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Abstract

Graphic processing units (GPUs) are rapidly gaining maturity as powerful general par-
allel computing devices. A key feature in the development of modern GPUs has been the
advancement of the programming model and programming tools. Compute Unified De-
vice Architecture (CUDA) is a software platform for massively parallel high-performance
computing on Nvidia many-core GPUs. In functional magnetic resonance imaging (fMRI),
the volume of the data to be processed, and the type of statistical analysis to perform call
for high-performance computing strategies. In this work, we present the main features of
the R-CUDA package cudaBayesreg which implements in CUDA the core of a Bayesian
multilevel model for the analysis of brain fMRI data. The statistical model implements
a Gibbs sampler for multilevel/hierarchical linear models with a normal prior. The main
contribution for the increased performance comes from the use of separate threads for
fitting the linear regression model at each voxel in parallel. The R-CUDA implementation
of the Bayesian model proposed here has been able to reduce significantly the run-time
processing of Markov chain Monte Carlo (MCMC) simulations used in Bayesian fMRI
data analyses. Presently, cudaBayesreg is only configured for Linux systems with Nvidia
CUDA support.
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1. Introduction

Currently, the statistical method used by the vast majority of functional magnetic resonance
imaging (fMRI) data researchers and neuroscientists is the general linear model (GLM, Lazar
2008). The GLM procedure is often said to be ‘massively univariate’, since data for each voxel
are independently fit with the same model. In this paper, we adopt Bayesian methodologies for
the statistics that comprise GLM inference. However, since (non-variational) Bayesian models
draw on Markov chain Monte Carlo (MCMC) simulations, Bayesian estimates involve a heavy
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computational burden. The volume of the data to be processed and the type of statistical
analysis to perform in fMRI analysis call for high-performance computing strategies.

Traditionally, parallel processing has been performed on shared-memory systems with multi-
ple CPUs, or on distributed-memory clusters made up of smaller shared-memory systems or
single-CPU systems. However, using these systems for high-performance computing suffers
from serious limitations. They are difficult to manage, require vast resources, do not scale
well due to communication and/or synchronization constraints, and require specialized par-
allel programming expertise. A less costly alternative is to use multicore processors. Today’s
multicore architectures are making scalability more affordable. The current microprocessor
development effort in today’s computer architectures is to increase the number of cores in
order to maintain performance growth. This trend comes from the necessity to overcome the
physical constraints on CPU frequency growth and high power consumption. Virtually all
present day CPU processors are multicore processors. Therefore, parallel computing is be-
coming a new trend in mainstream computing. However, CPUs are optimized for high perfor-
mance on sequential code, and use multiple-instructions-multiple-data (MIMD) architectures
designed to extracting instruction-level parallelism. On the other hand, graphics hardware
performance is increasing more rapidly than that of CPUs. The highly data-parallel nature of
graphics computations enables graphics processing units to achieve higher arithmetic intensity
(floating-point horsepower) with the same transistor count. It is thus not surprising that con-
siderable efforts have been made to harness the tremendous power of GPUs, enabling them to
function as general parallel computing devices for a wide range of applications (Owens et al.
2007). The programmable GPU has evolved from a graphics engine into a powerful highly
parallel, multithreaded, manycore processor. GPUs allow advanced scientific and engineering
applications to scale transparently to hundreds of processor cores and thousands of concurrent
threads.

Modern graphic processing units (GPUs) are built around a scalable array of multithreaded
streaming multiprocessors (SMs). Compute Unified Device Architecture (CUDA) (Nvidia
Corporation 2010b), is a software platform for massively parallel high-performance computing
on Nvidia many-core GPUs. Just as important in the widespread use of the GPU as a general-
purpose computing engine has been the advancement of software development tools (Owens
et al. 2008). Current GPU implementations enable scheduling thousands of concurrently ex-
ecuting threads. However, without proper hardware abstraction mechanisms and software
development tools, parallel programming becomes extremely challenging. The CUDA pro-
gramming model follows the standard single-program multiple-data (SPMD) model. CUDA
greatly simplifies the task of parallel programming by providing thread management tools
that work as extensions of conventional C/C++ constructions. Automatic thread manage-
ment removes the burden of handling the scheduling of thousands of lightweight threads,
and enables straightforward programming of the GPU cores. Finally, the wide availability
of CUDA tools in inexpensive laptops and desktops are favouring the rapid development of
GPU parallel computing applications (Fatahalian and Houston 2008).

The purpose of the present paper is to highlight the main features of the R package cud-
aBayesreg (Ferreira da Silva 2011b), available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=cudaBayesreg. The package implements a parallel
Bayesian multilevel model for the analysis of brain fMRI data written in the R system for
statistical computing (R Development Core Team 2011), with an interface to C-CUDA proce-
dures. The package serves a twofold purpose. First, the Bayesian multilevel model overcomes
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several limitations of the classical SPM methodology (Ferreira da Silva 2011a). Second, the
proposed framework significantly reduces the run-time processing of MCMC simulations (see
Section 5). The main contribution for the increased performance comes from the use of sep-
arate threads for fitting the linear regression model at each voxel in parallel. Apart from
the MCMC simulation itself, all other pre-processing and post-processing functions in cud-
aBayesreg are implemented in R. Therefore, the package contributes to establish a research
environment dedicated to the analysis of fMRI experiments, and benefits from algorithmic
implementations already available in the R environment. In particular, cudaBayesreg func-
tions depend on the R package oro.nifti (Whitcher et al. 2011a) for input/output of NIFTI
formatted fMRI data sets. In a similar vein, the R packages bayesm (Rossi 2011), boa (Smith
2007), and fmri (Tabelow and Polzehl 2011) could profitably be used in conjunction with
cudaBayesreg to further process or analyse fMRI data.

2. Bayesian multilevel modelling

2.1. Multivariate regression

Consider a multivariate regression model for the fMRI time series in which the regression
equations are related through common predictor variables, and the errors are correlated across
equations. For a general linear model fit at a set of m voxels we have,

yi = Xβi + εi, εi
iid∼ N(0, σ2In), i = 1, . . . ,m, (1)

where yi is a vector of n time series observations for voxel i, X is a matrix of predictor
variables, βi is a vector of unknown parameters, and εi are unknown error vectors with
the Normal distribution N(0, σ2In). In matrix notation, model (1) assumes the equivalent
standard multivariate regression form,

Y = XB + U, uj
iid∼ N(0,Σ), j = 1, . . . , n, (2)

where Y is a n×m matrix of observations, X is a n× k matrix on k independent variables,
B is k × m, with each column of B containing the regression coefficients for one of the m
equations, and U is a n ×m matrix of random disturbances whose rows uj for given X are
not autocorrelated. There is, however, contemporaneous correlation between corresponding
errors in different equations, with mean 0 and common variance-covariance matrix Σ. Model
(2) involves the study of several regressions taken simultaneously, because the disturbance
terms in the several regressions are mutually correlated. Thus, information in one regression
can be used to estimate coefficients in other regressions. The standard multivariate regression
model assumes that the regression equations are related through common X variables, and
that the errors are correlated across equations (contemporaneous correlation). In statistics,
when X is a design matrix, model (2) is called the general linear model (Mardia et al. 1979).

In Bayesian inference for the linear model (Box and Tiao 1973; Judge et al. 1988; Gelman
2006; Rossi et al. 2005), the standard priors for model (2) are the natural conjugate priors
(multivariate Normal-Wishart prior),

p(B,Σ) = p(Σ)p(B|Σ),

Σ ∼ IW(ν, V ),

β = vec(B)|Σ ∼ N(vec(B̄),Σ⊗A−1),
(3)
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where IW(ν, V ) is the expression for an inverted Wishart density with degrees of freedom ν
and scale matrix V , which is used for the prior on Σ, and A is the k × k precision matrix
specified for the prior on β. In (3), β̄ = vec(B̄) is the unknown prior mean vector of the
regression parameters β, which is then used to draw the posterior estimates specified in (4)
and (5). In (3), vec(·) is the operator which transforms a matrix into a vector by stacking
the columns of the matrix one underneath the other, and ⊗ means the Kronecker product of
two matrices (Judge et al. 1988).

Simulations from the multivariate regression model (2) can be obtained by considering the
posterior as the product of the conjugate priors and the conditional Normal likelihood,
p(B,Σ)p(Y |X,B,Σ). Expressions for the posterior density of the multivariate regression
model have been derived by several authors, e.g., Lindley and Smith (1972); Box and Tiao
(1973); Press (2003); Rossi et al. (2005). In this work, we follow the notation and derivations
used in the last of these references. To draw from the posterior, we first draw Σ and then
draw B given Σ,

Σ|Y,X ∼ IW(ν + n, V + S),

β|Y,X,Σ ∼ N
(
β̃,Σ⊗ (X>X +A)−1

)
,

(4)

where
β̃ = vec(B̃),

B̃ = (X>X +A)−1(X>Y +AB̄),

S = (Y −XB̃)>(Y −XB̃) + (B̃ − B̄)>A(B̃ − B̄).

(5)

and X> means the transpose of X.

2.2. Multilevel modeling

Now, we generalize the standard linear model presented in Section 2.1 in two directions.
Firstly, we lift the restriction on the common structure of the regression equations to improve
estimation efficiency. We introduce a multivariate regression prior to estimate correlations
between the regression coefficient vectors. Secondly, we present an empirical Bayes approach
for second-stage priors to obviate the difficulties with prior elicitation.

In fMRI data analysis, the disturbances in the voxel regression equations at a given time are
likely to reflect some common unmeasurable factors or structure, and hence are correlated.
By taking into account the correlation structure of the disturbances across voxel equations,
and by jointly estimating the regression equations, it is generally possible to obtain more
precise estimates. We may improve estimation by pooling time series and cross-sectional
fMRI data, assuming cross-sectional voxels with different coefficient vectors. In econometrics,
a widely used method for joint regression estimation is the seemingly unrelated regression
(SUR) method proposed in (Zellner 1962), which can be regarded as a generalization of the
standard linear model (Geweke 2005). An alternative approach has been proposed in (Rossi
et al. 2005).

Consider the general linear model (1) with different regressors in each equation, and a different
error variance for each voxel,

yi = Xiβi + εi, εi
iid∼ N(0, σ2i Ini), i = 1, . . . ,m. (6)
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In order to tie together the voxels’ regression equations, we assume that the {βi} have a
common prior distribution. To build the Bayesian regression model we need to specify a prior
on the {βi} coefficients, and a prior on the regression error variances {σ2i }. Following (Rossi
et al. 2005), we specify a Normal regression prior with mean ∆>zi for each βi,

βi = ∆>zi + ηi, ηi
iid∼ N(0, Vβ), (7)

where z is a vector of nz elements, representing characteristics of each of the m regression
equations. A special case of (7) is to consider a common mean vector for all betas by doing
zi = 1 and centering the matrix ∆. The prior (7) can be written using the matrix form of
the multivariate regression model for k regression coefficients,

B = Z∆ + V, B =

 β>1
...
β>m

 , Z =

 z>1
...
z>m

 , V =

 η>1
...
η>m

 , ∆ = [δ1 . . . δk] , (8)

where B and V are m×k matrices, Z is a m×nz matrix, ∆ is a nz×k matrix. Interestingly,
the prior (8) assumes the form of a second-stage regression, where each column of ∆ has
coefficients which describe how the mean of the k regression coefficients varies as a function
of the variables in z. In (8), Z assumes the role of a prior design matrix.

Assuming that each of the error variances is independent, a commonly used prior for the
regression error variances {σ2i } is the standard inverse gamma with parameters a = νi/2 and
b = (νis

2
i )/2, where νis

2
i = (yi − Xiβ̂i)

>(yi − Xiβ̂i), νi = n − k, and β̂i = (X>i Xi)
−1X>i yi

(Box and Tiao 1973). In terms of the relationship between the inverse gamma form and the
inverse of a chi-square random variable,

σ2i ∼
νis

2
i

χ2
νi

. (9)

In order to alleviate the difficulties with the assessment of the priors in (8), we specify a
second-stage of priors on ∆ and Vβ. As in (3), we specify natural conjugate priors for the
multivariate regression model (8),

Vβ ∼ IW(ν, V ),

vec(∆)|Vβ ∼ N(vec(∆̄), Vβ ⊗A−1).
(10)

In summary, the proposed model can be written down as a sequence of conditional distribu-
tions,

yi|Xi, βi, σ
2
i

βi|zi,∆, Vβ
σ2i |νi, s2i
Vβ|ν, V
∆|Vβ, ∆̄, A.

(11)

The prior on the set of regression coefficients β is specified in two stages. First, we specify
a Normal prior on β, and then we specify a second-stage prior on the parameters of this
distribution. From a practical point of view, the key feature of model (11) is that it converts
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the problem of assessing a prior on the (m × k)-dimensional joint distribution of the βi into
the problem of assessing hyperparameters ∆̄, A, ν, and V . At each stage, the prior parameters
are being projected onto lower-dimensional subspaces.

Model (6) is formulated in a generalized form, which allows for the specification of different
design matrices in parcelled brain areas, or regions of interest, for instance. However, the
present implementation in cudaBayesreg, and the examples reported in Section 5, use the
same design matrix X for the whole brain (Xi ≡ X,∀i), as commonly practised in standard
GLM approaches.

3. GPU computation

Modern GPUs are well-suited to address problems that can be expressed as data-parallel
computations (Nickolls et al. 2008). CUDA’s parallel programming model provides three key
abstractions: a hierarchy of thread groups, shared memories, and barrier synchronization
(Nvidia Corporation 2010a,b). These abstractions are encapsulated in a minimal set of lan-
guage extensions, allowing developers to define C functions, called kernels, that are executed
N times in parallel by N different CUDA threads. A kernel executes in parallel across a set of
parallel threads. The task of the programmer is to specify how these threads are organized in a
hierarchy of grids of thread blocks. Once the dimensions of a grid and its thread blocks when
launching a kernel have been specified, parallel execution and thread management will be
automatic. The system automatically manages the tasks of thread creation, scheduling, and
termination. This programming model is typically much simpler to implement than writing
traditional parallel code.

The maximum number of concurrent, coresident threads on the GPU may be calculated
by multiplying the maximum of resident threads per multiprocessor on the GPU by the
number of multiprocessors. The program deviceQuery, distributed by Nvidia as part of the
SDK toolkit (“NVIDIA GPU Computing SDK”) (Nvidia Corporation 2010b), can be used to
query the characteristics of the available GPU in the system. However, the most important
point is not so much this “hard thread partition”, but rather the “logical thread partition” in
terms of the kernel parameters. The user can specify a much higher number of threads to be
allocated to the kernel via the kernel parameters. The CUDA environment transparently and
automatically manages and allocates the resources to be handled by the kernel, according to
the type of GPU available in the system. This feature is known as “automatic scalability”. If
the system runs out of resources, the kernel threads are scheduled for sequential execution. It
is important to note that these threads, as opposed to CPU threads, are extremely lightweight,
with negligible context switches. Typically, thousands of threads are queued up for work, in
warps of 32 threads each. If the GPU must wait on one warp of threads, it simply begins
executing work on another. Separate registers are allocated to all active threads. Therefore, no
swapping of registers or state need occur between GPU threads (Nvidia Corporation 2010a).
There are several other considerations that may limit the number of concurrently executing
threads, namely the core allocated memory. Therefore, specifying a grid of thread blocks
of dimension 64, for instance, represents a balance between maximum number of threads
per block, and available resources. This number may be calibrated by the programmer for
optimization purposes, depending on the problem at hand.

We investigated the application of the CUDA programming model in parallelizing fMRI data
analysis. The multilevel Gibbs sampler model specified in Section 2 was implemented in
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CUDA. Bayesian techniques typically rely on MCMC simulations for sampling from the pos-
terior distribution of the parameters. However, MCMC simulations for large data sets are
computationally demanding. Using CUDA, high-performance gains compared to strictly se-
quential analyses have been achieved, enabling us to significantly reduce the time complexity
of computing for Bayesian inferences. The computational model has been specified as a grid of
thread blocks of dimension 64, in which a separate thread is used for fitting a linear regression
model at each voxel in parallel. Maximum efficiency is expected to be achieved when the total
number of required threads to execute in parallel equals the number of voxels in the fMRI
data set, after appropriate masking has been done. However, this approach typically calls for
the parallel execution of several thousands of threads. To keep computational resources low,
while maintaining significant high efficiency it is generally preferable to process fMRI data
slice-by-slice. In this approach, slices are processed in sequence. Voxels in slices are processed
in parallel. Thus, for slices of dimension 64 × 64, the required number of parallel executing
threads does not exceed 4096 at a time.

The main computational bottleneck in sequential code comes from the necessity of performing
Gibbs sampling, using a univariate regression model for all voxels time series. We coded
this part of the MCMC computation as device code, i.e., a kernel to be executed by the
CUDA threads. CUDA threads execute on the GPU device that operates as a coprocessor
to the host running the MCMC simulation. Following the model presented in Section 2,
each thread implements a Gibbs sampler to draw from posterior of a univariate regression
with a conditionally conjugate prior. The host code is responsible for controlling the MCMC
simulation. At each iteration, the threads perform one Gibbs iteration for all voxels in parallel,
to draw the threads’ estimators for the regression coefficients βi as specified in (11). In
turn, the host, based on the simulated βi values, draws from the posterior of a multivariate
regression model to estimate Vβ and ∆ (see (11)). These values are then used to drive the
next iteration.

One important aspect of the device code simulation relates to the random number generation
(RNG) process. We have to ensure that different threads do not generate the same sequence
of random numbers and use different seeds, even if the number of threads is large. For this
purpose, we implemented random number generation in device code. The package includes
three optional CUDA-based RNGs. Marsaglia’s multicarry RNG (Marsaglia 2003) follows the
R implementation, is the fastest one, and is used by default; Brent’s RNG (Brent 2006) has
higher quality but is not-so-fast; Matsumoto’s Mersenne Twister (Matsumoto and Nishimura
1998) is slow. In addition, we have to ensure that different threads receive different random
seeds. We generated random seeds for the threads by combining random seeds generated by
the host with the threads’ unique identification numbers. Random deviates from the Normal
(Gaussian) distribution and χ2 distribution had to be implemented in device code as well.
Random deviates from the Normal distribution were generated using the Box-Muller method.
In a similar vein, random deviates from the χ2 distribution with ν number of degrees of
freedom, χ2(ν), were generated from Gamma deviates, Γ(ν/2, 1/2), following the method of
Marsaglia and Tsang specified in (Press et al. 2007).

Additional design considerations underlying the CUDA implementation in cudaBayesreg, and
the options taken for processing fMRI data in parallel have appeared recently in (Ferreira da
Silva 2010).
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4. Program installation

To use cudaBayesreg the following requirements must be met:

1. CUDA-capable GPU and CUDA software, which includes the nvcc (release 3.1 or
higher) Nvidia CUDA Compiler driver (available at no cost from http://www.nvidia.

com/cuda);

2. A supported version of Linux with gcc/g++ GNU compiler (nvcc releases before version
3.1 are not fully compatible with current versions of gcc/g++);

3. The R system for statistical computing (R Development Core Team 2011).

The package’s configure.ac file tests the environment variables R_HOME and CUDA_HOME, for
detecting the root locations of R and CUDA installations, respectively. It is advisable to have
these environment variables set for package installation. To reconfigure the source Makefile

with different options, one may edit configure.ac and run autoconf followed by configure

in the shell. The package requires the library libRmath that comes with the R-devel version
of the R release. In case this library is not installed in the system, the user should install
the R development version R-devel, available from the R Subversion repository. Alternatively,
the user can install the R-devel.tar.gz tarball for her/his specific Linux distribution. A
third alternative, is to build the library as standalone, as detailed in the manual for the
‘R Installation and Administration’ (R Development Core Team 2011), and adapt the file
Makefile in the package directory src, accordingly.

Presently, the CUDA runtime API has some tough restrictions on device dynamic memory
allocation. The currently version of cudaBayesreg does not use dynamic memory allocation on
the device. Instead, the source file cudaMultireg.cu uses three constants which control the
amount of CUDA allocated space: REGDIM = 4096, OBSDIM = 128, and XLIM = 5. These
constants impose limits on the maximum number of parallel regressions, on the maximum
length of voxel time-series, and on the maximum number of regression variables used in the
simulations, respectively. These limits entail very low hardware requirements. In fact, all the
tests described in the paper were performed on a standard off-the-shelf notebook equipped
with a Nvidia“GeForce 8400M GS”card with just 2 multiprocessors. This device has Compute
Capability 1.1 (Nvidia Corporation 2010b), and delivers single-precision performance. The
CUDA installation should be tested by running the examples in the Nvidia SDK toolkit,
before using cudaBayesreg.

5. Using cudaBayesreg

The next sections provide details on how to use cudaBayesreg for fMRI data analysis. For
demonstration purposes, two fMRI data sets are included in the R package cudaBayesregData
(Ferreira da Silva 2011c). For convenience, data sets for the examples used in cudaBayesreg
have been separated from the main package. The two experiments reported in this work
use the fMRI volumes included in cudaBayesregData. The fMRI volume fmri.nii.gz for
the first experiment, may be retrieved from the FMRIB/FSL site (http://www.fmrib.ox.
ac.uk/fsl/). The raw fMRI volume for the second experiment, may be retrieved from
the SPM site (http://www.fil.ion.ucl.ac.uk/spm/, MoAEpilot example epoch (block)

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
http://www.fil.ion.ucl.ac.uk/spm/
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Pre-stats Stats: EVs

Motion correction: MCFLIRT Number of original EVs: 2
B0 unwarping: No Basic shape: Square
Slice Timing correction: None Convolution: Gamma
Spatial smoothing FWHM (mm): 5 Orthogonalize: No
Intensity normalization: No Add temporal derivative: Yes
Temporal Filtering: Highpass Apply temporal filtering: Yes

Table 1: FSL/FEAT parameters used in the example fmri.

fMRI data set). In both cases, the data sets were preprocessed using the default parameter
settings used in those software packages. This orientation has the following advantages:
(a) reproducible research is facilitated, since the potential user does not have to care for ad-
hoc parameterizations, (b) the results of the application of the proposed approach is directly
seen without additional filtering or regularization effects.

The data set fmri.nii.gz is from an auditory-visual experiment. Auditory stimulation was
applied as an alternating “boxcar” with 45s-on-45s-off and visual stimulation was applied as
an alternating “boxcar” with 30s-on-30s-off. The data set includes just 45 time-points and
5 slices from the original 4D data. The file fmri_filtered_func_data.nii included in the
package was obtained from fmri.nii.gz by applying FSL/FEAT pre-processing tools. We
have followed the indications for data preparation published by the FMRIB Centre. The main
operations involved in data preparation are motion correction and highpass filtering. In this
case, the FSL/BET tool for brain extraction is not directly used, as we only have a few slices
of data. However, since the application of the FEAT tool generates a mask data set from the
main structural image, we have included this mask in cudaBayesregData. It turns out that
the reduced number of slices produces an enlarged, poorly fit mask. The result is a mask
that extends well beyond the brain area proper. As a consequence, artifacts tend to appear
on the border of the brain areas. These artifacts could be removed by calibrating the mask
size. Nevertheless, in the fmri example we decided to use the originally generated mask,
and default test conditions. The design matrix file fmri_design.txt in cudaBayesregData
was generated by the FSL/FEAT tool as well, assuming a Gamma Hemodynamic Response
Function (HRF), and a design with temporal derivatives. Table 1, presents a summary of the
main parameters used in data preparation, and model setup.

The file swrfM_filtered_func_data.nii.gz is a pre-processed volume in NIFTI format of
an auditory fMRI data set reported in the SPM manual (‘MoAEpilot example’) (Ashburner
et al. 2008). The original data set has been analysed by several researchers and is often used
as a reference. The data set comprises whole brain BOLD/EPI images, acquired as successive
blocks alternating between rest and auditory stimulation, starting with rest. Auditory stimu-
lation was bi-syllabic words presented binaurally at a rate of 60 per minute. Each acquisition
consisted of 64 contiguous slices for each volume. The auditory data set was pre-processed
by the SPM software for realignment, co-registration and brain extraction, following the pro-
cedures outlined in (Ashburner et al. 2008). All pre-processing step were executed with the
parameterizations specified in the SPM manual for this specific data set. The package’s data
directory also includes mask files associated with the partition of the auditory data set (pre-
fixed by fbase = "swrfM"), in 3 classes: cerebrospinal fluid (CSF), grey matter (GM) and
white matter (WM).
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We performed MCMC simulations on these data sets using three types of code implementa-
tions for the Bayesian multilevel model specified before: a (sequential) R language version,
a (sequential) C language version, and a CUDA implementation. Comparative runtimes for
3000 iterations in these three situations, for the data sets fmri and swrfM, are as follows.

Runtimes in seconds for 3000 iterations:

slice R-code C-code CUDA

fmri 3 1327 224 22

swrfM 21 2534 309 41

Speed-up factors between the sequential versions and the parallel CUDA implementation are
summarized next.

Comparative speedup factors:

C-vs-R CUDA-vs-C CUDA-vs-R

fmri 6.0 10.0 60.0

swrfM 8.2 7.5 61.8

In these tests, the C implementation provided, approximately, a 7.6× mean speedup factor
relative to the equivalent R implementation. The CUDA implementation provided a 8.8×
mean speedup factor relative to the equivalent C implementation. Overall, the CUDA imple-
mentation yielded a significant 60× speedup factor. The tests were performed on a notebook
equipped with a (low-end) graphics card: a ‘GeForce 8400M GS’ Nvidia device. This GPU
device has just 2 multiprocessors, Compute Capability 1.1, and delivers single-precision per-
formance. The compiler flags used in compiling the source code are detailed in the package’s
Makefile. In particular, the optimization flag -O3 is set there.

The function read.fmrislice() is the main function used for reading fMRI information to be
processed by cudaBayesreg. This function expects three pieces of information to be available:
(a) a pre-processed fMRI data set in gzipped NIFTI format; (b) a data set specifying the mask
to be used, in gzipped NIFTI format; (c) a file in FSL/FEAT design format (design.mat)
defining the design matrix X.

In the current version of cudaBayesreg (version 0.3-12), the argument fbase in the func-
tion read.fmrislice() enables the user to handle user defined data sets, as well as to
process the example data sets included in the complementary package cudaBayesregData.
If fbase is left unspecified (default NULL), then user data sets need to be provided as in-
put. Otherwise, fbase specifies the data set prefix of one of the two demo fMRI data sets
to use. User specified data files must have the names generated by the FSL/FEAT pre-
processing tool, namely filtered_func_data.nii.gz, mask.nii.gz, and design.mat. The
file filtered_func_data.nii.gz specifies the data set to be analyzed, mask.nii.gz specifies
the data set to be used as mask, and design.mat specifies the data file to be used as design
matrix. Typically, these data sets may be obtained using the FSL/FEAT pre-processing tool,
or other similar tool like SPM. In cudaBayesreg versions 0.3-10+, read.fmrislice() uses the
design.mat format from FSL/FEAT. The FSL-design format design.mat is simply an ASCII
textfile comprising the fields /NumWaves, /NumPoints, /PPheights, and /Matrix (please refer
to the package documentation for further information).
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When specified, the prefix fbase applies to the demo data files fbase_filtered_func.nii.gz,
fbase_mask.nii.gz, and fbase_design.mat. Two test data sets are included in cudaBayesreg-
Data: one with prefix fmri, the other with prefix swrfM. The function read.Zsegslice()

builds the Z matrix of the statistical model, based on the brain segmented regions
CSF/GM/WM for a given fMRI dataset. As for read.fmrislice(), the FSL tools may be
used to obtain the segmented masks. If fbase has been left unspecified in read.fmrislice(),
then three user specified segmented datasets in gzipped NIFTI format must be provided
with the names csf.nii.gz, gry.nii.gz, and wht.nii.gz. Otherwise, fbase indicates the
dataset prefix of one of the three segmented mask provided for the group effects example in
cudaBayesregData. In all these cases, the R package oro.nifti (Whitcher et al. 2011a,b) is
required for reading gzipped NIFTI files.

5.1. Posterior probability maps

In cudaBayesreg, fMRI volume data is processed on a slice-by-slice basis. The function
cudaMultireg.slice() is the main function which provides the interface to the CUDA im-
plementation of the Bayesian multilevel model for the analysis of brain fMRI data. This
function processes a single slice in a fMRI data volume. The following code runs R = 2000

iterations of the MCMC simulation for slice 3 of the fmri data set, and saves the result.
Slice data and slice mask data are read by the function read.fmrislice(). The function
premask() applies a pre-defined mask to a fMRI slice in order to select regions of interest
(ROIs) for processing:

R> library("cudaBayesreg")

R> slicedata <- read.fmrislice(fbase = "fmri", slice = 3, swap = FALSE)

R> ymaskdata <- premask(slicedata)

R> fsave <- paste(tempdir(), "/simultest1", fileext = ".sav", sep = "")

R> out <- cudaMultireg.slice(slicedata, ymaskdata, R = 2000, fsave = fsave)

In this example, we have followed the practice of including the HRF waveforms (regressor
coefficients β2 and β4) as well as their derivatives (regressor coefficients β3 and β5) to ac-
count for variability in the shape of the response. The regressor coefficients β2 and β4 are
associated with the visual and auditory regressors, respectively. The regressor coefficient β1
represents the intercept term. In the code snippets, the variables vregi are used to select the
regressor coefficients βi. We may visualise the posterior probability map (PPM) images for
the visual (vreg = 2) and auditory (vreg = 4) stimulation using the function post.ppm()

(see Figure 1) as follows: Highest probability density (HPD) 95% intervals of the β2 and β4
distributions are used to define the thresholds of voxel activations associated with the visual
and auditory cortex areas, respectively.

R> post.ppm(out = out, slicedata = slicedata, ymaskdata = ymaskdata,

+ vreg = 2, col = heat.colors(256))

R> post.ppm(out = out, slicedata = slicedata, ymaskdata = ymaskdata,

+ vreg = 4, col = heat.colors(256))

The function cudaMultireg.volume() processes all slices included in a given fMRI data
set sequentially, by calling the function cudaMultireg.slice() repeatedly. Alternatively, a
user specified range of slices in the data volume may be specified by the user for MCMC
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Figure 1: PPM images for slice 3 of the fmri data set: (a) areas of visual stimulation; (b)
areas of auditory stimulation.

simulation purposes. The following piece of code runs the Bayesian simulation for slices 13
to 24 of the swrfM data set, and builds a NIFTI volume of statistical PPMs images via
buildzstat.volume:

R> cudaMultireg.volume(fbase = "swrfM", R = 3000, rg = c(13, 24))

R> buildzstat.volume(fbase = "swrfM", rg = c(13, 24))

The statistical PPM volume of voxel activations may now be overlayed on the original fMRI
data volume to yield a visualisation of the areas of auditory activation estimated by the
Bayesian multilevel method, as depicted in Figure 2:

R> post.overlay(fbase = "swrfM", vreg = 2, rg = c(13, 24), view = "axial")

The experimental analyses and the PPM images presented in Section 5.1 show that the
Bayesian approach proposed in this work achieves good results in terms of true activations
and reduced number of artifacts, in comparison with the ‘state-of-the-art’ approaches incor-
porated in the SPM and FSL software packages. We consider that the techniques reflected
in these packages are representative of the field, since they are used by the vast majority
of researchers in neuroimaging and cognitive neuroscience. A detailed comparison of the
quality of the neuroscientific results achieved using cudaBayesreg is beyond the scope of the
present manuscript. We refer the interested reader to reference (Ferreira da Silva 2011a),
where the SPM and FSL packages were applied to the same data sets considered in this work.
As explained before for the fmri example, a proper calibration of brain masks and other
pre-processing parameters could further improve the quality of cudaBayesreg estimates.

5.2. Bayesian posterior analyses

The function cudaBayesreg.slice() drives the MCMC simulations to estimate the regres-
sion coefficients at each voxel. In Bayesian analysis, PPMs are used for representing the
‘activated’ cortex areas in response to some experimental stimulation. Similarly to classical
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Figure 2: PPMs representing areas of auditory activation, estimated by the multilevel method
for axial slices 13–24 of the swrfM data set.

.

SPMs, PPMs can be obtained by thresholding the regression coefficients. Bayesian thresh-
olds are selected using the posterior distributions of the regressor coefficients. We may rely
on highest probability intervals to select the thresholds, instead of using frequentist quantiles
as in SPM-based approaches.

As an example, consider slice 21 of the swrfM data set, and define a design matrix with
three regressors as commonly specified by standard fMRI packages such as FSL or SPM (run
?swrfM_design in R). Regressor β1 represents the intercept term, regressor β2 is the main
regressor for the auditory time-series, and β3 is the temporal derivative regressor (Ashburner
et al. 2008). By default, we use the highest probability density (HPD) 95% interval of the β2
distribution to define the thresholds of voxel activations associated with the auditory cortex
areas. The function post.simul.hist() outputs summary statistics for the posterior mean
values of the auditory regression coefficient β2 (vreg = 2), and plots the histogram of the
posterior distribution, as represented on the left panel of Figure 3:

R> load(paste(tempdir(), "/swrfM_s21_nu3.sav", sep = ""))

R> post.simul.hist(out = out, vreg = 2)
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Figure 3: (a) Histogram of the posterior distribution of the regression coefficient β2 (slice 21);
(b) Fitted time-series for a randomly selected “active” voxel in slice 21 of the swrfM data set.

Call:

density.default(x = pm2)

Data: pm2 (2872 obs.); Bandwidth 'bw' = 0.04294

x y

Min. :-0.9674 Min. :3.731e-05

1st Qu.:-0.3381 1st Qu.:3.974e-02

Median : 0.2912 Median :9.467e-02

Mean : 0.2912 Mean :3.969e-01

3rd Qu.: 0.9205 3rd Qu.:5.749e-01

Max. : 1.5498 Max. :1.849e+00

[1] "active range:"

[1] 0.7736182 1.4209423

[1] "non-active range:"

[1] -0.8385900 0.7729416

hpd (95%)= -0.5199595 0.7736182

The vertical dotted lines in the histogram reference the HPD 95% interval values for the β2
distribution given in the summary statistics. The upper value of the HPD interval is used as
a threshold estimate to produce posterior probability maps.

To show the fitted time series for a randomly selected “active” voxel in slice 21, as depicted
on the right panel of Figure 3, we use the code:

R> slicedata <- read.fmrislice(fbase = "swrfM", slice = 21)

R> ymaskdata <- premask(slicedata)
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Figure 4: Boxplots of posterior distributions for the regressor coefficients {β1, β2, β3}, based
on 20 randomly selected “active” voxels.

R> post.tseries(out = out, slicedata = slicedata, ymaskdata = ymaskdata,

+ vreg = 2)

To illustrate the variability of the estimates generated by the parallel RNG procedure outlined
in Section 2, we show in Figure 4 boxplots of the posterior distributions of the regression
coefficients {β1, β2, β3} for voxels in “activated” cortex areas. Figure 4 shows 20 random
boxplots of the β distributions, when cudaBayesreg is used to fit time series of voxels in
estimated “active” visual cortex areas:

R> vreg <- 2

R> pmeans <- pmeans.hcoef(out$betadraw)

R> px <- regpostsim(pmeans, vreg = vreg)

R> spma <- px$spma

R> plot(out$betadraw, spmname = "activated", spm = spma, nsamp = 20)

The boxes’ lower and upper hinges summarise HPD intervals. A similar procedure has been
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Figure 5: Boxplots of posterior distributions for the regressor coefficients {β1, β2, β3}, based
on 20 randomly selected “non-active” voxels.

used in Figure 5, for time series of voxels estimated as “non-activated”:

R> spmn <- px$spmn

R> plot(out$betadraw, spmname = "non-activated", spm = spmn, nsamp = 20)

5.3. Adaptive shrinkage

An important feature of the Bayesian model used in cudaBayesreg and outlined in Section 2,
is the shrinkage induced by the hyperprior ν in (10) (Ferreira da Silva 2011a). To illustrate
the influence of the hyperparameter ν on the shrinking properties of the multilevel approach,
Figure 6 compares the variability of the posterior predictive values of yi = Xβ̂i, using the
voxels of slice 21 of the auditory data set for MCMC simulations with two different values
of the hyperparameter ν (ν = {3, 168}). The predictive yi values were obtained using the
estimated β̂i values at each voxel. Figure 6, clearly illustrates the phenomenon of “shrink-
age” in the Bayesian multilevel approach, and the influence of the hyperparameter ν on the
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variability of the fitted values. The hyperparameter ν is a shrinkage parameter which works
as a regularisation parameter in a data-adaptive way. We may assess the adaptive shrinkage
properties of the Bayesian multilevel model for two different values of ν as detailed next:

R> slicedata <- read.fmrislice(fbase = "swrfM", slice = 21)

R> ymaskdata <- premask(slicedata)

R> rng <- 1

R> nu1 <- 3

R> f1 <- paste(tempdir(), "/swrfM_s21_", nu1, "_rng", rng, ".sav", sep = "")

R> out1 <- cudaMultireg.slice(slicedata, ymaskdata, R = 3000, nu.e = nu1,

+ fsave = f1, rng = 1)

R> nu2 <- 168

R> f2 <- paste(tempdir(), "/swrfM_s21_", nu2, "_rng", rng, ".sav", sep = "")

R> out2 <- cudaMultireg.slice(slicedata, ymaskdata, R = 3000, nu.e = nu2,

+ fsave = f2, rng = 1)

R> vreg <- 2

R> x1 <- post.shrinkage.mean(out = out1, slicedata$X, vreg = vreg,

+ plot = FALSE)

R> x2 <- post.shrinkage.mean(out = out2, slicedata$X, vreg = vreg,

+ plot = FALSE)

R> par(mfrow = c(1, 2), mar = c(4, 4, 1, 1) + 0.1)

R> xlim = range(c(x1$beta, x2$beta))

R> ylim = range(c(x1$yrecmean, x2$yrecmean))

R> plot(x1$beta, x1$yrecmean, type = "p", pch = "+", col = "violet",

+ ylim = ylim, xlim = xlim, xlab = expression(beta), ylab = "y")

R> legend("topright", expression(paste(nu, "=3")), bg = "seashell")

R> plot(x2$beta, x2$yrecmean, type = "p", pch = "+", col = "blue",

+ ylim = ylim, xlim = xlim, xlab = expression(beta), ylab = "y")

R> legend("topright", expression(paste(nu, "=168")), bg = "seashell")

R> par(mfrow = c(1, 1))

The code above also demonstrates how to select Brent’s random number generator (RNG)
(Brent 2006) to run the simulations, by specifying the argument rng=1 in cudaMultireg.slice.
The cudaBayesreg package includes three optional CUDA-based RNGs: Marsaglia’s multicarry
RNG (Marsaglia 2003), Brent’s RNG and Matsumoto’s Mersenne Twister (Matsumoto and
Nishimura 1998). Marsaglia’s multicarry RNG follows the R implementation, and is selected
by default (with the argument rng=0) since it is the fastest one.

5.4. Analysis of random effects for the SPM auditory data set

The Bayesian multilevel statistical model allows for the analysis of random effects through
the specification of the Z matrix for the prior in (8). We exemplify the analysis of the
random effects distribution ∆ (see (8)), following the specification of cross-sectional units
(group information) in the Z matrix of the statistical model. The FSL tools (Smith et al.
2004) were used to obtain the segmented masks associated with the partition of the SPM
auditory data set in three classes: cerebrospinal fluid (CSF), grey matter (GM), and white
matter (WM). The segmented masks were obtained by applying FSL/FAST to the struc-
tural high-resolution fMRI image, followed by FSL/FLIRT for low-resolution registration
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Figure 6: Variability of the posterior predictive y values as a function of the estimated β̂
values in voxels of slice 21 of the auditory data set, for MCMC simulations with two different
values of the hyperparameter ν: (a) left panel: ν = 3; (b) right panel: ν = 168.

(see cudaBayesreg::read.Zsegslice). The segmented images (CSF/GM/WM) were then
used to build the Z matrix in (8). In addition, to account for variability in the shape of the
voxels’ time series response, we included the derivative of the HRF as a third regressor in the
specification of the design matrix (see cudaBayesreg::swrfM_design). Thus, the MCMC
simulation uses three regression variables, in which the first represents the intercept and the
second is the main regressor.

As before, we begin by loading the data and running the simulation. This time, however,
we call cudaMultireg.slice with the argument zprior = TRUE. This argument will launch
read.Zsegslice, that reads the segmented images (CSF/GM/WM) to build the Z matrix:

R> fbase <- "swrfM"

R> slice <- 21

R> slicedata <- read.fmrislice(fbase = fbase, slice = slice)

R> ymaskdata <- premask(slicedata)

R> f3 <- paste(tempdir(), "/swrfM_s21_zprior.sav", sep = "")

R> out <- cudaMultireg.slice(slicedata, ymaskdata, R = 3000, keep = 5,

+ nu.e = 3, fsave = f3, zprior = TRUE, rng = 1)

Plots of the draws of the mean of the random effects distribution for each one of the three
regression variables used in the design matrix X are presented in Figure 7(a), as generated
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Figure 7: (a) Draws of the mean of the random effects distribution; (b) Draws of the random
effects distribution associated with class CSF:(c) idem for class GM; (d) idem for class WM.

by post.randeff:

R> post.randeff(out)

The same function may be used to represent the draws of the random effects distribution
associated with each one of the three segmentation classes (CSF/GM/WM), as shown in
Figure 7(b–d):

R> post.randeff(out, classnames = c("CSF", "GM", "WM"), climits = TRUE)

These plots clarify the influence of different tissue types on the mean values of the regression
estimates. In general, the information provided by these analyses might be useful in identifying
factors influencing estimation, and suggest ways for model improvement.
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5.5. Convergence issues

To assess convergence of the MCMC simulation, it is in general advisable to visualise the
evolution of the simulated values and autocorrelation functions (ACFs) generated by the
multilevel simulation. As an example, we show in Figure 8 the evolution of the simulated
values and autocorrelation functions (ACFs) generated by the multilevel simulation of the ∆
values in (8–10) for slice 21 of the swrfM data set, using a sub-sampling approach which keeps
every 5 iteration of the MCMC chain:

R> library("cudaBayesreg")

R> fbase <- "swrfM"

R> slice <- 21

R> slicedata <- read.fmrislice(fbase = fbase, slice = slice, swap = FALSE)

R> ymaskdata <- premask(slicedata)

R> fsave <- paste(tempdir(), "/simultest20.sav", sep = "")

R> out <- cudaMultireg.slice(slicedata, ymaskdata, R = 5000, keep = 5,

+ nu.e = 3, fsave = fsave, zprior = FALSE, rng = 1)

R> plot(out$Deltadraw)

To plot the sequence plots of MCMC draws and ACFs in Figure 8 we used the cudaBayesreg
S3 method plot.bayesm.mat. For compatibility with the equivalent summary and plot func-
tions in bayesm, the output of the MCMC simulations in cudaBayesreg adopts the class at-
tributes used in bayesm, e.g., attributes(Deltadraw)$class = c("bayesm.mat", "mcmc")

(see cudaMultireg.slice). This means that equivalent plots (and summary statistics) may
be obtained using bayesm, e.g.:

R> library("bayesm")

R> plot(out$Deltadraw)

A more comprehensive approach to study convergence issues is to rely on the convergence
tests included in boa (Smith 2007), by submitting the output of MCMC simulation to boa
functions as follows:

R> resdata <- out$Deltadraw

R> z <- matrix(resdata, dim(resdata))

R> library("boa")

R> boa.quit()

R> boa.init()

R> boa.chain.add(z, "Deltadraw")

R> boa.print.acf()

R> boa.print.randl()

R> boa.plot("acf")

R> boa.plot("trace")

R> boa.quit()

Figure 8 and boa analyses show good mixing properties, and no significant autocorrelations
for simulations with 5000 iterations.
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Figure 8: Evolution of the simulated values and autocorrelation functions generated by
the cudaBayesreg simulation of the ∆ values (8–10) to draw the voxel regression coefficients
{βi}, i = 1, 2, 3, using a sub-sampling approach with keep factor 5.

6. Conclusion

The GPU is rapidly gaining maturity as a powerful general parallel computing device. The
cudaBayesreg package shows how the combination of R and GPU programming tools can be
used to improve the performance of Bayesian fMRI data analyses. The implemented code may
easily be modified to process all voxels of a fMRI volume in parallel, instead of processing
data slice-by-slice. Moreover, a desirable extension of the Bayesian multilevel techniques
implemented in cudaBayesreg is the support for multi-subject and multi-session fMRI data
analyses. In these cases, a more powerful GPU that the one with just 2 multiprocessors and
16 CUDA cores used in this work is highly recommended. GPUs with 16 multiprocessors
and 512 CUDA cores are now available at affordable prices. The use of more sophisticated
GPUs would also enable the programmer to exploit additional programming constructs for
performance improvement. However, incorporating these constructs in cudaBayesreg would
entail additional hardware requirements to be met by the would-be user.
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