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Abstract

Numerical deconvolution is a powerful mathematical operation that can be used to
extract the impulse response function of a linear, time-invariant system. We have found
this method to be useful for preliminary analysis of dynamic contrast enhanced magnetic
resonance imaging (DCE-MRI) data, capable of quickly producing voxel-wise parametric
maps describing the heterogeneity of contrast agent kinetics over the entire field of view,
typically comprising tens of thousands of voxels. The statistical programming language R
is well suited for this type of analysis and when combined with LATEX, via Sweave, allows
one to perform all calculations and generate a report with a single script. The purpose of
this manuscript is to describe the R package DATforDCEMRI, a Deconvolution Analysis
Tool for DCE-MRI contrast agent concentration vs. time data, which allows the user
to perform kinetic deconvolution analysis and visualize/explore the resulting voxel-wise
parametric maps and associated data.

Keywords: DCE-MRI, clinical, malignant, tumor, deconvolution, pharmacokinetics, pharma-
codynamics, R.

1. Introduction

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is commonly used to
assess changes in vascular structure subsequent to dosing with an anti-angiogenic agent such as
bevacizumab. The measured signal intensity within the tissue of interest is altered by leakage
into extravascular, extracellular tissue space (EES) of a low molecular weight contrast agent
that is injected subsequent to start of data acquisition. Vascular permeability, surface area,
tissue perfusion rate and EES volume will impact the pharmacokinetic profile of the contrast
agent within tissue, which can be described by estimating physiologically relevant parameter
values via compartmental modeling. Ideally, a patient will be scanned twice prior to treatment
to establish inter-visit variability, with additional scans acquired hours to days after the first

http://www.jstatsoft.org/
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Figure 1: Post-contrast static T1 weighted image (axial slice) showing the approximate location
of the superior saggital sinus (blue circle), used to estimate the AIF shown in the right-hand
panel. The region of interest corresponding to contrast enhanced tumor is outlined in red
(left-hand panel).

dose. Estimated model parameters are compared across scans to assess the apparent impact
of drug on tissue vascular structure. The interested reader is directed to Padhani (2002),
Choyke et al. (2003), O’Connor et al. (2007) and Tofts et al. (1999) for details.

Here, we extend our previously described numerical deconvolution method for kinetic analysis
of DCE-MRI data (Ferl et al. 2010) with a focus on the utility of the statistical programming
language R (R Development Core Team 2011) as a tool for performing computational and
data visualization tasks. Briefly, Ferl et al. (2010) describes an R script that imports whole
tumor and vascular region of interest (ROI) contrast agent concentration data, subtracts a
nominal blood fraction from the tumor data, removes all pre-peak vascular data and associated
tumor data, smooths the vascular and tumor curves using the locfit package (Loader 1999,
2010), performs the numerical deconvolution operation on the smoothed data and calculates
noncompartmental parameters associated with the resulting impulse response function (IRF).
Noncompartmental parameters, namely area under the IRF curve from t = 0 to t = Tf
(AUCTf

) and the ratio of AUCTf
to the mean residence time of the IRF between t = 0 and

t = Tf (MRTTf
) , are compared to estimated model parameters (Ktrans and ve, respectively)

and shown to be comparable, particularly when assessing treatment effect by comparing
percent change of parameters associated with a post-treatment scan relative to pre-treatment
baseline scans. The Tofts version of the Kety model (Kety 1951) is described in Tofts and
Kermode (1991).

We’ve significantly extended our deconvolution script to perform voxel-wise (as opposed to
whole ROI) analysis of all tissue within the MRI field of view (FOV) and developed an
interactive Advanced Voxel Diagnosis Tool (AVDT) that can be used to explore parametric
maps generated by the deconvolution analysis. Voxel-wise analysis of DCE-MRI data gives
insight into heterogeneity of tumor vascular structure and drug response that is not apparent
from whole-tumor analysis. All R code required to perform these tasks is accessible via the
package DATforDCEMRI (Ferl 2011), available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=DATforDCEMRI.

Due to the iterative nature of parameter estimation, computational time is significant when

http://CRAN.R-project.org/package=DATforDCEMRI


Journal of Statistical Software 3

performing voxel-wise parameter estimation using a compartmental model. Numerical decon-
volution is much faster when compared to other parametric methods and thus is appealing as
a tool for initial quantitative analysis of DCE-MRI data. Potential ROIs, treatment effects
and initial parameter values for subsequent analysis, e.g., compartmental modeling (Whitcher
and Schmid 2011a,b), can all be gleaned using our approach; a collection of R packages for
medical image analysis may be found on CRAN Task Views (Zeileis 2005) under the category
“Medical Imaging” (Whitcher 2010).

Sweave (Leisch 2002), a function within the utils package (R Development Core Team 2011)
that is part of every R installation, was utilized to prepare this manuscript in a literate
programming environment (Knuth 1984). The code shown here has not been cut and pasted
into the document; typesetting and execution of the R code occurred in the same run so that
we can be sure that the code appearing here is exactly that which produced the associated
figures.

2. Materials and methods

2.1. Data files

An arterial input function (AIF), in this case blood concentration of contrast agent in the
brain, is shown in the right panel of Figure 1. In addition to an nf × 1 time vector, the
corresponding data file contains an nf × 1 AIF vector representing median contrast agent
concentrations within an ROI drawn around the superior saggital sinus (Figure 1, left panel)
for each time point listed in a separate time vector.

Two additional data sets must be specified in order to perform voxel-wise analysis; (1) Con-
trast agent concentrations stored in an nx × ny × nz × nf matrix where nx × ny are the
dimensions of the FOV, nz is the number of slices and nf is the number of data frames /
time points, and (2) an ROI mask stored as an nx × ny × nz matrix of 1’s and 0’s, where 1
indicates a voxel to be analyzed. These and other symbols used here are listed in Table 1.

Data to be analyzed by DATforDCEMRI can be stored in any file format, as long as it can be
read into R. For example, the package R.matlab contains the readMat function, which may be
used to import uncompressed MATLAB files into R. The function read.csv, a specific form
of the more general read.table function from the R.utils package (Bengtsson 2011), can be
used to import data that has been saved in the csv format. Results of the deconvolution
analysis are saved in the RData file format by default.

The function DAT.checkData, contained within the DATforDCEMRI package, is used to
create a data file that can be run by the DAT function (Table 2). The AIF, time vector, ROI
mask and contrast agent concentration array serve as arguments to this function, as described
in the package documentation and the sample session within this paper.

2.2. Data smoothing

The deconvolution operation is highly sensitive to noisy data, motivating us to implement the
adaptive smoother within the locfit (Loader 2010) package. The R code smooths each voxel-
wise vector of measured contrast agent concentration-time data (~Cf ) and the measured vector

of arterial input function ( ~AIFf ) values using empirically derived computational settings that
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u(t) Generic representation of a system input.

y(t) Generic representation of an observed system output.

h(t) Generic representation of the Impulse Response Function (IRF ).

Ct(t) Contrast agent concentration in tumor.

AIF(t) Arterial Input Function; concentration of contrast agent in blood.

IRF(t) Impulse Response Function; tissue response to a unit strength input, δ(t).

~Cf nf × 1 vector of measured contrast agent concentrations in tissue.

~AIFf nf × 1 vector of measured contrast agent concentrations in blood.

~Cs ns × 1 vector of smoothed ~C values.

~AIFs ns × 1 vector of smoothed ~AIF values.

AIFs ns × ns convolution matrix composed of ~AIFs values.

~hs ns × 1 vector of IRF values.

AUCTf
Area under the curve of ~IRF from t = 0 to t = Tf .

MRTTf
Mean residence time of ~IRF from t = 0 to t = Tf .

AUC∞ Area under the curve of ~IRF (t = 0 to t =∞).

MRT∞ Mean residence time of ~IRF (t = 0 to t =∞).

z Slice number.

ns Length of ~C and ~AIF smoothed vectors (locfit output).

nf Number of frames in the DCE-MRI data.

nx Number of voxels within the field of view (x-axis).

ny Number of voxels within the field of view (y-axis).

nz Number of voxels within the field of view (z-axis/number of slices).

Tf Duration of DCE-MRI scan.

Ktrans Plasma/tissue contrast agent exchange rate.

ve Fractional tissue volume accessible to contrast agent.

vb Fractional whole blood volume in tissue.

Table 1: Definitions of symbols used in this manuscript.

retain the sharp peak of the blood curve while down-weighting apparent outlier data points
in the plasma and tumor curves. The behavior of the smoothing curve may be altered by
increasing or decreasing the components of the smoothing parameter, alpha; i.e., an overly
smoothed curve may not capture the sharp peak of ~AIFf , while undersmoothing may yield

a noisy curve. Prior to smoothing, the original ~Cf and ~AIFf vectors are transformed by

removing all pre-peak ~AIFf (and corresponding ~Cf ) data and shifting the ~Cf curve by one
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u(t) −→ h(t) −→ y(t) δ(t) −→ h(t) −→ h(t)

Figure 2: Schematic representation of a generic convolution operation, where u(t) represents
the system input, y(t) represents the system output and h(t) is the IRF, depicted in the
right-hand panel as the observed system output in response to a unit strength impulse, δ(t).

Name Description

DAT Kinetic data analysis and visualization.

DAT.checkData Data file generation and validation.

DAT.simData A simulated DCE-MRI data set.

Table 2: Contents of the DATforDCEMRI package.

frame to partially compensate for venous-arterial time lag (Ferl et al. 2010). The smoothing
functions yield the smoothed ~Cf and ~AIFf vectors, ~Cs and ~AIFs, which serve as arguments
for the deconvolution function.

2.3. Numerical deconvolution

Numerical deconvolution is discussed by Rescigno and Segre (1966) and Evans (1954), with
applications to DCE-MRI covered by Ferl et al. (2010) and Fan and Karczmar (2009). Addi-
tionally, a semiparametric approach to DCE-MRI kinetic analysis using Bayesian P-splines is
described in Schmid et al. (2009). Briefly, the convolution operation relates input and output
for a linear, time-invariant system via the IRF as shown schematically in Figure 2. Given a
system input u(t) and the function h(t), the output y(t) can be computed by convolution of
u(t) and h(t). In the case of DCE-MRI kinetic analysis, these variables are defined as:

u(t) = AIF(t), (1)

h(t) = IRF(t), (2)

y(t) = Ct(t) (3)

where Ct(t) is the observed contrast agent concentration in tumor (or any other tissue of
interest) and AIF(t) is the arterial input function, so that

Ct(t) = AIF(t)⊗ IRF(t) =

∫ ∞
−∞

AIF(τ)IRF(t− τ)dτ, (4)

where ⊗ is the convolution operator. Given discretized values of AIF(t) and h(t), the convo-
lution operation is performed via vector matrix multiplication:

~Cs = AIFs
~IRF, (5)

where ~Cs and ~IRF are 1× ns vectors and AIFs is an ns × ns matrix (Ferl et al. 2010).

In the case of DCE-MRI analysis, we have estimates of ~Cs and AIFs and can retrieve the
IRF by solving for ~IRF.
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The basic numerical deconvolution function written for DATforDCEMRI (Ferl et al. 2010)
operates on smoothed ~Cf and ~AIFf vectors of equal length (~Cs and ~AIFs) and returns the

impulse response function ( ~IRFs) and all associated locfit objects.

2.4. The Kety model

Briefly, the Tofts version of the Kety model (Kety 1951; Tofts and Kermode 1991) may be
written as

dCt(t)

dt
= AIF ·Ktrans − Ct(t)kep, (6)

where the corresponding IRF is

h(t) = Ktranse−kept. (7)

The parameter Ktrans represents fractional rate of contrast agent flux between plasma and
interstitial space and is physiologically interpreted as an amalgam of tissue perfusion rate,
capillary surface area and capillary permeability. The parameter kep = Ktrans/ve, where ve
represents the fractional volume of the interstitial space that is accessible to contrast agent
(EES). A detailed discussion of model notation and physiological interpretation can be found
in Tofts et al. (1999).

The extended Tofts version of the Kety model (Tofts 1997) explicitly considers the contribu-
tion of intravascular contrast agent to total tissue signal by adding vb to the measurement
model, written as

C(t) = Ct(t) + vbAIF, (8)

where the parameter vb represents fractional whole blood volume in the tissue of interest.

The Tofts version of the Kety model is fitted to voxel-wise data using an in-house kinetic
analysis tool programmed in R (not included in DATforDCEMRI). Briefly, optimal parameter
values are calculated by minimizing a maximum likelihood objective functional of the form

J(p) =
1

nf

nf∑
i=1

[
(s(p̂, ti)− di)2

SD2 + ln(SD2)

]
, (9)

using the Nelder-Mead optimization method implemented by the optim() function. The
number of data points within each contrast agent curve is indicated by nf , s(p̂, ti) is the
simulated contrast agent concentration at time i and parameter vector p̂ within the parameter
space under consideration and di is the measured contrast agent concentration at time i. The
analytical solution of Equation 6 is used during the fitting process to reduce computational
time and is achieved by describing the AIF with a two compartment model and solving the
resulting system of three ODEs for Ct(t). Data is uniformly weighted by setting the standard
deviation (SD) to unity for all data points.

2.5. Noncompartmental analysis

The truncated area under the curve (AUCTf
) and mean residence time (MRTTf

) of ~IRF
vectors are calculated by the DAT function using the trapezoidal rule. MRTTf

is equal to the
area under the first moment curve (AUMCTf

) divided by AUCTf
, as described in Ferl et al.

(2010). AUCTf
, MRTTf

and AUCTf
/MRTTf

are returned by DAT.



Journal of Statistical Software 7

Object Description

vectorTimes Original 1 × nt vector of data acquisition time points.

maskROI Original nx × ny region of interest mask.

mapCC Original nx × ny × nt matrix of contrast agent concentrations.

vectorAIF Original 1 × nt arterial input function vector.

mapAUC nx × ny matrix of impulse response function AUC values.

mapAUCMRT nx × ny matrix of impulse response function AUC
MRT values.

mapIRF nx × ny × nt matrix of voxel-wise impulse response functions.

vectorTimesTrunc Truncated time vector for deconvolution algorithm.

mapCCtransformed mapCC with pre-peak data removed; correct vein-artery lag.

mapCCsmoothed mapTumorTransformed smoothed using locfit package.

vectorAIFtrunc vectorAIF with pre-peak data removed.

vectorAIFsmoothed vectorAIF smoothed using locfit package.

CCmedianTransformed Median mapCCtransformed values over the region of interest.

CCmedianSmoothed CCmedianTransformed smoothed using locfit package.

IRFmedian Median impulse response function over the ROI.

AUCmedian Median IRF AUC value over the ROI.

AUCMRTmedian Median IRF AUC
MRT value over the ROI.

args Function arguments used for this run.

plotParams nx, ny, nt, ROI cropping coordinates, range of color scale.

procTime Total time for analysis (minutes).

DATversion Package version.

Table 3: Contents of summary file generated by the DAT function.

If we assume ~IRF has a mono-exponential form, then errors in AUCTf
and MRTTf

calculations
due to truncation, i.e., neglecting the IRF from t = Tf to t =∞, can be estimated by utilizing
an estimated or nominal kep value for the tissue of interest. DAT implements the truncation
error correction equations derived in Ferl et al. (2010) by calculating AUCTf

/AUC∞ and
(AUCTf

·MRT∞)/(AUC∞ ·MRTTf
). The truncation error correction factors are only rough

approximations and should be interpreted with caution.

2.6. Voxel-wise numerical deconvolution

The code for performing numerical deconvolution on a voxel-wise basis, including calculation
of the IRF and associated noncompartmental parameters, is executed by the DAT function.
Most arguments for this function are assigned default values so that the function will process
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a data file if the file name is specified (file) as an argument, along with the slice number of
interest (slice) if the data file contains more than one slice. The remaining arguments may
also be modified by the user and are described in the package documentation.

Also, voxels associated with apparent tissue concentrations greater than a fraction maxC of the
maximum value of ~AIFs are excluded, effectively removing the majority of voxels associated
with blood vessels. Each calculated ~IRF vector containing a negative value whose absolute
value is greater than 5% of the maximum positive value is removed from further analysis, as
described in Ferl et al. (2010).

The primary output of the voxel-wise analysis script are parametric maps of ~IRF (mapIRF),
AUCTf

(mapAUC) and AUCTf
/MRTTf

(mapAUCMRT); additional outputs are described in Ta-
ble 3.

2.7. Whole-tumor numerical deconvolution

The DAT function also performs deconvolution analysis on median ROI data using the AIF
vector shown in Figure 1 and the median contrast agent profile within the ROI (vectorAIF
and CCmedianSmoothed from Table 3). The primary outputs of this function are the IRF and
associated AUC and MRT, which are saved in the output file as IRFmedian, AUCmedian and
AUCMRTmedian.

2.8. Advanced voxel diagnosis tool

Voxel-wise analyses of DCE-MRI scans utilize and generate large amounts of parameter esti-
mates which may be summarized in the form of parametric maps. Although informative, key
results are not always readily accessible when describing tissue heterogeneity in this manner.
The locator function within R allows one to interact with an image by clicking on the dis-
play and returning the coordinates of the selected location as an R object. Specifically, tools
provided in DATforDCEMRI display a single DCE-MRI slice in the main panel and plot the
AIF, concentration-time data and any associated smoothed curves, all corresponding to the
selected voxel. The calculated IRF is also displayed along with AUC and AUC/MRT values.
The AVDT is automatically launched subsequent to successful completion of the deconvolu-
tion analysis; this option may be turned off by setting the argument batch.mode = TRUE. A
previously generated DAT file may be visualized and explored using the AVDT by running the
DAT function with the file as the sole argument; DATforDCEMRI will recognize the file as
a DAT output file and automatically launch the AVDT.

3. A sample session

3.1. Loading the data

The first step is to load the data into R. In this example, the AIF and time vectors are saved
in a single csv file that is read into the R session using the read.csv function. The contrast
agent concentration and ROI arrays, which have been saved as MATLAB files in this example,
are read into the session using the readMat function. This data is from a Phase II clinical trial
of bevacizumab in adults with histologically proven grade III–IV glioma that was progressive
or recurrent after radiation therapy (Vredenburgh et al. 2007); whole-ROI kinetic analysis of
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the complete data set is described in Ferl et al. (2010) and Port et al. (2010).

R> csv <- read.csv("p0002_time_aif.csv")

R> voxel_data <- readMat("p0002_V6.mat")

R> TIMEvector <- csv$TIME

R> AIFvector <- csv$AIF

R> CCmap <- voxel_data$map[, , 1]$cc

R> ROImask <- voxel_data$mask[, , 1]$roi

3.2. Checking the data

The next step is to create a single data file to be processed by the DAT function. This is
accomplished by running the function DAT.checkData and specifying the data vectors and
arrays that were loaded in the previous section that correspond to the vector.times, map.CC,
mask.ROI and vector.AIF arguments, as shown below. The variable file.name is the name
that will be assigned to the newly generated file and slice.stop allows one to extract and
save a range of data slices; here, the first nine of sixteen slices are extracted and saved for
further analysis. The function DAT.checkData first checks that the dimensions of all arrays
and vectors are consistent with one another, so that the vector-matrix operations can be
preformed. If the data passes this check, it is saved in a single RData file.

R> DAT.checkData(file.name = "p0002", vector.times = TIMEvector,

+ map.CC = CCmap, mask.ROI = ROImask, vector.AIF = AIFvector,

+ slice.start = 1, slice.stop = 9)

checking dimensions of vectors and arrays...

length of vector.times is 65

length of vector.AIF is 65

dimensions of map.CC array are 256 x 256 x 9 slices x 65 time points

dimensions of mask.ROI array are 256 x 256 x 9 slices

...vector and array dimensions are okay.

Saving data in a single R file...

...file saved as p0002_s1-s9.RData ...

...use the DAT() function to analyze data within this file.

The dimensions of all data arrays and vectors are printed on the R command line along with
the name of the new file; the range of image slices is indicated in the file name.

3.3. Performing the deconvolution

The DAT function is used to perform deconvolution analysis on the data file generated by
DAT.checkData. A minimum of two arguments are required for a multi-slice data file, the file
name and the slice to be analyzed. In this example we’ve specified a third argument that tells
DAT to save the deconvolution results in a MATLAB file format in addition to the RData file.
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Figure 3: Image of a single axial slice from a clinical brain scan containing summary infor-
mation associated with a single pre-treatment slice; produced by clicking the Print to PDF

button within the main AVDT navigation window.

Once generated, the MATLAB file is not utilized by the DATforDCEMRI package but may
be of use to those who wish to further process and/or visualize the data within MATLAB. By
default, the RData results file is automatically loaded into R and the contents displayed using
the AVDT. This feature may not be desirable when processing multiple slices in sequence and
can be turned off via the batch.mode argument. The Print to PDF button will generate the
PDF image shown in Figure 3 that contains summary information for that slice.

R> DAT(file = "p0002_s1-s9.RData", slice = 9, export.matlab = TRUE)

loading p0002_s1-s9.RData into R...

done in 0.14 minutes.

extracting and processing slice 9 for analysis...

done in 0.013 minutes.

performing deconvolution analysis on entire FOV...

..done in 12 minutes.

writing results to file...

..deconvolution results saved as DAT_p0002_s1-s9_s9_21Jun11-161651.RData

..deconvolution results saved as DAT_p0002_s1-s9_s9_21Jun11-161651.mat

loading DAT_p0002_s1-s9_s9_21Jun11-161651.RData into R...
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done in 0.17 minutes.

---

point 1

x = 169

y = 76

AUC = 0.71 ; AUC/MRT = 0.493

---

point 2

x = 161

y = 62

AUC = 0.344 ; AUC/MRT = 0.192

---

point 3

x = 195

y = 102

AUC = 0.0724 ; AUC/MRT = 0.0338

---

---

session ended

---

Voxel coordinates, AUC and AUC/MRT values are printed on the R command line for each
selected voxel while voxel specific data is plotted in the smaller panels.

4. Results

4.1. Whole-ROI analysis

The lower-left panels of Figures 3 and 4 display the AIF used for each scan along with the
locfit smoothed curves, while the median contrast agent concentration curve across all voxels
within the ROI is shown in the lower-middle panels, also with the associated smoothed curves.
The ROI is outlined in white within the upper-left panels of Figures 3 and 4 with a magnified
view of each ROI shown in the upper-middle panel. The image and AIF shown in Figure 1
correspond to those in Figure 3. The resulting IRF is plotted in the lower-right panels with the
associated AUC and AUC/MRT values. Based on the median contrast agent concentration
profile, AUC values for pre- and post-treatment scans are 0.227 and 0.145, while AUC/MRT
values are 0.14 and 0.0887. The upper-right panels list the DAT function arguments used for
that particular deconvolution analysis.

4.2. Voxel-wise analysis

Figures 3 and 4 display parametric maps of AUC/MRT values across the FOV for scans taken
one day before and one day after administration of a single dose of bevacizumab. Malignant
tumor tissue is clearly visible in the lower-right corner of the FOV image (upper-left panels)
and the overall intensity of the lesion decreases subsequent to treatment. Across all voxels,
median AUCs within the ROI are 0.212 and 0.144, before and after treatment, while median
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Figure 4: Image of a single axial slice from a clinical brain scan containing summary infor-
mation associated with a single post-treatment slice; produced by clicking the Print to PDF

button within the main AVDT navigation window.

AUC/MRT values are 0.111 and 0.0747 (Table 4). Note that these values differ slightly
to those reported in Section 4.1, since we are comparing the median of voxel-wise fits to
values calculated by fitting the model to the median contrast agent concentration curve.
The parametric maps of tissue within the ROI (upper-middle panels) clearly illustrate the
heterogeneous distribution of AUC/MRT values across the tumor.

4.3. Advanced voxel diagnosis tool

Figure 5 shows a screenshot of the advanced voxel diagnosis tool (AVDT) based on the sim-
ulated data set included in the DATforDCEMRI package. A parametric map of AUC/MRT
values for the region of interest are displayed in the navigation window (upper-right panel)
with maximum x and y values for the complete field of view scaled to one. The whole FOV
window depicts an arbitrary ROI within a square field of simulated noise. The navigation
window automatically zooms in on the ROI while, similar to Figures 3 and 4, the AIF and
voxel-wise data are plotted in the smaller windows below. Selected voxels (green circles in
the navigation window) are tracked on the R session command line on the right-hand side of
the screen and the links within the navigation window allow one to print a summary image
to a PDF file (Figures 3 and 4), display median contrast agent concentration and IRF curves
and terminate the session.
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Figure 5: DATforDCEMRI screenshot based on the simulated data set, DAT.simData. A
border of 20 voxels can be seen around the simulated noise field, specified by the border

argument. The parametric maps display AUC/MRT values for each voxel, as specified by
the parameter.plot argument. See the DATforDCEMRI manual for details on function
arguments. The simulated data can be automatically analyzed and visualized by typing
demo(DAT, ask = FALSE) at the R command prompt.

4.4. Comparison to the Kety model

The Tofts version of the Kety model described in Equation 6 was applied to voxel-wise data
within the ROIs drawn on the images shown in Figures 3 and 4, as described in Section 2.4,
and compared to AUC and AUC/MRT values derived from deconvolution analysis of the
same data. The left-hand panels of Figure 6 plot the AUC of the IRF on the ordinate and
ve, estimated by voxel-wise fitting of Equation 6 to the contrast agent concentration curves,
on the abscissa. The right-hand panels of Figure 6 shows the same data after correction by
the method described in section 2.5 and Ferl et al. (2010). The thin red line in each panel is
calculated via linear regression (y = mx + b) of the data and the thicker grey line is y = x.
Median values are summarized in Table 4. These plots were also generated for voxel-wise
AUC/MRT versus Ktrans values and are qualitatively similar to those shown in Figure 6.

5. Discussion

We have described an R package that can be used to conduct deconvolution analysis of DCE-
MRI data in an efficient and thorough manner. In this study, the entire field of view can
be quickly analyzed, yielding a first approximation of the distribution of standard kinetic
parameters from a single compartment model throughout the imaged tissue. Previous whole-
ROI analysis Ferl et al. (2010) and the subsequent analysis described here (Figure 6, Table 4)
show that kinetic parameters estimated using the methods employed by DATforDCEMRI are
similar to Ktrans and ve parameters obtained by fitting the Tofts version of the Kety model
to whole-ROI and voxel-wise data. Parametric maps generated by DATforDCEMRI may be
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Pre−treatment ROI voxels (uncorrected)
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Median values
AUC = 0.184
ve = 0.175
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Post−treatment ROI voxels (uncorrected)
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Median values
AUC = 0.125
ve = 0.108
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Figure 6: Voxel-wise AUC values compared to ve values estimated by voxel-wise fitting of
the Tofts version of the Kety model (Equation 6). Upper panels plot values based on scans
taken one day before treatment; lower panels plot values based on scan taken one day after a
single 10 mg/kg dose of bevacizumab. Right-hand panels show corrected values.

used to aid in the identification of ROIs and as a method to quickly assess the presence or
absence of a treatment effect when comparing data from multiple scans.

Our AVDT allows one to easily visualize concentration-time data, as well as the associated
smoothed curves, for selected voxels displayed on the parametric map. This device facilitates
verification of computations that generate each value on the parametric map; one can quickly
verify that the smoother and deconvolution operations performed properly for voxels of inter-
est as well as view voxel-specific data related to regions of heterogeneous uptake throughout
the image.

Independence from model structure is a key feature of the numerical deconvolution method,
allowing one to perform kinetic analysis on DCE-MRI data without going through the process
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Pre-treatment Post-treatment % change

AUC 0.184/0.212 0.125/0.144 −32

ve 0.175 0.108 −38

AUC/MRT 0.14/0.111 0.0938/0.0747 −33

Ktrans 0.0918 0.0592 −36

Table 4: Median voxel-wise IRF AUC and AUC/MRT (uncorrected/corrected) values com-
pared to median voxel-wise ve and Ktrans values for data under consideration here (Figures 3
and 4). The right-hand column indicated the percentage change in values between post- and
pre-treatment. Whole-ROI kinetic analysis of the complete data set is described in Ferl et al.
(2010) and Port et al. (2010).

of determining the “best” model structure. Although the scope of this paper is limited to
analysis of brain acquisitions, our deconvolution approach is quite robust and may be applied
to any type of DCE-MRI data and, indeed, any type of input/output data collected over
a time course. We have previously analyzed data from breast and liver lesions using this
software.

The computational simplicity of numerical deconvolution is also a potential advantage. Pa-
rameter estimation is an iterative process that requires a system of equations to be solved for
each step taken while navigating the surface of the objective function in the search for a mini-
mum value. Analytical solutions to the Kety model may be fitted to DCE-MRI data (Whitcher
and Schmid 2011a,b), significantly reducing the complexity of this operation by eliminating
the need for an ODE solver; however, this requires a functional form to be assumed for the
AIF. Numerical deconvolution is a non-iterative algebraic procedure that makes few assump-
tions and, due to its computational simplicity, can be performed in alternative GPU-based
high-speed programming environments (Ng 2011).

The utility of these functions is twofold: (1) Quickly analyze all imaged tissue within the field
of view and identify potential regions of interest, (2) quickly assess the presence or absence
of a treatment effect when comparing scans of a single patient obtained before and after
treatment; the study described here (voxel-wise analysis) and Ferl et al. (2010) (whole-ROI
analysis) show that percent changes of AUC and AUC/MRT values between scans were similar
to changes in Ktrans and ve values obtained by fitting the Tofts version of the Kety model to
the contrast agent data.
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