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Abstract

A common feature of many magnetic resonance image (MRI) data processing meth-
ods is the voxel-by-voxel (a voxel is a volume element) manner in which the processing
is performed. In general, however, MRI data are expected to exhibit some level of spa-
tial correlation, rendering an independent-voxels treatment inefficient in its use of the
data. Bayesian random effect models are expected to be more efficient owing to their
information-borrowing behaviour.

To illustrate the Bayesian random effects approach, this paper outlines a Markov chain
Monte Carlo (MCMC) analysis of a perfusion MRI dataset, implemented in R using the
BRugs package. BRugs provides an interface to WinBUGS and its GeoBUGS add-on.
WinBUGS is a widely used programme for performing MCMC analyses, with a focus on
Bayesian random effect models. A simultaneous modeling of both voxels (restricted to a
region of interest) and multiple subjects is demonstrated. Despite the low signal-to-noise
ratio in the magnetic resonance signal intensity data, useful model signal intensity profiles
are obtained. The merits of random effects modeling are discussed in comparison with
the alternative approaches based on region-of-interest averaging and repeated independent
voxels analysis.

This paper focuses on perfusion MRI for the purpose of illustration, the main propo-
sition being that random effects modeling is expected to be beneficial in many other MRI
applications in which the signal-to-noise ratio is a limiting factor.

Keywords: R, random effects, Markov chain Monte Carlo, BRugs, WinBUGS, GeoBUGS,
magnetic resonance imaging.

http://www.jstatsoft.org/


2 MCMC Random Effects Modeling in MRI Processing Using BRugs

1. Introduction

A common feature of many approaches adopted in the analysis of magnetic resonance (MR)
image data is an independent voxels (a voxel is a volume element) treatment in which a
given algorithm is applied in a voxel-by-voxel manner. In a recent publication we outlined
an alternative approach based on Bayesian random effects modeling (King et al. 2009). The
distinguishing feature of the latter approach is simultaneous, multiple-voxel processing based
on some suitable spatial or non-spatial statistical distribution. Thus, each of the voxel-
specific random effect parameters is specified as belonging to a population with an underlying
statistical distribution. There are a number of consequencies, including the constraining effect
of the model distribution that disallows extremely improbable parameter values.

Random effect models appear to have received relatively little attention in the MR literature,
with the notable exception of functional magnetic resonance imaging (MRI) (Penny and Fris-
ton 2004), although Bayesian random effect models have occasionally been adopted in other
MRI applications. The latter includes dynamic contrast enhanced (DCE) MRI (Schmid et al.
2006, 2009) and diffusion MRI in tumour radiology (Walker-Samuel et al. 2011). Nevertheless,
the approach has been largely ignored, despite the fact that MRI parameter estimation based
on some form of random effects model (spatial or otherwise) is expected to make better use
of the available data, assuming that the ensemble of voxels is informative in relation to the
parameter estimates sought for an individual voxel. This assumption is reasonable, since the
converse implies that the voxels that make up an MR image are statistically independent.

1.1. Random effects versus complete averaging and unpooled analyses

Some MRI data analysts may be dubious about the validity of the modeling approach outlined
in this paper, or the need for an alternative to an independent-voxel (i.e., separate voxels)
analysis or complete region-of-interest (ROI) averaging (i.e., completely-pooled data analysis).
The point we wish to stress at the outset is that random effects modeling is well established
and has a huge statistics literature. Jones (1993) and Hand and Crowder (1996) both provide
a useful introduction to random effect models, focussing on frequentist statistical methods,
while Gelman et al. (2004) devote a chapter to Bayesian random effect models under the title
hierarchical models. The latter includes numerous references to the Bayesian statistics liter-
ature in the form of a bibliographic note. Readers wishing to delve into the random effects
literature might note that the terms hierarchical model and multilevel model are both widely
used in the random effects context. A hierarchical model includes more than one level of ran-
dom variation, as illustrated by the example given in this paper, in which random voxels are
nested within random subjects. These models provide an optimum combination of the two ex-
treme types of estimate, i.e, the completely pooled estimate at one extreme, and the estimates
obtained from a set of separate analyses at the other extreme. In any situation in which there
is a true, non-negligible underlying variation between the units under consideration (voxels
and subjects in the present example), combined with a non-negligible measurement error,
neither completely-pooled estimation nor the estimates obtained through a set of separate
analyses are uncompromised. Sections 5.4 and 5.5 in Gelman et al. (2004) discuss this issue
and provide a simple dataset that is used to compare the results obtained via a random effects
treatment with the corresponding completely pooled result and an independent units analysis.
They make a convincing case for hierarchical/random effects modeling.
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1.2. Random effects modeling software

Numerous tools/packages are provided within the R programming environment (R Develop-
ment Core Team 2011) for performing Bayesian random effects analyses, with a focus on
Markov chain Monte Carlo (MCMC). A list can be obtained by searching for Bayesian in-
ference at the Comprehensive R Archive Network (see, for example, the Bayesian task view
maintained by Park 2011). The focus of this paper is the BRugs interface to WinBUGS and
its GeoBUGS add-on (Thomas et al. 2006).

Before proceeding, a brief explanation of the term mixed model is required. This term is
commonly encountered in various R help documents on random effects modeling and it is
relevant to understanding the distinction between standard regression models and the model
outlined in this paper. Mixed models include two kinds of explanatory variable (parameter),
namely fixed effect and random effect variables, the latter of which is the focus of this paper.
Unfortunately, the distinction between them can depend on the context, leading to possible
confusion. For the purpose of this paper a random effect parameter is assigned to a unit under
investigation (person, for example) that has been drawn from an underlying population of
related/similar units. In contrast, fixed effect parameters apply when each level of the factor
under consideration is of primary interest in its own right, with no reference to an underlying
population. An example will clarify the difference. In an analysis involving MRI data acquired
using two specific scanners, a scanner variable might be included in the model as a fixed effect
to allow for differences between the two specific scanners used in the study. If, on the other
hand, a multi-centre study was undertaken involving a relatively large number of scanners,
perhaps with no particular interest in the individual scanners, then the scanner effect might
be included in the regression model as a random effect variable. Crowder (1992) discusses this
issue in relation to inter-laboratory measurements and their comparison. It might be noted
that BLUPs (best linear unbiased predictors) and the concept of inference space are both
important in this context (McLean et al. 1991). Random effect models can be formulated
within both the frequentist and Bayesian statistical frameworks. Pinheiro and Bates (2000)
provide a comprehensive account of mixed-effects modeling using the lme and nlme functions
for linear mixed-effect and non-linear mixed-effect models, respectively, both of which are
provided by the nlme package (Pinheiro et al. 2011). Similarly, the lmer function, which
is provided by the lme4 pakckage (Bates et al. 2011), can be used to perform linear mixed
model, generalized linear mixed model or nonlinear mixed model analyses (Crawley 2007).
These functions focus on frequentist/likelihood based mixed-model statistical inference. The
seminal paper on linear random effect models is Laird and Ware (1982). The Laird-Ware
paper was, however, preceded by a number of papers on Bayesian random effect models,
including the notable paper by Lindley and Smith (1972). But it was not until the mid 1990s
that applied statisticians started to take much interest in Bayesian random effect models,
and the literature on this subject started to escalate. This was mainly attributable to the
increase in computer power that had taken place in the preceding decade. Modern Bayesian
analytical methods tend to be computationally demanding. Specifically, MCMC is a posterior
simulation method that now dominates the applied Bayesian modeling field, and it is only in
the last two decades that MCMC has become computationally feasible as a routine analytical
tool.

In Section 5 we shall return briefly to some of the problems associated with frequentist sta-
tistical inference in mixed-model regression analysis. The important point is that a Bayesian
analysis, in combination with MCMC, offers a number of advantages. As stated in the pre-
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vious paragraph, prior to the development of contemporary MCMC algorithms and modern
computing power, Bayesian analysis was not an option for the majority of practising statis-
ticians. The problem was that a fundamental component of any Bayesian analysis is the
computation of various posterior probability distributions. This invariably involves compli-
cated high-dimensional integrals that have no analytical solution. Although numerical inte-
gration was adopted as a solution, this proved problematic in practice. MCMC provides a
solution in which integration is performed by simulation, thus circumventing the analytical
and/or numerical intractability of many applied Bayesian statistical problems. These issues
are discussed at length in the texts by Gelman et al. (2004) and Carlin and Louis (2000),
which provide an introduction to Bayesian analysis and its implementation using MCMC.
The monograph edited by Gilks et al. (1996) provides a collection of articles on various as-
pects of MCMC practice, as it stood in the mid 1990s. Despite its age, the contents of this
book remain relevant today.

Prominent among the available programs for performing Bayesian analyses using MCMC
is WinBUGS and its various add-ons, including GeoBUGS for Bayesian spatial modeling
and PKBugs for pharmacokinetic analysis. Its predecessor BUGS (Bayesian inference using
Gibbs sampling) was launched in the early 90s, followed by the Microsoft Windows version,
WinBUGS, in the mid 1990s (Lunn et al. 2009). WinBUGS provides a flexible tool for
specifying a given Bayesian model (in terms of the likelihood and priors) and for generating
samples from specified posterior distributions using the Gibbs algorithm. The Gibbs sampler
is among the most widely used MCMC methods. According to Lunn et al. (2009) WinBUGS
has in excess of 30,000 registered users, justifying our focus on this particular software. Carlin
and Louis (2000, Appendix C) provides a software guide that includes a brief description of
alternative software for mixed/random effects analysis, both Bayesian and non-Bayesian. We
should emphasize that our focus on the BRugs (Thomas et al. 2006) interface to WinBUGS
reflects little more than the fact that this is the package that we used in the work outlined
in this paper. R2WinBUGS (Sturtz et al. 2005) provides a similar R interface to WinBUGS,
while the rjags package (Plummer 2011) functions as an interface to JAGS (just another
Gibbs sampler). In addition, a variety of other tools are available for performing random
effects analysis, both Bayesian and non-Bayesian.

1.3. Gibbs sampling and WinBUGS

A detailed description of the manner in which Gibbs sampling is implemented within Win-
BUGS is beyond the scope of this paper. Nevertheless, a brief summary is warranted. Addi-
tional information is provided by Lunn et al. (2000, 2009). As stated above, Gibbs sampling
is an MCMC algorithm. It is a special case of the Metropolis-Hastings algorithm based on
a sampling of the so-called full conditional posterior distribution. Gelman et al. (2004) and
Carlin and Louis (2000) both provide descriptions of these two algorithms. Among the rea-
sons for the popularity of WinBUGS is that it frees the analyst from the burden of deriving
the full conditional distributions and setting up the required sampling functions. Armed with
the measurement model in the form of a likelihood and the associated priors, the rest of the
problem is handled automatically within WinBUGS. The likelihood and priors can be pro-
vided in the form of programming statements or, alternatively, the model can be specified in
terms of a graphical model (Lunn et al. 2009). In fact graphical models, or to be specific, so-
called directed acyclic graphical models (DAGs), lie at the heart of WinBUGS. The important
point is that DAGs provide a mechanism for factorizing a joint posterior probability and thus
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obtaining the set of full-conditional distributions required for Gibbs sampling. WinBUGS de-
termines which of these full conditional distributions can be sampled directly, the remainder
of which are sampled using an embedded Metropolis-Hastings or slice sampler.

Although the WinBUGS package is versatile in terms of the variety of models that it can
handle, usually an analysis will involve a degree of post-simulation processing. At the very
least, this will include some kind of convergence assessment, as required to guard against mis-
leading inferences caused by poor sampling of the posterior parameter space (see Section 2).
There is an obvious advantage to adopting an approach in which the sequence of steps in-
volved in the analysis, namely, pre-simulation data processing (e.g., stripping data from MR
image files and rearrangement to obtain the format required for input to WinBUGS), model
compilation, MCMC simulation and post-processing are all contained within a single pro-
gramme. The WinBUGS Gibbs sampler is provided within a GUI (graphical user interface)
and, although menu-driven manual operations can be replaced by using WinBUGS batch-
mode script commands, this does not have the flexibility required for performing a complete
analysis with ease. Instead, this can be achieved within R by using one of the R-WinBUGS
interfacing packages, as exemplified in this paper using BRugs. We provide a simple demon-
stration of the manner in which BRugs can be used as an R interface to WinBUGS using
a dataset consisting of dynamic susceptibility contrast (DSC) signal intensity data acquired
in a number of individuals. A Bayesian spatiotemporal random effects model is adopted in
the analysis of the time-dependent DSC data. Specifically, we illustrate the MCMC random
effects treatment by showing results obtained by simultaneously modeling the signal intensity
data obtained from a 16-voxel (4-by-4) region of interest in five subjects, using the BRugs
interface to WinBUGS.

To summarize, the purpose of this paper is two-fold. Firstly, we wish to alert the MRI research
community to the advantages of Bayesian random effects modeling and to promote its more
widespread use. We demonstrate the method using DSC signal intensity data, but maintain
that the general approach is expected to be beneficial in many MRI applications. Secondly,
the paper shows how a Bayesian random effects analysis can be performed in R, using the
BRugs interface to WinBUGS.

1.4. Dynamic susceptibility contrast MRI

In this paper we use a DSC-MRI dataset to demonstrate a random effects analysis performed
using BRugs. DSC-MRI is a perfusion estimation technique that involves the measurement of
signal intensity following the rapid injection of an MR contrast agent (Calamante et al. 1999).
These signal intensity data are used to calculate the time-dependent concentration of contrast
agent in the tissue of interest. Perfusion parameter estimates are subsequently calculated
by solving a system of equations derived from these tissue concentration data (Østergaard
et al. 1996). DSC parameter estimation is challenging for several reasons. In particular, the
technique tends to suffer from low signal-to-noise ratios, compounded by the ill-conditioned
inverse calculation that arises in DSC data processing (Østergaard et al. 1996). Summary
parameter estimation is an alternative empirical approach to DSC data quantification, one
that avoids the ’inversion problem’ (Calamante et al. 1999). Low signal-to-noise ratio remains
a fundamental limitation, however, particularly in areas of low perfusion, irrespective of the
type of perfusion parameter estimates that are used. DSC data processing is typical of the
kind of MRI application in which random effects modeling might be used to advantage. For
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example, a random effects spatiotemporal model of the type outlined in this paper might
be used in the first of a two-stage data processing procedure, involving a first-stage random
effects smoothing across voxels within an ROI and, where applicable, across subjects. This
would be followed by parameter estimation at the second stage, performed using inversion or
some other method.

2. Materials and methods

2.1. Subjects and MRI data acquisition

The DSC-MRI data used in this paper were acquired from five children attending the Great
Ormond Street Hospital for Children for a variety of clinical investigations. These children
belonged to a mixed-gender cohort, aged between 6 and 23 months, all with no sign of a
brain abnormality, as judged by visual assessment of their MRI scans. The signal intensity
data were acquired on a 1.5T Siemens (Erlangen, Germany) Magnetom Vision system, using
a spin-echo echo-planar imaging sequence (repetition time 1.25 or 1.5s; echo time 100ms,
matrix size 128×128, field-of-view 250×250mm, 5mm slice thickness). After approximately
15 baseline acquisitions (1.5s sampling interval), gadolinium diethylenetriamine pentaacetic
acid (Gd-DTPA) was administered by intravenous injection (0.15mmol/kg), followed by a
saline flush. MRI data acquisition was continued, without interruption, before, during and
after Gd-DTPA administration. A 16-voxel (4-by-4) region was selected from within the
thalamus of each of the five subjects, positioned to achieve a high level of uniformity in the
first baseline T2-weighted image, as shown in Figure 1 for one of the subjects.

2.2. Random effects model

A commonly used approach to DSC-MRI data processing is to use the so-called gamma-

Figure 1: Baseline T2-weighted image (first time point) acquired in one of five subjects,
showing the position of the 4-by-4 ROI within the thalamus. Signal intensity data obtained
from selected voxels within this ROI are shown in Figure 3.
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variate function (Calamante et al. 1999) as a model for contrast-agent concentration. This
can be inaccurate in some situations (Calamante 2005), however, and we have adopted an
alternative approach based on modeling the observed signal intensity and using a changepoint
treatment (Carlin et al. 1992) of contrast-agent arrival, combined with an exponentially-
damped polynomial (EDP; Crowder and Tredger 1981) signal response function. An EDP
takes the general form f(t) = α+ tqβ(t)e−λt, β(t) = β0 + β1t+ . . .+ βpt

p, t ≥ 0, where q and
p are integers. It can be considered a generalization of the gamma-variate function, the latter
of which is given by the EDP with α = 0 and p = 0.

The full random coefficients, EDP spatiotemporal changepoint model used in the present
analysis took the form

yij(tk) ∼ N(µij(tk), τε) (1)

µij(tk) = αij + β0ij , tk < κij (2)

µij(tk) = αij + (β0ij + β4ij t
′4
ijk) exp

(
−λijt

′
ijk

)
, tk ≥ κij (3)

t
′
ijk = tk − κij (4)

where ∼ indicates distributed as, N(µ, τ) is the normal distribution with mean µ and precision
τ (precision = 1/variance), yij(tk) is the observed DSC signal at the kth measurement occasion
within the jth voxel within the ith subject, tk is time at the kth measurement occasion, and
κij is the changepoint (contrast-agent arrival time) in the jth voxel of the ith subject. This
model for signal intensity was incorporated into a Bayesian random effects structure in which

each EDP parameter was treated as a sum of subject-specific (θ
(s)
i ) and voxel-specific (θ

(v)
ij )

terms. Thus θij = θ
(s)
i + θ

(v)
ij , where θij is a given EDP model parameter. Subjects were

treated as exchangeable (i.e., invariant to permutations of the subject labels), while voxels

were modelled as spatially correlated. With the exception of β
(s)
0i , each of the subject-level

random effect terms was assigned a hierarchical distribution

θ
(s)
i ∼ N(θ̄

(s)
i , τ

(s)
θ ) (5)

θ̄
(s)
i ∼ N(0, 10−4) (6)

τ
(s)
θ = 1/σ2θ (7)

σθ ∼ U(0, L) (8)

where L is some suitable large number. β
(s)
0i was assigned a truncated normal distribution

to constrain the asymptotic signal intensity to be no greater than the mean baseline level,
noting that T1-induced signal enhancement is not expected in the absence of blood-brain
barrier breakdown given the acquisition parameters that were used in this study (Calamante
et al. 2007). The voxel-level random effect terms were assigned a spatial CAR (conditional
autoregressive) prior (Wakefield et al. 2000). This takes the form

ηij ∼ N(η̄ij , σ
2
η/rij) (9)

η̄ij =
∑
m∈Nij

ηm/rij (10)
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where, to simplify the notation, ηij is used to represent a given spatial random coefficient

(i.e., ηij ≡ θ(v)ij ), and σ2η is an overall scale parameter, specified in terms of its reciprocal, i.e.,
precision, the latter of which was assigned a Gamma(0.5, 0.0005) prior. The notation m ∈ Nij
denotes the set of voxel labels belonging to those voxels in the immediate neighbourhood of the
jth voxel in the ith subject. Voxel m belongs to that set, and rij is the number of voxels in the
set. In the present analysis this set of neighbours included all voxels with at least one corner
in contact with the voxel under consideration, i.e., all eight surrounding voxels, except at the
boundary of the ROI, where the number of adjacent voxels is three and five for the corner and
edge voxels, respectively. Thus, η̄ij is the mean of ηm in voxels neighbouring voxel j in subject
i. The measurement precision, τε, was assigned an uninformative gamma prior. The specific
form of the model used in this analysis was based on results obtained from an examination
of various competing models, but it should not be regarded as definitive. For example, with
some datasets the model may require refinement to capture properly the signal intensity
behaviour at the changepoint. We emphasize that a more comprehensive model assessment
study may yield an improved expression for the signal intensity, although it is expected that
some form of changepoint treatment will prove indispensable. Similarly, the precise form of
the various priors are not definitive. In part, these are expected to depend on the application
and data under consideration. Some recommendations and other information regarding the
specification of non-informative priors in the random effects context are given in Section 9.2 of
the Classic BUGS manual (Spiegelhalter et al. 1995), while a more comprehensive discussion
is provided by Gelman (2006).

Gibbs sampling was performed using the BRugs interface to WinBUGS in conjunction with
the GeoBUGS car.normal distribution and associated spatial modeling tools. Three parallel
chains were generated, each consisting of 5000 samples (after thinning at run time from 50,000
samples). This was followed by a post-simulation thinning to 1000 samples per chain.

2.3. Convergence assessment

MCMC convergence was assessed for a number of key parameters, focusing on various derived
parameters of particular interest. Overlaid-chain trace plots were generated and inspected for
visual signs of convergence failure. All were entirely satisfactory. This was followed by a semi-
formal analysis performed using three convergence test procedures, namely the Gelman-Rubin
shrink factor diagnostic and associated shrink factor plots, the Geweke Z-score diagnostic and
Z-score plots, and the Raftery-Lewis diagnostic procedure (Cowles and Carlin 1996). These
analyses were performed using the coda (convergence diagnosis and output analysis) package
(Plummer et al. 2006). All test results were satisfactory, confirming the impression given by
the overlaid trace plots. The Raftery-Lewis calculations indicated that after combining the
three parallel chains, the 0.025 quantile estimates obtained for various statistics of interest had
an accuracy of at least ±0.0057 with probability 0.95, giving nominal 95% credible intervals
with a true coverage of between 93.9% and 96.1%, with probability 0.95.

3. Example DSC-MRI WinBUGS analysis

The spatiotemporal statistical model was specified in the form of WinBUGS programming
statements, which were saved in an ASCII text file (filename DscMriModel.txt). The pro-
gramme, which is based on the spatiotemporal modeling code given in Lawson et al. (2003),
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was as follows:

model {

for (i in 1:S) {

alphaS[i] ~ dnorm(alpha.c, alpha.tau)

beta4S[i] ~ dnorm(beta4.c, beta4.tau)

beta0S[i] ~ dnorm(beta0.c, beta0.tau) I(0,)

deltaS[i] ~ dnorm(delta.c, delta.tau)

t_shiftS[i] ~ dnorm(t_shift.c, t_shift.tau)

for (j in 1:M) {

for (k in 1:T) {

time[i,j,k] <- k

tprime[i,j,k] <- time[i,j,k] - (t_shiftV[i,j] + t_shiftS[i])

y[i,j,k] ~ dnorm(mu[i,j,k],tau.c)

mu[i,j,k] <- step(-tprime[i,j,k]) * (alphaV[i,j] + alphaS[i] +

beta0V[i,j] + beta0S[i]) + step(tprime[i,j,k]) * (alphaV[i,j] +

alphaS[i] + (beta0V[i,j] + beta0S[i] + (beta4V[i,j] +

beta4S[i]) * pow(tprime[i,j,k],4)) * exp(- (deltaV[i,j] +

deltaS[i]) * tprime[i,j,k]))

}

}

}

for (i in 1:S) {

alphaV[i,1:M] ~ car.normal(adj[], weights[], num[], tau.alpha[i])

beta4V[i,1:M] ~ car.normal(adj[], weights[], num[], tau.beta4[i])

beta0V[i,1:M] ~ car.normal(adj[], weights[], num[], tau.beta0[i])

deltaV[i,1:M] ~ car.normal(adj[], weights[], num[], tau.delta[i])

t_shiftV[i,1:M] ~ car.normal(adj[], weights[], num[], tau.t_shift[i])

}

for (k in 1:sumNumNeigh) {

weights[k] <- 1

}

t_shift.c ~ dunif(21.0, 24.0)

alpha.c ~ dflat()

beta0.c ~ dnorm(0, 1.0e-04) I(0,)

beta4.c ~ dflat()

delta.c ~ dflat()

alpha.sigma ~ dunif(0, 100)

alpha.tau <- 1 / (alpha.sigma * alpha.sigma)

beta0.sigma ~ dunif(0, 100)

beta0.tau <- 1 / (beta0.sigma * beta0.sigma)



10 MCMC Random Effects Modeling in MRI Processing Using BRugs

beta4.sigma ~ dunif(0, 100)

beta4.tau <- 1 / (beta4.sigma * beta4.sigma)

delta.sigma ~ dunif(0, 100)

delta.tau <- 1 / (delta.sigma * delta.sigma)

t_shift.sigma ~ dunif(0, 100)

t_shift.tau <- 1 / (t_shift.sigma * t_shift.sigma)

tau.c ~ dgamma(0.001, 0.001)

for (i in 1:S) {

tau.alpha[i] ~ dgamma(0.5, 0.0005)

tau.beta0[i] ~ dgamma(0.5, 0.0005)

tau.beta4[i] ~ dgamma(0.5, 0.0005)

tau.delta[i] ~ dgamma(0.5, 0.0005)

tau.t_shift[i] ~ dgamma(0.5, 0.0005)

}

}

The following four points might be noted. Firstly, in BUGS/WinBUGS syntax the tilde
symbol ~ is used to define stochastic nodes, while the assignment symbol pair <- is used to
define deterministic nodes (Spiegelhalter et al. 2003). Secondly, the WinBUGS language is
somewhat limited in terms of its conditional constructs (it has no if statement, for example),
and the step function is used as a substitute. Thirdly, the I() construction is used in
the preceding code as a mechanism for obtaining a truncated distribution. This is common
practice, and is satisfactory in the present application if the aim is spatiotemporal smoothing
with a focus on voxel-specific Gd-DTPA response profiles, as opposed to statistical inference.
It should be noted, however, that the proper purpose of the I() construct is for modeling
censored data and that it can lead to invalid inferences (Lunn et al. 2009) if the I() construct
is used in the specification of truncated prior distributions involving unknown parameters, and
the focus is on mean behaviour. Fourthly, the exchangeable random effect precision parameter
priors are specified in terms of their root variances, each of which has been assigned a uniform
distribution. The upper limit of these distributions might be modified, based on the precision
parameter posterior distributions obtained in preliminary analyses.

The Gibbs sampler requires starting values for each chain, and these are provided in an inits

file (the file DscMriInits.txt used in the example R session contained the final state of the
sampler in a preceding simulation). The initialization values are supplied as a list of the form:

list(alpha.c = 400, beta4.c = -300, beta0.c = 11, delta.c = 2.5, ...)

The list does not need to include values for every parameter in the model, since any remaining
model parameters can be initialized using the modelGenInits function (see the information
on gen inits in the Model Menu section of the WinBUGS 1.4 manual (Spiegelhalter et al.
2003)). This is especially useful in random effects modeling applications involving a large
number of random effect parameters. Finally, a data file (DscMriData.txt) containing the
observed signal intensities, and other information, is required. The WinBUGS documentation
(Spiegelhalter et al. 2003) provides details regarding the data formats accepted by WinBUGS.



Journal of Statistical Software 11

The preceding WinBUGS code is reproduced in the supplemental material to this article,
together with an inits file and the data file, the latter of which includes the signal intensity
data, which were acquired with a sampling interval of 1.5 seconds.

The following very basic R session provides a rudimentary sequence of function calls that
might be used to perform an analysis. It serves to illustrate the most basic use of some key
BRugs functions. Although largely self-explanatory, a brief description of the sequence of
statements is given below.

R> library("BRugs")

R> modelCheck("DscMriModel.txt")

R> modelData("DscMriData.txt")

R> modelCompile(numChains = 1)

R> modelInits("DscMriInits.txt")

R> modelUpdate(5000)

R> samplesSetThin(10)

R> samplesSet(c("alpha.c", "alphaS", "alphaV", "beta0.c", "beta0S",

+ "beta0V", "beta4.c", "beta4S", "beta4V", "delta.c", "deltaS", "deltaV",

+ "t_shift.c", "t_shiftS", "t_shiftV"))

R> modelUpdate(50000)

R> alpha.c.sim <- samplesSample("alpha.c")

R> parms <- samplesMonitors("alphaS")

R> alphaS.sim <- sapply(parms, samplesSample)

...

R> samplesHistory("*", mfrow = c(2, 2))

R> samplesDensity("*")

This R session performs the basic steps required to implement an analysis. It checks the
model for syntax errors, loads the data and performs the compilation, noting that the model is
compiled in the context of the data that have been loaded. Thus, any incompatibility between
the model statements and data will be detected at this stage. Although this is unconventional,
it is standard in BUGS/WinBUGS. Assuming the model/data compile successfully, the initial
values are loaded, and/or generated, as required. In the example, 5000 burn-in iterations are
performed, which starts with an initial adaptive phase as required to tune those samplers
(Metropolis and slice-samplers) that are used when direct sampling is not possible. After
setting the thinning level the samplesSet function is used to specify which of the model
parameter chains should be stored. Thinning is standard practice given a high degree of
autocorrelation in the parameter chains, thus saving storage and reducing the CPU demands
of any subsequent processing work. In the example the thinning parameter is set to 10, with
the result that 1 in 10 of the MCMC samples is returned to R. Similarly, only 1 in 10 samples is
used in subsequent statistical summary calculations performed via BRugs functions. Finally,
a second call to modelUpdate restarts the simulation, which generates the specified number
of samples. After the simulation has completed, control is passed back to R. At this stage,
the MCMC output is not directly available to R. Three distinct approaches can be adopted
to using the MCMC output, namely, (1) by making calls to various BRugs functions, thus
generating various summary statistics, for example, (2) by creating a special list (with class
mcmc.list) which can be used as input to the coda package for subsequent analysis and (3)
by using the samplesSample function to create R arrays from the stored values. These arrays
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are directly available for post-MCMC processing in R. In the first of these approaches the
MCMC output remains invisible to R. The preceding example R session illustrates the third
approach.

3.1. Method 1: Working with BRugs plotting and summary functions

The function samplesSet is used to set one or more nodes for recording during subsequent
chain updates. A number of functions are provided for generating statistics and plots from the
resulting stored values. For example, the call to samplesStats in the sequence of statements

R> samplesSet(c("alpha.c", "alphaS", "alphaV", "beta0.c", "beta0S", "beta0V",

+ "beta4.c", "beta4S", "beta4V", "delta.c", "deltaS", "deltaV",

+ "t_shift.c", "t_shiftS", "t_shiftV"))

R> modelUpdate(50000)

R> samplesStats(c("alpha.c", "beta0.c", "beta4.c", "delta.c", "t_shift.c"))

lists the mean, median and other quantiles for each specified node (Figure 2). Trace plots
(plots of sample value versus iteration number) and smoothed kernel density plots can be
generated using the plotHistory and plotDensity functions, respectively, as illustrated by
the following statements:

R> plotHistory("beta0.c")

R> plotDensity("beta0S[1]")

The pair of functions summarySet and summaryStats provide an alternative mechanism for
generating statistics. Thus, for example,

R> summarySet(c("alpha.c", "alphaS", "alphaV", "beta0.c", "beta0S", "beta0V",

+ "beta4.c", "beta4S", "beta4V", "delta.c", "deltaS", "deltaV",

+ "t_shift.c", "t_shiftS", "t_shiftV"))

R> modelUpdate(50000)

R> summaryStats(c("alpha.c", "beta0.c", "beta4.c", "delta.c", "t_shift.c"))

might be used in place of the preceding samplesSet-samplesStats pair of calls. The BRugs
help document states that the resulting quantiles are approximate and should be used with
caution, but offer the advantage of requiring less storage than those obtained with sampleSet.

3.2. Method 2: Working with mcmc.list objects

The function buildMCMC generates an R object with class mcmc.list, which can be accessed
within R using standard commands, as illustrated in the following code, which uses double-
bracket indexing notation (returning either the entire beta0.c chain and its first sample,
respectively):

R> samplesSet(c("alpha.c", "alphaS", "alphaV", "beta0.c", "beta0S", "beta0V",

+ "beta4.c", "beta4S", "beta4V", "delta.c", "deltaS", "deltaV",

+ "t_shift.c", "t_shiftS", "t_shiftV"))

R> modelUpdate(50000)
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Figure 2: The R GUI window captured after using the samplesStats function to generate
summary statistics for a set of specified variables, together with the plotHistory function,
which produces a trace plot for the specified variable(s). Trace plots are indispensable as
a tool for detecting convergence failure, as discussed in numerous publications, including
Gelman and Rubin (1992), Carlin and Louis (2000, Chapter 5), Gelman (1996) and Kass
et al. (1998). Trace plots can be usefully displayed individually, as shown here, and as
overlaid plots. Well-behaved MCMC output is characterized by parallel-chain trace plots
showing that each sampler in a set of parallel simulations (started at overdispersed points in
parameter space) has moved freely around a common parameter space, with no sign of being
stuck within a localized region, and with no systematic trends.

R> codaobject.beta0.c <- buildMCMC("beta0.c")

R> codaobject.beta0.c[[1]]

R> codaobject.beta0.c[[1]][1]

The main purpose of mcmc.list objects is, however, to provide input to the coda package,
which includes functions for generating various convergence diagnostic plots and for perform-
ing a number of convergence test calculations. Visual convergence diagnostic checks and their
associated calculations are important because validity of any inferences depends on conver-
gence to a stationary distribution. Some of these checks can be performed using the summary

function which, in conjunction with mcmc.list objects, provides various summary statistics
including the so-called time-series standard error and specified quantiles. For example, sum-
mary statistics for the node beta0.c, together with Geweke convergence test results and
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diagnostic plot are obtained with the code:

R> summary(codaobject.beta0.c, quantiles = c(0.025, 0.5, 0.975))

R> geweke.diag(codaobject.beta0.c, frac1 = 0.1, frac2 = 0.5)

R> geweke.plot(codaobject.beta0.c, frac1 = 0.1, frac2 = 0.5, nbins = 20,

+ pvalue = 0.05, auto.layout = TRUE, ask = TRUE)

3.3. Method 3: Using samplesSample to access the sampled data

The BRugs function samplesSample, used in conjunction with samplesSet, returns an ar-
ray of selected values, as illustrated in the preceding R session. It should be noted that the
samplesSample argument must be a single scalar node, and that some additional code is
required to deal with vector, matrix or array nodes, as illustrated in the example R session,
which uses the BRugs samplesMonitors function in conjunction with the R sapply func-
tion to return the specified matrix nodes. In that example, each call to samplesMonitors

returns the name of each element of the specified matrix node, and the accompanying call
to sapply uses the BRugs function samplesSample to return the MCMC output for each of
these elements.

The various code fragments and example R session given in this Section are rudimentary, the
objective being to provide an immediate and simple indication of the manner in which various
BRugs tools might be used to retrieve and process WinBUGS MCMC output. Obviously these
function calls can be wrapped in additional code to achieve any level of programming sophis-
tication. This is demonstrated, for example, in the open source code available from http://

code.google.com/p/alzheimers-disease-progression-model-adascog/source/browse/

trunk/cfbmodel/code, provided by William Gillespie.

4. Results

Bayesian random effects modeling was performed using the DSC-MRI signal intensity data
obtained from a 16-voxel (4-by-4) ROI placed within the thalamus of each of five subjects. The
main feature of the analytical approach outlined in this paper is that it permits a simultaneous
modeling of all five subjects and all 16 voxels within each subject. Figure 3 shows the signal
intensity data in six selected voxels taken from one of the five subjects, with the modelled
data superimposed. In some voxels the signal intensity minimum is reasonably well defined,
while in others the Gd-DTPA response is partially obscured by noise. Statistical analysis
(results not shown) indicate a lack of evidence for an equivalent response in selected voxel
pairs, providing justification for the spatial random effects treatment, as opposed to ROI
averaging.

Figure 4 shows Gd-DTPA response data taken from two other subjects, with the modelled
data superimposed. In the first of these subjects (Subject A) the response profile is well
defined in all 16 voxels, hence the good agreement between the observed and modelled data.
In the second case (Subject B), the response in some voxels within the ROI is swamped
by noise, with a minority of voxels providing evidence of a well-defined minimum in signal
intensity. Subject B provides an example in which an independent-voxels analysis is expected
to be problematic.

http://code.google.com/p/alzheimers-disease-progression-model-adascog/source/browse/trunk/cfbmodel/code
http://code.google.com/p/alzheimers-disease-progression-model-adascog/source/browse/trunk/cfbmodel/code
http://code.google.com/p/alzheimers-disease-progression-model-adascog/source/browse/trunk/cfbmodel/code
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Figure 3: Signal intensity data acquired from six selected voxels in one of the five subjects
(thin line), with the model responses superimposed (broad line). Voxels 11 and 14 show a
reasonably well-defined minimum in the observed signal intensity, close to the expected peak
position, while in voxels 3 and 16 the position of the minimum is partly obscured by noise.

5. Discussion

The main purpose of this paper is to alert MRI researchers to Bayesian random effects mod-
eling as a general spatial or spatiotemporal data processing method, and to suggest that it
might be applied with advantage to a wide variety of MR image processing problems. We
have extended the spatiotemporal random effects treatment by incorporating it into an hi-
erarchical model, as required to achieve a formal analysis of between-subject variation in
response. We demonstrate the manner in which this can be achieved by using the BRugs
package, which provides an R interface to WinBUGS and its GeoBUGS add-on. A DSC-MRI
dataset has been used for the purpose of illustration, demonstrating that a random effects
analysis is capable of providing useful voxel-specific contrast-agent response profiles, despite
the low signal-to-noise ratio of the DSC data. In previous publications we have outlined the
application of Bayesian random effect models to diffusion MR image processing and the anal-
ysis of multivariate longitudinal MR data (King et al. 2003, 2005, 2009). These provide other
examples of the advantages of the Bayesian random effects modeling approach, although these
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Figure 4: Single-voxel signal intensity data obtained in two of the five subjects not featured
in Figure 3 (thin line). Subject A has a well-defined Gd-DTPA response in each of the 16
selected voxels, one of which is shown (Sugject A, voxel 11). In contrast, the response in
Subject B is less well defined in the majority of voxels, an extreme example of which is shown
(Subject B, voxel 10), together with the data obtained from one voxel with a better defined
minimum (Subject B, voxel 4). In each case the Gd-DTPA response profile generated by the
random effects model is shown superimposed (broad line).

analyses were not undertaken using R.

Among the attractive properties of random effect models in general, and Bayesian random
effect models in particular, is a formal pooling of information across the entire dataset. In the
Introduction we refer to the concept of a weighted combination of the estimates that might
be obtained from a set of separate, independent analyses and those provided by a completely
pooled (e.g., ROI averaged) data analysis. In the present application information pooling
occurs across subjects, and across voxels within subjects. Thus the data that are provided
by each voxel within each subject supplies information with a capacity to improve the pa-
rameter estimates obtained for every other voxel in the dataset. We emphasize that there
is no direct correlation between voxels in different subjects under the random effects model
outlined in this paper. This coupling occurs only indirectly via the combined influence of
the exchangeable-subjects random effect and the spatial priors. For the purpose of general
illustration we have shown an analysis based on combining information across a set of sub-
jects, recognising that some MRI data analysts might ague for a separate and independent
analysis of each subject when working in a clinical setting. The distinguishing feature of
most clinical investigative work is subject-specific diagnosis which, in the regression context,
implies an emphasis on individual-specific parameter estimation as distinct from group mean
parameter estimation. Nevertheless, we wish to emphasize that pooling information across
a group of similar subjects can be beneficial when dealing with sparse or noisy data, even
if interest is restricted to parameter estimation in individual subjects. This strategy is well
documented in the statistics literature. For example, a commonly encountered difficulty in
clinical pharmacokinetics/pharmacodynamics is the impracticality of acquiring sufficient data
on an individual under investigation to obtain the required kinetic parameter estimates with
the necessary precision. In fact, it is not uncommon to face the situation in which the data
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obtained for some subjects are so sparse that the resulting analytical problem is either un-
derdetermined or too ill conditioned to allow any useful estimates to be obtained (Gelman
et al. 1996). The Bayesian random effects approach can turn an ill-conditioned problem into
one that is well conditioned. This is achieved through a combination of two features of the
Bayesian formalism. Firstly, the explicit incorporation of prior information on one or more
of the model parameters is a mechanism through which constraints can be imposed, thus
producing an improvement in conditioning (Gelman et al. 1996; Wakefield 1996). Relevant
prior information is often available as published physiological data. A second mechanism
through which a Bayesian random effects model provides an alleviation of the effects of ill-
conditioning is through the formal combination of information afforded by similar subjects,
taken as a whole in the form of distributional information. Thus, although the data obtained
for some individuals might be insufficient to provide useable parameter estimates if used in
isolation, the distributional information provided by other subjects has a constraining effect
that can yield useful estimates for otherwise poorly identified individual-specific parameters.
This pooling of information is referred to as information borrowing and it is achieved via
various distributional constraints that are incorporated into the model.

The Introduction to this paper includes a section on the merits of random effects modeling,
as compared with the alternatives, namely a single analysis based on completely pooled data
and a set of separate analyses. Of course, averaging over subjects is not an option in a clinical
diagnostic setting, so random effects modeling is critical when pooling data across subjects
but with individual diagnoses as the objective. That said, averaging over voxels within an ROI
remains an option. ROI averaging can, however, be criticized on theoretical grounds, since it
can cause a marked change in response profile shape. It is an inescapable fact that, given an
underlying nonlinear model, the mean curve (i.e., the curve defined by the parameter means)
is not, in general, identical to the curve obtained by fitting the mean observations (Hand and
Crowder 1996, p. 122). Data averaging can cause a substantial corruption of the underlying
functional dependencies when working with non-linear models. The perfusion data used in this
paper exhibit a demonstrable lack of equivalence in the temporal response among voxels in at
least one subject (results not shown), suggesting that ROI averaging might be inappropriate.
It could be argued that marked differences between the voxel-specific parameter estimates are
an indication of poor ROI selection, despite using regions selected from a part of the thalamus
that appeared uniform on baseline T2-weighted images. We suggest, however, that restricting
an analysis to a sample of voxels exhibiting marked homogeneity may not be realistic in a
clinical setting involving pathology. In applications in which a lack of homogeneity is a
concern, the random effects model can be extended with the distinct purpose of dealing with
heterogeneity. For example, in a previous paper (King et al. 2009) we examined the Besag-
York-Mollié model (Besag et al. 1991) which uses a combination of an exchangeable prior and
a spatial prior as a mechanism for dealing with boundaries. (The concept of exchangeability is
well known in random effect models analysis. In this context the term exchangeable indicates
that the model is invariant to permutation of the unit labels, where units are voxels and
subjects in the present analysis. Thus an exchangeable voxels model takes no account of
the spatial relationship between voxels, but makes a distribution assumption for each voxel-
specific parameter.) The Besag-York-Mollié model, together with mixture models and other
approaches to dealing with heterogeneity, are well documented in the statistics literature. For
example, a number of researchers engaged in disease mapping have developed spatial models
with a capacity to deal with localized heterogeneity; see Richardson et al. (2004) and references
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therein. The analytical challenge is to deal with marked dissimilarity among the units under
investigation, for example, the presence of abrupt spatial differences or boundaries.

The analytical challenges encountered in DSC-MRI data processing are not atypical of those
that are met by MRI data analysts in general. Among the defining features of a typical
clinical DSC-MRI data set is the longitudinal nature of the observations, coupled with the
need to adopt some form of nonlinear model. Furthermore, the example dataset used in
this paper is characteristic of many clinical datasets which fall into the category of small
sample size problems. Large sample approximation, based on so-called asymptotic theory,
is central to the traditional frequentist statistical calculations that are typically carried out
subsequent to parameter estimation as performed using some minimization (optimization)
algorithm. This applies to both standard non-linear regression modeling problems (Rawlings
1988, Section 14.4) and mixed model regression analysis; see, for example, Chapters 5 and 6 in
Crowder and Hand (1990). The Wald statistic is well known in this context (Hand and Crow-
der 1996). By definition, asymptotic results are not applicable when the sample size is small.
Standard errors and confidence intervals based on asymptotic theory are approximate, and
the approximation is expected to be particularly poor in small-sample problems. Although
some of the problems that arise in frequentist mixed model regression analysis are avoided by
adopting a Bayesian random effects approach, related computational problems often remain
in practice due to the need to evaluate complex, multidimensional integrals, often of high
order. Asymptotic approximation (also referred to as normal approximation) is among the
various computational methods that were adopted as a mechanism for avoiding intractable
integrals (Carlin and Louis 2000; Gelman et al. 2004). Although this provided a solution, the
need for some kind of approximation together with the computational demands of the calcula-
tions remained a major impediment for many years. Fortunately, modern MCMC algorithms
combined with cheap but powerful computers, as required for their implementation, has re-
moved these obstacles. MCMC effectively allows a complete characterization of the posterior
distribution, and traditional methods of posterior evaluation no longer play a prominent role.
Although simulation error remains a source of inaccuracy, in principle simulation error can
be reduced to any specified level by collecting a sufficient number of samples. To this end the
Raftery-Lewis calculation, which is implemented in the coda package, provides an estimate of
the number of iterations required to obtain quantile estimates with a specified accuracy (see
Materials and Methods section). In summary, Bayesian random effects modeling is regarded
by many analysts as the method of choice for multilevel data modeling.

This paper has focussed on fitting DSC time course data using a Bayesian spatiotemporal
random effects model, implemented using MCMC. This model provides a direct estimate of
contrast-agent arrival time (i.e., the change point) and, with some additional computation,
other summary variables, time to maximum response, for example, could be estimated as part
of the MCMC analysis. But there is a CPU time limit to the amount of computation that
can be realistically incorporated into the MCMC simulation. This practical problem might
be circumvented by adopting an approach in which the random effects analysis is used in the
first of a two-stage data processing procedure, involving a first-stage smoothing across voxels
within an ROI and, where applicable, across subjects. This would be followed by parameter
estimation at the second stage, performed using inversion, for example (Østergaard et al.
1996). The latter approach is admittedly informal and lacks statistical rigour. Unfortunately
a formal treatment in which inversion and parameter estimation is performed within the
MCMC simulation is not computationally feasible at present.
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To conclude, the main purpose of this paper is to advertise Bayesian random effects modeling
as a general MRI data analytical tool, and to demonstrate an implementation in R. As stated
previously, we do not claim to provide a definitive model for DSC-MRI data analysis as
opposed to using the DSC-MRI data for illustrative purposes, noting that the analytical
challenges resemble those discussed in relation to the sparse data problem that arises in
pharmacokinetics/pharmacodynamics. Specifically, the DSC-MRI data are sparse in the sense
that the sampling interval is too long to capture the MR response to the contrast agent in
detail, as the agent passes through the tissue under investigation. Furthermore, the signal-
to-noise ratio is poor. With so few temporal observations, and given the lack of precision in
the signal intensity data, it is not possible to obtain direct and reliable voxel-level perfusion
parameter estimates based on an independent-voxels analysis. The analytical challenge that
arises from the sparse and noisy nature of the data is compounded by the need to adopt
some form of non-linear model. Despite these difficulties, perfusion parameter estimation is
an essential component of the investigations that are undertaken. The results presented in
this paper show that sensible contrast-agent response profiles can be obtained from these
data. For example, in one subject the Gd-DTPA response is particularly ill-defined at the
voxel level (Figure 4), providing an example where random effects modeling is especially
advantageous. Thus, in those voxels in which the response is more poorly determined, the
parameter estimates are pulled relatively strongly towards the average of the neighbouring
voxels. This example serves to illustrate the power of the random effects modeling approach to
dealing with sparse, messy observations obtained with a method that suffers from poor signal-
to-noise ratio. As an aside, we wish to alert readers to the changepoint (breakpoint) treatment
(Bacon and Watts 1971; Carlin et al. 1992) used in this analysis. This kind of piecewise model
is ideal for tackling problems involving abrupt change, including disease/pathology onset and
related applications that arise frequently in the MR literature. It might be argued that
changepoint models are underused by MRI data analysts as a mechanism for modeling abrupt
onset. That said, our main point is that there are many MR applications in which noise limits
the spatial and/or temporal resolution that can be achieved. These include diffusion imaging,
spectroscopic imaging, time-resolved-MRI and the structural imaging of some pathologies.
This paper, taken together with our previous papers on random effects modeling and other
work cited in the Introduction, makes the case for adopting some form of random effects
analysis in some of these applications.
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