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Abstract

This paper presents two illustrations of state space modeling in S-PLUS using the Ssf-
Pack 3.0 routines implemented in S+FinMetrics 3.0. The state space modeling functions
in S+FinMetrics/SsfPack are extremely flexible and powerful and can be used for a wide
variety of linear Gaussian state space models and for some non-linear and non-Gaussian
state space models.
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1. Introduction

In S-PLUS (TIBCO Software Inc. 2010), state space modeling is implemented in the add-
on module S+FinMetrics as described in Zivot, Wang, and Koopman (2004), Tsay (2005),
and Zivot and Wang (2006). The state space modeling tools in S+FinMetrics are based on
the algorithms in SsfPack 3.0 developed by Siem Jan Koopman and described in Koopman,
Shephard, and Doornik (1999, 2008)1. SsfPack is a suite of C routines for carrying out
computations involving the statistical analysis of univariate and multivariate models in state
space form. The routines allow for a variety of state space forms from simple time invariant
models to complicated time-varying models. Functions are available to put standard models
like ARMA and spline models in state space form. General routines are available for filtering,
smoothing, simulation smoothing, likelihood evaluation, forecasting and signal extraction.
Full details of the statistical analysis is provided in Durbin and Koopman (2001).

In S+FinMetrics/SsfPack, the linear Gaussian state space model for a multivariate time series
yt is the system of equations

1Information about Ssfpack can be found at http://www.ssfpack.com/.

http://www.jstatsoft.org/
http://www.ssfpack.com/
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The state vector αt contains unobserved stochastic processes and unknown fixed effects and
the transition equation (1) describes the evolution of the state vector over time using a first
order Markov structure. The measurement equation (3) describes the vector of observations
yt in terms of the state vector αt through the signal θt and a vector of disturbances εt.
The deterministic matrices Tt, Zt, Ht, Gt are called system matrices and are usually sparse
selection matrices. The vectors dt and ct contain fixed components and may be used to
incorporate known effects or known patterns into the model; otherwise they are equal to zero.

The state space model (1)–(6) may be compactly expressed as(
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The initial value parameters are summarized in the (m+ 1)×m matrix

Σ =

(
P
a>

)
. (10)

For multivariate models, i.e., N > 1, it is assumed that the N ×N matrix GtG
>
t is diagonal.

State space models in S+FinMetrics/SsfPack utilize the compact representation (7) with
initial value information (10).

The variance matrix P of the initial state vector α1 is assumed to be of the form

P = P∗ + κP∞ (11)

where P∞ and P∗ are symmetric m × m matrices with ranks r∞ and r∗, respectively, and
κ is a large scalar value, e.g., κ = 106. The matrix P∗ captures the covariance structure of
the stationary components in the initial state vector, and the matrix P∞ is used to specify
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the initial variance matrix for nonstationary components. When the ith diagonal element of
P∞ is negative, the corresponding ith column and row of P∗ are assumed to be zero, and the
corresponding row and column of P∞ will be taken into consideration. When some elements
of state vector are nonstationary, the S+FinMetrics/SsfPack algorithms implement an “exact
diffuse prior” approach as described in Durbin and Koopman (2001) and Koopman et al.
(2008).

The remainder of this paper is organized as follows. Section 2 gives an overview of state space
modeling using S+FinMetrics/SsfPack for the annual flow volume of the river Nile based on
the local level model. Section 3 illustrates multivariate state space modeling of affine term
structure models, and Section 4 gives some final comments.

2. The local level model for the Nile river data

Consider a univariate time series yt representing the annual flow volume of the river Nile over
the period 1871 to 1970. This data series is included in S+FinMetrics in the “timeSeries”
object nile.dat, and is shown in Figure 1. The local level model for yt has the form

αt+1 = αt + η∗t , η
∗
t ∼ iid N(0, σ2η), (12)

yt = αt + ε∗t , ε
∗
t ∼ iid N(0, σ2ε), (13)

α1 ∼ N(a, P ), (14)

where it is assumed that E[ε∗t η
∗
t ] = 0. In the local level model, yt is the sum of two unobserved

components, αt and ε∗t . The component αt is the state variable and represents the trend
behavior of yt. The transition equation (12) shows that the trend follows a random walk.
The component ε∗t represents random deviations (noise) from the trend that are assumed to

Figure 1: Nile river data from the S+FinMetrics “timeSeries” object nile.dat.
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State space parameter List component name

δ mDelta

Φ mPhi

Ω mOmega

Σ mSigma

Table 1: State space form list components.

be independent from the innovations to αt. The strength of the signal in the trend relative
to the random deviation is measured by the signal-to-noise ratio of variances q = σ2η/σ

2
ε .

The state space form (7) of the local level model has time invariant parameters

δ =

(
0
0

)
,Φ =

(
1
1

)
,Ω =

(
σ2η 0

0 σ2ε

)
, (15)

with errors σηηt = η∗t and σεεt = ε∗t . Since the state variable αt is I(1), the unconditional
distribution of the initial state α1 doesn’t have finite variance. In this case, it is customary
to set a = E[α1] = 0 and P =var(α1) to some large positive number, e.g., P = 107, in (14) to
reflect that no prior information is available. Using (11), the initial variance is specified with
P∗ = 0 and P∞ = 1. Therefore, the initial state matrix (10) for the local level model has the
form

Σ =

(
−1
0

)
(16)

where −1 implies that P∞ = 1.

In S+FinMetrics/SsfPack, a state space model is specified by creating either a list variable
with components giving the minimum components necessary for describing a particular state
space form or by creating an “ssf” object. To illustrate, consider creating a list variable
containing the state space parameters in (15)–(16) calibrated to the Nile river data (σ2η =
1469.1 and σ2ε = 15099, which are the maximum likelihood values determined in Section 2.2.

> sigma.e = sqrt(15099)

> sigma.n = sqrt(1469.1)

> a1 = 0

> P1 = -1

> ssf.ll.list = list(mPhi = as.matrix(c(1, 1)),

+ mOmega = diag(c(sigma.n^2, sigma.e^2)),

+ mSigma = as.matrix(c(P1, a1)))

> ssf.ll.list

$mPhi: $mOmega: $mSigma:

[,1] [,1] [,2] [,1]

[1,] 1 [1,] 1469.1 0 [1,] -1

[2,] 1 [2,] 0.0 15099 [2,] 0

In the list variable ssf.ll.list, the component names match the state space form parameters
in (7) and (10). This naming convention, summarized in Table 1, must be used for the
specification of any valid state space model.
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An “ssf” object may be created from the list variable ssf.ll.list using the S+FinMetrics/
SsfPack function CheckSsf:

> ssf.ll = CheckSsf(ssf.ll.list)

> class(ssf.ll)

[1] "ssf"

> names(ssf.ll)

[1] "mDelta" "mPhi" "mOmega" "mSigma" "mJPhi"

[6] "mJOmega" "mJDelta" "mX" "cT" "cX"

[11] "cY" "cSt"

> ssf.ll

$mPhi: $mOmega: $mSigma: $mDelta:

[,1] [,1] [,2] [,1] [,1]

[1,] 1 [1,] 1469.1 0 [1,] -1 [1,] 0

[2,] 1 [2,] 0.0 15099 [2,] 0 [2,] 0

$mJPhi: $mJOmega: $mJDelta: $mX: $cT: $cX: $cY: $cSt:

[1] 0 [1] 0 [1] 0 [1] 0 [1] 0 [1] 0 [1] 1 [1] 1

The function CheckSsf takes a list variable with a minimum state space form, coerces the
components to matrix objects and returns the full parameterization of a state space model
used in many of the S+FinMetrics/SsfPack state space modeling functions. See the online
help for CheckSsf for descriptions of the components of an “ssf” object.

2.1. Simulating observations from the state space model

Once a state space model has been specified, it is often interesting to draw simulated values
from the model. The S+FinMetrics/SsfPack function SsfSim may be used for such a purpose.
The arguments expected from SsfSim are

> args(SsfSim)

function(ssf, n = 100, mRan = NULL, a1 = NULL)

where ssf represents either a list with components giving a minimal state space form or a
valid “ssf” object, n is the number of simulated observations, mRan is user-specified matrix of
disturbances, and a1 is the initial state vector.

To generate 100 observations on the state variable αt+1 and observations yt in the local level
model (12)–(14) calibrated to the Nile river (with initial value a1 = y0 = 1120) data use

> set.seed(112)

> ssf.ll.list$mSigma[2] = 1120

> ll.sim = SsfSim(ssf.ll.list, n = 100)
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Figure 2: Simulated values from local level model created using the S+FinMetrics function
SsfSim.

> class(ll.sim)

[1] "matrix"

> colIds(ll.sim)

[1] "state" "response"

The function SsfSim returns a matrix containing the simulated state variables αt+1 and
observations yt. These values are illustrated in Figure 2.

2.2. State space modeling algorithms: Filtering, smoothing and forecasting

The S+FinMetrics/SsfPack function KalmanFil implements the Kalman filter forward re-
cursions in a computationally efficient way, see Koopman et al. (2008). The S+FinMetrics/
SsfPack function KalmanSmo computes the Kalman smoother backwards recursions. The func-
tions KalmanFil and KalmanSmo are primarily used by other S+FinMetrics/SsfPack state
space functions that require the output from the Kalman filter and Kalman smoother. Fil-
tered and smoothed estimates of αt and yt, with estimated variances, as well as smoothed esti-
mates of εt and ηt, with estimated variances, are computed using the S+FinMetrics/SsfPack
function SsfMomentEst. The function SsfMomentEst may also be used to compute out-
of-sample forecasts and forecast variances of αt and yt. More conveniently, out-of-sample
h−step ahead forecasts for αt and yt, along with forecasts variances, are computed using the
S+FinMetrics/SsfPack function SsfForecast. The next sub-sections illustrate the use of the
S+FinMetrics/SsfPack functions for implementing the state space algorithms for the local
level model (12)–(14) calibrated to the Nile river data.
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Kalman filter

The Kalman filter recursions for the local level model calibrated to the Nile river data are
obtained using the S+FinMetrics/SsfPack function KalmanFil with the optional argument
task = "STFIL" (which stands for state filtering)

> KalmanFil.ll = KalmanFil(nile.dat, ssf.ll, task = "STFIL")

> class(KalmanFil.ll)

[1] "KalmanFil"

The function KalmanFil takes as input a vector of response data and either a list describing
the minimal state space form or a valid “ssf” object. The result of KalmanFil is an object
of class “KalmanFil” with components

> names(KalmanFil.ll)

[1] "mOut" "innov" "std.innov" "mGain" "loglike"

[6] "loglike.conc" "dVar" "mEst" "mOffP" "n.predict"

[11] "task" "err" "call" "positions"

A complete explanation of the components of a “KalmanFil” object is given in the online help
for KalmanFil. These components are mainly used by other S+FinMetrics/SsfPack functions
and are only briefly discussed here. The component mOut contains the basic Kalman filter
output.

> KalmanFil.ll$mOut

numeric matrix: 100 rows, 3 columns.

[,1] [,2] [,3]

[1,] 0.00 1.0000 0.00000000

[2,] 40.00 0.5232 0.00003158

[3,] -177.93 0.3829 0.00004087

...

[100,] -79.64 0.267 0.00004854

The first column of mOut contains the prediction errors vt, the second column contains the
Kalman gains, Kt, and the last column contains the inverses of the prediction error variances,
F−1t . Since task = "STFIL" the filtered estimates at|t and yt|t = Ztat|t are in the component
mEst:

> KalmanFil.ll$mEst

numeric matrix: 100 rows, 4 columns.

[,1] [,2] [,3] [,4]

[1,] 1120.0 1120.0 15099 15099

[2,] 1140.9 1140.9 7900 7900

[3,] 1072.8 1072.8 5781 5781

...

[100,] 798.4 798.4 4032 4032
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Figure 3: Standardized innovations from Kalman filter applied to local level model calibrated
to Nile river data.

The plot method allows for a graphical analysis of the Kalman filter output:

> plot(KalmanFil.ll)

Make a plot selection (or 0 to exit):

1: plot: all

2: plot: innovations

3: plot: standardized innovations

4: plot: innovation histogram

5: plot: normal QQ-plot of innovations

6: plot: innovation ACF

Selection:

The standardized innovations vt/Ft are illustrated in Figure 3.

Kalman smoother

The Kalman smoother backwards recursions for the simulated data from the local level model
are obtained using the S+FinMetrics/SsfPack function KalmanSmo

> KalmanSmo.ll = KalmanSmo(KalmanFil.ll, ssf.ll)

> class(KalmanSmo.ll)

[1] "KalmanSmo"



Journal of Statistical Software 9

Figure 4: Standardized smoothing residuals from Kalman smoother recursions computed from
local level model calibrated to Nile river data.

The function KalmanSmo takes as input an object of class “KalmanFil” and an associated list
variable containing the state space form used to produce the “KalmanFil” object. The result
of KalmanSmo is an object of class “KalmanSmo” with components

> names(KalmanSmo.ll)

[1] "state.residuals" "response.residuals" "state.variance"

[4] "response.variance" "aux.residuals" "scores"

[7] "positions" "call"

The component state.residuals contains the smoothing residuals from the state equa-
tion, response.residuals contains the smoothing residuals from the measurement equation.
The corresponding variances of these residuals are in the components state.variance and
response.variance. A multi-panel timeplot of the standardized residuals in the component
aux.residuals, illustrated in Figure 4, is created with the plot method.

Filtered and smoothed moment estimates

Filtered and smoothed estimates of αt and yt with corresponding estimates of variances may
be computed using the S+FinMetrics/SsfPack function SsfMomentEst. To compute filtered
estimates, call SsfMomentEst with the argument task = "STFIL" (which stands for state
filtering)

> FilteredEst.ll = SsfMomentEst(nile.dat, ssf.ll, task = "STFIL")

> class(FilteredEst.ll)
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Figure 5: Filtered estimates of αt and yt computed from the local level model, calibrated to
the Nile river data.

[1] "SsfMomentEst"

> names(FilteredEst.ll)

[1] "state.moment" "state.variance" "response.moment"

[4] "response.variance" "task" "positions"

The function SsfMomentEst takes as input a vector of response data and either a list describing
the minimal state space form or a valid “ssf” object. The result of SsfMomentEst is an object
of class “SsfMomentEst” for which there is only a plot method. The filtered estimates at|t and
yt|t = ct + Ztat|t are in the components state.moment and response.moment, respectively,
and the corresponding filtered variance estimates are in the components state.variance and
response.variance. From the measurement equation (13) in the local level model, at|t = yt|t:

> FilteredEst.ll$state.moment[1:5]

[1] 1120 1141 1073 1117 1130

> FilteredEst.ll$response.moment[1:5]

[1] 1120 1141 1073 1117 1130

The plot method creates a multi-panel timeplot of the estimates of αt and yt without standard
error bars.

A plot of the filtered state estimates with 90% confidence intervals is shown in Figure 5.

The smoothed estimates α̂t and ŷt along with estimated variances may be computed using
SsfMomentEst with task = "STSMO" (state smoothing)
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Figure 6: Smoothed estimates of αt with 90% confidence intervals computed from the local
level model calibrated to the Nile river data.

> SmoothedEst.ll = SsfMomentEst(nile.dat, ssf.ll.list, task = "STSMO")

In the local level model, α̂t = ŷt

> SmoothedEst.ll$state.moment[1:5]

[1] 1112 1111 1105 1114 1112

> SmoothedEst.ll$response.moment[1:5]

[1] 1112 1111 1105 1114 1112

The smoothed state estimates with 90% confidence bands are illustrated in Figure 6. Com-
pared to the filtered state estimates, the smoothed estimates are“smoother”and the confidence
bands are slightly smaller.

Smoothed estimates of αt and yt without estimated variances may be obtained using the
S+FinMetrics/SsfPack function SsfCondDens with the argument task = "STSMO" (which
stands for state smoothing)

> smoothedEst.ll = SsfCondDens(nile.dat, ssf.ll.list, task = "STSMO")

> class(smoothedEst.ll)

[1] "SsfCondDens"
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> names(smoothedEst.ll)

[1] "state" "response" "task"

The object smoothedEst.ll is of class “SsfCondDens” with components state, giving the
smoothed state estimates α̂t, response, which gives the smoothed response estimates ŷt, and
task, naming the task performed. The smoothed estimates ŷt and α̂t may be visualized using
the plot method for “SsfCondDens” objects.

Forecasting

For a state space model, the Kalman filter prediction equations produces one-step ahead
predictions of the state vector, along with prediction variance matrices. You can compute out
of sample predictions and associated mean square errors from the Kalman filter prediction
equations by extending the sample data set {y1, . . . ,yn} with a set of missing (NA) values.
When yτ is missing, the Kalman filter reduces to the prediction step. As a result, a sequence
of m missing values at the end of the sample produces a set of h-step ahead forecasts for
h = 1, . . . ,m.

To produce out-of-sample h-step ahead forecasts yt+h|t for h = 1, . . . , 10 a sequence of 10
missing values is appended to the end of the Nile river data

> td.old = positions(nile.dat)

> td.new = timeCalendar(y = 1971:2000, format = td.old@format)

> td = concat(td.old, td.new)

> nile.dat.new = timeSeries(data = concat(seriesData(nile.dat),

+ rep(NA, 10)), positions = td)

The forecast values and mean squared errors are computed using the function SsfMomentEst

with the argument task = "STPRED"

> PredictedEst.ll = SsfMomentEst(nile.dat.new, ssf.ll, task = "STPRED")

> nile.dat.fcst = PredictedEst.ll$response.moment

> fcst.var = PredictedEst.ll$response.variance

The actual values, forecasts and 50% confidence bands are illustrated in Figure 7.

The S+FinMetrics function SsfForecast automates the process of forecasting from a state
space model. The function takes the following arguments:

> args(SsfForecast)

function(mY, ssf, ikf = NULL, newdata = NULL, n.predict = 1)

where mY denotes the series to be forecast, ssf denotes the state space object with response
variable mY, ikf denotes an object returned from a call to KalmanIni, newdata holds the
out-of-sample values of any exogenous variables, and n.predict specifies the number of h-
step-ahead predictions to compute. The returned value is an S+FinMetrics“forecast”object
for which there are print, summary and plot methods.

To produce 30 h-step-ahead out-of-sample forecasts for the local level model calibrated to the
Nile River data, use
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Figure 7: Actual values, h-step forecasts and 50% confidence intervals for yt from local level
model calibrated to Nile river data.

> nile.dat.fcst2 = SsfForecast(nile.dat, ssf.ll, n.predict = 10)

> class(nile.dat.fcst2)

[1] "forecast"

The returned object is of class “forecast”. The summary method shows the forecasts with
standard errors:

> summary(nile.dat.fcst2)

Predicted Values with Standard Errors:

prediction std.err

1-step-ahead 798.37 74.17

2-step-ahead 798.37 83.49

3-step-ahead 798.37 91.87

...

30-step-ahead 798.37 219.33

Use the plot method to plot the forecasts with standard error bands along with a portion of
the original data. The following command plots the forecasts with ± 0.6745 standard error
bands (50% confidence bands) and the last 10 observations of the data:

> plot(nile.data.fcst2, xold = nile.dat, width = 0.6745, n.old = 10)

Figure 8 shows the resulting plot.
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Figure 8: Out-of-sample forecasts computed with the S+FinMetrics/SsfPack function
SsfForecast.

Maximum likelihood estimation of state space models

The prediction error decomposition of the log-likelihood function for the unknown parameters
ϕ of a state space model may be conveniently computed using the output of the Kalman filter

lnL(ϕ|Yn) =

n∑
t=1

ln f(yt|Yt−1;ϕ) (17)

= −nN
2

ln(2π)− 1

2

n∑
t=1

(
ln |Ft| + v>t F−1t vt

)
,

where f(yt|Yt−1;ϕ) is a conditional Gaussian density implied by the state space model (1)–
(6). The vector of prediction errors vt and prediction error variance matrices Ft are computed
from the Kalman filter recursions.

A useful diagnostic is the estimated variance of the standardized prediction errors for a given
value of ϕ:

σ̂2(ϕ) =
1

Nn

n∑
t=1

v>t F−1t vt. (18)

As mentioned by Koopman et al. (1999), it is helpful to choose starting values for ϕ such that
σ̂2(ϕstart) ≈ 1. For well specified models, σ̂2(ϕ̂mle) should be very close to unity.

In some models, e.g., the local level model, it is possible to solve explicitly for one scale factor
and concentrate it out of the log-likelihood function (17). The resulting log-likelihood function
is called the concentrated log-likelihood or profile log-likelihood and is denoted lnLc(ϕ|Yn).
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Following Koopman et al. (1999), let σ denote such a scale factor, and let

yt= θt + Gc
tε
c
t ,

with εct ∼iid N(0, σ2I) denote the scaled version of the measurement equation (3). The state
space form (1)–(3) applies but with Gt = σGc

t and Ht = σHc
t . This formulation implies

that one non-zero element of σGc
t or σHc

t is kept fixed, usually at unity, which reduces the
dimension of the parameter vector ϕ by one. The solution for σ2 from (17) is given by

σ̃2(ϕ) =
1

Nn

n∑
t=1

v>t (Fc
t)
−1 vt,

and the resulting concentrated log-likelihood function is

lnLc(ϕ|Yn) = −nN
2

ln(2π)− nN

2
ln
(
σ2(ϕ) + 1

)
− 1

2

n∑
t=1

ln |Fc
t |. (19)

The S+FinMetrics/SsfPack function SsfFit may be used to compute MLEs of the unknown
parameters in the state space model (1)–(6) from the prediction error decomposition of the
log-likelihood function (17). The arguments expected by SsfFit are

> args(SsfFit)

function(parm, data, FUN, conc = F, scale = 1, gradient = NULL,

hessian = NULL, lower = - Inf, upper = Inf, trace = T, control = NULL, ...)

where parm is a vector containing the starting values of the unknown parameters ϕ, data is a
rectangular object containing the response variables yt, and FUN is a character string giving
the name of the function which takes parm together with the optional arguments in ...

and produces an “ssf” object representing the state space form. The remaining arguments
control aspects of the S-PLUS optimization algorithm nlminb. An advantage of using nlminb

is that box constraints may be imposed on the parameters of the log-likelihood function
using the optional arguments lower and upper. See the online help for nlminb for details.
A disadvantage of using nlminb is that the value of the Hessian evaluated at the MLEs is
returned only if an analytic formula is supplied to compute the Hessian. The use of SsfFit

is illustrated with the following examples.

To estimate the unknown parameters ϕ = (σ2η, σ
2
ε)
> of the local level model, the S+FinMetrics/

SsfPack function SsfFit requires as input a function which takes the parameters ϕ and pro-
duces the state space form for the local level model. One such function is:

> ll.mod = function(parm) {

+ parm = sqrt(parm)

+ ssf.mod = GetSsfStsm(irregular = parm[2], level = parm[1])

+ CheckSsf(ssf.mod)

+ }
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where we note that parm[1] = sig2.n (i.e., σ2η) and parm[2] = sig2.e (i.e., σ2ε) upon entry
of the function.

In addition, starting values for ϕ are required. Somewhat arbitrary starting values are σ2η =
1000 and σ2ε = 10000. The prediction error decomposition of the log-likelihood function eval-
uated at the starting values ϕ = (1000, 10000)> may be computed using the S+FinMetrics/
SsfPack function KalmanFil with task = "KFLIK":

> ll.start = c(1000, 10000)

> names(ll.start) = c("sig2.n", "sig2.e")

> KalmanFil(nile.dat, ll.mod(ll.start), task = "KFLIK")

Call:

KalmanFil(mY = nile.dat, ssf = ll.mod(ll.start), task = "KFLIK")

Log-likelihood: -638.2044

Prediction error variance: 1.5036

Sample observations: 100

Standardized Innovations:

Mean Std.Error

-0.1012 1.2220

Notice that the standardized prediction error variance (18) is 1.5036, slightly above unity,
which indicates that the starting value for ϕ is fairly close to the maximum likelihood estimate
(MLE) ϕ̂mle.

The MLEs for ϕ = (σ2η, σ
2
ε)
> using SsfFit are computed as

> ll.mle = SsfFit(ll.start, nile.dat, "ll.mod", lower = 0)

Iteration 0 : objective = 638.2

Iteration 1 : objective = 638.2

Iteration 2 : objective = 638.2

...

Iteration 33 : objective = 633.5

RELATIVE FUNCTION CONVERGENCE

> class(ll.mle)

[1] "SsfFit"

In the call to SsfFit, the non-negative variance conditions σ2η ≥ 0 and σ2ε ≥ 0 are imposed in
the estimation using the optional argument lower = 0. The result of SsfFit is a an object
of class “SsfFit” with components

> names(ll.mle)
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[1] "parameters" "objective" "message" "grad.norm" "iterations"

[6] "f.evals" "g.evals" "hessian" "scale" "aux"

[11] "call" "vcov"

The MLEs for σ2η and σ2ε are

> ll.mle

Log-likelihood: -633.5

100 observations

Parameter Estimates:

sig2.n sig2.e

1469.13 15098.6

The MLE for the signal-to-noise ratio is q̂mle = σ̂2η/σ̂
2
ε = 1469.13/15098.6 = 0.0973. A sum-

mary of the fit, which gives estimated standard errors and t statistics, is given by

> summary(ll.mle)

Log-likelihood: -633.465

100 observations

Parameters:

Value Std. Error t value

sig2.n 1469 1292 1.137

sig2.e 15100 3146 4.799

Convergence: RELATIVE FUNCTION CONVERGENCE

A summary of the log-likelihood evaluated at the MLEs is

> KalmanFil(nile.dat, ll.mod(ll.mle$parameters), task = "KFLIK")

Call:

KalmanFil(mY = nile.dat, ssf = ll.mod(ll.mle$parameters), task = "KFLIK")

Log-likelihood: -633.4646

Prediction error variance: 1

Sample observations: 100

Standardized Innovations:

Mean Std.Error

-0.0832 0.9965

Notice that the estimated variance of the standardized prediction errors is equal to 1.

In the local level model, the variance parameter σ2ε can be analytically concentrated out of
the log-likelihood leaving the signal-to-noise ratio q = σ2η/σ

2
ε as the only parameter to be

estimated. The advantages of concentrating the log-likelihood are to reduce the number of
parameters to estimate, and to improve the numerical stability of the optimization. A function
to compute the state space form for the local level model, as a function of q only, is
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> ll.modc = function(parm) {

+ parm = exp(2*parm)

+ ssf.llc = GetSsfStsm(irregular = 1, level = sqrt(parm))

+ CheckSsf(ssf.llc)

+ }

where we note that parm = 0.5*log(q) = log(sqrt(q)) (and therefore q = exp(2*parm))
upon entry of the function.

By default, the function GetSsfStsm sets σ2ε = 1 which is required for the computation of the
concentrated log-likelihood function from (19). In the function ll.modc, to enforce a positive
value for q, the concentrated log-likelihood is parameterized using q = exp(2 · ψ) where ψ
is unrestricted. To maximize the concentrated log-likelihood function (19) for the local level
model with starting value ψ = log(q1/2) = 0, use SsfFit with ll.modc and set the optional
argument conc=T :

> llc.start = 0

> names(llc.start) = "0.5*log(q)"

> llc.mle = SsfFit(llc.start, nile.dat, "ssf.ll.modc", conc = T)

Iteration 0 : objective = 637.079

Iteration 1 : objective = 633.52

Iteration 2 : objective = 633.469

Iteration 3 : objective = 633.465

Iteration 4 : objective = 633.465

Iteration 5 : objective = 633.465

RELATIVE FUNCTION CONVERGENCE

> summary(llc.mle)

Log-likelihood: -633.465

100 observations

Parameters:

Value Std. Error t value

0.5*log(q) -1.165 0.5061 -2.302

Convergence: RELATIVE FUNCTION CONVERGENCE

Notice that with the concentrated log-likelihood, the optimizer converges in only five iterations
(previously it took 33 iterations). The values of the log-likelihood and the MLE for q are the
same as found previously. To recover q use

> q.mle.c = exp(2*llc.mle$parameters)

> q.mle.c

0.5*log(q)

0.097306
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The MLE for σ2ε may be recovered by running the Kalman filter and computing the variance
of the prediction errors from the concentrated log-likelihood:

> kf.llc = KalmanFil(nile.dat, ll.modc(llc.mle$parameters), task = "KFLIK")

> kf.ll$dVar

[1] 15098.5

Using q̂mle = 0.097306 and σ̂2ε,mle = 15099, the MLE for σ2η is given by σ̂2η,mle = q̂mle× σ̂2ε,mle =
1469. One disadvantage of using the concentrated log-likelihood is the lack of an estimated
standard error for σ̂2ε,mle.

3. Affine term structure models

Traditionally the study of the term structure of interest rates focuses on either the cross
sectional aspect of the yield curve, or the time series properties of the interest rate. Recently,
researchers have utilized state space models and Kalman filtering techniques to estimate
affine term structure models by combining both time series and cross sectional data. For
simple models, the state space representation is often linear and Gaussian and analysis is
straightforward. For more general models, the unobserved state variables generally influence
the variance of the transition equation errors making the errors non-Gaussian. In these cases,
non-standard state space methods are necessary.

Duffie and Kan (1996) show that many of the theoretical term structure models, such as the
Vasicek (1977) model, Cox, Ingersoll, and Ross (1985) square root diffusion model, Longstaff
and Schwartz (1992) two-factor model, and Chen (1996) three factor model, are special cases
of the class of affine term structure models. The class of affine term structure models is one
in which the yields to maturity on default-free pure discount bonds and the instantaneous
interest rate are affine (constant plus linear term) functions of m unobservable state variables
Xt, which are assumed to follow an affine diffusion process

dXt = U(Xt; Ψ)dt+ Σ(Xt; Ψ)dWt, (20)

where Wt is an m× 1 vector of independent Wiener processes; Ψ is a p× 1 vector of model
specific parameters; U(·) and Σ(·) are affine functions in Xt such that (20) has a unique
solution. In general, the functions U(·) and Σ(·) can be obtained as the solution to some
ordinary differential equations. Only in special cases are closed form solutions available. In
this class of models, the price at time t of a default-free pure discount bond with time to
maturity τ has the form

Pt(Xt; Ψ, τ) = A(Ψ, τ) exp
{
−B(Ψ, τ)>Xt

}
(21)

where A(τ,Ψ) is a scalar function and B(τ,Ψ) is an m × 1 vector function. The time-t
continuously compounded yield-to-maturity on a pure discount bond with time to maturity
τ is defined as

Yt(Xt; Ψ, τ) = − lnPt(Xt; Ψ, τ)

τ
, (22)
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which, using (21), has the affine form

Yt(Xt; Ψ, τ) = − lnA(Ψ, τ)

τ
+

B(Ψ, τ)>Xt

τ
(23)

State space representation

Although (23) dictates an exact relationship between the yield Yt(τ) and the state variables
Xt, in econometric estimation it is usually treated as an approximation giving rise to the
measurement equation

Yt(τ) = − lnA(Ψ, τ)

τ
+

B(Ψ, τ)>Xt

τ
+ εt(τ), (24)

where εt is a normally distributed measurement error with zero mean and variance σ2τ . For
any time to maturity τ , the above equation can be naturally treated as the measurement
equation of a state space model, with Xt being the unobserved state variable. To complete
the state space representation, the transition equation for Xt over a discrete time interval
h needs to be specified. Defining Φ(Xt; Ψ, h) = var(Xt+h|Xt), Duan and Simonato (1999)
show that the transition equation for Xt has the form

Xt+h = a(Ψ, h) + b(Ψ, h)Xt + Φ(Xt; Ψ, h)1/2ηt+h. (25)

In this transition equation ηt ∼ iid N(0, Im) and Φ(Xt; Ψ, h)1/2 represents the Cholesky
factorization of Φ(Xt; Ψ, h).

In general, the state space model defined by (24) and (25) is non-Gaussian because the
conditional variance of Xt+h in (25) depends on Xt. Only for the special case in which Σ(·)
in (20) is not a function of Xt, is the conditional variance term Φ(Xt; Ψ, h) also not a function
of Xt and the state space model is Gaussian2. See Lund (1997) for a detailed discussion of the
econometric issues associated with estimating affine term structure models using the Kalman
filter. Although the quasi-maximum likelihood estimator of the model parameters based on
the modified Kalman filter is inconsistent, the Monte Carlo results in Duan and Simonato
(1999) and de Jong (1985) show that the bias is very small even for the moderately small
samples likely to be encountered in practice.

Illustration

The data used for the following example are in the S+FinMetrics “timeSeries” fama.bliss,
and consist of four monthly yield series over the period April, 1964 to December, 1997 for the
U.S. Treasury debt securities with maturities of 3, 6, 12 and 60 months, respectively. This
data was also used by Duan and Simonato (1999). All rates are continuously compounded
rates expressed on an annual basis. These rates are displayed in Figure 9.

2To estimate the non-Gaussian state space model, Duan and Simonato (1999) modify the Kalman
filter recursions to incorporate the presence of Φ(Xt; Ψ, h) in the conditional variance of ηt+h. The
S+FinMetrics/SsfPack functions KalmanFil and SsfLoglike can be modified to accommodate this modifi-
cation.
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Figure 9: Monthly yields on U.S. treasury debt securities.

Estimation of Vasicek’s model

In the Vasicek (1977) model, the state variable driving the term structure is the instantaneous
(short) interest rate, rt, and is assumed to follow the mean-reverting diffusion process

drt = κ(θ − rt)dt+ σdWt, κ ≥ 0, σ > 0 (26)

where Wt is a scalar Wiener process, θ is the long-run average of the short rate, κ is a speed
of adjustment parameter, and σ is the volatility of rt. Duan and Simonato (1999) show that
the functions A(·), B(·), a(·), b(·) and Φ(·) have the form

lnA(Ψ, τ) = γ(B(Ψ, τ)− τ)− σ2B2(Ψ, τ)

4κ
, B(Ψ, τ) =

1

κ
(1− exp(−κτ))

γ = θ +
σλ

κ
− σ2

2κ2

a(Ψ, h) = θ(1− exp(−κh)), b(Ψ, h) = exp(−κh)

Φ(Xt; Ψ, h) = Φ(Ψ, h) =
σ2

2κ
(1− exp(−2κh))

where λ is the risk premium parameter. The model parameters are Ψ = (κ, θ, σ, λ)>. No-
tice that for the Vasicek model, Φ(Xt; Ψ, h) = Φ(Ψ, h) so that the state variable rt does
not influence the conditional variance of transition equation errors, the state space model is
Gaussian.
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The state space representation of the Vasicek model has system matrices

δ =


a(Ψ, h)

− lnA(Ψ, τ1)/τ1
...

− lnA(Ψ, τ4)/τ4

 , Φ =


b(Ψ, h)

B(Ψ, τ1)/τ1
...

B(Ψ, τ4)/τ4

 (27)

Ω = diag(Φ(Ψ, h), σ2τ1 , . . . , σ
2
τ4)

and initial value matrix

Σ =

(
θ

σ2/2κ

)
based on the stationary distribution of the short rate in (26). This a multivariate state space
model as the response variable is the 4× 1 vector yt = (Yt(τ1), Yt(τ2), Yt(τ3), Yt(τ4))

>.

A function to compute the state space form of the Vasicek model for a given set of parameters
Ψ, number of yields τ1, . . . , τN , and sampling frequency h is

> vasicek.ssf = function(param, tau = NULL, freq = 1/52) {

+ if (length(param) < 5) stop("param must have length greater than 4.")

+ N = length(param) - 4

+ if (length(tau) != N) stop("Length of tau is inconsistent with param.")

+

+ Kappa = exp(param[1])

+ Theta = exp(param[2])

+ Sigma = exp(param[3])

+ Lamda = param[4]

+ Var = exp(param[1:N+4])

+

+ Gamma = Theta + Sigma * Lamda / Kappa - Sigma^2 / (2 * Kappa^2)

+ B = (1 - exp(-Kappa * tau)) / Kappa

+ lnA = Gamma * (B - tau) - Sigma^2 * B^2 / (4 * Kappa)

+

+ a = Theta * (1 - exp(-Kappa * freq))

+ b = exp(-Kappa * freq)

+ Phi = (Sigma^2 / (2 * Kappa)) * (1 - exp(-2 * Kappa * freq))

+

+ mDelta = matrix(c(a, -lnA/tau), ncol = 1)

+ mPhi = matrix(c(b, B/tau), ncol = 1)

+ mOmega = diag(c(Phi, Var^2))

+

+ A0 = Theta

+ P0 = Sigma * Sigma / (2*Kappa)

+ mSigma = matrix(c(P0, A0), ncol=1)

+

+ ssf.mod = list(mDelta = mDelta, mPhi = mPhi, mOmega = mOmega,

+ mSigma = mSigma)

+ CheckSsf(ssf.mod)

+ }



Journal of Statistical Software 23

The function starts by checking that param and tau are valid input. Then the parameters are
extracted and – where required – non-negativity constraints are imposed, after which Gamma,
A, and B are computed. Next, a, b, and Phi are computed, as well as the state space matrices
mDelta, mPhi, and mOmega. Finally, the same initialization of A0 and P0 is used as in Duan
and Simonato (1999) to set up matrix mSigma, and all state space matrices are returned.

The exponential transformation is used for those parameters that should be positive, and, since
the data in fama.bliss are monthly, the default length of the discrete sampling interval, h,
is set to 1/12.

Starting values for the parameters and the maturity specification for the yields are

> start.vasicek = c(log(0.1), log(0.06), log(0.02), 0.3, log(0.003),

+ log(0.001), log(0.003), log(0.01))

> names(start.vasicek) = c("ln.kappa", "ln.theta", "ln.sigma", "lamda",

+ "ln.sig.3M", "ln.sig.6M", "ln.sig.12M", "ln.sig.60M")

> start.tau = c(0.25, 0.5, 1, 5)

The maximum likelihood estimates for the parameters

ϕ = (lnκ, ln θ, lnσ, λ, lnστ1 , lnστ2 , lnστ3 , lnστ4)>

are obtained using SsfFit:

> ans.vasicek = SsfFit(start.vasicek, fama.bliss, vasicek.ssf,

+ tau = start.tau, freq = 1/12, trace = T,

+ control = nlminb.control(abs.tol = 1e-6, rel.tol = 1e-6,

+ x.tol = 1e-6, eval.max = 1000, iter.max = 500))

Iteration 0 : objective = -6347.453

...

Iteration 37 : objective = -6378.45

RELATIVE FUNCTION CONVERGENCE

> ssf.fit = vasicek.ssf(ans.vasicek$parameters, tau = start.tau, freq = 1/12)

The maximum likelihood estimates and asymptotic standard errors for the model parameters

θ = (κ, θ, σ, λ, στ1 , στ2 , στ3 , στ4)>

are computed using the delta method:

> ans.vasicek$parameters[-4] = exp(ans.vasicek$parameters[-4])

> names(ans.vasicek$parameters) = c("kappa", "theta", "sigma", "lamda",

+ "sig.3M", "sig.6M", "sig.12M", "sig.60M")

> dg = ans.vasicek$parameters; dg[4] = 1

> ans.vasicek$vcov = diag(dg) %*% ans.vasicek$vcov %*% diag(dg)

> summary(ans.vasicek)
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Figure 10: Smoothed estimate of short rate rt from (26).

Log-likelihood: 6378.45

405 observations

Parameters:

Value Std. Error t value

kappa 0.11880000 0.0135800 8.7500

theta 0.05739000 0.0267800 2.1430

sigma 0.02138000 0.0007906 27.0500

lamda 0.34770000 0.1493000 2.3280

sig.3M 0.00283500 0.0001011 28.0500

sig.6M 0.00002155 0.0005905 0.0365

sig.12M 0.00301600 0.0001083 27.8400

sig.60M 0.00990000 0.0003718 26.6300

Convergence: RELATIVE FUNCTION CONVERGENCE

These results are almost identical to those reported by Duan and Simonato (1999). All
parameters are significant at the 5% level except the measurement equation standard deviation
for the six month maturity yield. The largest measurement equation error standard deviation
is for the sixty month yield, indicating that the model has the poorest fit for this yield. The
short rate is mean reverting since κ̂ > 0, and the long-run average short rate is θ̂ = 5.74%
per year. The estimated risk premium parameter, λ̂ = 0.3477, is positive indicating a positive
risk premium for bond prices.

The smoothed estimates of the short-rate and the yields are computed using SsfCondDens

with task = "STSMO"
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Figure 11: Smoothed estimates of bond yields from Vasicek term structure model.

> m.s = SsfCondDens(fama.bliss, ssf.fit)

> r.s = timeSeries(data = m.s$state, pos = m.s$positions)

> y.s = timeSeries(data = m.s$response, pos = m.s$positions)

Figure 10 gives the smoothed estimate of the instantaneous short rate rt from (26). The
differences between the actual and smoothed yield estimates are displayed in Figure 11. The
model fits well on the short end of the yield curve but poorly on the long end.

As another check on the fit of the model, the presence of serial correlation in the stan-
dardized innovations is tested using the Box-Ljung modified Q-statistic (computed using the
S+FinMetrics function autocorTest).

> autocorTest(KalmanFil(fama.bliss, ssf.fit)$std.innov)

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

3M 6M 12M 60M

Test Stat 80.9471 282.4316 756.3304 3911.7736

p.value 0.0000 0.0000 0.0000 0.0000
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Dist. under Null: chi-square with 26 degrees of freedom

Total Observ.: 405

The null of no serial correlation is easily rejected for the standardized innovations of all yields.

4. Conclusion

This paper presented two examples to illustrate the basics of state space modeling using
S+FinMetrics/SsfPack. Full details of the use of S+FinMetrics/SsfPack are given in Zivot
and Wang (2006), and several examples in macroeconomics and finance are provided in Zivot
et al. (2004) and Tsay (2005). The state space modeling functions in S+FinMetrics/SsfPack
are extremely flexible and powerful and can be used for a wide variety of univariate and multi-
variate linear Gaussian state space models. Users can build custom state space representations
from scratch or they can use S+FinMetrics/SsfPack functions for specifying common state
space models including ARIMA, seasonal ARIMA, regression, spline, and structural time se-
ries models. The state space representation in S+FinMetrics/SsfPack also allows for Markov
switching in the system matrices as described in Kim (1994). Model fitting via the prediction
error decomposition can be done using maximum likelihood or quasi-maximum likelihood,
the latter being useful for linear but non-Gaussian state space models such as the log-normal
stochastic volatility model. Because the state space algorithms are implemented in C, they
are very fast. However, the internals of the algorithms are hidden from the user and cannot
be modified which is a drawback to the user.
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