedError CV.Sensitivity

gamma = 0.91082, cost = 9.4551 0.29479167 1.0000000

gamma = 0.12305, cost = 9.0791 0.07189626 0.9687075

gamma = 0.90369, cost = 9.5719 0.29200680 0.9993197

14 Multi-Objective Parameter Selection for Classifiers

gamma = 0.01, cost = 8.487 0.21005527 0.9986395

gamma = 0.011022, cost = 8.2169 0.20899235 0.9965986

gamma = 0.54952, cost = 4.7994 0.17285289 0.9938776

gamma = 0.51226, cost = 9.4185 0.15197704 0.9897959

gamma = 0.42367, cost = 10 0.12312925 0.9870748

gamma = 0.35955, cost = 9.1541 0.10888605 0.9863946

gamma = 0.27508, cost = 10 0.10153061 0.9802721

...

The three approaches yield mean class-wise errors (CV.WeightedError) ranging from 0.07
to 0.3 and sensitivity ranging from 0.97 to 1.0. The full results show that Latin hypercube
sampling and Halton sequences are outperformed by the evolutionary search in this case (some
optimal configurations were omitted here for readability). The joint Pareto front of the three
examples (calculated using the mergeTuneParetoResults function) contains 4 configuration
determined by Latin hypercube sampling and 5 configurations from Halton sampling, but 18
configurations from the evolutionary approach. As mentioned before, these results are subject
to many stochastic factors, so that this may not be a general statement.

3.2. Visualization

A classical way of visualizing the results of a multi-objective optimization is plotting the (ap-
proximated) Pareto fronts. In TunePareto, this is accomplished using the plotParetoFronts2D
function. For the above results

R> plotParetoFronts2D(result, drawLabels = FALSE)

plots the 2-dimensional Pareto front. To enhance clarity, the labels of the points (i.e., the
parameter values) are suppressed.

Figure 5 shows the approximated Pareto fronts for the three examples above, using Latin
Hhypercube sampling, Halton sequences and the evolutionary search for the parameter se-
lection. Here, the first Pareto front (the blue line) corresponds to the above results. For

(A) (B) (C)

0.0 0.1 0.2 0.3 0.4 0.50.
95

0.
96

0.
97

0.
98

0.
99

1.
00

CV.WeightedError

C
V.

Se
ns

iti
vi

ty

0.0 0.1 0.2 0.3 0.4 0.50.
95

0.
96

0.
97

0.
98

0.
99

1.
00

CV.WeightedError

C
V.

Se
ns

iti
vi

ty

0.0 0.1 0.2 0.3 0.4 0.50.
95

0.
96

0.
97

0.
98

0.
99

1.
00

CV.WeightedError

C
V.

Se
ns

iti
vi

ty

Figure 5: Panel A: Pareto fronts for the optimization of the cost and gamma parameters of an
SVM according to sensitivity and the mean class-wise error using Latin hypercube sampling.
Panel B: Pareto fronts of the same optimization using Halton sequences. Panel C: Pareto
fronts of the same optimization using evolutionary search.

Journal of Statistical Software 15

the evolutionary algorithm, all returned solutions are Pareto-optimal, so that there is only a
single front.

If parameters are selected according to more than two objectives, the standard 2-dimensional
plot is not applicable. TunePareto includes two further plots that can cope with more than two
objectives. In the following example, we optimize an SVM according to the cross-validation
error, the sensitivity and the specificity with respect to class 1. We use a sampling strat-
egy according to the Niederreiter sequence. This requires the gsl package (Hankin 2006), a
wrapper for the GNU Scientific Library.

R> result <- tunePareto(data = parkinsons, labels = parkinsons.labs,

+ classifier = tunePareto.svm(), gamma = as.interval(0.01, 1),

+ cost = 1, kernel = "radial", sampleType = "niederreiter",

+ numCombinations = 20, objectiveFunctions = list(

+ cvError(nfold = 10, ntimes = 10),

+ cvSensitivity(nfold = 10, ntimes = 10, caseClass = 1),

+ cvSpecificity(nfold = 10, ntimes = 10, caseClass = 1)))

R> result

Pareto-optimal parameter sets:

CV.Error CV.Sensitivity CV.Specificity

gamma = 0.43346 0.09589744 0.9918367 0.6354167

gamma = 0.68096 0.13589744 0.9979592 0.4541667

gamma = 0.18596 0.07538462 0.9904762 0.7229167

gamma = 0.74283 0.14564103 1.0000000 0.4083333

gamma = 0.49533 0.10102564 0.9938776 0.6083333

gamma = 0.61908 0.11846154 0.9959184 0.5312500

gamma = 0.58814 0.11025641 0.9952381 0.5666667

The results are depicted in a matrix plot in Figure 6: For each pair of objectives, the approx-
imated Pareto fronts are plotted as in the above example, and the plots are accumulated in a
matrix structure. This makes a visual comparison of more than 2 objectives possible. Pairs
of objectives always occur twice in the matrix – each objective is plotted once on each axis.
The labels correspond to the configurations. By default, labels are drawn in such a way that
they do not overlap with each other and do not exceed the margins of the plot, which means
that some labels may be omitted. All labels can be drawn by setting fitLabels = FALSE.
Although the Pareto fronts of the single 2-dimensional plots in the matrix do not correspond
to the overall Pareto front, this pairwise comparison can reveal relations of objectives that are
not visible from the overall results. For example, the top-right and bottom-left plots reveal
that in this case, the cross-validation error and the specificity are not concurrent. We gain a
total ordering on both objectives as each Pareto front consists only of a single configuration.
This means that it might suffice to optimize only one objective. Recalculating the Pareto set
according to sensitivity and specificity – omitting the cross-validation error – highlights this:
The Pareto-optimal solutions are the same as in the above example using all three objectives.

R> subres <- recalculateParetoSet(result, objectives = c(2, 3))

R> subres

16 Multi-Objective Parameter Selection for Classifiers

CV.Error

0.986 0.990 0.994 0.998

gamma = 0.43346

gamma = 0.58814
gamma = 0.12408

gamma = 0.062207

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

gamma = 0.49533
gamma = 0.58814

gamma = 0.062207

gamma = 0.68096
gamma = 0.74283

0.
98

6
0.

99
0

0.
99

4
0.

99
8

gamma = 0.58814
gamma = 0.61908

gamma = 0.68096

gamma = 0.74283

gamma = 0.12408

gamma = 0.55721

gamma = 0.093145
gamma = 0.062207

CV.Sensitivity

gamma = 0.74283

gamma = 0.68096

gamma = 0.61908
gamma = 0.58814

gamma = 0.49533

gamma = 0.12408

gamma = 0.062207
gamma = 0.093145

0.08 0.10 0.12 0.14 0.16 0.18

gamma = 0.093145
gamma = 0.61908

gamma = 0.68096

gamma = 0.74283

gamma = 0.43346

gamma = 0.61908
gamma = 0.093145

0.3 0.4 0.5 0.6 0.7

0.
3

0.
4

0.
5

0.
6

0.
7

CV.Specificity

Figure 6: A matrix of Pareto front plots for all pairs of objectives in a 3-objective optimization
of the cost parameter of a SVM.

Pareto-optimal parameter sets:

CV.Sensitivity CV.Specificity

gamma = 0.43346 0.9918367 0.6354167

gamma = 0.68096 0.9979592 0.4541667

gamma = 0.18596 0.9904762 0.7229167

gamma = 0.74283 1.0000000 0.4083333

gamma = 0.49533 0.9938776 0.6083333

gamma = 0.61908 0.9959184 0.5312500

gamma = 0.58814 0.9952381 0.5666667

A further possibility to visualize optimizations with more than two objectives is to plot the
Pareto front approximations in a graph (see Figure 7). When read from left to right, this

Journal of Statistical Software 17

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

gamma = 0.062207

gamma = 0.55721

gamma = 0.80471

gamma = 0.30971

gamma = 0.43346

gamma = 0.92846

gamma = 0.68096

gamma = 0.18596

gamma = 0.24783

gamma = 0.74283 gamma = 0.99033

gamma = 0.49533

gamma = 0.37158

gamma = 0.86658

gamma = 0.61908 gamma = 0.12408

gamma = 0.093145

gamma = 0.58814

gamma = 0.83564

gamma = 0.34064

Dominates front in CV.Error
Dominates front in CV.Sensitivity
Dominates front in CV.Specificity

Figure 7: A domination graph of the SVM cost parameter. This corresponds to a rotated
Hasse diagram with additional color indicators (see Figure 2). The nodes represent the pa-
rameter configurations and are ordered in columns according to the Pareto fronts. The edges
represent dominance relations between two configurations. For example, gamma = 0.12408 is
dominated by gamma = 0.49533. The color indicators show in which objective a configuration
is optimal with respect to its Pareto front (e.g., gamma = 0.74283 has the best sensitivity in
the first Pareto front).

corresponds to a Hasse diagram of the dominance relations with an additional color encoding
for the best values in an objective (see also Figure 2).

R> plotDominationGraph(result, legend.x = "topright")

The function plotDominationGraph is based on the igraph package (Csardi and Nepusz
2006). Each node in the graph corresponds to one parameter configuration, and an edge
corresponds to a dominance relation. The nodes are ordered such that the columns correspond
to Pareto fronts. Small color indicators next to the nodes show in which of the objectives
the corresponding configuration is optimal with respect to its Pareto front. In the default
setting, transitive dominance relations are not drawn, as they are always caused by multiple
direct dominance relations of configurations. Transitive edges can be included by setting the
parameter transitiveReduction to FALSE. This is a more abstract representation than the
usual Pareto front plot, as the actual scores for the objectives are not depicted. The graph
representation allows for capturing dominance relations among the configurations at a glance
and is suitable for any number of dimensions.

18 Multi-Objective Parameter Selection for Classifiers

3.3. Selecting configurations

In principle, all solutions on the (first) Pareto front can be viewed as equally good. However,
there are often additional requirements for the solutions. Consider an example similar to the
one above: We tune the SVM gamma parameter according to specificity and sensitivity.

R> result1 <- tunePareto(data = parkinsons, labels = parkinsons.labs,

+ classifier = tunePareto.svm(), gamma = as.interval(0.01, 1),

+ cost = 1, kernel = "radial", sampleType = "niederreiter",

+ numCombinations = 20, objectiveFunctions = list(

+ cvSensitivity(nfold = 10, ntimes = 10, caseClass = 1),

+ cvSpecificity(nfold = 10, ntimes = 10, caseClass = 1)))

R> result1

Pareto-optimal parameter sets:

CV.Sensitivity CV.Specificity

gamma = 0.43346 0.9918367 0.6354167

gamma = 0.68096 0.9979592 0.4541667

gamma = 0.18596 0.9904762 0.7229167

gamma = 0.74283 1.0000000 0.4083333

gamma = 0.49533 0.9938776 0.6083333

gamma = 0.61908 0.9959184 0.5312500

gamma = 0.58814 0.9952381 0.5666667

The resulting set of optimal configurations comprises some configurations with very extreme
trade-offs. For example, it is possible to obtain a perfect sensitivity of 1, but at the cost of
a low specificity of only 0.4. This is often not desirable. Suppose we would like to rule out
solutions with a specificity or sensitivity below 0.6. We can specify this directly as boundaries
in the optimization using the objectiveBoundaries parameter.

R> result2 <- tunePareto(data = parkinsons, labels = parkinsons.labs,

+ classifier = tunePareto.svm(), gamma = as.interval(0.01, 1),

+ cost = 1, kernel = "radial", sampleType = "niederreiter",

+ numCombinations = 20, objectiveFunctions = list(

+ cvSensitivity(nfold = 10, ntimes = 10, caseClass = 1),

+ cvSpecificity(nfold = 10, ntimes = 10, caseClass = 1)),

+ objectiveBoundaries = c(0.6, 0.6))

The new result now excludes 4 solutions:

R> result2

Pareto-optimal parameter sets matching the objective restrictions:

CV.Sensitivity CV.Specificity

gamma = 0.43346 0.9918367 0.6354167

gamma = 0.18596 0.9904762 0.7229167

gamma = 0.49533 0.9938776 0.6083333

Journal of Statistical Software 19

0.986 0.988 0.990 0.992 0.994 0.996 0.998 1.000

0.
3

0.
4

0.
5

0.
6

0.
7

CV.Sensitivity

C
V.

S
pe

ci
fic

ity

gamma = 0.18596

gamma = 0.43346

gamma = 0.49533

gamma = 0.58814

gamma = 0.61908

gamma = 0.68096

gamma = 0.74283

gamma = 0.12408
gamma = 0.55721

gamma = 0.80471

gamma = 0.093145

gamma = 0.062207

gamma = 0.83564
gamma = 0.86658

gamma = 0.92846

gamma = 0.99033

Figure 8: The results of a two-objective optimization of the gamma parameter of a SVM
with restricted objective values. The valid optimal objective values are located in the upper
part (dashed line). The points on the approximated Pareto front outside this region are not
considered as being optimal.

We can visualize this using plotParetoFronts2D, as depicted in Figure 8. The boundaries
are drawn as grey dashed lines. In this case, only the boundary of the specificity is visible, as
the boundary for the sensitivity is very far apart from the performance of all solutions and
thus outside the drawing region.

Desirability functions constitute another possibility of imposing restrictions to the objective
values. The desire package (Trautmann et al. 2009) provides functions to calculate different
kinds of desirability indices. TunePareto includes the function rankByDesirability ranking
the results of a call to tunePareto according to such indices:

R> library("desire")

R> d1 <- harrington1(y1 = 0.6, d1 = 0.01, y2 = 0.99, d2 = 0.99)

R> d2 <- harrington1(y1 = 0.6, d1 = 0.01, y2 = 0.99, d2 = 0.99)

R> di <- geometricDI(d1, d2)

R> rankByDesirability(result1, di)

20 Multi-Objective Parameter Selection for Classifiers

CV.Sensitivity CV.Specificity Desirability

gamma = 0.18596 0.9904762 0.7229167 7.126124e-01

gamma = 0.43346 0.9918367 0.6354167 2.658462e-01

gamma = 0.49533 0.9938776 0.6083333 1.320273e-01

gamma = 0.58814 0.9952381 0.5666667 2.040430e-02

gamma = 0.61908 0.9959184 0.5312500 1.129601e-03

gamma = 0.68096 0.9979592 0.4541667 1.291991e-10

gamma = 0.74283 1.0000000 0.4083333 4.835754e-21

In this example, the objective values are rated according to Harrington’s one-sided desirability
function (Harrington 1965). Again, we set a value of 0.6 as a margin for both specificity and
sensitivity. A value of 0.99 is considered as nearly optimal. The desirability functions of a
parameter configuration c are aggregated according to the geometric mean. The values of
the desirability index di are used to rank the Pareto-optimal configurations. The example
shows that Pareto-optimal solutions with balanced objective values are ranked higher than
those with an extremely good performance in a single objective. This behaviour is influenced
by the choice of the of the geometric mean for the desirability index and may change when
using different desirability indices. Here, solutions with a better specificity are preferred, as
the sensitivity is always close to the maximum.

3.4. Customizing TunePareto

The TunePareto package is flexible and can be extended by custom classifier wrappers and
objective functions.

Classifiers are encapsulated in TuneParetoClassifier objects, which describe the calls needed
for training and applying a classifier in TunePareto. To utilize these methods directly,
TuneParetoClassifier objects can not only be used in tunePareto, but also in special train-
ing and prediction functions (trainTuneParetoClassifier and predict.TuneParetoModel)
that can be integrated into other custom tuning procedures.

We use the random forest classifier to illustrate the creation of custom classifier objects:

R> forest <- tuneParetoClassifier(name = "randomForest",

+ classifier = randomForest, predictor = predict,

+ classifierParamNames = "ntree", predictorParamNames = NULL,

+ useFormula = FALSE, trainDataName = "x", trainLabelName = "y",

+ testDataName = "newdata", modelName = "object",

+ requiredPackages = "randomForest")

The tuneParetoClassifier function creates a wrapper for the classifier to be called. The
name parameter specifies a human-readable name of the classifier. The further parameters
specify the type and arguments of the classifier and predictor methods. Here, classifier
specifies the classifier training function, and predictor specifies the prediction function. It
is also possible to call a function that integrates both training and prediction by leaving the
predictor parameter empty. classifierParamNames and predictorParamNames are vectors
that define the names of arguments that are accepted as valid parameters for the classifier
and the predictor function by tunePareto. In this case, we specify only the ntree parameter,
which is the parameter we would like to optimize. Default values for parameters can be set us-
ing two further parameters predefinedClassifierParams and predefinedPredictorParams.

Journal of Statistical Software 21

trainDataName, trainLabelName, testDataName and modelName are string parameters that
specify the names of the arguments of the training and prediction functions for the training
data, the class labels, the test data for prediction, and the trained model in the prediction
function respectively. The requiredPackages parameter lists the packages that are required
to run the classifier. These packages are loaded automatically by TunePareto. If run in a
snowfall cluster, the packages are loaded on all nodes. The forest object resulting from the
call can be passed to the classifier parameter of tunePareto.

The randomForest classifier can be called in two ways: by providing the data and the
labels using the x and the y parameters, or by providing a formula and a data frame.
TuneParetoClassifier wrappers are able to call both interfaces: If a classifier uses a for-
mula interface, we set useFormula=TRUE. In this case, tunePareto automatically constructs
a formula of the form Class~. to train a classifier that associates the class labels to all
supplied features. The name of the argument that receives the formula can be specified in
formulaName. The following example is equivalent to the above example, but uses the formula
interface of randomForest:

R> forest <- tuneParetoClassifier(name = "randomForest",

+ classifier = randomForest, predictor = predict,

+ classifierParamNames = "ntree", predictorParamNames = NULL,

+ useFormula = TRUE, formulaName = "formula", trainDataName = "data",

+ testDataName = "newdata", modelName = "object",

+ requiredPackages = "randomForest")

Besides using customized classifiers, it is also possible to introduce user-defined objective
functions. In the following example, we define a new objective calculating the false positive
rate in a cross-validation:

R> cvFalsePositives <- function(nfold = 10, ntimes = 10,

+ leaveOneOut = FALSE, stratified = TRUE, foldList = NULL, caseClass)

+ {

+ return(createObjective(precalculationFunction = "crossValidation",

+ precalculationParams = list(nfold = nfold, ntimes = ntimes,

+ leaveOneOut = leaveOneOut, foldList = foldList,

+ stratified = stratified),

+ objectiveFunction = function(result, caseClass) {

+ return(mean(sapply(result, function(run) {

+ predictedLabels <- unlist(lapply(run, function(fold)

+ fold$predictedLabels))

+ trueLabels <- unlist(lapply(run, function(fold)

+ fold$trueLabels))

+ return(sum(predictedLabels == caseClass &

+ trueLabels != caseClass))

+ })))

+ },

+ objectiveFunctionParams = list(caseClass = caseClass),

+ direction = "minimize", name = "CV.FalsePositives"))

+ }

22 Multi-Objective Parameter Selection for Classifiers

Objective functions are assembled using the createObjective function. A good way of en-
capsulating them is writing a custom function that returns the TuneParetoObjective object
with the correct setting of additional parameters. This is shown above. tunePareto merges
common calculations of the objective functions intelligently. This ensures that objectives use
the same experimental results and also reduces computation times. For example, if two objec-
tives are calculated from cross-validation results, only one cross-validation is performed. This
is achieved by splitting up the objective calculation into two parts: A common precalculation,
such as determining the class label predictions in a cross-validation, and the calculation of
the score itself, e.g., the determination of the misclassification rate from the class labels.

In the above example, we use the crossValidation function as a precalculation function.
Precalculation functions receive the classifier, the training and test data, and the parame-
ters as an input. Furthermore, they can take additional parameters defined in the
precalculationParams argument of createObjective. In this case, these are the num-
ber of runs and folds, the switches for leave-one-out cross-validation and stratification, and
the foldList parameter which can be used to supply a precalculated cross-validation par-
tition instead of generating a random partition. The output of a precalculation function is
not predefined – it is a single object which is passed directly to the actual scoring functions
and can take any form these functions are able to process. Here, it is a list of runs, each
containing a list of folds with a vector of true labels and the predicted labels. This list is
the first parameter of the function defined in the objectiveFunction argument. Like the
precalculation function, this scoring function can also have additional parameters. These are
specified in the objectiveFunctionParams argument. In this case, we have to specify the
class which is considered as the positive class for the calculation of the rate (caseClass).
The scoring function determines the mean fraction of false positive predictions across the
runs of the cross-validation. The direction argument specifies whether the optimal score is
the minimum or the maximum. Furthermore, a readable name is supplied for the objective.
The function cvFalsePositives can now be called and passed to the objectiveFunctions

parameter of tunePareto just like the objective functions known from the above examples.

4. Discussion

Parameter tuning is an every-day issue for many researchers in the field of machine learning.
Parameters are often specified according to rules of thumb and intuition or by rudimentary
trials. Automatic parameter tuning has been studied mainly focusing on single classifiers and
single objectives.

Parameter selection for classifiers should obey certain standards. Many published results are
over-optimistic because the same data is used both for parameter selection and validation
of the final classifier. To obtain unbiased results, Bishop (1995) suggests splitting the data
into a training set, a validation set, and a test set. The training set and the validation set
are used to determine the parameters of the classifiers. The performance of the classifier is
then assessed independently on the test set. A similar approach was recently proposed by
Boulesteix and Strobl (2009). Varma and Simon (2006) suggest a nested cross-validation for
the parameter selection. Bischl et al. (2010) describe common pitfalls in the context of tuning
and resampling experiments.

TunePareto provides a general framework for the selection of classifier parameters accord-

Journal of Statistical Software 23

ing to multiple objectives. Parameter values can be chosen according to intelligent sampling
strategies and search heuristics, such as quasi-random sequences and evolutionary algorithms.
The package includes wrappers for many state-of-the-art classifiers and objective functions,
but can be extended for almost any classifier using arbitrary objective functions. The multi-
objective view on the parameter selection problem can help discovering trade-offs of objectives
that remain invisible when optimizing according to a single objective. The basic idea is not to
determine a single best parameter configuration, but to offer a range of good parameter con-
figuration with different classifier properties, leaving the ultimate decision to the researcher.
Decision support is provided by visualization functions. In particular, the package introduces
visualization techniques for more than two objectives.

Although it is often advisable to consider several objectives separately, one should keep the
number of objectives small. With four or more objectives, so-called many-objective opti-
mization problems arise, which impose additional problems on the tuning process (see, e.g.,
Ishibuchi et al. 2008). In particular, almost all solutions are non-dominated if too many ob-
jectives are specified, which means that it is hard to determine the desired solutions. Further-
more, the number of solutions needed to approximate the Pareto front increases exponentially
with the number of objective functions.

The stochasticity of the tuning procedure – caused by randomized processes such as the selec-
tion of a partition for the cross-validation, random factors in classifiers, and the sampling of
parameter combinations – may require to take additional measures. For example, repetitions
in the calculation of the objective functions (such as specifying multiple runs in the ntimes

parameter of cross-validation objectives) can reduce the effects of outliers. Another option
is to run the complete tuning process repeatedly and to calculate a joint Pareto front. In
particular, the evolutionary search process can benefit from restarts, as it may converge to
different optima depending on its initialization and random seed. When merging results from
repeated subsampling experiments, one should ensure that all these experiments use the same
partitions (e.g., by supplying a pregenerated fold list to a cross-validation) to make the results
comparable.

Acknowledgments

This work is supported by the Graduate School of Mathematical Analysis of Evolution, In-
formation and Complexity at the University of Ulm (CM, HAK) and by the German Federal
Ministry of Education and Research (BMBF) within the framework of the program of Medi-
cal Genome Research (PaCa-Net; project ID PKB-01GS08) and Gerontosys (Forschungskern
SyStaR). The responsibility for the content lies exclusively with the authors.

Christoph Müssel and Ludwig Lausser contributed equally. Correspondence should be ad-
dressed to Hans A. Kestler.

References

Bartz-Beielstein T (2006). Experimental Research in Evolutionary Computation – The New
Experimentalism. Springer-Verlag, Heidelberg.

Bartz-Beielstein T, Lasarczyk CWG, Preuss M (2005). “Sequential Parameter Optimization.”

24 Multi-Objective Parameter Selection for Classifiers

In Proceedings of the 2005 Congress on Evolutionary Computation, volume 1, pp. 773–780.
IEEE Press, Piscataway.

Bartz-Beielstein T, Ziegenhirt J, Konen W, Flasch O, Koch P, Zaefferer M (2011). SPOT:
Sequential Parameter Optimization. R package version 0.1.1375, URL http://CRAN.

R-project.org/package=SPOT.

Belton V, Stewart TJ (2002). Multiple Criteria Decision Analysis: An Integrated Approach.
Kluwer Academic Publishers, Dordrecht.

Beyer HG, Schwefel HP (2002). “Evolution Strategies – A Comprehensive Introduction.”
Natural Computing, 1(1), 3–52.

Bischl B, Mersmann O, Trautmann H (2010). “Resampling Methods in Model Validation.” In
Proceedings of the Workshop on Experimental Methods for the Assessment of Computational
Systems (WEMACS 2010).

Bishop CM (1995). Neural Networks for Pattern Recognition. Oxford University Press, Ox-
ford.

Boulesteix AL, Strobl C (2009). “Optimal Classifier Selection and Negative Bias in Error Rate
Estimation: An Empirical Study on High-Dimensional Prediction.” BMC Medical Research
Methodology, 9, 85.

Bratley P, Fox BL (1988). “Algorithm 659: Implementing Sobol’s Quasirandom Sequence
Generator.” ACM Transactions on Mathematical Software, 14, 88–100.

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32.

Breiman L, Friedman J, Stone CJ, Olshen RA (1984). Classification and Regression Trees.
Chapman & Hall/CRC, Boca Raton.

Chang CC, Lin CJ (2001). LIBSVM: A Library for Support Vector Machines. URL http:

//www.csie.ntu.edu.tw/~cjlin/libsvm.

Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002). “Choosing Multiple Parameters for
Support Vector Machines.” Machine Learning, 46(1), 131–159.

Chunhong Z, Licheng J (2004). “Automatic Parameters Selection for SVM Based on GA.”
In Proceedings of the Fifth World Congress on Intelligent Control and Automation, pp.
1869–1872. IEEE, Piscataway.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. URL http://igraph.sf.net/.

de Souza BF, de Carvalho ACPLF, Calvo R, Ishii RP (2006). “Multiclass SVM Model Selection
Using Particle Swarm Optimization.” In Proceedings of the Sixth International Conference
on Hybrid Intelligent Systems, p. 31. IEEE Computer Society, Washington, DC.

Deb K (2004). Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons, New York.

http://CRAN.R-project.org/package=SPOT
http://CRAN.R-project.org/package=SPOT
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://igraph.sf.net/

Journal of Statistical Software 25

Deb K, Pratap A, Agarwal S, Meyarivan T (2002). “A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2010). e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien. R package version 1.5-24, URL http:

//CRAN.R-project.org/package=e1071.

Domingos P, Pazzani M (1997). “On the Optimality of the Simple Bayesian Classifier under
Zero-One Loss.” Machine Learning, 29, 103–130.

Duda HO, Hart PE (1973). Pattern Classification and Scene Analysis. John Wiley & Sons,
New York.

Eiben A, Smith J (2003). Introduction to Evolutionary Computing. Springer-Verlag, Heidel-
berg.

Frank A, Asuncion A (2010). “UCI Machine Learning Repository.” URL http://archive.

ics.uci.edu/ml/.

Fröhlich H, Zell A (2005). “Efficient Parameter Selection for Support Vector Machines in
Classification and Regression via Model-Based Global Optimization.” In Proceedings of the
2005 IEEE International Joint Conference on Neural Networks, volume 3, pp. 1431–1436.

Hankin RKS (2006). “Special Functions in R: Introducing the gsl Package.” R News, 6, 24–26.
URL http://CRAN.R-project.org/doc/Rnews/.

Harrington J (1965). “The Desirability Function.” Industrial Quality Control, 21(10), 494–
498.

Igel C (2005). “Multi-Objective Model Selection for Support Vector Machines.” In Third Inter-
national Conference on Evolutionary Multi-Criterion Optimization, pp. 534–546. Springer-
Verlag, Heidelberg.

Ishibuchi H, Tsukamoto N, Nojima Y (2008). “Evolutionary Many-Objective Optimization:
A Short Review.” In Proceedings of the 2008 IEEE Congress on Evolutionary Computation,
pp. 2424–2431. IEEE, Piscataway, NJ, USA.

Kalos A (2005). “Automatic Neural Network Structure Determination via Discrete Particle
Swarm Optimization (for Non-Linear Time Series Models).” In Proceedings of the Fifth
WSEAS International Conference on Simulation, Modeling and Optimization.

Kapp MN, Sabourin R, Maupin P (2009). “A PSO-Based Framework for Dynamic SVM Model
Selection.” In Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, pp. 1227–1234. ACM, New York.

Knaus J, Porzelius C, Binder H, Schwarzer G (2009). “Easier Parallel Computing in R with
snowfall and sfCluster.” The R Journal, 1, 54–59.

Kohavi R, John GH (1995). “Automatic Parameter Selection by Minimizing Estimated Error.”
In Proceedings of the Twelfth International Conference on Machine Learning, pp. 304–312.
Morgan Kaufmann, San Francisco.

http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://CRAN.R-project.org/doc/Rnews/

26 Multi-Objective Parameter Selection for Classifiers

Laux H (2005). Entscheidungstheorie. 6th edition. Springer-Verlag, Berlin.

Liaw A, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22. URL http://CRAN.R-project.org/doc/Rnews/.

Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO (2009). “Suitability of Dys-
phonia Measurements for Telemonitoring of Parkinson’s Disease.” IEEE Transactions on
Biomedical Engineering, 56(4).

Luc DT (2008). “Pareto Optimality.” In A Chinchuluun, PM Pardalos, A Migdalas, L Pitsoulis
(eds.), Pareto Optimality, Game Theory and Equilibria, pp. 481–515. Springer-Verlag, New
York.

Maucher M, Schöning U, Kestler HA (2011). “Search Heuristics and the Influence of Non-
Perfect Randomness: Examining Genetic Algorithms and Simulated Annealing.” Compu-
tational Statistics, 26(2), 303–319.

McKay MD, Beckman RJ, Conover WJ (1979). “A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code.” Technometrics,
21(2), 239–245.

Morokoff WJ, Caflisch RE (1995). “Quasi-Monte Carlo Integration.” Journal of Computational
Physics, 122, 218–230.

Niederreiter H (1988). “Low-Discrepancy and Low-Dispersion Sequences.” Journal of Number
Theory, 30(1), 51–70.

Niederreiter H (1992). Random Number Generation and Quasi-Monte Carlo Methods. Society
for Industrial Mathematics, Philadelphia.

Pappalardo M (2008). “Multiobjective Optimization: A Brief Overview.” In A Chinchu-
luun, PM Pardalos, A Migdalas, L Pitsoulis (eds.), Pareto Optimality, Game Theory and
Equilibria, pp. 517–528. Springer-Verlag, New York.

Pontil M, Verri A (1998). “Properties of Support Vector Machines.” Neural Computation,
10(4), 955–974.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.

org/.

Suttorp T, Igel C (2006). “Multi-Objective Optimization of Support Vector Machines.” In
Multi-Objective Machine Learning, volume 16 of Studies in Computational Intelligence, pp.
199–220. Heidelberg.

Trautmann H, Steuer D, Mersmann O (2009). desire: Desirability Functions. R package
version 1.0.5, URL http://CRAN.R-project.org/package=desire.

van der Corput JG (1935). “Verteilungsfunktionen I.” Proceedings of the Koninklijke Neder-
landse Akademie van Wetenschappen, 38, 813–821.

Vapnik V (1998). Statistical Learning Theory. John Wiley & Sons, New York.

http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=desire

Journal of Statistical Software 27

Varma S, Simon R (2006). “Bias in Error Estimation When Using Cross-Validation for Model
Selection.” BMC Bioinformatics, 7, 91.

Wagner T, Trautmann H (2010). “Integration of Preferences in Hypervolume-Based Multiob-
jective Evolutionary Algorithms by Means of Desirability Functions.” IEEE Transactions
on Evolutionary Computation, 14(5), 688–701.

Zhang Q, Shan G, Duan X, Zhang Z (2009). “Parameters Optimization of Support Vector
Machine Based on Simulated Annealing and Genetic Algorithm.” In Proceedings of the
2009 IEEE International Conference on Robotics and Biomemetics, pp. 1203–1306.

Zhang Y (2008). “Evolutionary Computation Based Automatic SVM Model Selection.” In Pro-
ceedings of the 2008 Fourth International Conference on Natural Computation, volume 2,
pp. 66–70.

Affiliation:

Hans A. Kestler
Research group Bioinformatics and Systems Biology
Institute of Neural Information Processing
University of Ulm
89069 Ulm, Germany
E-mail: hans.kestler@uni-ulm.de
Telephone: +49/731/5024248
Fax: +49/731/5024156

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 46, Issue 5 Submitted: 2010-08-17
January 2012 Accepted: 2011-10-25

mailto:hans.kestler@uni-ulm.de
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Multi-objective parameter selection
	Pareto optimality
	Sampling strategies

	The TunePareto package
	Sampling strategies
	Visualization
	Selecting configurations
	Customizing TunePareto

	Discussion

