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Abstract

We describe the R package ipw for estimating inverse probability weights. We show
how to use the package to fit marginal structural models through inverse probability
weighting, to estimate causal effects. Our package can be used with data from a point
treatment situation as well as with a time-varying exposure and time-varying confounders.
It can be used with binomial, categorical, ordinal and continuous exposure variables.
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1. Introduction

We describe the R (R Development Core Team 2011) package ipw, for estimating inverse
probability weights. These weights are typically used to perform inverse probability weighting
(IPW) to fit a marginal structural model (MSM). The package is available from the Compre-
hensive R Archive Network at http://CRAN.R-project.org/package=ipw . MSMs are used
to estimate causal effects from observational data, by correcting for confounding. When using
IPW to fit an MSM, there is minimal risk of (1) adjusting away part of the effect (Robins
1997; Robins, Greenland, and Hu 1999), (2) non-collapsibility, (Greenland, Robins, and Pearl
1999), or (3) Berksons bias (Hernan, Herndndez-Diaz, and Robins 2004). In contrast, when
using conditioning to correct for confounding (1) and (3) can occur in a longitudinal study,
and (2) can occur with any statisticical model that does not have a linear or log-linear link
function.

The use of IPW to fit an MSM was described in detail, e.g., in Robins, Herndn, and Brumback
(2000), Hernan and Robins (2006) and Cole and Hernan (2008). Currently available software
to fit MSMs includes CausalGAM, an R package for the estimation of causal effects with
generalized additive models in a point treatment with a binary exposure (Glynn and Quinn
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2010), cvDSA, an R package for MSM-based causal inference with point treatment data
using data-adaptive estimation with cross-validation and the deletion/substitution/addition
(D/S/A) algorithm (Wang, Hartman, and Gruber 2009), tmleLite, an R package for targeted
maximum likelihood estimation of marginal additive treatment effect of a binary point treat-
ment (Gruber and van der Laan 2010; Van der Laan 2010) and the SAS macro for doubly
robust estimation by Jonsson Funk, Westreich, Davidian, and Weisen (2007). Also, Hernén,
Brumback, and Robins (2000) described how to program IPW in SAS, and Fewell, Hernén,
Wolfe, Tilling, Choi, and Sterne (2004) described how to program IPW in Stata.

This paper is structured as follows. In Section 2 we give a general introduction to IPW.
We describe the functions contained in our package ipw (version 1.0-10) in Section 3. We
demonstrate the use of the package ipw in a number of different situations, using simulated
example data, in Section 4.

2. Inverse probability weighting

As was shown by Robins (1998), the parameters of MSMs can be estimated using inverse
probability weighting (IPW) to correct both for confounding (illustrated in the examples
below) and for forms of selection bias such as informative censoring (illustrated in the example
in Section 4.2). This amounts to the fitting of a model regressing the outcome of interest on the
exposure of interest using observational data, with each observation weighted by the inverse
of the probability of the observed exposure level given the observed value of the confounders.

2.1. TPW in a point treatment

In a point treatment situation we can adjust for a set of confounders C when estimating the
effect of discrete exposure A by weighting observations ¢ by the inverse probability weights

1
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w; =

We indicate the observed exposure and confounder status with a and ¢, respectively. The
denominator of (1) contains the probability of the observed exposure level given the observed
values of covariates C. When C includes all relevant confounders, and we estimate P(A4; =
a;|C; = ¢;) using a correctly specified exposure allocation model, weighting by w; creates
a pseudopopulation in which C no longer predicts A and in which the causal association
between A and the outcome of interest is the same as in the original study population®.
Weighting observations ¢ by w;, one can fit a causal model, for instance the MSM

E(Ya) = Bo + Bra, (2)

with a continuous outcome Y. The response variable Y, is the potential outcome that could
have been observed in a unit under study, when that unit would have received, perhaps
contrary to the fact, a specific treatment level a (Robins et al. 2000). The expectation E(Yy)

!'Note that with unsaturated exposure allocation models, IPW estimators are less efficient than likelihood-
based estimators (Clayton, Spiegelhalter, Dunn, and Pickles 1998), and may be unstable when certain strata
defined by C have low response probabilities (Little and Rubin 1987; Cole and Herndn 2008; Lefebvre, Delaney,
and Platt 2008).
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is the mean response, when all units under study would have received a specific treatment
level a. Parameter 81 then quantifies the causal effect of A on Y.

To increase statistical efficiency and attain better coverage of confidence intervals, it is re-
commended to use stabilized weights (Hernén et al. 2000; Cole and Hernan 2008), e.g.,

The numerator of (3) contains the probability of the observed exposure level, which is just the
observed frequency. This introduces an association between the numerator and denominator,
which means that on average the difference between the numerator and denominator becomes
smaller, as compared to unstabilized weights. This means in turn that stabilized weights will
have a narrower distribution than unstabilized weights. To increase the association between
the numerator and denominator, further stabilizing the weights, one can condition both in the
numerator and denominator of (3) on a set of time-fixed covariates V' that are related to A.
For instance, when a researcher believes that sex does not influence the outcome of interest,
but the distribution of exposure level varies between both sexes, sex could be included in V.
It must be noted that confounding caused by baseline covariates that are used as stabilization
factors, is not adjusted for (Cole and Hernén 2008). Adjustment for such covariates could be
made by including them in the MSM, at the cost of possibly inducing non-collapsibility. Also,
note that stabilization can be done not only by including a linear term of V', but that more
complex functions can also be used, when that would improve the estimation of P(A = a).

SWw; =

With a continuous exposure variable A, one can use the stabilized weights
f(as) 4
o) (4)
flaile;)
where f(a;) is the marginal density function of A, evaluated at the observed value in unit 4,
a;, and f(a;|c;) is the conditional density function of A given C, evaluated at the observed

values in unit i, {a;,¢;}. With a continuous exposure variable, unstabilized weights cannot
be used, since they would have infinite variance (Robins et al. 2000).

SWw; —

The denominators of (1), (3) and (4) can be estimated by using exposure allocation models
regressing A on C'. Similarly, the numerators of (3) and (4) can be estimated by using exposure
allocation models regressing A on the constant only. When using additional stabilization
variables V', those variables V' can be included in the exposure allocation models as well.

2.2. IPW in a longitudinal study

Suppose that a discrete exposure A may change over time, and a decision to allocate a
certain exposure level is made and recorded within each unit ¢ at time points ¢;;. Time-
varying confounders for the effect of A;; on the outcome of interest, measured right before
each time point #;; in each unit 4, are contained in C;;. In addition, C;; can also contain
time-fixed confounders. Let A;; and Cj;; indicate the observed longitudinal history, i.e., all
measurements up to time point ¢;; within unit ¢, of A and C respectively. V; are measured
time-fixed covariates, that are not confounders but that are associated with the exposure. One
can adjust for time-varying confounders C' by weighting observations at t;; by the stabilized
weights

swi; = ﬁ , P(Aig = ai|Aip—1 = @1, Vi = vi)

k=0

()

(Air = aig|Aik—1 = @i—1,Cit = €, Vi = ;)
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Equation (5) is a product over all time points from baseline up to time point ¢;;, within each
unit 7. The factors in the numerator of (5) contain the probability of the observed exposure
status at each time point, a;;, given the observed exposure history up to the previous time
point, @;,_1, and the observed time-fixed covariates, v;. The factors in the denominator of
(5) contain the probability of the observed exposure status at each time point, given the
observed exposure history up to the previous time point, the observed history of time-varying
confounders up to each time point, ¢;;, and the observed time-fixed covariates. Note that
time-fixed covariates V' are included both in the numerator and denominator of (5), to further
stabilize the weights. To estimate the causal effect of A on the exposure of interest, one can
fit an MSM to the observations made at time points ¢;;, weighted by sw;;, as was done e.g.,
by Hernan et al. (2000).

With a continuous exposure A, one can use the stabilized weights

azk’azk 17”1) (6)
k‘azk 1 Czk7 vz)

SM‘Hf%

analoguously to (4), as described in Cole and Hernan (2008). The numerator f(a;|@x—1,v:)
is the conditional density function of A at time point ¢;; given the history of A up to the
previous time point and the time-fixed covariates, evaluated at the observed values in unit
i at time point t;x, {aik,@ix—1,v;}. The denominator f(a;x|@ik—1,€ik,vi) is the conditional
density function of A at time point ¢;; given the history of A up to the previous time point,
the history of time-varying confounders C up to time point t;;, and the time-fixed covariates,
evaluated at the observed values in unit 7 at time point t;x, {a;k, @ix—1, Cik, Vi }-

The elements in the denominator of (5) and (6) can be estimated by using exposure allocation
models regressing time-varying exposure A;; on follow-up time ¢;;, the history of A up to but
not including t;;, Zi(j,l), the observed history of confounders C;; up to and including t;;,
Cij, and the time-fixed covariates V;. The elements in the numerator of (5) and (6) can be
estimated from similar models, not including C.

Note that when the effects of Zi(j—l) and C;; on A;; are fully expressed through Aj(j—1) and
Cj, only the latter need to be included in the exposure allocation models. Often, A4;; will be
constant after a certain switch is made, e.g., after a switch from exposure level 0 to exposure
level 1 subjects will always remain on exposure level 1. When A;; is deterministically constant
after such a switch, the elements in the numerator and denominator of (5) and (6) can be set
to 1 after the switch. Time to event models can then be used as exposure allocation models.

Note that a continuously varying exposure A(t) such as disease status can change at any
time, not just at certain time points ¢;;. With such a continuously time-varying exposure
A(t), it is necessary to choose the time points that are used to fit an MSM. A logical choice
is either to (1) use time points at which changes in exposure status are observed, and time
points at which the outcome is observed (e.g., the event times with a survival outcome) or
(2) use regularly spaced intervals, with a sufficiently fine discretization. In both cases, the
value of time-varying confounders right before each time point may need to be imputed from
a longitudinal model that was fitted on the original measurements (e.g., see Section 4.3).

2.3. Inference

When using IPW, observations can have weights unequal to each other, which introduces
clustering in the weighted dataset. When this is not taken into account, the standard error
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of the causal effect estimate could be underestimated. Therefore, when using IPW to fit an
MSM, it is necessary to use a robust standard error estimator for inference (Herndn et al.
2000).

3. The R package ipw

The R package ipw comes with a namespace. It contains the following functions:

e ipwpoint, for estimating inverse probability weights in a point treatment situation.

e ipwtm, for estimating inverse probability weights for a time-varying exposure with time-
varying confounders.

e ipwplot, to plot the distribution of inverse probability weights.

e tstartfun, to compute the starting time for intervals of follow-up, when Cox propor-
tional hazards models are used to model the exposure allocation.

We describe these functions below. Package ipw also contains the simulated datasets haartdat,
basdat and timedat, which are described and analyzed in the examples given in Section 4.

3.1. Function ipwpoint

The function ipwpoint can be used to estimate inverse probability weights similar to (1),
(3) and (4), to fit MSMs in a point treatment situation. The exposure of interest can be
binomial, multinomial, ordinal or continuous. Both stabilized and unstabilized weights can
be estimated. It is used as:

ipwpoint (exposure, family, link, numerator = NULL, denominator, data,
trunc = NULL, ...)

and takes the following arguments:

e exposure is a vector, representing the exposure variable of interest. Both numerical
and categorical variables can be used. A binomial exposure variable should be coded
using values 0 and 1.

e family is used to specify a family of link functions, used to model the relationship
between the variables in numerator or denominator and exposure, respectively. Al-
ternatives are "binomial", "multinomial", "ordinal" and "gaussian". A specific
link function is then chosen using the argument link, as explained below. Regression
models are fitted using the R functions glm (stats, see R Development Core Team 2011),
multinom (nnet, see Venables and Ripley 2002), polr (MASS, see Venables and Ripley
2002) or glm, respectively.

e link specifies the link function between the variables in numerator or denominator and
exposure, respectively. For family = "binomial" (fitted using glm) alternatives are
"logit", "probit", "cauchit", "log" and "cloglog". For family = "multinomial"
this argument is ignored, and multinomial logistic regression models are always used
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(fitted using multinom). For family = "ordinal" (fitted using polr) alternatives are
"logit", "probit", "cauchit", and "cloglog". For family = "gaussian" this argu-
ment is ignored, and a linear regression model with identity link is always used (fitted
using glm).

e numerator is a formula, specifying the right-hand side of the model used to estimate
the elements in the numerator of the inverse probability weights. When left unspecified,
unstabilized weights with a numerator of 1 are estimated.

e denominator is a formula, specifying the right-hand side of the model used to estimate
the elements in the denominator of the inverse probability weights. This typically
includes the variables specified in the numerator model, as well as confounders for which
to correct.

e data is a dataframe containing exposure and the variables used in numerator and
denominator.

e trunc is an optional truncation fraction for the weights (between 0 and 0.5). E.g.
when trunc = 0.01, the left tail is truncated to the 1st percentile, and the right tail
is truncated to the 99th percentile. When specified, both un-truncated and truncated
weights are returned.

e ... are further arguments passed to the function that is used to estimate the numerator
and denominator models (the function is chosen using family).

With numerator specified, stabilized weights are computed, otherwise unstabilized weighs
with a numerator of 1 are computed. With a continuous exposure, using family =
"gaussian", weights are computed using the ratio of predicted densities. Therefore, for
family = "gaussian" only stabilized weights can be used, since unstabilized weights would
have infinite variance (Robins et al. 2000). The output returned by ipwpoint is a list con-
taining the following elements:

e ipw.weights is a vector containing inverse probability weights for each unit under
observation. This vector is returned in the same order as the measurements contained
in data, to facilitate merging.

e weights.trunc is a vector containing truncated inverse probability weights for each
unit under observation. This vector is only returned when trunc is specified.

e call is the original function call to ipwpoint.
e num.mod is the numerator model, only returned when numerator is specified.
e den.mod is the denominator model.
Currently, the exposure variable and the variables used in numerator and

denominator should not contain missing values.

3.2. Function ipwtm

The function ipwtm can be used to estimate inverse probability weights to fit MSMs, with a
time-varying exposure and time-varying confounders. Within each unit under observation ¢
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(e.g., patients), this function computes inverse probability weights at each time point ¢;;
during follow-up, similar to (5) and (6). The exposure can be binomial, multinomial, ordinal
or continuous. Both stabilized and unstabilized weights can be estimated. It is used as:

ipwtm(exposure, family, link, numerator = NULL, denominator, id,
tstart, timevar, type, data, corstr = "arl", trunc = NULL, ...)

and takes the following arguments:

e exposure is a vector, representing the exposure of interest. As in ipwpoint, both
numerical and categorical variables can be used. A binomial exposure variable should
be coded using values 0 and 1.

e family is used to specify a family of link functions, used to model the relationship
between the variables in numerator or denominator and exposure, respectively. Al-
ternatives are "binomial", "survival", "multinomial", "ordinal" and "gaussian".
A specific link function is then chosen using the argument link, as explained below.
Regression models are fitted using glm (stats), coxph (survival, see Therneau and Lum-
ley 2011), multinom (nnet), polr (MASS) or geeglm (geepack, see Halekoh, Hgjsgaard,
and Yan 2005), respectively.

e link is the specific link function between the variables in numerator or denominator
and exposure, respectively. For family = "binomial" (fitted using glm) alternatives
are "logit", "probit", "cauchit", "log" and "cloglog". For family = "survival"
this argument is ignored, and Cox proportional hazards models are always used (fitted
using coxph). For family = "multinomial" this argument is ignored, and multino-
mial logistic regression models are always used (fitted using multinom). For family
= "ordinal" (fitted using polr) alternatives are "logit", "probit", "cauchit", and
"cloglog". For family = "gaussian" this argument is ignored, and GEE models with
an identity link are always used (fitted using geeglm).

e numerator is a formula, specifying the right-hand side of the model used to estimate
the elements in the numerator of the inverse probability weights. When left unspecified,
unstabilized weights with a numerator of 1 are estimated.

e denominator is a formula, specifying the right-hand side of the model used to estimate
the elements in the denominator of the inverse probability weights.

e id is a vector, uniquely identifying the units under observation within which the longi-
tudinal measurements are taken.

e tstart is a numerical vector, representing the starting time of follow-up intervals,
using the counting process notation. This argument is only needed when family =
"survival", otherwise it is ignored. The Cox proportional hazards models are fitted
using longitudinal data, coded using the counting process notation. When modeling
exposure allocation at the start of follow-up (for timevar = 0), tstart should be neg-
ative. For this first interval, the particular value of tstart is not important, only that
it is smaller than zero.
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e timevar is a numerical vector, representing follow-up time, starting at 0. This variable
is used as the end time of follow-up intervals, using the counting process notation, when
family = "survival".

e type specifies the type of exposure. Alternatives are "first" and "all". With type
= "first", weights are estimated up to the first switch from the lowest exposure value
(typically O or the first factor level) to any other value. After this switch, weights will
then be constant. Such a weight is e.g., used when estimating the causal effect of the
initiation of highly active anti-retroviral therapy (HAART') on mortality (see Sections 4.2
and 4.3). With type = "all", all time points are used to estimate weights. Currently,
only "first" is implemented for "survival", "multinomial" and "ordinal" families.
Only "all" is implemented for the "gaussian" family. Both type = "first" and type
= "all" are implemented for the "binomial" family.

e data is a dataframe containing exposure, the variables used in numerator and
denominator, and variables id, tstart and timevar.

e corstr specifies a correlation structure, only needed when using family = "gaussian".
Defaults to "ar1". For further details see Halekoh et al. (2005).

e trunc is an optional truncation fraction for the weights (between 0 and 0.5). E.g.
when trunc = 0.01, the left tail is truncated to the 1st percentile, and the right tail
is truncated to the 99th percentile. When specified, both un-truncated and truncated
weights are returned.

e ... are further arguments passed to the function that is used to estimate the numerator
and denominator models (the function is chosen using family).

With numerator specified, stabilized weights are computed, otherwise unstabilized weights
with a numerator of 1 are computed. As in ipwpoint, with a continuous exposure, using
family = "gaussian", weights are computed using the ratio of predicted densities at each
time point. Therefore, for family = "gaussian" only stabilized weights can be used, since
unstabilized weights would have variance (Robins et al. 2000). The output returned by ipwtm
is a list containing the following elements:

e ipw.weights is a vector containing inverse probability weights for each observation.
This vector is returned in the same order as the observations contained in data, to
facilitate merging.

e infinityweights.trunc is a vector containing truncated inverse probability weights
for each observation. This vector is only returned when trunc is specified.

e call is the original function call to ipwtm.

e selvar is a selection variable. With type = "first", selvar = 1 within each unit
under observation, up to and including the first time point at which a switch from
the lowest value of exposure to any other value is made, and selvar = 0 after the
first switch. For type = "all", selvar = 1 for all measurements. The numerator
and denominator models have been fitted only on observations with selvar = 1. This
vector is returned in the same order as the observations in data, to facilitate merging.
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e num.mod is the numerator model, only returned when numerator is specified.

e den.mod is the denominator model.

Currently, the exposure variable, the variables used in numerator and denominator, and
variables id, tstart and timevar should not contain missing values.

3.3. Function ipwplot

The function ipwplot can be used to plot inverse probability weights. For time-varying
weights (with a time-varying exposure and time-varying confounders) boxplots are made
within strata of follow-up time. For inverse probability weights in a point treatment situation,
a density plot is displayed. The function is used as:

ipwplot (weights, timevar = NULL, binwidth = NULL, logscale = TRUE,
xlab = NULL, ylab = NULL, main = "", ref = TRUE, ...)

and takes the following arguments:

e weights is a numerical vector of inverse probability weights to plot.

e timevar is a numerical vector representing follow-up time. When specified, boxplots
within strata of follow-up time are displayed. When left unspecified, a density plot is
displayed.

e binwidth is a numerical value indicating the width of the intervals of follow-up time;
for each interval a boxplot is made. Ignored when timevar is not specified.

e logscale is a logical value. If TRUE, weights are plotted on a logarithmic scale.
e x1ab is the label for the horizontal axis.

e ylab is the label for the vertical axis.

e main is the main title for the plot.

e ref is a logical value. If TRUE, a reference line is plotted at y = 1.

e ... are additional arguments passed to boxplot (when timevar is specified) or plot
(when timevar is not specified).

See the examples below for actual plots (Figures 1, 2 and 3).

3.4. Function tstartfun

Function tstartfun can be used to compute the starting time for intervals of follow-up,
when using the counting process notation. Within each unit under observation, this function
computes a starting time equal to:

e the time of the previous record, when there is a previous record.

e -1 for the first record.
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The function is used as:
tstartfun(id, timevar, data)
and takes the following arguments:

e id is a numerical vector, uniquely identifying the units under observation, within which
the longitudinal measurements are taken.

e timevar is a numerical vector, representing follow-up time, starting at 0.

e data is a dataframe containing id and timevar.

4. Examples

In the following examples we will illustrate the use of functions ipwpoint, ipwtm, ipwplot
and tstartfun, contained in ipw. We also describe the datasets haartdat, basdat, and
timedat, contained in ipw, which are used in the examples. The following three examples are
ordered by increasing complexity.

4.1. Point treatment example

We will illustrate the use of IPW in a point treatment using simulated data. First we will
simulate point treatment data with measurements made in 1000 individuals on a continuous
confounder L, a dichotomous exposure A and a continuous outcome Y, using:

o L~ N(10,5),
e logitP(A=1)=-10+L,
e Y =10A+0.5L + N (-10,5).

The true parameter for the marginal causal effect of A on Y is 10. We will set the random
number seed for reproducibility of this example. The data is simulated as follows:

R> set.seed(16)

R> n <- 1000

R> simdat <- data.frame(l = rnorm(n, 10, 5))

R> a.lin <- simdat$l - 10

R> pa <- exp(a.lin)/(1 + exp(a.lin))

R> simdat$a <- rbinom(n, 1, prob = pa)

R> simdat$y <- 10#*simdat$a + 0.5*simdat$l + rnorm(n, -10, 5)

R> simdat[1:5,]
1la y

1 12.382067 1 6.635898

2 9.373100 0 -11.722042

3 15.481081 1 11.501612

4 2.778855 0 -9.464074

15.739146 1 15.085261

(¢}
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Figure 1: Weights distribution plot for example 1, made using ipwplot.

We can estimate inverse probability weights to correct for the confounding. We choose to
estimate the stabilized weights

sw; =

similar to (4). To estimate the denominator of (7), we use a logistic model regressing A on L.
To estimate the numerator of (7), we use a logistic model regressing A on the constant only.
Therefore, we estimate the inverse probability weights as follows:

R> library("ipw")

R> temp <- ipwpoint(exposure = a, family = "binomial", link = "logit",
+ numerator = ~ 1, denominator = ~ 1, data = simdat)

R> summary (temp$ipw.weights)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4810 0.5127 0.5285 0.9095 0.6318 74.7000

We can plot the distribution of the weights as follows (see Figure 1):

R> ipwplot(weights = temp$ipw.weights, logscale = FALSE,
+ main = "Stabilized weights", xlim = c(0, 8))

We can also examine the numerator and denominator models:

R> summary (temp$num.mod)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.07604 0.06329 1.201 0.23

11
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R> summary (temp$den.mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.69809 0.66066 -14.68 <2e-16 *x*x
1 0.97272 0.06525 14.91 <2e-16 **x*

Pasting the IPW weights to the dataset can be done as:
R> simdat$sw <- temp$ipw.weights

Weighting the original observations by the stabilized weights (7) to adjust for confounding,
we can fit the MSM, estimating the marginal causal effect of A on Y,

Y. = Bo + Bia, (8)

which can be done as follows, using a robust standard error estimate from the survey package
(Lumley 2004):

R> msm <- (svyglm(y ~ a, design = svydesign(~ 1, weights = ~ sw,
+ data = simdat)))

R> coef (msm)

(Intercept) a

-4.375478 10.646610
R> confint (msm)

2.5 % 97.5 %
(Intercept) -6.613252 -2.137704
a 8.314527 12.978694

Our estimate of the marginal causal effect of A on Y is 10.65 with 95% confidence interval
(CT) 8.31-12.98.

4.2. Causal effect of HAART use on mortality in HIV-infected patients

Dataset haartdat is a simulated dataset, with survival data measured in 1200 HIV-infected
patients. Start of follow-up is HIV seroconversion. Each row corresponds to a 100 day period
of follow-up time. Patients can initiate highly active anti-retroviral therapy (HAART) during
follow-up. We will estimate the causal effect of HAART on mortality using this dataset, while
adjusting both for possible confounding by CD4 count, and for informative censoring due to
the effect of CD4 count on dropout, using IPW. In this example, CD4 count is a time-varying
covariate. We load the package ipw and dataset haartdat, and look at the first 10 rows of
haartdat:

R> library("ipw")
R> data("haartdat")
R> haartdat([1:10,]
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patient tstart fuptime haartind event sex age cd4.sqrt endtime dropout

1 1 -100 0 0 0 1 22 23.83275 2900 0
2 1 0 100 0 0 1 22 25.59297 2900 0
3 1 100 200 0 0 1 22 23.47339 2900 0
4 1 200 300 0 0 1 22 24.16609 2900 0
5 1 300 400 0 0 1 22 23.23790 2900 0
6 1 400 500 0 0 1 22 24.85961 2900 0
7 1 500 600 0 0 1 22 25.94224 2900 0
8 1 600 700 1 0 1 22 26.03843 2900 0
9 1 700 800 1 0 1 22 26.72078 2900 0
10 1 800 900 1 0 1 22 27.47726 2900 0

Dataset haartdat contains the following variables:

e patient is the patient ID,

e tstart is the starting time for each interval of follow-up, measured in days since HIV
seroconversion; note that the first interval of follow-up is (—100, 0], this is used to allow
for the modeling of the initiation of HAART at ¢t = 0 (as explained in Section 3.2),

e fuptime is the end time for each interval of follow-up measured in days since HIV
seroconversion,

e haartind is an indicator for the initiation of HAART therapy at the end each interval
(0 = HAART not initiated/1 = HAART initiated),

e event is an indicator for death at the end of the interval (0 = alive/1 = died),
e sex is sex (0 = male/1 = female),
e age is age at the start of follow-up (years),

e cd4.sqrt is the square root of CD4 count, measured at the end of each interval, but
before haartind. Note that in each row, corresponding to time point j in individual 7,
cd4.sqrt has an effect on haartind in the same row, including at time 0.

e dropout is an indicator for dropout of the study, at the end of the interval (0 = did not
drop out/1 = dropped out).

To adjust for confounding by time-varying CD4 count, we estimate the stabilized inverse
probability weights

J P(Hy, = hig|Hig—1 = hig—1, V; = v;)

Sws — - -1 = k-1, V. ,
Y kl;[o P(Hip = hik|Hik—1 = hig—1, Lix, = lig, Vi = ;)

9)

similar to (5), with H;; and L;; indicating HAART status and the square root of CD4 count
in patient ¢ at measurement j, respectively. V; is the vector of time-fixed covariates, con-
taining sex and age. h;j, l;; and v; are the observed values of variables H;;, L;; and V7,
respectively. For time points after the initiation of HAART within each patient, the elements
in the numerator and denominator of (9) are set to 1. For time points up to the time point of

13
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the initiation of HAART within each patient, we estimate the elements in the denominator
of (9) using the Cox proportional hazards model

Ag[t|L(t), V, H(t™ = 0)] = Ao(t) exp{ 1 L(t) + B2V}, (10)

with ¢ follow-up time. We estimate the numerator of (9) using a model similar to (10) but
without L(t) as a predictor. We can estimate, and examine sw;; using:

R> temp <- ipwtm(exposure = haartind, family = "survival",
+ numerator = ~ sex + age, denominator = ~ cd4.sqrt + sex + age,
+ id = patient, tstart = tstart, timevar = fuptime, type = "first",

+ data = haartdat)
R> summary (temp$ipw.weights)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2459 0.9036 0.9862 1.0390 1.0610 7.1260

For comparison, note that similar unstabilized weights can be estimated as:

R> temp.unstab <- ipwtm(exposure = haartind, family = "survival",
+ denominator = ~ cd4.sqrt, id = patient, tstart tstart,
+ timevar = fuptime, type = "first", data = haartdat)

As an illustration, note that the unstabilized weights have a much wider distribution than
the stabilized weights:

R> summary (temp.unstab$ipw.weights)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.002 1.161 1.372 13.140 15.420 401.800

We can plot the stabilized inverse probability weights (see Figure 2) using:

R> ipwplot(weights = temp$ipw.weights, timevar = haartdat$fuptime,

+ binwidth = 100, ylim = c¢(-1.5, 1.5), main = "Stabilized weights",
+ xaxt = "n", yaxt = "n")

R> axis(side = 1, at = c¢(0, 5, 10, 15, 20, 25, 30, 35),

+ labels = as.character(c(0, 5, 10, 15, 20, 25, 30, 35)%*100))

R> axis(side = 2, at = ¢(-1.5, -1, -0.5, 0, 0.5, 1, 1.5),

+ labels = as.character(c(-1.5, -1, -0.5, 0, 0.5, 1, 1.5)))

Note that we plot the axes separately, allowing us to specify the positions and labels of the
tick-marks.

In this example, CD4 count also has an effect on dropout from the study. Since CD4 count
has an effect on mortality, this can cause informative censoring. Note that in this example,
censoring for other reasons than dropout is regarded as non-informative. We can estimate
inverse probability of censoring weights sng, to correct for the effect of CD4 count on dropout,
similarly to (10), but replacing H;; with an indicator for dropout, as:
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log(tempS$ipw.weights)
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Figure 2: Weights distribution plot for the inverse probability weights that are used to adjust
for confounding in example 2, made using ipwplot.

R> temp2 <- ipwtm(exposure = dropout, family = "survival",
+ numerator = ~ sex + age, denominator = ~ cd4.sqrt + sex + age,
+ id = patient, tstart = tstart, timevar = fuptime, type = "first",

+ data = haartdat)

Note that when the exposure also has an effect of dropout, as well as on mortality, it can be
added to the model used to estimate the denominator of the weights.

We can now use the inverse probability weights sw;; and inverse probability of censoring
weights sng to fit an MSM, quantifying the causal effect of the initiation of HAART on
mortality. To combine the adjustment for confounding and for informative censoring, the
observations indexed by ij are weighted by the product sw;; x sw]

Similarly to Hernén
et al. (2000), we fit the MSM

N

Az (t) = Ao(t) exp{B1h(t)}, (11)

using a robust variance estimator (through cluster()), via:

R> summary(coxph(Surv(tstart, fuptime, event) ~ haartind + cluster(patient),
+ data = haartdat, weights = temp$ipw.weights*temp2$ipw.weights))

coef exp(coef) se(coef) robust se z Pr(>lzl)
haartind -0.9378 0.3915 0.4300 0.4524 -2.073 0.0382 *

exp(coef) exp(-coef) lower .95 upper .95
haartind 0.3915 2.554 0.1613 0.9501
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We estimate a hazard ratio corresponding to the marginal causal effect of HAART on mortality
of 0.39 (95% CI 0.16-0.95).

4.3. Causal effect of tuberculosis on mortality in HIV-infected patients

Our third example is similar to example in Section 4.2 but with measurements made at
irregular intervals of follow-up time. We estimate the causal effect of active tuberculosis (TB)
on mortality in HIV-positive individuals, adjusted for possible confounding by time-varying
CD4 count using IPW. We smooth time-varying CD4 using a random effects model, because
it is the underlying “true” CD4, separate from short-term fluctuations and measurement error,
that is a confounder for the effect of TB. The simulated datasets basdat and timedat are
used in this example. We load package ipw and the datasets, and explore the datasets:

R> library("ipw")
R> data("basdat")
R> data("timedat")
R> basdat[1:4,]

id Ttb Tdeath Tend
1 NA 1846 1846
2 NA NA 1126
3 3139 3333 3333
4 NA 2253 2253

S W N -

Dataset basdat contains the following time-fixed variables, measured in 386 HIV-positive
individuals:

e id is the patient ID,
e Ttb is the time of first active tuberculosis, measured in days since HIV seroconversion,
e Tdeath is the time of death, measured in days since HIV seroconversion,

e Tend is the individual end time (either death or censoring), measured in days since HIV
seroconversion.

R> timedat[1:10,]

id fuptime cd4count

1 1 4 475
2 1 71 555
3 1 200 456
4 1 280 443
5 1 298 506
6 1 312 431
7 1 517 465
8 1 582 423
9 1 623 388
10 1 642 397
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Dataset timedat contains longitudinal measurements made in the same 386 HIV-positive
individuals as basdat:

e id is the patient ID,
e fuptime is follow-up time, in days since HIV seroconversion,

e cd4count is CD4 count, measured at fuptime.

Note that these data were simulated using the algorithm described in Van der Wal, Prins,
Lumbreras, and Geskus (2009). Therefore, CD4 count at a certain time point is affected by
the TB status right before that time point. TB status at a certain time point is affected by
CD4 count at that specific time point.

Some processing of the original data is necessary. We check if there is more than one CD4
measurement taken on the same day within each patient:

R> table(duplicated(timedat[, c("id", "fuptime")]))

FALSE
6291

which is not the case. Because of skewness, we compute the square root of CD4 count:
timedat$cd4.sqrt <- sqrt(timedat$cd4count)

Add the time of first active TB to timedat, and compute tb.lag, the time-varying TB status

one day before the measurement time (which is necessary for reasons that are explained
below):

R> timedat <- merge(timedat, basdat[,c("id","Ttb")], by = "id", all.x = TRUE)
R> timedat$tb.lag <- ifelse(with(timedat, !is.na(Ttb) & fuptime > Ttb), 1, 0)

To be able to impute CD4 count at time points other than the measurement times, which is
necessary when fitting the MSM (see below), and to smooth the original measurements, we
fit the random effects model

VEi(t) = & + it + aAs(t — 1), (12)

with ¢ follow-up time (days since HIV seroconversion), L(t) CD4 count, and A(t) time-varying
TB status. Random effects & and 7; are assumed to be normally distributed with mean

B = (Bo, 81) and covariance matrix ¥ = [“/?2 \/};}. The model includes a fixed effect for TB,
B2. Because CD4 is affected by the TB status right before t, we include A(t — 1), the TB

status one day before ¢ in (12). We can fit model (12) using;:

R> cd4.1me <- Ilme(cd4.sqrt ~ fuptime + tb.lag, random = ~ fuptime | id,
+ data = timedat)

17
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We will construct a new dataframe startstop, which will be used to estimate inverse pro-
bability weights and to fit an MSM, to quantify the causal effect of TB on mortality. Let
Trp be all time points at which the TB-status switches, in any individual. Let T, 4 be all
individual end times. Then, to (1) be able to compute inverse probability weights similar to
(5) using a Cox proportional hazards model and (2) be able to fit the MSM, the dataframe
startstop should contain, for each individual, rows corresponding to both Trp and T,q.
For each individual we include these time points only up to his or her individual end time. We
also sort the time points chronologically within each individual. The dataframe construction
is done as follows:

R> times <- sort(unique(c(basdat$Ttb, basdat$Tend)))

R> startstop <- data.frame(

+ id = rep(basdat$id, each = length(times)),

+ fuptime = rep(times, nrow(basdat)))

R> startstop <- merge(startstop, basdat, by = "id", all.x = TRUE)
R> startstop <- startstop[with(startstop, fuptime <= Tend), ]

We compute the starting time for each interval of follow-up using tstartfun:
R> startstop$tstart <- tstartfun(id, fuptime, startstop)

Then we compute tb, the TB status at each time point for each individual, and tb.lag, the
time-varying TB status one day before each time point for each individual. We also compute
event, an indicator for death, and impute time-varying CD4 count cd4.sqrt, using (12):

R> startstop$tb <- ifelse(with(startstop, !is.na(Ttb) & fuptime >= Ttb),

+ 1, 0)

R> startstop$tb.lag <- ifelse(with(startstop, !is.na(Ttb) & fuptime > Ttb),
+ 1, 0)

R> startstop$event <- ifelse(with(startstop, !is.na(Tdeath) & fuptime >=

+ Tdeath), 1, 0)

R> startstop$cd4.sqrt <- predict(cd4.lme, newdata = data.frame(id =

+ startstop$id, fuptime = startstop$fuptime, tb.lag = startstop$tb.lag))

Note that for each row in startstop, cd4.sqrt contains imputed CD4 count that predicts
tb in the same row. To correct for confounding by time-varying CD4 count, we can estimate
the stabilized inverse probability weights

I P(Ag = anl Ay =
swij = H - ( ik azk’ ik—1 Ak 1)

k=0

" Gkl Aik-1 = Tik-1) (13)
(Air = aix|Aik—1 = Gik—1, Lir = lir,)

For time points up to the time point of the first instance of active TB within each patient, we
estimate the elements in the denominator of (13) using the Cox proportional hazards model

AaltIL(t), A(t™) = 0] = Ao(t) exp{B1L(t)}. (14)

We estimate the numerator of (13) using a model similar to (14) but only including the
constant. Therefore, we can estimate sw;; using:
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Figure 3: Weights distribution plot for example 3, made using ipwplot.
R> temp <- ipwtm(exposure = tb, family = "survival",
+ numerator = ~ 1, denominator = ~ cd4.sqrt, id = id,
+ tstart = tstart, timevar = fuptime, type = "first", data = startstop)
Since we are using type = "first", the elements in the numerator and denominator of (13)

are set to 1 within an individual after the first time point at which that specific individual
develops active TB. Summarize and plot (see Figure 3) the inverse probability weights:

R> summary (temp$ipw.weights)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2117 0.9409 0.9908 1.0370 1.0120 13.6500

R> ipwplot(weights = temp$ipw.weights, timevar = startstop$fuptime,

+ binwidth = 100, main = "Stabilized weights", xlab = "Days since HIV
+ seroconversion", ylab = "Logarithm of weights", xaxt = "n")

R> axis(side = 1, at = ¢c(0, 5, 10, 15, 20, 25, 30, 35), labels =

+ as.character(c(0, 5, 10, 15, 20, 25, 30, 35)%*100))

To estimate the marginal causal effect of TB on mortality, we fit the MSM

Ary(t) = Ao(t) exp{Bra(t)}, (15)

adjusted for confounding by CD4 count using IPW, and using a using a robust variance
estimator, as follows:

R> summary(coxph(Surv(tstart, fuptime, event) ~ tb + cluster(id),
+ data = startstop, weights = temp$ipw.weights))

19
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coef exp(coef) se(coef) robust se z Pr(>|zl|)
tb 0.8127 2.2541 0.1901 0.2599 3.127 0.00177 =%

exp(coef) exp(-coef) lower .95 upper .95
tb 2.254 0.4436 1.354 3.751

We can compare the MSM to an unadjusted model:

R> summary(coxph(Surv(tstart, fuptime, event) ~ tb, data = startstop))

coef exp(coef) se(coef) z Pr(>lzl)
tb 1.4954 4.4612 0.1811 8.257  <2e-16 **x*

exp(coef) exp(-coef) lower .95 upper .95
tb 4.461 0.2242 3.128 6.362

We can also compare the MSM to a standard model, using conditioning to adjust for con-
founding:

R> summary(coxph(Surv(tstart, fuptime, event) ~ tb + cd4.sqrt,
+ data = startstop))

coef exp(coef) se(coef) z Pr(>lzl)
tb 0.24618 1.27913 0.24288 1.014 0.311
cd4.sqrt -0.24444 0.78314 0.03313 -7.378 1.61e-13 **x*

exp(coef) exp(-coef) lower .95 upper .95
tb 1.2791 0.7818 0.7947 2.0590
cd4.sqrt 0.7831 1.2769 0.7339 0.8357

The estimated hazard ratio corresponding to the causal effect of TB on mortality is 2.25 (95%
CI 1.35-3.75). Note that the estimate from an unadjusted model of 4.46 (95% CI 3.13-6.36) is
an overestimate, since both TB and death are more likely at lower CD4 counts. The estimate
from the conditional model of 1.28 (95% CI 0.79-2.06) is an underestimate, since the indirect
effect of TB through CD4 count is “conditioned away”, as explained e.g., in Robins (1997)
and Robins et al. (1999).

5. Conclusion

We have demonstrated how IPW can be performed to fit MSMs using our R package ipw,
both in point treatment studies and in longitudinal studies, correcting for confounding and
informative censoring. The package can accomodate for a wide range of exposure allocation
models. Our package is easily used and does not involve extensive programming. We have also
demonstrated how robust standard errors can be used for inference when fitting an MSM using
IPW. Our contribution of the package ipw will make the MSM methodology more accessible
to applied researchers. The package will also be useful to those using inverse probability
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weighting for other purposes such as missing data problems (see e.g., Rao, Sigurdson, Doody,
and Graubard 2005) or correcting for informative censoring (see e.g., Hernan et al. 2000 and
Cole and Herndn 2004). In future updates of the package, the functions will also be applicable
to other situations in which IPW is used, such as estimation and inference in competing risks
survival analysis (Geskus 2011).
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