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Abstract

Studies that validate statistical methods for functional magnetic resonance imaging
(fMRI) data often use simulated data to ensure that the ground truth is known. However,
simulated fMRI data are almost always generated using in-house procedures because a
well-accepted simulation method is lacking. In this article we describe the R package
neuRosim, which is a collection of data generation functions for neuroimaging data. We
will demonstrate the possibilities to generate data from simple time series to complete 4D
images and the possibilities for the user to create her own data generation method.
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1. Introduction

Despite optimization of experimental designs and significant improvements in scanner technol-
ogy, functional magnetic resonance imaging (fMRI) data still contain a considerable amount
of noise. Statistics are needed to infer information from the data. However, a major prob-
lem is that the ground truth of fMRI data (i.e., where and when the activation is located)
is unknown and can only be measured with very invasive techniques (i.e., intracranial elec-
troencephalography) that are almost always unethical to perform with humans (David et al.
2008). Therefore, when researchers try to establish the validity of a new statistical method,
or when they want to assess the sensitivity and the specificity of an existing method, they
need to know the ground truth. As a solution, simulation studies have gained great interest as
a validation tool because in these studies, the data themselves are generated under a known
model.

Although the necessity of knowing the ground truth is acknowledged, a standard simulation
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procedure for fMRI data is lacking. In the literature, two major categories of computational
simulations can be distinguished, namely (1) generating time series based on an experimental
design and (2) simulating the magnetic signal by solving the Bloch equations (Bloch 1946).
Unfortunately, the first category in itself has no common method. Most researchers model the
activation in the time series as the convolution of a haemodynamic response function and a
stimulus vector. Additionally, some noise is added ranging from pure random Gaussian noise
(Lei et al. 2010; Liao et al. 2008; Lin et al. 2010), over temporally correlated noise (Grinband
et al. 2008; Locascio et al. 1997; Bullmore et al. 1996; Purdon and Weisskoff 1998) to real
noise derived from empirically acquired resting state scans (Bianciardi et al. 2004; Lange
1999; Weibull et al. 2008; Lee et al. 2008; Lange et al. 1999; Hansen et al. 2001; Skudlarski
et al. 1999). Furthermore, all simulations are done using in-house software routines. As a
consequence, convergence of the simulation methods is impossible as long as fMRI simulators
are not available. In contrast, the second method (Drobnjak et al. 2006), using the Bloch
equations, is embedded in a simulator as part of the software package FSL (Smith et al. 2004).
However, the simulator is rarely used for validation studies. Probably, this is due to the fact
that solving the Bloch equations is computationally very intensive and it takes, for example,
about a month to generate a 4D dataset of 100 scans including all artefacts using a PC with a
3.4 GHz processor. By developing our package neuRosim, we want to respond to the current
lack of fMRI simulators. Our package is by no means intended to provide the fMRI data
generation method. The aim of the package is to provide a tool for simulating fMRI data
that can initiate the search for more established and validated simulation methods for fMRI
data such that the results of simulation studies can be generalized.

The package neuRosim for R (R Development Core Team 2011) is created with two types
of users in mind. The first type is the practical researcher who uses the fMRI scanner as a
tool to acquire data that hopefully support her theory. This researcher normally would not
think of generating fMRI data. However, by generating some data before the actual scanning
process is started, this researcher can check the effectiveness of her design without almost
any cost, both in time and money. In this way, the most effective design for a particular
research question can be tested and adjusted.! Secondly, the more theoretical researcher
(e.g., a statistician) can validate both existing and new methods based on the generated data.
Because the data generation in neuRosim is fairly fast, the generation process can easily be
embedded in large simulation studies.

fMRI data are in fact the result of a Fourier transformation of the k-space and are, as a
result, complex-valued data (Rowe and Logan 2004). However, in most fMRI studies the
data analysis is done for the magnitude data and not for the phase data. In the current
version of neuRosim, only the generation of fMRI magnitude data is considered. Therefore,
all assumptions that are made to model the data apply only to the characteristics of magnitude
data. The generation of magnitude fMRI data is seen as an additive source problem (Bellec
et al. 2009) in which two main sources are distinguished, namely (1) the activation caused
by an experimental design or resting state activation, and (2) the noise. neuRosim contains
several functions to model both sources. These functions are regarded as low-level functions,
meaning that they generate only a specific part of the data and are mostly used as building
blocks to construct higher-level functions. For beginning users, it will be more convenient to
start with the high-level functions that are described in Section 3. However, advanced users

Tt should be noted that AFNI also contains algorithms for design optimization in the function 3dDeconvolve
without the need for data (Cox 1996).
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can use the high-level functions as a basis for their completely customized simulations. In
Section 2, we will give an overview of the different models in the low-level functions.

Further, it should be noted that the data generated by neuRosim are considered to be pre-
processed data. This implies that several artefacts (e.g., head motion, magnetic field inhomo-
geneity) that are normally removed during the pre-processing stage of the data are not ex-
plicitly modeled. However, it is possible to incorporate some residual effects of these artefacts
under the assumption that the artefacts are not completely removed by the pre-processing
analysis. For example, neuRosim data can contain task-related noise that can account for
residual head movements.

2. Features and examples of low-level functions

2.1. Experimental activation and design

To generate BOLD (blood oxygen level dependent) activation, neuRosim uses a stimulus
function that is part of the experimental design. A BOLD response is only generated if the
function indicates the presence of a stimulus. Block designs, as well as event-related designs
(or a combination of both) can be defined based on the onsets and the durations of the task
as defined by the user. The function stimfunction uses these arguments to generate a 0-
1 valued time vector where 1 indicates that the stimulus is present. Note that for a single
event, the duration of the stimulus should be defined as 0. For example, to generate a stimulus
function for a 20-second ON/OFF block design of 200s with a microtime resolution of 0.1s:

R> totaltime <- 200

R> onsets <- seq(1l, 200, 40)
R> dur <- 20

R> s <- stimfunction(totaltime
+ durations = dur, accuracy

totaltime, onsets = onsets,
0.1)

The resulting stimulus function is shown as a dashed line in Figure 1. To simulate the BOLD
signal caused by the task, the stimulus function is convoluted with a haemodynamic response
function (HRF). The role of the microtime resolution is to ensure a high-precision convolution
with the specified HRF. In the current version of neuRosim, three different response functions
are implemented.

1. The stimulus function is convoluted with a gamma-variate HRF as implemented in
the function gammaHRF with a user-defined full width at half maximum (FWHM) value
(Buxton et al. 2004). The function is defined as

(t) = krh(k:l—l)' (;)kem (_Tth>

with £ = 3. To provide the desired FWHM, the time constant 7, is given by 7, =
0.242 - FWHM (Buxton et al. 2004, p. S227).

R> gamma <- specifydesign(totaltime = 200, onsets = list(onsets),
+ durations = list(dur), effectsize = 1, TR = 2, conv = "gamma")
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To modulate the strength of the activation in each condition, the argument effectsize
in the function specifydesign should be specified. The values, provided in this argu-
ment, are used to increase (values larger than 1) or decrease (values smaller than 1) the
amplitude of the generated BOLD response.

2. The stimulus function is convoluted with a double-gamma HRF via canonicalHRF,
which models an initial dip and an undershoot of the BOLD signal (Friston et al. 1998),

t\“ t—d t\ t—d
o= (7)o (-50) (7)o (-50)

where a7 and ao model the delay of the response and the undershoot relative to the
onset, by and by model the dispersion of the response and the undershoot, ¢ models
the scale of the undershoot, and d; and dy model the time to peak of the response and
the undershoot. The default values of the parameters are d; = a;b;, a1 = 6, as = 12,
b; = 0.9 and ¢ = 0.35 (Glover 1999).

R> canonical <- specifydesign(totaltime = 200, onsets = list(onsets),
+ durations = list(dur), effectsize = 1, TR = 2,
+ conv = "double-gamma")

3. The stimulus function is used as the input for the balloon model implemented in the
balloon function (Buxton et al. 2004). The solving of the differential equations in the
model is based on the Runge-Kutta solver in the R package deSolve (Soetaert et al.
2010). The parameters of the model can be modulated via the param argument, which
should be a list containing values for all the parameters in the model. If not specified,
the default values as described by Buxton et al. (2004) are used.

R> balloon <- specifydesign(totaltime = 200, onsets = list(onsets),
+ durations = list(dur), effectsize = 1, TR = 2, conv = "Balloon")

The spatial location of the activation is specified as regions using the function specifyregion.
A region can be modeled in three ways, namely (1) as a cube, (2) as a sphere or (3) manually.
The first two forms can be modeled by defining two arguments, namely the coordinates of the
center of the region and the distance from the center to the edge of the region in voxels. For
example, to define an activated sphere (the result is displayed in Figure 2)

R> a <- specifyregion(dim = c(64, 64), coord = c(20, 20), radius = 10,
+ form = "sphere", fading = 0.5)

To define the form manually, the coordinates of all voxels that are part of the region should
by specified as a matrix with columns corresponding to their (x,y)-coordinates.

R> coord <- matrix(c(rep(20, 20), rep(26:30, each = 2), 20:27, 20:27,
+ rep(28, 6), 21:40, 30:21, rep(31, 8), rep(40, 8), 33:38),

+ ncol = 2, byrow = FALSE)

R> head(coord)
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Figure 1: The BOLD signals based on the three convolution functions for a 20-second

ON/OFF block design.
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R> b <- specifyregion(dim = c(64, 64), coord = coord, form = "manual")

The resulting activated slice is shown in Figure 2.

Additionally, it is possible to differentiate the strength of the measured activation between
voxels in the activated region. This can be the case if, for example, the BOLD response to a
certain stimulus is of different size in some parts of the activated region. A first method to
include this variability is to divide the activated region into separate subregions and specify
separate parameters of the HRF for each subregion in specifydesign. The subregions can
than be merged together using the high-level function simprepSpatial (see Section 3). Sec-
ondly, if the region is defined as a cube or a sphere, the fading option can be used to require
that the region has the largest effect in the center and smaller activation towards the edges
(Logan and Rowe 2004). This fading of the BOLD response is modeled as an exponential
decay depending on the distance of the activated voxel to the center of the region. The decay
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Figure 2: Example of an activated slice: on the left, the activation is modeled as a sphere,
on the right, the activated voxels are defined manually.

rate X\ can vary between 0 and 1 with 0 meaning no decay and 1 indicating the strongest
decay. In 3D this corresponds to

A(i,j,k)—l{?)-exp[

(= )2+ (G =)+ (k= k)
: | +3}.

A

where (¢, 7', k") are the (x,y, z)-coordinates of the voxel in the center of the region, A is the
decay rate and the activation is scaled to be 1 in the center of the region. An example of an
activated sphere with fading (A = 0.5) is presented in Figure 2.

2.2. Noise

The noise present in fMRI data is caused by different sources, such as for example the scanner
and the subject. neuRosim offers a bundle of functions to model noise from one of these
sources. The noise functions can be divided into four categories, namely (1) white noise, (2)
colored noise, (3) temporal noise and (4) spatial noise. The white noise (modeled by the
function systemnoise) represents the system noise that is part of the fMRI data. Two types
of system noise are considered: (1) system noise that is Rician distributed and (2) system
noise that is Gaussian distributed. The former is applicable for fMRI magnitude data with
low signal-to-noise ratio (SNR), while the latter can be used for higher SNR (about more than
10) (Haacke et al. 1999; Gudbjartsson and Patz 1995) . The standard deviation of the noise
is user-defined or can be based on the desired SNR defined by the user. In all noise functions,
average SNR is defined as -

S

ON

SNR =
where S represents the average magnitude of the signal, and oy stands for the standard
deviation of the noise (Kriiger and Glover 2001). For example (the resulting time series is

plotted in Figure 3),

R> n.white <- systemnoise(dim = 1, nscan = 100, sigma = 15, type = "rician")
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Figure 3: Time series of the noise structures in neuRosim.

Colored noise depends on either the signal, the timing or the location. neuRosim contains
three types of signal-dependent noise, (1) low-frequency drift, (2) physiological noise and (3)
task-related noise.

e Low-frequency drift, generated by lowfreqdrift, is a consequence of system noise
(Smith et al. 1999) that can be attributed to slow fluctuations in the scanner hard-
ware (Lazar 2008). The drift is modeled as a basis of discrete cosine functions. The
number of functions is determined by the frequency of the drift with a default value of
128 seconds. For example (the resulting time series is plotted in Figure 3),

R> n.low <- lowfreqdrift(dim = 1, nscan = 100, TR = 2, freq = 120)

e Physiological noise (physnoise) is defined as possible cardiac and respiratory artefacts
and as such accounts for the variability in the signal that is caused by the heart beat and
respiratory rate. These artefacts are often categorized as low-frequency drift. However,
we choose to model the physiological noise separately because it is shown that the
frequency of these artefacts is often higher than the scanner fluctuations (Smith et al.
1999). The physiological noise is modeled as sine and cosine functions with user-defined
frequencies. Default values are 1.17 Hz and 0.2 Hz for heart beat and respiratory rate
respectively (Biswal et al. 1996). For example (the resulting time series is plotted in
Figure 3),

R> n.phys <- physnoise(dim = 1, nscan = 100, sigma = 15, TR = 2)
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e Task-related noise accounts for spontaneous neural activity due to the experimental
task (Hyde et al. 2001) and is operationalized by adding random noise only where and
when activation is present. The distribution of this noise can be either Gaussian or
Rician. Additionally, the task-related noise can be interpreted as residual noise from
head motion that is not removed in the pre-processing stage. For example (the resulting
time series is plotted in Figure 3),

R> n.task <- tasknoise(act.image = s, sigma = 15)

Temporal noise accounts for the fact that fMRI data are repeated measurements (Purdon and
Weisskoff 1998). The function temporalnoise generates noise based on an auto-regressive
model of order p (AR(p)) defined as

p
5t:§:PﬁFV+M
i=1

with x; ~ N(0,0%). For example, the generate temporally correlated noise of order 2 (the
resulting time series is plotted in Figure 3),

R> n.temp <- temporalnoise(dim = 1, sigma = 15, nscan = 100,
+ rho = ¢(0.4, -0.2))

Finally, spatial noise models the spatial dependencies in fMRI data (Logan and Rowe 2004).
Of course, voxels are arbitrary units and neighboring voxels are more likely to be correlated
than voxels that are further apart. The function spatialnoise incorporates three types of
spatial noise models, namely (1) an autoregressive correlation structure, (2) a Gaussian ran-
dom field and (3) a Gamma random field. The first structure correlates the voxels with each
other based on random Gaussian or Rician noise. The strength of the correlation depends on
the value of the auto-correlation coefficient (default value is rho = 0.75) and the distance
between the voxels. If spatial correlation based on random fields is chosen, the full-width-
half-maximum (FWHM) of the kernel, which is used to generate the random field, should be
provided (default is FHWM = 4). Additionally, if the method is gammaRF, the shape (default is
gamma.shape = 6) and rate (default is gamma.rate = 1) parameter of the Gamma distribu-
tion should be defined as additional arguments. For example, to generate spatially correlated
noise for a 20x20 slice

R> d <- c(20, 20)

R> n.corr <- spatialnoise(dim = d, sigma = 15, nscan = 100,
+ method = "corr", rho = 0.7)
R> n.gaus <- spatialnoise(dim = d, sigma = 15, nscan = 100,

+ method = "gaussRF", FWHM = 4)
R> n.gamma <- spatialnoise(dim = d, sigma = 15, nscan = 100,
+ method = "gammaRF", FWHM = 4, gamma.shape = 3, gamma.rate = 2)

Figure 4 displays the correlation matrices for the generated slices. To generate these images,
all voxels were ordered and the correlation matrix of the generated time series was calculated.
Therefore, the diagonal represents the perfect correlation of each voxel with itself. We see
that voxels that are close to this diagonal, representing neighboring voxels, are also highly
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Figure 4: Correlation images for (a) an autoregressive correlation structure, (b) a Gaussian
random field and (c) a Gamma random field.

correlated. The block diagonal structure, which can be observed clearly with the Gaussian
random field structure (Figure 4b), is the result of reducing the two-dimensional structure of
the slice.

Additionally, all noise functions include the functionality that a template or mask can be
provided. As such, the noise is only generated for those voxels that are included in the mask.
This would allow the user to make for example a distinction between the noise source in the
gray matter, the white matter or in the cerebrospinal fluid.

3. Examples of high-level functions

The aim of the high-level functions is to allow the user to generate fMRI data efficiently and
transparently. The functions are developed such that they can easily be implemented in a
simulation environment. Of course, these functions have limits in their use. Therefore, we
refer users who desire more functionality to the low-level functions.

3.1. Generating fMRI time series

The simTSfmri function generates fMRI time series for a specified design matrix and with
an additive noise structure. The field of the design matrix should be prepared with the
simprepTemporal function, to ensure that all arguments are in the correct format. As an
example, we will generate a time series for a block design with two conditions. The experiment
lasts 100 scans with TR = 2 and the first condition has activation blocks of 20s, while the
second condition had activation blocks of 7 seconds

R> TR <- 2

R> nscan <- 100

R> total <- TR * nscan

R> os1 <- seq(1, total, 40)
R> 0s2 <- seq(15, total, 40)
R> dur <- 1ist (20, 7)

R> os <- 1list(osl, 0s2)

R> effect <- 1ist(3, 10)
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Figure 5: Generated time series (in blue) based on an experiment with two conditions (dashed
lines).

total, onsets = os, durations = dur,
"double-gamma")

R> design <- simprepTemporal(totaltime
+ effectsize = effect, TR = TR, hrf

Figure 5 presents the resulting activation from this design in dashed lines. The following
arguments should be specified to ensure a complete definition of the design matrix: the total
duration of the experiment in seconds (total), the onsets of each condition represented as a
list (onsets), the duration of the stimulus in each condition represented as a list (durations),
the repetition time in seconds (TR) and the form of the HRF (either gamma, double-gamma
or balloon). The noise can be either of the structures described in Section 2, but it is also
possible to add a mixture of noise. The different noise components are then weighted with a
vector of weights specified by the user. The weights can vary between 0 and 1, however, the
weights should sum to one. For example, we will add a mixture of noise to our above specified
design. The mixture contains Rician system noise, temporal noise of order 1, low-frequency
drift, physiological noise and task-related noise and has a baseline value of 10

R> w <- ¢(0.3, 0.3, 0.01, 0.09, 0.3)
R> ts <- simTSfmri(design = design, base = 10, SNR = 2, noise = "mixture",
+ type = "rician", weights = w, verbose = FALSE)

The resulting time series are plotted in Figure 5.
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3.2. Generating fMRI volumes

The function simVOLfmri is built to generate complete fMRI datasets (i.e., 3D for a slice and
4D for a volume). In this function, some spatial properties of the data are introduced. For this
function, not only a design matrix — defining when the activation occurs — has to be specified,
but also a region — defining where the activation takes place — should be provided. Similarly
as for the design matrix, a preparation function (simprepSpatial) is needed to ensure that
all arguments that define the region of activation are in the correct format. Suppose that we
wish to simulate 2 activated regions that are part of a small network. We need to call the
simprepSpatial function as follows

R> regions <- simprepSpatial(regions = 2, coord = list(c(10, 5, 24),
+ c(53, 29, 24)), radius = c(10, 5), form = "sphere")

The arguments that should be provided in the function are: the number of activated re-
gions (regions), a list of coordinates specifying the regions (coord), the radius of the region
(radius, not needed if the region is defined manually) and the shape of the region (form) The
implemented shapes are cube and sphere. For any other shape, the coordinates of all voxels
in the region should be entered manually (see Section 2 for an example). Further, we will
generate the activation in both regions following the same design matrix as for the generation
of the time series.

R> onset <- list(os, os)

R> duration <- list(dur, dur)

R> effectl <- 1list(2, 9)

R> effect2 <- 1list(14, 8)

R> design2 <- simprepTemporal(regions = 2, onsets = onset,

+ durations = duration, TR = TR, hrf = "double-gamma",

+ effectsize = list(effectl, effect2), totaltime = total)

We can now generate an fMRI dataset corresponding to this very simple two-region network.
Again, we will add a mixture of noise with the additional possibility that we can add spatially
correlated noise.

R> w <- ¢(0.3, 0.3, 0.01, 0.09, 0.1, 0.2)

R> data <- simVOLfmri(dim c(64, 64, 64), base = 100, design = design2,
+ image = regions, SNR = 10, noise = "mixture", type = "rician",

+ weights = w, verbose = FALSE)

The result is a 4D fMRI dataset. To analyze the data with standard fMRI data analysis soft-
ware like SPM, FSL, AFNI, ..., the dataset can be exported as a NIfT1 file using for example
the function nifti.image.write in Rniftilib (Granert 2010) or the function writeNIfTI
from oro.nifti (Whitcher et al. 2011a,b). Note that with simTSfmri and simVOLfmri it is also
possible to simulate data that contain only activation or only noise.

3.3. Simulating and analyzing a 4D fMRI dataset

To further demonstrate the functionality of the package, we present a more real-life example.
Consider the data from a repetition priming experiment performed using event-related fMRI

11
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(Henson et al. 2002)2. The data are the result of a 2 x 2 factorial study with factors fame and
repetition where famous and non-famous faces were presented twice against a checkerboard
(Henson et al. 2002, for more details, see). An orthographic overview of the measured data is
given on the left side of Figure 6. To generate data using neuRosim that are representative for
this study, we start by defining the design. First we define some parameters like the dimension
of the image space, the number of scans and TR. Then, since we simulate an event-related
design, we also assign the onsets for each condition.

R> dim <- c(53, 63, 46)

R> nscan <- 351

R> TR <- 2

R> total.time <- nscan * TR

R> onsets.N1 <- c(6.75, 15.75, 18, 27, 29.25, 31.5, 36, 42.75, 65.25,
+ 74.25, 92.25, 112.5, 119.25, 123.75, 126, 137.25, 141.75,

+ 144, 146.25, 155.25, 159.75, 162, 164.25, 204.75, 238.5) *

+ TR

R> onsets.N2 <- c(13.5, 40.5, 47.25, 56.25, 90, 94.5, 96.75, 135,
+ 148.5, 184.5, 191.25, 202.5, 216, 234, 236.25, 256.5, 261,

+ 281.25, 290.25, 303.75, 310.5, 319.5, 339.75, 342) * TR

R> onsets.F1 <- ¢(0, 2.25, 9, 11.25, 22.5, 45, 51.75, 60.75, 63,

+ 76.5, 78.75, 85.5, 99, 101.25, 103.5, 117, 130.5, 150.75,

+ 171, 189, 227.25, 265.5, 283.5, 285.75, 288, 344.25) * TR

R> onsets.F2 <- ¢(33.75, 49.5, 105.75, 153, 157.5, 168.75, 177.75,
+ 180, 182.25, 198, 222.75, 240.75, 254.25, 267.75, 270, 274.4,
+ 294.75, 299.25, 301.5, 315, 317.25, 326.25, 333, 335.25,

+ 337.5, 346.5)

Next, we have to specify which voxels are activated. We will consider five regions. The first
three are general regions that activate when faces are presented, the fourth region is only
activated if famous faces are shown, while in the last region adaptation to the repetition of
faces is modeled.

R> region.1A.center <- c(13, 13, 11)
R> region.1A.radius <- 4
R> region.1B.center <- c(40, 18, 9)
R> region.1B.radius <- 6
R> region.1C.center <- c(10, 45, 24)
R> region.1C.radius <- 3
R> region.2.center <- c(15, 16, 31)
R> region.2.radius <- 5
R> region.3.center <- c(12, 16, 13)
R> region.3.radius <- 5

In each region, the same design matrix will be considered. However, the effect size in each
condition will vary over conditions.

2The use of the dataset is with permission from the corresponding author and may be downloaded from
http://www.mrc-cbu.cam.ac.uk/people/rik.henson/personal/.
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Figure 6: Orthographic view of fMRI data for an event-related repetition priming study. On
the left, the data measured by Henson et al. (2002) and on the right, the data simulated by
neuRosim.

R> onsets <- list(onsets.N1, onsets.N2, onsets.F1, onsets.F2)

R> onsets.regions <- list(onsets, onsets, onsets, onsets, onsets)
R> dur <- 1list(0, 0, 0, 0)

R> dur.regions <- list(dur, dur, dur, dur, dur)

R> region.la.d <- 1ist(160.46, 140.19, 200.16, 160.69)

R> region.1b.d <- 1ist(140.51, 120.71, 160.55, 120.44)

R> region.lc.d <- 1ist(120.53, 120.74, 140.02, 100.48)

R> region.2.d <- 1list(-0.24, 10.29, 80.18, 160.24)

R> region.3.d <- 1ist(200.81, 50.04, 240.6, 50.83)

R> effect <- list(region.la.d, region.1b.d, region.lc.d, region.2.d,
+ region.3.d)

Additionally, we will consider a baseline image. The baseline value for each voxel is determined
as the mean value of the measured time series of that voxel. Non-brain voxels are defined as
voxels with an average measured value less than 250 and are fixed to 0 in the baseline image.

R> library("oro.nifti")

R> Hensondata <- readNIfTI("preprocessed_face.nii.gz")
R> baseline <- apply(Hensondata, 1:3, mean)

R> baseline.bin <- ifelse(baseline > 250, 1, 0)

R> ix <- which(baseline == 1)

R> baseline[-ix] <- 0

Consequently, the anatomical structure of the brain will be incorporated in the simulated
data. Now, we can use the functions simprepTemporal and simprepSpatial to prepare the
temporal and spatial structure of our simulated 4D fMRI data.

R> design <- simprepTemporal(regions = 5, onsets = onsets.regions,
+ durations = dur.regions, hrf = "double-gamma", TR = TR,
+ totaltime = total.time, effectsize = effect)

13
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Figure 7: Axial slice view of the activated voxels for the real (left) and simulated data (right):
faces versus baseline contrast (top), famous versus non-famous contrast (middle), first versus

second presentation contrast (bottom).

R> spatial <- simprepSpatial(regions = 5, coord = list(region.1A.center,

+ region.1B.center, region.1C.center, region.2.center, region.3.center),
+ radius = c(region.1A.radius, region.1B.radius, region.1C.radius,
+ region.2.radius, region.3.radius), form = "sphere", fading = 0.01)

Finally, we can generate the dataset. Note that the values for the SNR and the temporal
autocorrelation coefficients were estimated based on the real data.

R> sim.data <- simVOLfmri(design = design, image = spatial, base = baseline,
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SNR = 3.87, noise = "mixture", type = "rician", rho.temp = c(0.142,
0.108, 0.084), rho.spat = 0.4, w = c(0.05, 0.1, 0.01,
0.09, 0.05, 0.7), dim = c(b3, 63, 46), nscan = 351, vee = 0,
template = baseline.bin, spat = "gaussRF")

+ + + +

An orthographic overview of the simulated data is given on the right-hand side of Figure 6.

Next, we analyzed the simulated data in SPM following the exact description given in the
manual (Ashburner et al. 2009, Chapter 29). We considered three contrasts, namely: (1)
the overall effect of faces versus baseline checkerboard, (2) the effect of famous faces and (3)
the effect of repetition. The results were thresholded with p < 0.05 (uncorrected), just to
demonstrate the detection of the activation. Figure 7 shows a comparison between some of
the activated regions that are found in the real data (left-hand) and in the simulated data
(right-hand).

4. Conclusions and future work

neuRosim provides a flexible framework for generating fMRI data including a large variety
of activation models and noise structures. High-level functions are available to simulate time
series or full 4D data in an efficient and transparent way. For more advanced users, the low-
level functions create the opportunity to build customized simulation functions. Currently,
we are working on an extension of a resting state module such that in future updates it
will be possible to have the same functionality for the generation of resting state data as
for fMRI data. Other future plans are to include more neurobiological models, for example,
the metabolic-hemodynamic model (Sotero and Trujillo-Barreto 2008; Sotero et al. 2009) and
spatiotemporal BOLD dynamics (Drysdale et al. 2010). To extent the generalizability of the
data simulated by neuRosim, we plan to include the generation of complex-valued fMRI data
consisting of both magnitude and phase data. To conclude, it is our hope that neuRosim
will evolve to a general platform for simulating fMRI data. Simulation studies should be
a requisite to publish a statistical validation paper in the field of neuroscience. This will
only be possible when standardized and trustworthy simulation methods using validated data
generation techniques are available.
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