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Abstract

In this paper, we present an R package that combines feature-based (X) data and
graph-based (G) data for prediction of the response Y. In this particular case, Y is ob-
served for a subset of the observations (labeled) and missing for the remainder (unlabeled).
We examine an approach for fitting Y =X B + f (G) where B is a coefficient vector and
f is a function over the vertices of the graph. The procedure is semi-supervised in na-
ture (trained on the labeled and unlabeled sets), requiring iterative algorithms for fitting
this estimate. The package provides several key functions for fitting and evaluating an
estimator of this type. The package is illustrated on a text analysis data set, where the
observations are text documents (papers), the response is the category of paper (either
applied or theoretical statistics), the X information is the name of the journal in which
the paper resides, and the graph is a co-citation network, with each vertex an observation
and each edge the number of times that the two papers cite a common paper. An appli-
cation involving classification of protein location using a protein interaction graph and an
application involving classification on a manifold with part of the feature data converted
to a graph are also presented.

Keywords: semi-supervised learning, graph-based classification, semi-parametric models, R.

1. Introduction

In this work, we present a package geared towards providing a semi-supervised framework for
processing semi-parametric models. In this setting, the data are partitioned into two sets,
one is a feature set X and the other is either an additional feature set Z or observed graph
G. Here X is an n x p data matrix, Z is an n X ¢ data matrix, and the observed graph G
can be written as G = (V, E), where the nodes in V' correspond to the observations and E is
the set of similarity edges between observations. We have a labeled response for a subset of
the observations, denoted by Y7, of length m < n. The data matrix X can be partitioned into
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X =[X], X}], such that X] corresponds to the cases for which the response is labeled. The
response is missing (unlabeled) for the cases in X[—]r , and we denote these missing values as
Yy. An analogous partition can be made for an additional data matrix Z. For the observed
graph GG, the adjacency matrix can be partitioned as follows,

e ( A, Arv )
Ayt Apu )7

where Ay are the labeled-labeled edges, Ay = A—LFU are the labeled-unlabeled edges, and
Ayvy are the unlabeled-unlabeled edges. For these data we assume that the E[Y] = X3+ f(G)
for some true B and f. The objective is to use all of the data, including those cases with a
missing response, in conjunction with the labeled responses Y7 to obtain an estimator of the
form X3+ f(G).

There are several approaches in existence to perform the difficult task of semi-supervised classi-
fication with graphs, including mini-cut algorithms (Blum and Chawla 2001; Kondor and Laf-
ferty 2002), directed graph algorithms (Eppstein, Patterson, and Yao 1997; Zhou, Scholkopf,
and Hofmann 2005), graph regularization algorithms (Belkin, Matveeva, and Niyogi 2004;
Joachims 2003; Zhu, Ghahramani, and Lafferty 2003), and graph smoothers (Culp and Michai-
lidis 2008a; Nui, Ji, and Tan 2005; Wang and Zhang 2006). The natural approach to do this
is loss function optimization via regularization, where here the smoothness of the function is
controlled with respect to the discrete combinatorial Laplacian operator on the graph (Zhu
2008). The problem of combining X information with a graph G (either observed or con-
structed from Z) is often referred to as graph-based co-training (Joachims 2003; Culp and
Michailidis 2008a). Existing semi-supervised graph-based approaches for the objective re-
quire one to first convert the Z data to a graph, Z — G[Z] and then set Gr = G[Z] UG, or
Gr = G[Z] N G (Culp and Michailidis 2008a). The next step is to employ one of the above
graph-based semi-supervised classification approaches directly to Gg. The proposed approach
implements both the fitting the fits algorithm (FTF) in (Culp and Michailidis 2008b) and the
more general sequential predictions algorithm (SPA) (Culp and Michailidis 2008a), both of
which perform graph-based classification with the additional flexibility of processing the X
data on its original scale. This is most desirable for X data that are not continuous.

The semi-supervised spa package is designed to fit Y = ¢ such that the form of ¢ is:
$(X,G) =X+ f(G)

where f is a function over the vertices of G and B is p x 1 coefficient vector. The challenges
for this approach include simultaneous semi-supervised estimation of a coefficient vector and
a function over the vertices of G. Applications for an estimate of this form occur in text
analysis, where the observations in the data are published text documents and the response is
the document’s topic. In this case a graph describing pairwise co-citations between documents
is observed directly (the edge weight is the number of times that two papers reference the
same documents). In addition the journal in which the document was published is available
as feature information X. Therefore, we would wish to estimate ¢ = X3 + f(G) to combine
these two sources of information for classification. Several other applications of this research
are quite common in web analysis (Blum and Mitchell 1998), email (Koprinska, Poon, Clark,
and Chan 2007), proteomics (Kui, Zhang, Mehta, Chen, and Sun 2002; Ruepp, Zollner, Maier,
Albermann, Hani, Mokrejs, Tetko, Guldener, Mannhaupt, Munsterkotter, and Mewes 2004),
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genomics and drug discovery. In addition to observed graphs, this work is also applicable
as an extension of standard semi-parametric modeling, where an additional feature set Z is
observed separately from X. In the classical semi-parametric setting one would commonly
fit ¢(Xr,Z1) = X3 + f(Z1) where f is a smooth function. For the spa package in this
case we provide several R functions to convert Z to a proximity graph, Z — G[Z] and then
subsequently fit ¢(X, G[Z]) = XS + f(G[Z]). The advantage is that the information in X
and Zp influence training of ¢, that is, the estimates are semi-supervised.

The spa package is written for the R programming environment (R Development Core Team
2011) and available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=spa. This package provides the implementation of the sequential predictions al-
gorithm. The package design consists of three general phases: (i) graph construction, (ii) con-
structing the spa object and (iii) post fitting functionality. The graph construction segment
provides a series of functions to process observed graphs or to construct graphs from part of the
feature data. Upon completing this stage an n x n adjacency matrix is obtained with diagonal
elements representing nodes (observations in the data) and off-diagonal elements representing
edge associations between nodes. For the second phase a SPA object is created from the inputs
using semi-supervised smoothers (discussed in Section 3). One technical challenge common
with smoothers is tuning parameter estimation. The SPA features sophisticated algorithms
for data driven estimation of the smoother parameter based on a semi-supervised generalized
cross-validation measure. Step (ii) completes with a SPA object that encapsulates ¢.

The post fitting step consists of generic function utilities for manipulating and accessing a
SPA object, such as coef and fitted, functions to plot and print the object, and functions
for performing prediction/updating with the SPA object. The prediction/updating function-
ality for the package was carefully designed to distinguish between transductive and inductive
prediction. Transductive prediction requires re-training or updating ¢ to use local proximity
information with the intent of improving performance, or to incorporate a new set of obser-
vations that became available after training. This is most useful when the unlabeled data
provide intrinsic structural information that can improve the general analysis with the clas-
sifier. For example, prediction with an observed graph, G, is inherently transductive since
unlabeled data influence the topology of the graph (Culp and Michailidis 2008a); or in cases
when the Z information provides a manifold in the data that is pertinent for classification of
Y7, (Chapelle, Scholkopf, and Zien 2006). An inductive learner is designed to predict a new
observation using the classifier without retraining. In this case the new observation does not
provide any structural information and we are interested in classifying this case to the rule
established. For example, constructing a contour plot of a classification rule is based off of
predicting a grid determined by the range of the data. The grid has no inherent meaning and
therefore transductive prediction is inappropriate.

The SPA classifier is both transductive and inductive, i.e,. transductive prediction is used to
obtain the border which best represents the structure in the data, and then inductive predic-
tion is used to classify new observations with respect to the border. The spa distinguishes
between transductive and inductive prediction using the update and predict generics, re-
spectively.

The author is aware of two software packages available for semi-supervised graph-based learn-
ing. The first is the SGT-light software which performs a SVM like approach on a graph to
classify a response (Joachims 2003). The other is the Manifold Regularization software which
can be adapted to fit a function to an observed graph (Belkin et al. 2004). Neither approach
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to date performs internal parameter estimation, semi-parametric estimation, or is integrated
in the R language. Indeed, the spa provides an R package that fits a semi-parametric graph-
based estimator, that performs internal tuning parameter estimation, and that accommodates
both transductive and inductive prediction.

In Section 2, we provide a simple example to gain insight for the graph-based classifiers im-
plemented in this package. In Section 3, we provide analysis using spa in classification of the
Cora text mining data set. In Section 4 we provide the methodology underpinning this ap-
proach, which motivates several key features of this approach including parameter estimation
and transductive prediction. In Section 5, we provide the detailed layout of the spa pack-
age, discussing several functions offered for this package in graph construction (Section 5.1),
object generation (Section 5.2), and post fitting (Section 5.3). In Section 6 we present two
data examples, one involving classification on a manifold (Section 6.1) and the other involving
protein interaction (Section 6.2). We close with some concluding remarks in Section 7.

2. Local classification on a graph

At the core of the proposed package are two intuitive algorithms designed to process a local
similarity graph: (i) fitting the fits and (ii) the sequential predictions algorithm. To gain
deeper insight into these approaches we first present the algorithms in an intuitive special
case involving local similarity on two-dimensional planar graph. In Section 4, we rigorously
describe the algorithmic details, assumptions and generalizations of these algorithms as im-
plemented in the package.

In graph-based classification, the observations are vertices on a graph and the edges between
observations describes local similarity. For example, in Figure 1 we present a simple lattice,
where each observation is defined by the intersection of two grid lines. In the figure there are
two labeled vertices, one is black and the other is white, while there are 34 unlabeled vertices.
For classification the goal is to estimate the probability of each label belonging to either class,
i.e., estimate probability class estimates (PCEs) for each vertex.

For fitting the fits, we initialize all unlabeled cases with PCEs of 0.5 (gray in the figure).
Then we classify every observation as the weighted local average using this initialization for
unlabeled cases and the true labels for labeled cases. The new probabilities for the unlabeled
cases provide estimates for the unlabeled cases and are likely more precise than the initializa-
tions. Therefore, we now retrain the approach using the updated probabilities. This process is
repeated until the unlabeled PCEs used in classification are the same as the unlabeled PCEs
resulting from classification. This process is shown visually for the lattice example in Fig-
ure 1. The FTF algorithm is quite similar to semi-supervised harmonic approaches including
random walks and label propagation (Chapelle et al. 2006, Chapter 11) but differs in that
probabilities class estimates are also obtained for the labeled cases. The use of probability
class estimates in the iterative phase of FTF for the unlabeled responses is referred to as soft
labels, since they are not a hard binary responses. The latter is referred to as hard labels
(Culp and Michailidis 2008a).

In the case of fitting the fits all unlabeled observations are treated equally in iterative training.
The sequential predictions algorithm provides a way to correct for the use of unlabeled prob-
abilities in training by penalizing vertices farther away from the labeled cases. The process is
to first train observations one hop away from labeled cases, then penalize the PCEs resulting
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Figure 1: Process of classification on a 2-dimensional 36 node lattice using the (top) Fitting
the fits algorithm and (bottom) sequential predictions algorithm. For this graph 2 vertices
are labeled with the remaining 34 unlabeled.

from training towards the prior for Y;. The process is repeated until all observations are
classified. Refer to Figure 1, where here the final probabilities are less certain near the border
compared to FTF.

3. Motivating text analysis application

In this section, we provide a prototype analysis with the spa package to illustrate the key func-
tionality of this package on the Cora text data set (McCallum, Nigam, Rennie, and Seymore
2000). For these data, the observations are n = 827 text documents published predominantly
in engineering, computer science and statistics journals. The attributes were generated elec-
tronically on the web and then processed with in-house scripts. The X information is 827 x 9
orthogonal matrix where X;, = I{paper ¢ is in journal k}, for k = 1,---,9 corresponding to
the 8 journals listed in Table 1 plus a category for all other journals. The G information is
a weighted graph represented by a co-citation network between the text documents. Specifi-
cally, the adjacency matrix is constructed with A;; = > I{i and j cite the same document}.
The response is the binary indication that the specific document is classified to be about
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Journal Al ML Total
Artificial Intelligence 36 17 53
Journal of Artificial Intelligence Research 24 24 48
Machine Learning 2 32 34
IEEE Transaction on Pattern Analysis and Machine Intelligence 21 5) 26
Neural Computing 3 20 23
IEEE Transactions on Neural Networks 1 16 17
Artificial Intelligence Magazine 11 1 12
Journal of the American Statistical Association 3 9 12
Other 340 258 598

Table 1: Journal frequencies for the classes under consideration in the Cora text data.

machine learning (ML) or artificial intelligence (AI). The data are available as part of the spa
package.

To begin analysis, we provide the necessary preprocessing;:

R> data("coraAI")

R> y <- coraAI$class

R> x <- coraAI$journals

R> g <- coraAl$cite

R> keep <- which(as.vector(apply(g, 1, sum) > 1))
R> setdiff(1:1ength(y), keep)

[11 12 19 48 49 50 52 68 90 103 129 151 174 178 193 212 255 259 284
[19] 293 296 297 325 327 362 370 458 459 461 465 490 497 507 546 567 577 593
[37] 606 612 691 720 724 725 726 733 734 742 805 819

R> y <- ylkeep]

R> x <- x[keep,]

R> g <- glkeep, keep]

R> set.seed(100)

R> n <- dim(x) [1]

R> Ns <- as.vector(apply(x, 2, sum))

R> Ls <- sapply(1l:length(Ns), function(i) sample(which(x[,i] == 1),
R+ ceiling(0.035 * Ns[il)))

R> L <- NULL

R> for(i in 1:length(Ns)) L <- c(L, Ls([[i]])
R> U <- setdiff(1:n, L)

R> ord <- c(L, U)

R> m <- length(L)

R> yl <-y

R> y1[U] <- NA

Observations 12, 19, ---, 819 were removed since they were isolated vertices. A stratified
sample is used to insure that every journal is represented in labeled and unlabeled partitions.
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The spa is used to fit an estimate on the observed graph directly without the journal indication
matrix (i.e., Y = f(G)):

R> Al <- as.matrix(g)
R> gc <- spa(yl, graph = A1, control = spa.control(dissimilar = FALSE))
R> gc

Call:
spa(yl, graph = A1, control = spa.control(dissimilar = FALSE))

Sequential Predictions Algorithm (SPA) with training= 4

Type= soft Parameter= 1.968709 GCV type: approximate transductive
Fit Measures:

RMSE= 2.439 tGCV= 8.646 tDF= 5.623

Transductive Parameters:

Regions: O Regularization: Inf

Unlabeled Data Measures:

Training: 0.105 <=1 (Labeled/Supervised ~1)
Unlabeled: 0.965 <=1 (No Supervised Equivalent)

The output provides several descriptive aspects of the model fit. First notice that, the fit used
4% of the data as labeled during training. The fit measures provide standard fit description
with root mean squared error, parameter estimation type (refer to Section 4) and transductive
degrees of freedom. The transductive parameters were set to default, which means that the
entire unlabeled data set was fit as one unit and no regularization was employed (i.e., FTF as a
special case of SPA was employed). The unlabeled data measures provide a rough assessment
of the potential usefulness of unlabeled data during training. The dissimilar flag must be
FALSE for the spa.control to indicate that the co-citation network is a similarity matrix.

The natural concern is in the performance of the SPA on U (unlabeled set). To check perfor-
mance on U, we calculate the misclassification error rate:

R> tab <- table(fitted(gc)[U] > 0.5, y[U])
R> 1 - sum(diag(tab)) / sum(tab)

[1] 0.4647355

The unlabeled error for this fit is extremely poor. An error this large typically indicates that
the procedure is not using the unlabeled data appropriately during training. To investigate
this, we provide a useful diagnostic by considering the Ay partition of A. This partition
provides the common links between labeled-unlabeled data, and if an unlabeled observation
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has no such links (i.e., Ay, x 15, = 0) then the observation cannot be utilized directly for
training. To assess the problematic unlabeled observations simply execute:

R> sum(apply(A1[U, L], 1, sum) == 0) / (n - m) * 100
[1] 39.92443

This tells us that nearly 40% of the cases have no direct associations with Y7, which signifi-
cantly deteriorates performance.

Next, we incorporate transductive prediction to account for unlabeled response estimates
used in training by penalizing observations farther away from labeled cases. The idea is to
sort the Ayr x 1 information and break the data into regions enumerated from highest
(most associated) to lowest (least associated). In other words, the vector Ay x 1 provides
a sorting method that groups objects to be classified at subsequent rounds similar to the
shortest path used in the lattice example in Section 2. The observations are then sequentially
estimated, where at each round new unlabeled node estimates are treated as true values (refer
to Section 4.3 for the general SPA or Section 2 for a simple example). To perform transductive
prediction with the spa package use the update generic with the dat argument:!

R> pred <- update(gc, ynew = yl1, gnew = Al, dat = list(k = length(U),
+ 1 = Inf))

R> tab <- table(pred[U] > 0.5, y[UIl)
R> 1 - sum(diag(tab)) / sum(tab)

[1] 0.2884131

The performance improves significantly. To update the spa object so that it corresponds to
the above output execute:

R> gc <- update(gc, ynew = y1, gnew = Al,

+ dat = list(k = length(U), 1 = Inf), trans.update = TRUE)
R> gc

Sequential Predictions Algorithm (SPA) with training= 4 %
Transductive Parameters:

Regions: 794 Regularization: Inf

Unlabeled Data Measures:

Training: 0.105 <=1 (Labeled/Supervised ~1)
Unlabeled: 0.965 <=1 (No Supervised Equivalent)

'The FTF algorithm is the special case of SPA where all observations are in one group and there is no
regularization, that is dat = list(k = 0, 1 = Inf) produces the FTF output.
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We see that, the transductive parameters are updated with the new fit. The training unlabeled
measure of 0.105 does not change when using transductive prediction.

Next, we investigate the estimate Y = X3 + f (G) where X is the journal indication matrix
and G is the co-citation network. To execute this with spa:

R> gjc <- spa(yl, x, g, control = spa.control(diss = FALSE))
R> gjc

Sequential Predictions Algorithm (SPA) with training= 4 %

Coefficients:

other artificial_intelligence
0.369607329 0.049032222
machine_learning neural_computing
0.959096925 0.979303548
ieee_trans_Nnet ieee_tpami
0.947685447 0.012443001
j_artificial_intelligence_research ai_magazine
0.006865285 0.009279124

JASA

0.976590026
Transductive Parameters:

Regions: O Regularization: Inf

R> tab <- table((fitted(gjc) > 0.5)[U], yl[U])
R> 1 - sum(diag(tab)) / sum(tab)

[1] 0.395466

The coefficient estimate is provided in the output and can be extracted using the coef generic.
The output also shows that the estimate suffers from the same performance problems with
respect to the unlabeled data as the previous fit. As before, this problem can be fixed by
using transductive prediction:

R> gjcl <- update(gjc, ynew = yl, xnew = x, gnew = Al,

+ dat = list(k = length(U), 1 = Inf), trans.update = TRUE)
R> gjci

Sequential Predictions Algorithm (SPA) with training= 4 7%

Type= soft Parameter= 1.968709 GCV type: approximate transductive

Coefficients:
other artificial_intelligence
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0.46182225 0.34495785
machine_learning neural_computing
0.86100990 0.91947929
ieee_trans_Nnet ieee_tpami
0.85709753 0.20706484
j_artificial_intelligence_research ai_magazine
-0.05256496 0.11758127
JASA
0.62853374

Transductive Parameters:
Regions: 794 Regularization: Inf

R> tab <- table((fitted(gjcl) > 0.5)[U], yl[U])
R> 1 - sum(diag(tab)) / sum(tab)

[1] 0.197733

As we can see the performance of the approach improved significantly after we updated the
model to include transductive prediction. The strong performance on the unlabeled data
suggests that using both the X information and G information contributed to predicting
the class label of a document. In addition, a coefficient vector is obtained that may provide
interpretable value for assessing a specific journal’s contribution to this classification problem.

4. Methodology

In Section 3, we provided an analysis illustrating several features utilized by the spa package.
The output offers utilities useful for assessing and improving the fit, including transductive
generalized cross validation and degrees of freedoms, influence of observations in U on YL,
an unlabeled contribution ), I{Ayy, X 11, = 0} and a transductive prediction algorithm for
processing data. Next we present the details of the algorithmic fitting methodology, which
will also provide some justification for these measures of fit.

The proposed approach essentially extends the concept of a linear smoother into the semi-
supervised setting using the fitting the fits algorithm (the sequential predictions algorithm
is a generalization for which the package is named and presented in Section 4.3) (Culp and
Michailidis 2008b). It is also quite similar to self-training approaches that use the expectation-
maximization (EM) algorithm (Chapelle et al. 2006; Culp and Michailidis 2008b). The first

step is to initialize the unlabeled vector ?(50) = 0. Then the FTF iteratively fits:

)A/L(k-i-l) _ < SLL SLU > AYVL (1)
vty Svr  Suu i)
where S is a linear smoother for response Y and is independent of k. Notice that the labeled

response estimate is reset to Y7, before fitting, which intuitively allows the procedure to train
with the observed response (known response) and use the previous estimated response fit
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where the responses are unobserved (unknown). The algorithm is repeatedly executed until

global convergence defined by || Ylgkﬂ) — Y[Sk) |< e with € > 0. The vector Y = [V, ,V;]]"
denotes the convergent solution to (1). To establish global convergence, notice that at step k

we have that Y(*) = ZIZ:_& SZUUSU LY, + S{“]UYL(,O) and therefore the geometric matrix series
is guaranteed to converge whenever p(Syy) < 1 where p is the spectral radius. The closed
form convergent solution can be obtained as the limit on the geometric matrix series: Yz, =
SprYr + SpuYy and Yy = (I — Syv) ' SuLYe.

The spa package primarily fits stochastic based smoothers including kernel smoothers, graph
smoothers and a semi-parametric extension involving kernel smoothing. However, before we
study kernel smoothers in the semi-supervised setting, we first look at linear regression to
gain important insight into the procedure, since several key aspects of the spa package are
motivated from linear regression. Upon presenting FTF with linear regression (Section 4.1),
we then focus on kernel smoothing and graph smoothing (Section 4.2), the full sequential
predictions algorithm (Section 4.3), and semi-parametric smoothing (Section 4.4) in the semi-
supervised setting.

4.1. Example: Fitting the fits with linear regression

Next we study linear regression in the semi-supervised setting to provide insight and motivate
key results, including transductive degrees of freedom and transductive generalized cross-
validation. To implement semi-supervised linear regression, one must apply the hat matrix

H:X(XTX)XT _ ( XL(XTX)—lXZ XL(XTX)—lX(‘]r > _ < H.. Hpy )

Xp(XTX)'x] Xp(XTx)71x] Hyr Hyy

as the smoother in (1). Note the supervised hat matrix is Hyp = XL(XLTXL)*IXIT. Semi-
Supervised linear regression with FTF is quite simple to fit in R, using the .GlobalEnv nested
in sapply command:

R> set.seed(100)

R> x <- matrix(rnorm(40), 20)

R> z <- cbind(x, 1)

R> y <= z J*J, rnorm(3) + rnorm(20, , 0.5)
R> H <- z }*) solve(t(z) }*% z, t(z))

R> L <- 1:5

R> U <- 6:20

R> yh <- c(y[L], rep(0, 15))

R> ftfls <- function(i) {

+ .GlobalEnv$yh[L] <- y[L]
+ .GlobalEnv$yh <- H 7*J, .GlobalEnv$yh
+ }

R> ftfres <- sapply(1:200, ftfls)
[1] -1.8053630 -0.7672166 ... -0.9983772

Upon convergence an estimate for the response is obtained in closed form with Yy = (I —
Hyy) 'HyrYr and Y, = Hp Yz + HooYy.

11
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The natural question to ask is, “What are the properties of the convergent solution for lin-
ear regression with FTF?” The answer is clarified by comparing our result to the ordinary
supervised least squares solution:

R> dat <- data.frame(y =y, x)
R> supls <- predict(lm(y ~ ., data = dat, subset = L), newdata = dat)
R> apply((ftfres - supls)”~2, 2, sum)[c(1:2, 199:200)]

[1] 2.831134e+01 1.668253e+01 ... 8.545281e-15 7.265162e-15

By iteration 200 the difference between the two is negligible and therefore we see that semi-
supervised linear regression using FTF reduces to the supervised least squares solution. This
equivalency is proven for the generalized linear model in Culp and Michailidis (2008b). A
similar result can be shown when treating the semi-supervised linear regression problem as a
missing data problem (Little and Rubin 2002, p. 29)

The equivalency between semi-supervised linear regression using FTF and supervised ordinary
least squares results in two new expression for the hat matrix. The equivalent hat matrices
are given by:

Hyp = X5 (X] X1)71X] (supervised) (2)
= Hpp+Hpy(l— HUU)_lHUL(transductive) (3)
= Hypp+ HJ}; Hyp (approximate transductive) (4)

where Hyp = Xy(X] X1)"tX] (supervised unlabeled estimate). Upon convergence each
formulation has the same error and the same trace. The degrees of freedom of the residuals
of the semi-supervised estimator are defined as

df =| L | —tr(Hpr + Hrp(I — Hyy) YHyp) =| L | —p

since this form yields the smoother for the labeled estimator resulting from FTF, i.e., Y, =
(Hpr + Hry(I — Hyy) ™ 'Hyp) Y.

This equivalency between these projection matrices is useful in computing the generalized
cross-validation (GCV) error rate of a smoother, i.e., the GCV for smoother S is defined as:

YL—SYzl3

GCV(S) = qo@inh®

To do this, we define GCV with reference to (2) as labeled GCV ("1GCV"), GCV with refer-
ence to (3) as transductive GCV ("tGCV"), and GCV with reference to (4) as approximate
transductive GCV ("aGCV"). All of these measures provide an identical value in linear regres-
sion but will differ in kernel smoothing (refer to Section 4.2). The "tGCV" criterion would
be the best choice but is computationally demanding due to the need for (I — Hyy)~!. We
recommend using the approximate transductive GCV criterion since it is less demanding
computationally and is still influenced by observations in U. The choice of GCV is set by
spa.control with "aGCV" as the default.

Remark: Linear regression is not implemented in the spa package since the 1m command
computes it equivalently.
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4.2. Semi-supervised stochastic kernel smoothing

Next we study kernel smoothers, where a kernel function is applied directly to distances in
X with Wi; = Ky (x4, 2;) where Ky (z;,z;) = exp(—d;;/\) is default. In general X is a tuning
parameter where A =~ (0 tends to yield solutions with low bias and high variance while A\ — oo
tends to yield solutions with high bias and low variance. The matrix W emits the partition
fori,j € LUU:

Wrr Wiy >
W = .
< WurL Wyu

The FTF algorithm allows for the observations in Wy, Wy, and WJ ; to influence training of
the procedure, by iteratively fitting (i) ?L(k_l) =Yy and (i) Y®) = §Y*-D with § = DWW
where D is the diagonal row sum matrix of W (denoted as D = diag(W'1)) and initialization
Y,[}o)' Tracing the iteration, we get that the unlabeled estimator is Yk = Zf;& SéUSU LYr +
SﬁUYéO) and take the limit as k — oo to get the closed form solution, ¥ = Y (°):

( 3:/L > _ < Srr+ Spu(I — Suu)~tSur )YL (5)
Y (I - Suv) *Sur '

The condition for producing a stable estimator is discussed in Section 4.3.

Unlike in linear regression, Y., is not equivalent to the supervised estimator. However, the
supervised estimator is influential on the result as we show next. First for kernel regression
we have that S = D™ 'W. Define Dy, Dy as the respective labeled/unlabeled diagonal
submatrices of the diagonal row-sum matrix D. In addition, denote Dy = diag(Wrr1y),
that is the row sum matrix of Wiz, and similarly denote Dyy = diag(Wryly), Dy =
diag(WLle), and Dyy = diag(WUUlU). From this, Dy, = Dr; + Dy and Dy = Dyy +
Dyrr,. Next, we denote the supervised kernel smoother as 177, = DE%WLL and the supervised
prediction smother as Ty;, = D[}iWU - The supervised estimator is denote by Y. To connect
supervised estimation to Y, we have that:

YL = (DZIDLL) TrYr + (I — DZIDLL) SruLYr
= QY.+ (I—-Q)Yy, (6)

where Q = DilDLL < T and Sryr = DE}JWLU(I — Syy)~tSyr. From this decomposition,
we notice that if Q = I then the supervised labeled estimate is close to the semi-supervised
labeled estimate. On the other hand, shrinking this matrix provides more influence with
Srur. It is easy to show that Sppr is right stochastic and therefore (6) is an average of two
right stochastic matrices which is also right stochastic. The value Q = trl(qu)) provides a quick
determination of the effect of the unlabeled data on the labeled estimate in training and is
provided in the output of the spa object (0.105 for the Cora data). Values near one indicated
that (6) is close to Yz, = T 1Yy, (supervised) while smaller values indicate that the estimate

of Yy, is influenced by Y7.

For the kernel smoothing problem, we are also interested in approximating the matrix Sryy,
without requiring the computation of the inverse (for A estimation). Using the linear re-
gression result, we employ Spy; ~ V*1TJLSUL = VflTJL(I — D[;lDUU)TUL, where V is
the appropriate matrix to make the approximation right stochastic. This adjustment is ex-
tremely useful for fitting GCV as it is used by type = "aGCV" and is default for spa.control.

13
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This result in the case of kernel regression is not equivalent to GCV using the transductive
smoother or GCV using the labeled smoother (refer to Section 4.1).

Graph-based smoothing is a natural generalization of kernel smoothing. The adjacency matrix
of the graph is given by A and the smoother is obtained as S = D~!'A. The FTF is then
applicable in the same manner as with the kernel smoothing approach discussed previously
(i.e., A and W are quite similar). One key difference between graph-based smoothing and
kernel smoothing is that the graph problem is inherently semi-supervised (often referred to
as transductive in this special case), and therefore a supervised alternative does not exists.
Care is taken with the design of the spa to allow for transducitve prediction when necessary.

4.3. The sequential predictions algorithm

The FTF algorithm was previously employed with smoothers. The full sequential predictions
algorithm is an extension of FTF to perform transductive prediction with the intent of im-
proving performance (refer to Cora example). Transductive prediction addresses the issue
of updating a classification or regression technique to incorporate either new observations
(labeled or unlabeled) unavailable originally during training, reassess the current unlabeled
observations used previously during training, or both.

To motivate the need for the SPA algorithm, we first consider the circumstances for when
(I—Spy)~! is expected to be unstable. To provide insight recall that the smoother S = D~1W
is right stochastic, i.e.,

Srr Swu 1r 1s
— >
<SUL SUU><1U> <1U>andSU_O.

In such a circumstance, a stable estimator is achieved whenever Syyly < 1y (i.e., the sum of
each row in Syy is less than one). From the above equation we observe that the requirement
is satisfied whenever Syply > 0p (i.e., every row in Syp sums to a positive number). The
instability occurs whenever Syl = 0, or sufficiently Wy, x 11, = 0p. This condition can
easily be violated in practice. For example, a compact kernel could force weak connections
between labeled and unlabeled data to vanish. It is also common to employ a non-compact
kernel and then a k-nn function to that kernel (known as a k-nn graph), which results in the
analogous effect. In the case of an observed graph, it is not difficult to obtain a vertex that
is only connected to other unlabeled vertices (refer to the Cora text data). This problem
becomes worse as | L | decreases for each of these examples, since there are less labeled cases
to connect with the unlabeled cases.

To correct for this we extend the FTF algorithm into the sequential predictions algorithm
(Culp and Michailidis 2008a). The main idea is to sort Wiz, x 1, and partition the unlabeled
data U = {U (Z)}é?:l into k disjoint sets such that the set with the most labeled connectivity is
employed first with FTF. In other words, apply FTF with labeled cases L(®) = L and unlabeled
cases in UM, Then treat the unlabeled estimates as true and at iteration ¢ train FTF with
labeled cases LW = L¢D Uy U® and unlabeled set U¥+1). This process repeats with a
total of k calls to FTF. In Culp and Michailidis (2008a), we provide a penalty function based
on constrained regularization to correct for the use of unlabeled predictions at subsequent
rounds. The main idea is to increasingly push the estimates towards a global point estimates
(mean of Y7) as the algorithm progresses. This entire approach is implemented in the update
generic, requiring parameter dat = list(k = 0, 1 = Inf) by default with subparameters k
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(number of regions) and 1 (inverse regularization penalty, i.e., 1 = 0 is infinite regularization
while 1 = Inf is no regularization). The approach is shown to work quite well for the Cora
text data and was also shown to be competitive to several state-of-the-art graph-based semi-
supervised approaches. An extension to hard labels based on exponential loss is also discussed
in Culp and Michailidis (2008a) and is implemented in spa (use type = "hard" for spa call
and reg = "hlasso" for update).

4.4. An optimization framework for the semi-parametric model

The fitting the fits algorithm provides a simple and effective way to fit data with an unlabeled
partition and or graph based terms. The connection to optimization is now established for
fitting semi-parametric models. In order to do this, we first establish the link between the
FTF algorithm and optimization. Then we generalize this approach to the more general
semi-parametric problem.

For this, denote ¢(y, f) = (y— f)? as the squared error loss function, and consider the following
optimization problem:

mind_ ¢y fi) + M TP,
i€l
where P is a positive semi-definite penalty matrix. In this construct the loss is incurred from
the labeled estimator f; to the observed response Y7, while the full function is accounted
for with the penalty term. The penalty matrix P is taken as the combinatorial Laplacian
P =A=D—W for observed graph and constructed graph terms.

Next we demonstrate that the FTF algorithm with kernel regression does indeed solve the
following optimization problem:

mfin(YL — fo) " WL (Yr — fr) + fTAf.

Define, Y (Yy) = [Y1, Yy] with Yy an arbitrary unlabeled response. Then we have that
(Yo = fo) " Wer(Ye — fr) = (Y (fu) = /) TW (Y (fr) — f) for all f and is independent of fr.
From this, the derivative solves —W (Y (fy) — f) + Af = 0. Rearranging we get that:

()= (2 20)(2)

fu Svr Svu fo )’

where S = (W + A)"'W = D'W. Solving the fixed point fy = Syyfu + SyrYr and
plugging the solution back in yields the identical solution to (5) for kernel regression.

Using this approach, we then motivate the semi-parametric model n = XS 4 f(G) as the
solution to:

min » (Y, — fr — Xp8) ' Wrr(Ye — fo — X0B) + fTAf.

U i€l
As we proceeded in kernel regression, we have that (Y (ny) —n)" WY (ny) —n) = (Yr —
np)Wirr(Yr, — nz) and is independent of 7. Taking the gradient with respect to f we get
that

—W({Y () —n)+Af=0 = f=5(ny)—XB) with S = (W + A)"'W = D~'W.

15
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Taking the gradient with respect to 5 and substituting for f we get that:
~X"W¥(w)-n) =0 = X"W(I-8)XB3=X"W(I-S)Y ().

From this, we get that /) = X8+ f = X3+ S(Y (fy) — X3) = H(S)Y (fiy) for some smoother
H(S). From this, the FTF for the semi-parametric estimator reduces to: initialize ﬁg))
and repeat, (i) ﬁ(Lk) = Yy and (i) 7% = H(S)3%). Convergence is guaranteed when-
ever p(H(S)yy) < 1. The SPA algorithm naturally applies to the semi-parametric model

where the estimates for 8 are built up over the k calls based on the order of Wy, x 1p.

5. The spa package

The spa package provides semi-supervised functions in R to fit and evaluate an estimate of
the form ¥ = f(G) or Y = X + f(G), where J3 is the coefficient vector, Y is the estimated
response, and f is a function defined over the vertices of G. The process is broken into three
key phases: (i) processing the graph, (ii) object generation and (iii) post fitting (refer to
Figure 2). The first phase provides a series of functions for processing an observed graph
(refer to the Cora example above) or a graph constructed from the Z data. The second
phase is generating the spa object with the tuning parameter estimation functionality. The
third phase provides post fitting functions featuring transductive prediction with the update
generic, inductive prediction with the predict generic, and a series of other standard generic
functions.

fitted.spa

? | Y: nx1 vec. (Y,=NA) |
7 . Lo—oo
c
8 -
A . spa
g e A - D
© 1
|| :
E | ftffit | | ftfxfit | | feffit |
|

’ update.spa ‘ ’ predict.spa ‘

k) E

il

Figure 2: Sequence diagram for describing the relationship between the functions in the spa
package. Dashed lines indicate steps that are optional.
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Two Moon Simulated Data
Inductive Prediction with a Transductive Model

A A .
™ Y=f(Gx) B Original
= YL=f(XL) +o B Updated
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-4
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x1 x1

Figure 3: Scatterplot for two variables X; and X, with the class label as light gray, dark
gray, or missing (small gray circle). (left) A supervised kernel smoother is gray, and the SPA
fit is black. (right) Transductive prediction with the spa, the original fit for the two moon
data set is provided as black, while the retrained spa was gray and dashed.

To illustrate the key functions necessary for fitting a model with the spa package we consider
a synthetic two moon data set (refer to Figure 3). The unlabeled data are generated based
on the intuitive cluster assumption: If the classes are linearly separable then observations on
similar clusters should share the same label. In this example, the SPA breaks the unlabeled
data into two moon-like clusters, a separation that cannot be found by the supervised kernel
smoother.

To load the data in R execute:

R> library("spa")
R> set.seed(100)
R> dat <- spa.sim(type = "moon")

The three phases for spa presented in Figure 2 are each discussed in detail for these data.

5.1. Processing graph

The graph processing stage highlighted in Figure 2 provides the means necessary for preparing
the Z information or an observed graph for processing with the spa function. The functions
for manipulating these data consist of uDist, knnGraph, epsGraph, and floyd.

In the case of an observed graph, this step accounts for several diverse types of similarity
graphs. For example, if the graph were sparse (e.g., a planar graph) then one may wish
to employ the shortest path distance metric on the graph using the uDist function. The
purpose of performing this manipulation with a sparse graph is to relate distant nodes with
a distance proximity measure through neighboring links. As a consequence the unlabeled
observations that were not originally directly linked to labeled cases may now have associations
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through neighboring unlabeled observations that were connected with labeled cases. On the
other hand, when the graph is dense, like with the Cora example, this type of manipulation
is not necessary and in our experience can hinder performance. If the uDist function is
employed with an observed graph, then the dissimilar flag in the spa.control must remain
TRUE otherwise it must be set to FALSE.

In the case of converting Z information to a graph, the first step is to specify an appropriate
distance metric on Z. For the simulated data, we would employ Euclidean distance:

R> Dij <- as.matrix(daisy(dati[, -1]))

For Z matrices with large ¢, restricting to local connectivity with a k-nn or € graph can
significantly improve performance of this technique (Tenenbaum, Silva, and Langford 2000).
However, the k-nn object is not a proper distance metric, and we often wish to convert into a
proper metric with Floyd’s algorithm (the triangle inequality does not hold for a k-nn graph).
To do this with spa execute:

R> DNN <- knnGraph(Dij, dist = TRUE, k = 5)
R> DFL <- floyd(DNN)

The flag dist = TRUE indicates that the object is distance weighted.

Upon obtaining the appropriate graph representation for the spa function, we focus next on
generating a spa object. Notice the other spa input parameters, ¥ and X, require minor
processing. For Y, set Yy = NA and make sure X is either a data.frame or matrix.

5.2. Generating a spa object

The spa object encapsulates the model fit by the procedure. This step accounts for param-
eter estimation, problematic unlabeled data, and object generation. The parameter estima-
tion procedure is designed to estimate parameters efficiently using one of four generalized
cross-validation measures with either a bisection algorithm or grid search. The problematic
unlabeled data cases (Wyr, x 11, = 0) are carefully identified and handled with the global
argument. The final object is then generated, reporting several useful measures that de-
scribe the current fit. The functions employed here include spa.control, spa and internal
GCV /fitting functions.

For parameter estimation, one must first consider the spa.control function. For this, the
specified GCV is optimized over a set of potential A candidates, or a value is provided using
the 1tval option. To determine the set of potential candidates we provide a fast bisection
algorithm and a slow, more thorough, grid search. For the bisection algorithm the key pa-
rameters are lgmax = 0.2, lgmin = 0.05, ldepth = 10, and ltmin = 0.05. The lgmax
and lgmin set a range to search based on the [1gmin, lgmax] -100 quantile of the density
taken on finite distances. In our experience, this provides a fairly good spread of potential A
candidates. In some cases, the quantile determined by 1qmin is negative due to a large density
at zero, and one can set the parameter 1tmin to correct for this. The bisection algorithm
recursively divides the interval in half and finds the subinterval that contains the minimum
GCV. This process is repeated 1depth times. The approach is fast and usually works well.
However the algorithm can get stuck and arrive at a A estimate that is unsuitable. To correct
for this, a uniform search over a grid of size 1grid between the 1gmin to 1gmax quantiles can
be performed to estimate A.
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The object generation required specification of the unlabeled data. This can be done in two
ways. First a labeled set of indices can be provided using the L argument, and the second
approach is to set Yy = NA. The algorithm processes a supervised kernel smoother if no
unlabeled data are specified. To generate the spa object with the simulated moon example,
we execute the following command in R:

R> L <- which(!is.na(dat$y))

R> U <- which(is.na(dat$y))

R> gsup <- spa(dat$y[L], graph = Dij[L, L])
R> gsemi <- spa(dat$y, graph = Dij)

First we consider the supervised kernel smoother fit on only the labeled data:
R> gsup
Sequential Predictions Algorithm (SPA) with training= 100 %

Type= soft Parameter= 0.04219128 GCV type: labeled

Unlabeled Data Measures:

Training: 1 <=1 (Labeled/Supervised ~1)
Unlabeled: NaN <=1 (No Supervised Equivalent)

For the supervised kernel smoother, the parameter \ was estimated as 0.04. Notice also that
if no unlabeled data are specified then the parameter estimation defaults to using labeled
GCV. In addition, the unlabeled data measures have no meaning here. The supervised kernel
smoother result is shown as the gray curve in both panels of Figure 3. Notice that this
estimate completely misses the moon like structure in the left figure.

Next, we consider the semi-supervised spa fit on the moon data:

R> gsemi
Sequential Predictions Algorithm (SPA) with training= 3

Type= soft Parameter= 0.05 GCV type: approximate transductive

Unlabeled Data Measures:

Training:  0.848 <=1 (Labeled/Supervised ~1)
Unlabeled: 0.995 <=1 (No Supervised Equivalent)

The approximate GCV is used to estimate A as 0.05. The first unlabeled data measure is
ﬁtr(DZiDL) = 0.848. The semi-supervised result corresponds to the black curve in left

19
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panel of Figure 2. Here the use of the unlabeled data produces a classification border that
separates the moon-like data clusters.

To view the GCV path for parameter estimation consider the parm.est structure:

R> gsemi$model$parm.est

$cvlam
[1] 0.05
$gcv
[1] 3.414852e-29 2.327041e-01 2.396981e-02 4.819773e-04 5.030481e-07
[6] 2.823065e-11 3.441998e-16 9.467595e-21 1.006386e-20 6.494275e-20
$lambda
[1] 0.05000000 1.27511510 0.66255755 0.35627877 0.20313939 0.12656969
[7] 0.08828485 0.06914242 0.05957121 0.05478561

We see that the approach considered several values of A before settling on A = 0.05.

5.3. Post fitting

The spa package provides several enhancements for processing a spa object post fitting.
Most are standard generic methods associated with models in general. The main focus is
on transductive and inductive prediction. The generics available at this stage are: update,
predict, plot, print, dim, coef, fitted, and residuals.

For inductive prediction, the predict generic is designed to process a new vertex, where the
edges for this observation with respect to the original labeled and unlabeled observations are
assumed to be available. That is, let w.; be the edge network for predicting vertex -, and

C . o i G3Y; . o & . . .
form the prediction as Y. = % with Y = [V}, Y;]]T. Next we illustrate inductive
JELUU -7

prediction for observation x = (0 0) with spa.predict:

R> newobs <- c¢(0, 0)

R> newnode <- as.matrix(sqrt(apply(cbind(dat$x1 - newobs[1],
+ dat$x2 - newobs[2])"2, 1, sum)))

R> round(predict(gsemi, gnew = newnode), 3)

(11 0

One could also process a sequence of new data points at once, e.g., to predict (4,—4),...,
(4,4), (4,5) execute:

R> newnodes <- sqrt(t(sapply(1:10 - 5,
+ function(j) (dat$xl - 4)°2 + (dat$x2 - j)~2)))
R> round(predict(gsemi, gnew = newnodes), 3)

[1] 1.000 0.075 0.034 0.001 0.000 0.000 0.000 0.000 0.000 0.000
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Figure 4: A synthetic Swiss Roll classification set. The true classes are provided on the left,
and the k = 6 nearest neighbor graph is given on the right.

One could classify these observations according to the above probability class estimates.

Transductive prediction (updating) is more complex. In this case the observations provide
inherent meaning and the current classifier should be modified to incorporate them. The
object is changed post fitting, and therefore this type of prediction is really an update. The
purpose of this update could be to perform the general SPA on the observations used for
training with different settings or to perform the general SPA with new observations (labeled
or unlabeled). The key parameters other than the (y,x,G) data for retraining include dat
and trans.update. The dat parameter is a list with two components: k£ = 0 and [ =Inf
(default). The parameter k controls the number of regions to break U into, while I controls
the regularization for penalizing estimates based on its regions (regions farther from the
original L get higher regularization). To update with a new unlabeled data set generated
from the same underlying data mechanism, execute:

R> dat <- rbind(dat, spa.sim(100, 0))
R> gsemi <- update(gsemi, ynew = dat$y, , as.matrix(daisy(dat[, -11)),
+ trans.update = TRUE)

The R contour plot for the new updated border is given in Figure 3 (right).
6. Examples

6.1. Swiss roll data set

For the first example, we present a simulation where the variables in the X data lie on a swiss
roll manifold (refer to Figure 4, left). For the response, we first define a sequence of regions
denoted by index ¢ then the classification rule is defined as the indicator that an observation
is on an even region. Refer to Figure 4 (left) for the region breakdown. The technical details
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for the example are as follows: let z; ~ UJ0,5 * 7| and zo ~ U[6,10] then we have that the
manifold is generated with 1 = 2; sin(z1), 2 = 21 cos(z1), and x3 = 29 — 8. For classification,
set 22 = 2?21 z7 and then generate the response with:

yl(2® < 15(i + 1) & 2* > 15i)] = (i mod 2) (7)

max; x2

where i = 0 to [—g—].

The R code necessary to generate the example is given below:

R> library("scatterplot3d")
R> n <- 1000
R> set.seed(100)
R> z1 <- runif(n, 0, 5 * pi)
R> z2 <- runif(n, 6, 10)
R> x1 <- z1 * sin(z1)
R> x2 <- z1 * cos(z1)
R> x3 <- z2 - 8
R> x <- cbind(x1, x3, x2)
R> xsq <- apply(x~2, 1, sum)
R> y <- rep(100, n)
R> inc <- 15
R> p1 <- ceiling(max(xsq)/inc)
R> for(i in 0:pl) yl[xsq < inc * (i + 1) & xsq >= i * inc] = i %} 2
R> gr <- gray(c(0.3, 0.7))[y + 1]
R> scatterplot3d(x1, x3, x2, ylim = c(-8, 8), color = gr, pch = 16,
+ cex.symbols = 1, cex.axis = 1.2, angle = 30)
R> title("Simulated Swiss Roll", cex.main = 2)
R> title("\n\nTrue Classes")
R> g1 <- knnGraph(x, k = 6, weighted = FALSE)
R> pl <- scatterplot3d(xl, x3, x2, ylim = c(-8, 8), color = gr, pch = 16,
+ cex.symbols = 1.2, type = "n", cex.axis = 1.2, angle = 45)
R> for(i in 1:n) {

ind <- which(gi[, i] > 0)

for(j in 1:length(ind)) {

pnts <- pl$xyz.convert(c(x[i, 1], x[ind[j], 1]1),
c(x[i, 2], x[ind[j], 21), c(x[i, 3], x[ind[j], 31))
lines(pnts$x,pnts$y, col = 1, 1lwd = 1.5, 1ty = 1)

}
}
R> title("Simulated Swiss Roll", cex.main = 2)
R> title("\n\nk=6 Nearest Neighbor Graph")

+ + + + + + +

The preprocessing for this example included generating a £ = 6 nearest neighbor graph
using the Euclidean distance metric and applying Floyd’s algorithm to the graph (refer to
the right panel of Figure 4 for the k-NN graph). These settings captured the manifold.
For classification, we computed the true unlabeled classification accuracy averaged over 50
simulations. For this, the labeled size varied among 5%, 10%, 50%, and 90%. The results of
the simulation are given in Table 2.
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5% 10% 50% 90%
SPA 0.766 £0.006 0.873 £0.004 0.950 £ 0.006 0.964 £+ 0.002
supervised k-nn  0.675+0.005 0.805 £ 0.005 0.935+0.001 0.953 £ 0.002

Table 2: Accuracy rates for simulation.

The results for the k = 6 supervised nearest neighbors algorithm was also included for com-
parison purposes. For these data, we see that spa outperforms the supervised k-nn especially
when the | L | is small. A single run with 10% labeled is given below:

R> g6 <- knnGraph(x, k = 6)

R> Dij <- floyd(g6)

R> set.seed(100)

R> L <- sample(1:n, ceiling(0.1 * n))

R> U <- setdiff(1:n, L)

R> yl <-y

R> y1[U] <- NA

R> gself <- spa(yl, graph = Dij)

R> tab <- table(fitted(gself)[U] > 0.5, y[U] > 0.5)
R> sum(diag(tab)) / sum(tab)

[1] 0.72

6.2. Protein interaction data set

For this next example, the observations consist of 1875 proteins from yeast organisms in the
form of a graph. For this particular data 13 different systems are used to detect interactions
between any two-proteins, e.g., a protein interaction could be detected by two-hybrid, im-
munoprecipitation, affinity-purification, etc (Ruepp et al. 2004). The edges for this graph are
defined by the count of interactions detected from different systems, i.e., e;; is given by:

€ij = Z 1{system s detects interaction between protein i}
S

It is assumed that each system would detect an interaction between two identical proteins,
i.e., e; = 13 for all i. The response for this data set is the classification of whether the
protein is located on a nucleus of the cell. For these data, we do not have the response for 685
observations. The goal is to use the protein interaction network to classify the cell location
for these observations. The following R code reads in the data:

R> data("protLoc")

R> y <- protLoc$class

R> gs <- protLoc$inter

R> A <- gs[[1]] + gs[[2]]

R> diag(4) <- 13

R> resp <- as.data.frame(sapply(1:nlevels(y),

+ function(i) as.numeric(y == levels(y)[il)))
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R> names(resp) <- levels(y)
R> y <- resp[, 20]
R> n <- length(y)

Next we fit the SPA to these data. To assess performance we generate a training set and a
tuning set with 50% of the non-missing cases in both.

R> set.seed(100)

R> L <- sample(which(!is.na(y)), 0.5 * n)

R> tuneind <- setdiff(which(!is.na(y)), L)

R> uind <- which(is.na(y))

R> U <- c(tuneind, uind)

R> y1 <- rep(0, n)

R> y1[L] <- yl[L]

R> y1[U] <- NA

R> g <- spa(yl, graph = A, control = spa.control(diss = FALSE))
R> tab <- table(y[L], fitted(g)[L] > 0.5)

R> a1l <- sum(diag(tab)) / sum(tab)

R> tab <- table(y[U], fitted(g)[U] > 0.5)

R> a2 <- sum(diag(tab)) / sum(tab)

R> a3 <- sum(apply(A[U, L], 1, sum) == 0) / (length(U)) * 100
R> cat("Labeled Acc.=", round(al,4), " \nUnlabeled Acc.", round(a2, 4),
+ " \nj), zero A_ULx 1=", round(a3, 4), "\n")

Labeled Acc.= 0.9989
Unlabeled Acc.= 0.77
% zero A_ULx 1= 41.0448

From these results, we notice that the labeled accuracy is 0.999 and the unlabeled accuracy
on the tuning set is 0.77. In addition, 41% of the unlabeled cases have no direct link to
the labeled response. Updating using transductive prediction addresses this issue and can
improve the fit. We use the tuning set to optimize the SPA regularization parameter settings
for £ and k. In the case of ties, we choose the smallest & and largest ¢ to yield the least
regularization.

R> levs <- c(0, 5, 10, 100, length(U))

R> 1ss <- c(seq(0, 100, length = 7), Inf)

R> tunes <- matrix(0, length(levs), length(lss))

R> t1 <- proc.time()

R> for(j in 1:length(levs)) {

+ for(i in 1:length(lss)) {

+ gl <- update(g, ynew = y1, gnew = A, dat = list(k = j, 1 = 1lss[i]))
+ tab <- table(gl[U] > 0.5, yl[U])

+ tunes[j, length(lss) - i + 1] <- sum(diag(tab)) / sum(tab)

+ cat("j=", j, " i=", i, "time=", (proc.time() - t1) / 60, "\n")

+
+
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j= 1 1i= 1 time= 0.015633333 0.003016667 0.01075 0 O
j= 1 1i= 2 time= 0.0302 0.00535 0.02081667 0 O

j= 7 1i= 4 time= 0.6144167 0.1131833 0.4250333 0 O

R> tlev <- unique(apply(tunes, 1, which.max))
R> tls <- apply(tunes/[,tlev], 2, which.max)
R> il <- which.max(diag(tunes[tls, tlev]))

R> olev <- tls[il]

R> otls <- tlev[il]

R> gprot <- update(g, ynew = yl1, gnew = A, dat = list(k = olev, 1 = otls),
+ trans.update = TRUE)

R> tab <- table(y[L], fitted(gprot)[L] > 0.5)
R> a1l <- sum(diag(tab)) / sum(tab)

R> tab <- table(y[U], fitted(gprot)[U] > 0.5)
R> a2 <- sum(diag(tab)) / sum(tab)

R> cat("Labeled Acc.=", round(al, 4),

+ " \nUnlabeled Acc.=", round(a2, 4), "\n")

989

Labeled Acc.= O.
= 0.78

9
Unlabeled Acc.= 0

From this result, we notice some improvement with the SPA over the FTF algorithm directly.
Using this SPA fit we then get the following as the predictions for the unlabeled responses.

R> round(fitted(gprot) [uind],4)

[1] 0.3725 0.4493 ... 0.6312 0.1688

7. Concluding remarks

In this paper, an R package spa that implements a semi-supervised framework for fitting
semi-parametric models was presented. Its key features are parameter estimation in semi-
supervised learning, the distinction between transductive and inductive prediction, and a
variety of functions for processing a graph.
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A. Large graph considerations

The spa package is designed to process a graph of approximately 5000 nodes or less. In the
case of graphs constructed from X data, and several observed graphs this is a reasonable
restriction. The software can handle larger graphs in batch mode but is unlikely to work
on a significantly larger graph. In this appendix, we provide considerations for processing a
graph too large for the current software. In this capacity, we assume that the graph is large,
unweighted, irreducible and that the labeled size (response set) is small.

For an example of a large graph, suppose that the lattice in Figure 1 grew to be 1000x 1000. To
process a graph of this size, one could simplify the SPA algorithm and perform a generalization
of the result in Figure 1. The technical details are somewhat involved but the idea operates
similar to the example in the figure. To start, process the graph into vertex subsets where
Vy are the labeled cases, V; are the set of vertices one hop away from the labeled cases,

. and Vj are the vertices k* hops away. For SPA at iteration r, we have that V., — V,_y
are the vertices to be labeled, V,_1 are the vertices labeled from previous rounds, and V)
contains the observed labeled cases. Denote y = Yy, | as the vector with true labeled cases
for observations in )y and the final estimates from previous rounds for the other cases. From
this, one can apply FTF at iteration r which reduces to: Y; =0 for all i € V, — V,_; then
iteratively fit:

Vi=p 2 Waw+d Y. Wil 8)

where D; normalizes each case, and W;; reduces to the indicator that observation j is in the
neighborhood of i since the graph is unweighted. Once this converges then we penalize Y
towards the prior with an increasing penalty. For example, let w1 be the prior for class 1,
then we set

V=Yt (%) (m-Y). (9)

The estimates for class 0 are obtained in a similar manner. The estimates are treated as
truth for the next round. The last step is to adjust the labeled estimates as Y, = QTrrYr +
(I — Q)SLyY; (refer to Section 4.2). The most computationally demanding step is in the
construction of the vertex subsets and special considerations should be considered depending
on the graph (Zhan and Noon 1998).

In the above algorithm, (8) uses the Nadaraya Watson line estimator form of kernel regression
to generate PCEs as opposed to the spa package which uses the matrix S = D™'W. In the
convergent solution both are equivalent. For a small graph computing the matrix approach is
fast and requires the entire graph in memory. However, for a large graph computation using
(8) is more practical since we only need the local observations to the vertex being estimated
(i.e., Wj; is zero for most vertices in the expression).

For (9) we are penalizing the estimates towards the class prior to account for observations

gl
farther away from the labeled cases. The penalizing function f,(r) = ( is a cumulative

,
T+r
density function. For the package SPA we estimate the cumulative density function from
the data using both the parameter k and ¢ in the dat argument as described in Culp and
Michailidis (2008a). Estimating this function directly for a large graph is computationally

demanding, but using f,(r) in (9) is simpler and likely sufficient. For ~, values too small will
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result in classification of several PCEs as the prior while large values will diminish the role of
the local information in classification. To estimate v one could use a tuning set similar to the
protein interaction example in Section 6.2. To estimate k* notice that (8) moves towards the
prior for r large enough and thus one could estimate using (9) until the PCEs are sufficiently
close to the prior, i.e., the estimates resulting from round k* are such that Y; ~ m. The
remaining nodes would then be estimated directly as the prior.
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