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Abstract

This paper presents an R package for magnetic resonance imaging (MRI) tissue clas-
sification. The methods include using normal mixture models, hidden Markov normal
mixture models, and a higher resolution hidden Markov normal mixture model fitted by
various optimization algorithms and by a Bayesian Markov chain Monte Carlo (MCMC)
method. Functions to obtain initial values of parameters of normal mixture models and
spatial parameters are provided. Supported input formats are ANALYZE, NIfTI, and a
raw byte format. The function slices3d in misc3d is used for visualizing data and results.
Various performance evaluation indices are provided to evaluate classification results. To
improve performance, table lookup methods are used in several places, and vectorized
computation taking advantage of conditional independence properties are used. Some
computations are performed by C code, and OpenMP is used to parallelize key loops in
the C code.

Keywords: higher resolution hidden Markov normal mixture model, Bayesian Markov chain
Monte Carlo, table lookup, conditional independence, OpenMP.

1. Introduction

Magnetic resonance imaging (MRI) is a non-invasive method for imaging the inside of objects,
for example different organs of animals and humans. Different types of images have different
contrast effects to satisfy specific applications. Here, we focus on structural imaging of the
brain. Each image is a three-dimensional (3D) array of image intensities, one for each voxel
(volume picture element). In the package mritc, we focus on using signal intensities from a
T1-weighted MR acquisition.

Figure 1(a) shows a coronal view of a brain. In a T1-weighted image, white matter (WM) tends
to have light gray color, gray matter (GM) medium gray, and cerebrospinal fluid (CSF) dark
gray (Hornak 2011). Brain tissue classification has many applications, for example in diagnosis
of disease and preparation for surgery. Since manual tissue classification is labor intensive,
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Figure 1: Coronal view of a brain from a T1-weighted image and its density plot of three
tissues.

automated methods have been proposed to match the quality of the manual technique at
lower cost.

MRI data consist of image intensities y1,...,yy for N voxels in a 3D array, where N is large,
for example 256 x256x192. Typically, a binary mask is used to remove non-brain tissue, and
the remaining number of voxels (within the brain mask) is still quite large. Intensities are
often scaled to [0,255] and rounded to an integer. A density plot of intensities from a low
noise MR image is shown in Figure 1 (b). For voxel i = 1,..., N, the goal is to find the tissue
types, denoted by z; € {1,2,3} corresponding to the three major tissue types.

The motivation of the package was to make available some tissue classification methods espe-
cially the ones using the Bayesian MCMC based on Feng et al. (2012), which are not available
elsewhere.

The next section reviews classification approaches provided in the package. Section 3 discusses
computational issues involved to improve speed. The overview of the functions available and
several examples are shown in Section 4. Some discussion and directions for future work are
presented in Section 5.

2. Methods available

The package provides tools for MRI tissue classification using normal mixture models and
(partial volume, higher resolution) hidden Markov normal mixture models fitted by various
methods. This section outlines the approaches available. For more up-to-date references on
MRI tissue classification, see Feng et al. (2012) and references therein.

2.1. The pure voxel assumption

There are three modes in Figure 1(b), and CSF are usually with small intensity values, the
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Figure 2: Ilustration of neighborhood structures in three dimensions.

GM are often in the middle, and WM are those that tend to have larger intensity values. A
mixture model is a natural choice when there are multiple modes in a density plot. Given
the tissue structure z = (z1,...,2y), intensities are independent and normally distributed
i | 2i~N(u(zi),0%(2)). The means and variances depend on the tissue types. Assuming
tissue types are independent leads to a simple normal mixture model (NMM)

N ok
&) =11 D. ucnor e Wlp(zi = k).
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Parameters are easily estimated by the expectation-maximization (EM) algorithm (Dempster
et al. 1977) and tissue types can be assigned using the Bayes classifier (Mitchell 1997).

Since the data come from a 3D array, a natural question would be how the spatial information
could be incorporated. Since adjacent voxels are likely to contain the same tissue type, a more
realistic model accounts for this spatial homogeneity in z. The Potts model family provides
simple models for spatial homogeneity

p(z) =

0(15) exp Zaz(z,) + BZwijf(zi, Z) ¢ (1)
i i~

where C'(3) is a normalizing constant and i~ indicates neighboring voxels. We need to define
neighborhood structure and then assign relationships among neighboring voxels. For a 3D
array, besides defining six neighbors in the x, y, and z directions, one can add twelve diagonal
neighbors in the  — y, * — z, and y — z planes, and another eight on the 3D diagonals.
This leads to a six-neighbor structure, an 18-neighbor structure, and a 26-neighbor structure
(Figure 2).

The parameter ( in (1), called inverse temperature, determines the level of spatial homogene-
ity between neighboring voxels in the image. A zero 8 would imply that neighboring voxels
are independent. We use positive 3 values hereafter. The w;; are weights and we assume
w;;=1 hereafter. The term ZZ]\L 1 @i(z;) is called the external field. The a;(z;) are functions
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of z;. When g = 0, the external field completely characterizes the probability distribution of
the independent z;, i =1,2,...,N.

The Potts model is an example of a Markov random field (MRF) model, since the conditional
distribution of z; given all others is equal to the conditional distribution of z; given all its

neighbors. Let I denote the indicator function and I(x,y) = 1 when & = y and 0 otherwise.
When f(z;,2j) = I(z; = z;) model (1) becomes

N
p(z) = C(lﬁ) exp ;ai(zi) + 521(21‘ =zj) - (2)

in~j

For k = 2 components this model is called the Ising model (Ising 1925); for & > 2 it is the Potts
(1953) model. The Ising model was originally proposed to describe the physical properties of
magnets. Due to its power, the Ising model and its various versions have been widely used
in other fields, such as brain models in cognitive science, information and machine learning
theory (MacKay 2003), economics (Bourgine and Nadal 2004), sociology (Kohring 1996) and
game theory (Hauert and Szabd 2005).

The most commonly used Potts model is the one without an external field and with w;;=1,

p(z) = C(lﬁ) exp 521(21' =2zj) - (3)

i~j

We refer to this as the simple Potts model hereafter.

After incorporating the spatial information, we have the hidden Markov normal mixture model
(HMNMM)

p(y |z, 1, 07) p(z).

The spatial correlation is accommodated by p(z), a model from the Potts family to characterize
the property among tissue types of voxels, and given the tissue types, the intensity values
are independent and normally distributed with means and variances depending on the tissue
types.

The HMNMM can be fitted by the iterated conditional modes (ICM) algorithm which al-
ternately maximizes each parameter conditional on all others being fixed (Besag 1986), or
the hidden Markov random field EM (HMRFEM) algorithm which is a variation of the EM
algorithm (Zhang et al. 2001). Though the ICM has its drawbacks, such as sensitivity to the
initial configuration and visiting scheme, and getting stuck at a local maximum, it is fast and
easy to implement. It is useful to run the ICM algorithm as a pilot study to make sure that
the hidden Markov normal mixture model provides reasonable results before using more time
consuming algorithms.

Alternatively, we can use the Bayesian MCMC method to fit the model by specifying a
prior distributions p(u,0?) on p,o? and then using MCMC to compute characteristics of
the posterior distribution p(u, o2, z|y). Assume p, o2,z are independent; pu have indepen-
dent normal distributions with the ordering restriction p; < ... < pi to avoid identifiability
issues associated with label switching (Celeux et al. 2000); and o2 have independent and
identically distributed inverse Gamma distributions. Then the full conditionals satisfy g in-
dependent normal, o2 independent inverse Gamma, and z Potts model with external field
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ai(z) = log f(yi| (z),0(zi)). The MRI segmentation for human brain by the Bayesian
MCMC method has rarely been used before. Almost all previously proposed Bayesian meth-
ods have used maximum a posteriori (MAP) estimation, which essentially reduces to an
optimization problem (Feng et al. 2012).

2.2. Incorporating partial volume effects

In the previous section, all methods were based on the assumption that voxels are pure,
containing only one tissue type. A more realistic model would take into account the fact that
some voxels are not homogeneous: while some may contain only one tissue type, others on
the interface will contain two or possibly three different tissue types. This phenomenon is
called the partial volume (PV) effect (Pham et al. 2000).

To address this, one approach is to introduce intermediate classes: the combination of
CSF/GM (CG) and the combination of GM/WM (GW). This helps reduce confounding in
estimation. A number of studies have used this approach, and among them the Gaussian
and partial volume (GPV) method, which uses normal mixture model with dependent means
and variances, performs well (Cuadra et al. 2005). For the GPV, it assumes the means and
variances of CG and GW are equal to the weighted average of corresponding pure tissues and
the densities of voxels from CG and GW are equal to mean densities based on the distribution
of weights. However, there is no analytical solution to the integrals and numerical integration
must be used. The algorithm to implement that with a Potts prior is referred to as the partial
volume HMRFEM (PVHMRFEM) in the package.

We have adopted a different approach. Each voxel is divided in half in the x,y, z directions,
producing eight subvoxels. Each subvoxel is viewed as containing only one tissue type and
the observed voxel intensity is equal to the sum of its eight unobserved. Conditional on the
tissue types of subvoxels, the intensity values of subvoxels are independent normals and a
spatial model is used at the subvoxel level. Furthermore, to capture the fact that CSF and
WM rarely coexist in a voxel we use

p(Z) (Bl eXp Zf Z’L)Zj )

’LN]

where
51 if z; = zj;
f(ZZ',Zj) = —52 if {ZZ‘,Z]‘} = {CSF, WM};

0 otherwise.

We call this model the repulsion Potts model and basically it assumes that it is most likely that
the neighboring subvoxels are of the same tissue type and it is most unlikely that one subvoxel
is from CSF but its neighbor is from WM and vice versa. We use a Bayesian formulation to
solve it. The higher resolution model fitted by the Bayesian MCMC (MCMCsub) provides
more accurate tissue classification and also allows more effective estimation of the proportion
of each voxel that belongs to each of the major tissue types. A similar subvoxel idea has been
used in Van Leemput et al. (2003). However, there are differences between their approach
and ours; in particular, our method avoids problems such as classifying voxels containing both
WM and GM as pure GM voxels (Feng et al. 2012).
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3. Computational issues

The size of the MRI data is typically very large, for example, the data from BrainWeb (Collins
et al. 1998), a simulated brain database, has over 1.8 million voxels even after masking out
non-brain voxels. Furthermore when we use the higher resolution model in Section 2.2, each
voxel is further divided into eight subvoxels. To improve speed, table lookup methods are
used in various places, vectorization is used to take advantage of conditional independence,
and some computations are performed by C code and C using OpenMP to parallelize loops.

3.1. Table lookup

Table lookup methods use a table of pre-computed values for complex expressions and replace
an expensive fresh computation of the value then it is needed by a fast indexing operation
into the table of pre-computed values. This approach is useful when the number of distinct
values is small and an appropriate table index is easily computed. Tang (1991) describes the
use of table lookup methods for various elementary functions.

As mentioned in Section 1, the intensity values are integers between 0 and 255 and hence when
we calculate the density values for a normal distribution at these intensities we only need a
table with at most 256 values corresponding to intensity values 0,1, 2,...,255 to handle all
voxels.

For a model from the Potts family, the conditional tissue type for a (sub)voxel is defined
uniquely by its neighbors, and the conditional distributions are exactly the same discrete dis-
tribution given the same configuration of (sub)voxels in the neighboring voxels. Furthermore,
the conditional distribution depends only on the total number of (sub)voxels from different
tissue types. Therefore we can enumerate all possible cases and their corresponding condi-
tional probabilities and use a pre-computed table of probabilities for all (sub)voxels when
updating tissue types. For example when each (sub)voxel has six neighbors and there are
three tissue types, there are only 343 different cases in the table. To enumerate all possible
cases, first all configurations for different numbers of neighbors and tissue types are computed
using a recursive method and then the unique combination of total number of (sub)voxels from
different tissue types are generated. For the commonly used default setup with three tissue
types and either six, 18, or 26 neighbors, the tables are pre-computed and saved for repeated
usage. For others, the tables are computed at runtime.

3.2. Conditional independence

Suppose we can divide variables that need to be updated into disjoint blocks and, given the
variables in other blocks, all the variables within the same block are conditionally indepen-
dent. Then we can update one block at a time, and generate variables within each block
independently. This may allow the generation within a block to be vectorized or parallelized.
For example, in Figure 3(a), under the four neighbor structure in 2D (a voxel has neighbors
on its south, north, east, and west), given the blacks, the whites are independent and vice
versa. By this kind of independence, the vector z (indices to tissue types) can be updated
in two steps: one for the blacks, one for the whites. This concept can be traced back to
Besag’s “Coding Methods” (Besag 1974); it was described in Wilkinson (2005) and a detailed
discussion can be found in Winkler (2003). This conditional independence can be extended
to 3D lattices with a six neighbor structure. In Figure 3(b), given the blacks, the whites are
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(a) Four neighbors in 2D. (b) Six neighbors in 3D.

Figure 3: Illustration of conditional independence.

independent and vice versa. The minimum number of blocks to make the variables within
each block independent given the other blocks is called the chromatic number (Winkler 2003).
So the chromatic numbers for six neighbors in 3D is two, for 18 neighbors it is seven, and for
26 it is eight. See Feng (2008) for more details.

The conditional independence is used for vectorized computation when updating the vector z.
Combined with the table lookup method, the speed is greatly improved. To further improve
the speed, embedded C code with parallel computation implemented by OpenMP is used.

3.3. OpenMP

OpenMP is a framework for shared memory parallel computing. It is supported by most
C/C++ and Fortran compilers and runtime systems currently in use, and is based on the
fork/join model. For a concise introduction to OpenMP see Tierney (2007).

The following code snippet illustrates the usage of the OpenMP in a relatively simple case.
The code is from an embedded C function to fulfill the task of updating (sub)voxel intensity
values. The upper part is an abstract of the function from the sequential code and the lower
part illustrates its corresponding parallel code. We can see that the additional coding effort
is not very much in this case.

/* an abstract of the function from the sequential code */
for (i = 0; i < n; i++) {

}

/* the abstract of corresponding papallel code */
#pragma omp parallel for firstprivate(k, 1dD, ...)
for (i = 0; i < n; i++) {

}
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Number of processors 1 2 3 4 5 6 7 8
Time 961 710 604 538 510 487 470 450

Table 1: The computational time in seconds of using the MCMCsub method on a full
BrainWeb data set.

One of the advantages of OpenMP is that we can upgrade the code from sequential to parallel
one step at a time. In each step, we just focus on part of the code. In this way, there is
an incremental path to parallelism and the integrity of typically well tested serial code is
maintained.

To realize parallelism, compiler directives #pragma in C are used and the keyword omp distin-
guishes the pragma as an OpenMP pragma. We parallelize a for-loop specified by parallel
for. With a compiler that can recognize the directive, the code is run in a parallel fashion,
otherwise the code is run sequentially. Therefore it is easy to port the code from one machine
to another.

In the example, there is also a scope clause firstprivate to specify the sharing attributes
of variables and an implicit barrier for synchronization. From our experience, it is a good
idea to explicitly specify the scope of all variables used in a parallel region. In particular
it is important to specify the firstprivate scope for variables that are initialized in the
sequential portion and used but not modified in the parallel loop. Failure to identify these
as firstprivate can result in poor performance. Some compilers may be able to infer this
property in some cases but others are not able to, so to ensure that code works well on a
range of compilers explicit specification is a good idea. See Chandra et al. (2001) for detailed
discussion on OpenMP.

The computational time of using the MCMCsub method on a full BrainWeb data set (with
1,838,675 voxels inside the mask) is shown in Table 1. The number of sweeps is 100, which
seems to be sufficient to produce good classifications. The speedup in shown in Figure 4.
The program is run on a Linux dual quad-core AMD Opteron 2.3GHz, 48GB RAM computer.
The speedup is about 2.1 when eight processors are used. By Amdahl’s law, no matter how
well the parallel proportion is coded and how many processors are used, the performance of
the overall code will be limited by the proportion that can be parallelized and the larger the
number of processors, the more severe the effect.

For the number of processors, without explicit specification, all available ones are used. To
specify the number of processors, we can use the environment variable OMP_NUM_THREADS.
Suppose the code is run with four processors. For the Unix-like machines, run R with
OMP_NUM_THREADS specified as follows.

OMP_NUM_THREADS=4 R

For the Windows users, the OMP_NUM_THREADS can be specified as follows. First, click “start” to
find R icon. Second, right click the icon and then click “properties”.  Finally, add
OMP_NUM_THREADS=4 to the “Target”. Furthermore, for the Windows version, one needs
to put pthreadGC2.d11l at C:\WINDOWS\system32. To obtain pthreadGC2.d1ll, use ftp:
//sourceware.org/pub/pthreads-win32/d11l-latest/lib/pthreadGC2.d11l. Functions to
test and specify the number of processors within the package may be provided in the future.
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Figure 4: Speedup of the OpenMP example. The solid line shows the speedup and the dashed
line is produced using abline(0, 1).

4. Overview of the package

In this section, we give first an overview of the different functions of the package and then
several examples on the usage of the package in detail.

4.1. Functions of the package

The ANALYZE, NIfTI, and raw byte file formats are supported for input and output. For
the ANALYZE format, the functions are taken from the package AnalyzeFMRI (Marchini
and Lafaye de Micheaux 2009; Bordier et al. 2011). For the NIfTT format, the functions
are adapted from the package fmri (Tabelow and Polzehl 2011). For input, in addition to
the original .nii files and the .hdr/.img files, the .nii.gz files are supported. For output
instead of .nii the adapted version writes data into compressed .nii.gz files to save space.

Initial values of the means, variances, and proportions of the NMMs can be generated using
Otsu’s method implemented by a fast algorithm using the function initOtsu. Another func-
tion to generate initial estimates is initProp. Otsu’s algorithm was originally proposed to
threshold a gray-level image to a binary image (Otsu 1979). It was generalized to multi-level
thresholding and a fast algorithm was proposed in Liao et al. (2001). Note that for MRI
data, it can be slow if the number of classes is greater than three (more than two threshold
values) even with the fast algorithm implemented, since Otsu’s algorithm uses an exhaustive
search. But it should be sufficient with three classes, which corresponds to the typical case
in MRI classification. For initProp, the threshold values are quantiles based on the guess of
proportion of different components which is much faster than using initOtsu when there are
more than three components.
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Function Method

mritc.em NMM fitted by the EM algorithm
mritc.icm HMNMM fitted by the ICM algorithm
mritc.hmrfem HMRFEM algorithm

mritc.bayes with sub = FALSE MCMC

mritc.pvhmrfem PVHMRFEM algorithm
mritc.bayes with sub = TRUE =~ MCMCsub

Table 2: The classification methods and corresponding function names.

Various spatial input parameters for different methods, such as the neighbors of corresponding
voxels, the blocks for conditional independence, and the subvoxels corresponding to each voxel,
can be obtained using the function makeMRIspatial. The package supports six, 18, and 26
neighbors structure typical for MRI (Figure 2).

The classification methods and their corresponding function names in the package are listed
in Table 2.

For the default setup of the Potts models, a simple Potts model is used. The exception is for
MCMCsub and PVHMRFEM, where the repulsion Potts model is adopted. A six neighbor
structure in 3D is the default neighbor definition. The default value of g for PVHMRFEM
is taken from Cuadra et al. (2005). For other methods, the values are obtained through a
validation procedure (Feng et al. 2012). The argument spatialMat is used to specify the
format of f(z;,2;) in the model (1). For a simple Potts model, it is an identity matrix and
for a repulsion Potts model it is used to specify 51/8 and —B2/5.

The package provides a uniform platform for all methods with easier usage by the function
mritc. The user must specify the input MR image intarr, the mask of the image, and the
method used. The other parameters are defined automatically. The output is an object of
class mritc and generic print, summary, and plot methods are provided.

Furthermore different metrics for accuracy of predictions based on available truth can be ob-
tained through the function measureMRI. The measures available include: mis-classification
rate, average mean square error, dice similarity measure (DSM, Cuadra et al. 2005), confusion
table, and tissue volume error. The mis-classification rate compares whole voxel classification
to the discrete anatomical model. This requires a form of rounding of the results and doesn’t
reflect all the PV information each approach provides. To demonstrate the ability of cap-
turing the PV effect, average mean square errors between the estimated and the true tissue
distributions within voxels is provided. Another performance measure is the DSM defined as

follows
2N?
DSMt — anb
a,b NCtL ¥ Ng7

where N! and le are the number of voxels classified as tissue ¢t by method a and b respectively,
and N!_, is the number of voxels classified as tissue ¢ by both methods a and b. The larger
the DSM, the more similar the results from the two methods. Furthermore, the confusion
table could be used to evaluate the results on a tissue per tissue base. The element on the ith
row and jth column of the table is the probability of classifying voxels as being from category
1 given that the true category should be j. The differences in absolute values between the
estimated and true tissue volumes with respect to the truth are also available.
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4.2. Examples

This part demonstrates the usage of the package through four examples using the data sets
contained in the package. The data was adapted from the BrainWeb repository with the size
reduced to take less space and time for the purpose of illustration.

The first example reads the T1-weighted image and its corresponding mask using readMRI
and focus on voxels inside the brain. The classification is based on the NMM fitted by the
EM algorithm using mritc.em. The initial values of the NMM are obtained using initOtsu.

R> T1 <- readMRI(system.file("extdata/tl.rawb.gz", package = "mritc"),

+ c(91, 109, 91), format = "rawb.gz")

R> mask <- readMRI(system.file("extdata/mask.rawb.gz", package = "mritc"),
+ c(91, 109, 91), format = "rawb.gz")

R> y <- T1[mask == 1]

R> initial <- initOtsu(y, 2)

R> prop <- initial$prop

R> mu <- initial$mu

R> sigma <- initial$sigma

R> tc.em <- mritc.em(y, prop, mu, sigma, verbose = TRUE)

Iteration 10: relative error of mu = 8e-04; sigma =
Iteration 20: relative error of mu = be-04; sigma =
Iteration 30: relative error of mu = 4e-04; sigma =
Iteration 40: relative error of mu = 3e-04; sigma =
Iteration 50: relative error of mu = 2e-04; sigma = 0.001; prop = 5e-04
Iteration 60: relative error of mu = le-04; sigma = 0.001; prop = 4e-04
Iteration 70: relative error of mu = le-04; sigma = 8e-04; prop = 3e-04
Iteration 80: relative error of mu = 8e-05; sigma = 6e-04; prop = 2e-04
Iteration 90: relative error of mu = 6e-05; sigma = 5e-04; prop = 2e-04

.006; prop = 0.002
.004; prop = 0.001
.003; prop = 9e-04
.002; prop = 7e-04

O O O O O O

Iteration 100: relative error of mu = 4e-05; sigma = 4e-04; prop = le-04
Iteration 110: relative error of mu = 3e-05; sigma = 3e-04; prop = 9e-05
Iteration 120: relative error of mu = 2e-05; sigma = 2e-04; prop = 7e-05
Iteration 130: relative error of mu = 2e-05; sigma = 2e-04; prop = 5e-05
Iteration 140: relative error of mu = 1le-05; sigma = le-04; prop = 4e-05

R> str(tc.em)

List of 3
$ prob : num [1:229786, 1:3] 1 0.999 1 0.924 0.994 ...
$ mu : num [1:3] 45.1 96.9 131

$ sigma: num [1, 1:3] 11.47 15 9.92

By specifying the option verbose = TRUE, the function mritc.em indicates the convergence
level as it runs. The output is a list of three components. The components mu and sigma
are the estimates of mean and standard deviation (sd) vectors of the normal mixture model.
The component prob is a matrix with one row per voxel and the number of columns equal
to the number of tissue types. The value at the ith row and jthe column is the probability

11
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that voxel ¢ is from tissue type j times the density of voxel ¢ from the jth component of the
normal mixture model.

Instead of using the HMM, the second example use the higher resolution HMNMM fitted by
the Bayesian method. The spatial parameters are obtained using the function makeMRIspatial
with argument sub = TRUE.

R> T1 <- readMRI(system.file("extdata/tl.rawb.gz", package = "mritc"),

+ c(91, 109, 91), format = "rawb.gz")

R> mask <- readMRI(system.file("extdata/mask.rawb.gz", package = "mritc"),
+ c(91, 109, 91), format = "rawb.gz")

R> y <- Ti[mask == 1]

R> initial <- initOtsu(y, 2)

R> mu <- initial$mu

R> sigma <- initial$sigma

R> mrispatial <- makeMRIspatial (mask, nnei = 6, sub = TRUE)

R> tc.mcmcsub <- mritc.bayes(y, mrispatial$neighbors, mrispatial$blocks,
+ mrispatial$sub, mrispatial$subvox, mu = mu, sigma = sigma,

+ verbose = TRUE)

Iteration 10 has finished
Iteration 20 has finished
Iteration 30 has finished
Iteration 40 has finished
Iteration 50 has finished
Iteration 60 has finished
Iteration 70 has finished
Iteration 80 has finished
Iteration 90 has finished
Iteration 100 has finished

R> str(tc.mcmcsub)

List of 3
$ prob : num [1:229786, 1:3] 0.964 0.887 0.975 0.7 0.789 ...
$ mu : num [1:3] 4.07 11.92 17.01

$ sigma: num [1:3] 2.57 2.26 2.68

By supplying the option verbose = TRUE, the function mritc.bayes indicates the progress.
The output is a list of three components consisting of posterior estimate.

Compared with the first two examples, the third is more comprehensive. The T1-weighted
image and the mask are read in and the image is plotted using the function slices3d in
misc3d (Feng and Tierney 2008) and then the wrapper of all classification methods mritc is
used to classify the image using the ICM algorithm. Next, the classification results are plotted
and evaluated by different metrics based on the truth. The truth reflects the proportion of
different tissues present in each voxel. Finally, the images of the classification results and the
original are overlaid for an overall view.

First the image is read and plotted.
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R> T1 <- readMRI(system.file("extdata/tl.rawb.gz", package = "mritc"),
+ c(91, 109, 91), format="rawb.gz")

R> mask <-readMRI(system.file("extdata/mask.rawb.gz", package="mritc"),
+ c(91, 109, 91), format = "rawb.gz")

R> slices3d(T1)

Second, the image is classified and the classification results are plotted. The function mritc
by default outputs the progress.

R> tc.icm <- mritc(T1, mask, method = "ICM")

Iteration 1: relative error of mu = 0.003; sigma = 0.02

Iteration 2: relative error of mu = 0.001; sigma = 0.007
Iteration 3: relative error of mu = 4e-04; sigma = 0.002
Iteration 4: relative error of mu = 4e-05; sigma = 2e-04
Iteration 5: relative error of mu = 0; sigma = 0

R> plot(tc.icm)

Next the truth is read, transformed to proportions of different types per voxel, and then the
function measureMRI is used to evaluate the classification results.

R> csf <- readMRI(system.file("extdata/csf.rawb.gz", package = "mritc"),
+ c(91, 109, 91), format = "rawb.gz")

R> gm <- readMRI(system.file("extdata/gm.rawb.gz", package = "mritc"),

+ c(91, 109, 91), format = "rawb.gz")

R> wm <- readMRI(system.file("extdata/wm.rawb.gz", package = "mritc"),

+ c(91, 109, 91), format = "rawb.gz")

R> truth <- cbind(csf[mask == 1], gm[mask == 1], wm[mask == 1])

R> truth <- truth / 255

R> measureMRI(T1[mask == 1], truth, tc.icm$prob)

$mse
[1] 0.03023166
$misclass
[1] 0.0889828
$rseVolume
[1] 0.06984997 0.03455316 0.01421461
$DSM
[1] 0.9241746 0.9060223 0.9112816
$conTable

[,1] [,2] [,3]
[1,] 0.9564514 0.03925961 0.00000000
[2,] 0.0435486 0.89036938 0.08224165
[3,] 0.0000000 0.07037101 0.91775835

The classification results are good based on different metrics of accuracy. For example the
DSM is about 0.92, 0.91, and 0.91 for CSF, GM, and WM respectively.
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Figure 5: Density plots based on the true and estimated classification results.

When the intensity values of voxels are supplied as input, the function measureMRI outputs
the plots of density functions based on the true and estimated classification results. Figure 5
shows the output density plots.

Finally we overlay the images of the classification results and the original. The plots of the
T1-weighted image, the classification results, and the overlay of the images are shown in
Figure 6(a), (b), and (c) respectively. The WM is in white in Figure 6 (b) and dark green in
Figure 6(c); GM is in light grey in Figure 6(b) and yellow green in Figure 6(c); the CSF is
dark grey in Figure 6(b) and sandy brown in Figure 6(c). The voxels in black in Figure 6(b)
and white in Figure 6(c) are outside of brain.

R> t1 <- T1

R> ti1l[mask == 1] <- 0

R> icm.class <- max.col(tc.icm$prob)

R> tc.icm$mask[tc.icm$mask == 1] <- icm.class

R> slices3d(tl1, tc.icm$mask, col2 = terrain.colors(4)[4:1], alpha = 0.7)

In the last example, we show different ways to obtain initial estimates. As mentioned in
Section 4.1, there are two functions available. Compared with init0Otsu, which just needs the
specification of number of threshold values, initProp requires a rough guess on proportions
of different tissues. As to the speed, the former is slower than the later, though the difference
is small when there are three types of tissues.

R> T1 <- readMRI(system.file("extdata/tl.rawb.gz", package =
+ c(91, 109, 91), format = "rawb.gz")

R> mask <- readMRI(system.file("extdata/mask.rawb.gz", package = "mritc"),
+ c(91, 109, 91), format = "rawb.gz")

"mritc"),
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(b) Classification results

(c) Overlay

Figure 6: The original T1-weighted image, its classification results by using the ICM algo-
rithm to fit the HMNMM, and the overlay of the two.

R> y <- T1[mask == 1]
R> mrispatial <- makeMRIspatial (mask, nnei = 6, sub = TRUE)
R> system.time(initial.otsu <- initOtsu(y, 2))

user system elapsed
2.205 0.069 2.263

R> mu.otsu <- initial.otsu$mu
R> sigma.otsu <- initial.otsu$sigma
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R> tc.mcmcsub.otsu <- mritc.bayes(y, mrispatial$neighbors,

+ mrispatial$blocks, mrispatial$sub, mrispatial$subvox, mu = mu.otsu,
+ sigma = sigma.otsu, verbose = FALSE)

R> prop <- ¢(0.17, 0.48, 0.35)

R> system.time(initial.prop <- initProp(y, prop))

user system elapsed
0.198 0.000 0.198

R> mu.prop <- initial.prop$mu

R> sigma.prop <- initial.prop$sigma

R> tc.mcmcsub.prop <- mritc.bayes(y, mrispatial$neighbors,

+ mrispatial$blocks, mrispatial$sub, mrispatial$subvox, mu = mu.prop,
+ sigma = sigma.prop, verbose = FALSE)

R> prop2 <- c¢(0.15, 0.52, 0.33)

R> initial.prop2 <- initProp(y, prop2)

R> mu.prop2 <- initial.prop2$mu

R> sigma.prop2 <- initial.prop2$sigma

R> tc.mcmcsub.prop2 <- mritc.bayes(y, mrispatial$neighbors,

+ mrispatial$blocks, mrispatial$sub, mrispatial$subvox, mu = mu.prop2,
+ sigma = sigma.prop2, verbose = FALSE)

R> measureMRI(y, truth, tc.mcmcsub.otsu$prob)

$mse
[1] 0.02562679
$misclass
[1] 0.08622806
$rseVolume
[1] 0.04657534 0.04331566 0.03727000
$DSM
[1] 0.9255861 0.9124067 0.9101404
$conTable

[,1] [,2] [,3]
[1,] 9.040313e-01 0.01710043 0.0000000
[2,] 9.594260e-02 0.93216741 0.1068200
[3,] 2.609263e-05 0.05073217 0.8931800

R> measureMRI(y, truth, tc.mcmcsub.prop$prob)

$mse

[1] 0.02559359

$misclass

[1] 0.08665889

$rseVolume

[1] 0.04649706 0.05065990 0.04737376
$DSM
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[1] 0.9256024 0.9122843 0.9090413
$conTable

[,1] [,2] [,3]
[1,] 9.040835e-01 0.01710946 0.0000000
[2,] 9.589041e-02 0.93539237 0.1124910
[3,] 2.609263e-05 0.04749817 0.8875090

R> measureMRI(y, truth, tc.mcmcsub.prop2$prob)

$mse
[1] 0.0256319
$misclass
[1] 0.0873813
$rseVolume
[1] 0.05758643 0.06288223 0.05886432
$DSM
[1] 0.9245194 0.9120727 0.9077630
$conTable

[,1] [,2] [,3]
[1,] 0.8978995 0.01541116 0.0000000
[2,] 0.1021005 0.94074924 0.1189545
[3,] 0.0000000 0.04383960 0.8810455

For function initProp, reasonably good initial guesses provide similar results as that from
initOtsu. For data sets we studied, it is typical that different initialization procedures provide
similar results given proper initial guess for initProp.

5. Discussion

In this paper, we introduced the R package mritc for MRI tissue classification. See Feng et al.
(2012) for more details on the comparisons among different classification methods. Since the
number of components is flexible, the methods introduced are not restricted to three types
of tissues. Furthermore, the approaches are also suitable for classification of other imaging
data, for example histological slices (Metel et al. 2007). We may incorporate more methods,
for example in Jiang et al. (2010), into the package in the future.
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