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Abstract

It is often useful to rerun a command line R script with some slight change in the
parameters used to run it – a new set of parameters for a simulation, a different dataset
to process, etc. The R package batch provides a means to pass in multiple command
line options, including vectors of values in the usual R format, easily into R. The same
script can be setup to run things in parallel via different command line arguments. The
R package batch also provides a means to simplify this parallel batching by allowing one
to use R and an R-like syntax for arguments to spread a script across a cluster or local
multicore/multiprocessor computer, with automated syntax for several popular cluster
types. Finally it provides a means to aggregate the results together of multiple processes
run on a cluster.
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1. Introduction

With multicore CPUs (central processing units) prevalent in even the most budget comput-
ers, clusters becoming more cost effective and realistic in smaller scenarios, and even cloud
computing becoming more common, it is useful to have multiple different ways to parallelize
ones code. There are many different methods of implementing parallelism into your R code (R
Development Core Team 2010) to make it run faster. Depending on how the code is written,
different methods to make it run in parallel will be easier to use. For a good overview of the
current state of parallel programming in R see Schmidberger et al. (2009), and the Compre-
hensive R Archive Network (CRAN) task view for high performance computing (Eddelbuettel
2010).

One common method is to replace the lapply function with something that runs it in parallel.
The R package multicore (Urbanek 2011) accomplishes this on a non-Microsoft Windows local
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machine with the command mclapply. With mclapply a function is parallelized across a list,
utilizing any data already in the workspace; however the pieces cannot interact with each
other or cause any modification to any existing values other than what is returned, as is
necessary for parallel methods. A convenience method is provided in the foreach package for
general iteration over elements (REvolution Computing 2009). The packages snowfall and
sfCluster (Knaus et al. 2009), built on the package snow (Rossini et al. 2007), extends this
functionality to a cluster (it can also be run locally). Again, a function is parallelized across
a list. However, snowfall does not use the current workspace, and instead any data must be
first exported before being used by the parallel list function. The package abstracts the usage
of the cluster.

On the other hand, there are lower-level routines to access parallel functionality, i.e., fork
(Warnes 2009), but these are typically not as user-friendly. Other options include Rmpi
(Yu 2002) to access the standard MPI framework for parallel computing (Burns et al. 1994;
Squyres and Lumsdaine 2003; Gabriel et al. 2004; Gropp et al. 1996). There are also specific
implementations for certain clusters, i.e., Rlsf for LSF computing (Smith et al. 2007).

The R package batch lies inbetween that of the lower and higher level cluster packages. First
the package batch provides a means to automate parsing command line arguments in R,
allowing users to easily override any default values already specified in an R script. Parameters
can be passed in as numerical values, strings, or even vectors of values. Then by using these
command line arguments, an alternative and intuitive method of implementing parallelism
into your R code is to simply run the same R script multiple times. Each time the script is run,
it can be run with different command line arguments. For example, these could be different
parameter values for a simulation. Or for a simulation that takes too long to run, they could
be multiple runs of the same simulation, just with different random number seeds passed in
through the command line. It can be easier to simply run your script multiple times on a
cluster, rather than using other cluster implementations. The package can also be run locally
on any operating system, by default utilizing as many cores and CPUs as are in a system.
It can be a particularly useful parallel implementation if some parameter values accidentally
make your code crash; the rest of the parameter values will still run, as they are in separate
processes. It also means that the instances of your program do not all need to share the same
memory, and can load in pieces of a dataset at a time. Lastly, the R package batch provides a
means for intuitively batching off multiple instances of your code with a convenient R syntax,
automatically configuring some of the options for several common clusters. It should run on
virtually any cluster that has some method for batching jobs. With no modification to your
code, the same script can be used on a local multicore system when a cluster is not available
or is occupied.

Compared to other parallel processing packages, the batch package has several advantages
and disadvantages. Rather than running scripts in parallel by wrapping them in a function to
be applied across a list (as in multicore or snowfall), one runs the script directly with different
command-line values. This can be more intuitive, for example, in situations dealing with large
datasets where the dataset does not fit in memory, and things must be explicitly chopped
into pieces anyway. The package batch is also tightly integrated with the job scheduler, by
adding convenience functions that submit jobs to the cluster. The options of each job, e.g.,
what priority queue, can be modified accordingly and dynamically after the jobs have been
submitted. It is also useful and straightforward if you wish to further break your simulations
apart to run pieces on multiple different clusters or computers you have access to. Intermediate
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output of jobs that have been completed can be viewed, along with status updates printed
by currently running jobs and the job scheduler. The R package batch provides a means to
pass parameter values into scripts and run them in parallel on a cluster or locally on any
operating system. The package is available from CRAN at http://CRAN.R-project.org/

package=batch.

2. Passing in command line arguments

2.1. Simple example

We first begin with a simple example of how to override the value of the variables a and b

from the command line in an R script file. Suppose we have the following simple code in the
file ‘test.R’:

a <- 10

b <- 20

library("batch")

parseCommandArgs()

print(a)

print(b)

We can run this script from the command prompt in several different ways, unix users
may be most familiar with R CMD BATCH test.R. For Microsoft Windows users, you can
run this from the command prompt, but the R bin directory must be in your path, or
you must provide the entire path to the R.exe executable instead of R (i.e., ‘C:\Program
Files\R\R-version \bin\R.exe’ with the quotation marks). Alternatively to R CMD BATCH,
we can run it with the following so the output goes directly to our screen, rather than to
‘test.Rout’.

R --vanilla < test.R

then we would get the following output:

> a <- 10

> b <- 20

> library("batch")

> parseCommandArgs()

> print(a)

[1] 10

> print(b)

[1] 20

Running other code with the --vanilla option will have further advantages in other code we
will write later on. In particular, the --vanilla option prevents the output (‘.Rdata’ file)
from being read before or saved after execution. When running in parallel this is typically not
desirable, and will not function correctly. Instead we will want to save the output explicitly
to a numerically incremented filename.

Now, in order to pass in a different numeric value for a, we can run the following

http://CRAN.R-project.org/package=batch
http://CRAN.R-project.org/package=batch
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R --vanilla --args a 7 b 7 < test.R

Then we would get the following output:

> a <- 10

> b <- 20

> library("batch")

> parseCommandArgs()

$a

[1] 7

$b

[1] 7

> print(a)

[1] 7

> print(b)

[1] 7

The code parseCommandArgs() handles parsing the arguments passed in from the command
line. The values are then assigned to the current environment, effectively overriding the default
values of a and b. The return from the call to parseCommandArgs() function is a list of all
of the parameters set in the command prompt, this gives quick feedback that the parameters
really were set. Finally, if we want to get the values of the command line arguments, without
actually overwriting the values in the current environment, we could change the fourth line
to read

res <- parseCommandArgs(evaluate = FALSE)

Then only the list is returned, the value is not set. As a note, it is best to use variable names
that aren’t the names of R functions. For example, do not try to set the value of beta in your
code, as it is also the name of an R function. Instead try BETA, for example.

We have a few more examples of passing in different values for a. In the following we pass a
simple string, a more complicated string with a space in it, a vector of numeric values, and a
vector of strings.

R --vanilla --args a foo < test.R

R --vanilla --args a "foo bar" < test.R

R --vanilla --args a "c(1, 10)" < test.R

R --vanilla --args a "c('foo', 'bar')" < test.R

Passing a vector is similar to the R syntax of creating a vector in R.

3. Running your code in parallel – A simulation case study

We will start off by writing a simple code script for a simulation as an example. Then, to
break it in parallel, we run multiple instances of R with different command line options. We
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provide a means to make the batching more user friendly as well. Here we go through a case
study of how to run a simulation in parallel with the R package batch. Suppose we want to
write a simple simulation that empirically wants to compute the power to detect a difference
between two normal populations.

3.1. Our main simulation script file ‘sim.R’

Although we split up the following code into several sections, it should all go sequentially into
the file ‘sim.R’. This script will run our simulation.

As before, we start off by giving default values to several parameters, and then running
parseCommandArgs() to override those values.

seed <- 1000

n <- 50

nsim <- 10000

mu <- c(0, 0.5)

sd <- c(1, 1)

library("batch")

parseCommandArgs()

In this code, seed is the seed that we will set, n is the number of people in each population,
nsim is the number of simulations to run, mu is the vector representing the mean of each of
the populations, and sd is the vector of the standard deviation of each population. Note that
we used mu rather than mean <- c(0, 0.5), as mean is a function in R, and attempting to
set the value for mean from the command line would cause an error.

After parseCommandArgs() has been run, we can set the value for the seed with

set.seed(seed)

Next in the file goes the simulation code. Here we are comparing two normal populations.
So we draw up some normal populations for the variables X and Y and run a t-test on them
with the following code:

pvalue <- rep(0, nsim)

for(i in 1:nsim) {

X <- rnorm(n = n, mean = mu[1], sd = sd[1])

Y <- rnorm(n = n, mean = mu[2], sd = sd[2])

pvalue[i] <- t.test(X, Y)$p.value

}

power <- mean(pvalue <= 0.05)

At the end of this code we compute the empirical power of our simulations.

Lastly, we might want to store our results in a file. If we store the data as comma separated
value (CSV) file, we will have the advantage of using other code to paste them together later.
A CSV file is easily opened in any spreadsheet program. The following code saves our results
to a CSV file:
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out <- data.frame(seed = seed, nsim = nsim, n = n,

mu = paste(mu, collapse = ","),

sd = paste(sd, collapse = ","), power = power)

outfilename <- paste("res", seed, ".csv", sep = "")

print(out)

write.csv(out, outfilename, row.names = FALSE)

This completes our simulation script file.

3.2. Multiple parameters

Suppose we have a range of values for mu and n that we want to vary in ‘sim.R’. We could
manually batch off command line arguments, or we could use the function rbatch. We could
put the following code into ‘param-sim.R’ to loop over several different effect sizes:

library("batch")

seed <- 1000

for(i in 1:10)

seed <- rbatch("sim.R", seed = seed, n = 25, mu = c(0, i / 10))

rbatch.local.run()

The arguments to the function rbatch is the name of the R file to run, the seed to set, and
then any other command line arguments you want to pass to the R file you are running. For
example here n = 25 sets the value of n to be 25 when ‘sim.R’ is run. Through the loop, mu
gets set to 0.1, 0.2, . . . , 1. When the code is to be run locally, you will need to follow the last
rbatch function call with the code rbatch.local.run(). When this command is run locally,
it will effectively act as a local job scheduler for each process, using as many cores and CPUs
as available. If you leave this code in, but you are submitting on a cluster, then it will have no
effect. On a cluster, the rbatch function directly submits a job to the cluster, which handles
the job scheduling. Practically, you can always leave the command rbatch.local.run() in,
and it will run only when submission is done locally.

To run this locally on a a Microsoft Windows machine, utilizing all cores and CPUs on the sys-
tem (the default configuration), one can source or type in the commands from ‘param-sim.R’
into the graphical interface for R (also true on MacOS X graphical interface to R). If the
number of cores is incorrectly detected, then instead run rbatch.local.run(4), e.g., for a
quad core system.

To run this code in unix, again utilizing all cores, enter the following from the command
prompt

R --vanilla < param-sim.R

However, you may also want to run this on a cluster. Most clusters will generally have a
queuing system that you can submit jobs to. Behind the scenes, we are assembling the job
submission string to pass to the queuing system. If you have LSF (Platform Computing
Corporation 2001) or MOSIX (Barak and La’adan 1997) cluster configured, then things are
simple. To run it on an LSF machine, run it on the head node with

R --vanilla --args RBATCH lsf < param-sim.R



Journal of Statistical Software – Code Snippets 7

This then batches the following commands, also given as output from running the code:

bsub -q normal "R --vanilla --args seed 1000 n 25 mu ""c(0,0.1)""

< mainSim.R > mainSim.Rout1000"

bsub -q normal "R --vanilla --args seed 1001 n 25 mu ""c(0,0.2)""

< mainSim.R > mainSim.Rout1001"

...

bsub -q normal "R --vanilla --args seed 1009 n 25 mu ""c(0,1)""

< mainSim.R > mainSim.Rout1009"

To run it on a MOSIX cluster, run it on a node (or the node you have designated as the
“head” node) with:

R --vanilla --args RBATCH mosix < param-sim.R

Which runs the commands

nohup mosrun -e -b -q R --vanilla --args seed 1000 n 25 mu "c(0,0.1)"

< mainSim.R > mainSim.Rout1000 &

...

Lastly, if you have a different cluster platform, or want to override the default queues there
are a few other options you can set. The option BATCH controls the batch submission string.
For example, setting it to be "bsub -q long" would choose a different queue on the LSF
platform. Sometimes an “&” character is needed after the cluster submission character. The
option QUOTE controls if a command string should be quoted (’"’ for LSF, "" for MOSIX),
and ARGQUOTE controls if each argument should have a special quotation mark when they are
vectors or strings with spaces in them (’""’ for LSF, ’"’ for MOSIX). Finally RUN controls
if a statement is run (RUN 1) versus just the command string that would be run is printed for
debugging (RUN 0).

Alternatively, if one is sure that it is going to run on one particular cluster, then, for LSF,
one could replace the line above to read

seed <- rbatch("sim.R", seed = seed, n = 25, mu = c(0, i / 10),

rbatch.control = rbatch.lsf())

One could also use rbatch.mosix() for MOSIX. For custom clusters, one would use rbatch.lsf
or rbatch.mosix and alter the default parameters BATCH, BATCHPOST, QUOTE, ARGQUOTE, RUN,
and MULTIPLIER. All of these arguments behave as described previously.

After this is done running, 10 CSV files will be created. These can then be joined by running
the following command in R after loading in the batch package

R> mergeCsv()

The merged results will be by default put in the file ‘allResults.csv’, unless the outfile

argument to the mergeCsv function is set to a different value indicating where it should go.
This file can be opened with any spreadsheet program. Note that this function will attempt to
merge all CSV files in the current working directory. So one should make sure there are none
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there before running the rbatch routine, or instead save all of the CSV files into a separate
output directory.

3.3. Splitting into multiple pieces

Now suppose that we are running ‘sim.R’, but now the issue is that the simulation is taking
too long to run. We can split up our simulation into pieces. We can create the following code
in ‘split-sim.R’:

library("batch")

seed <- rbatch("sim.R", seed = 1000, nsim = 1000)

rbatch.local.run()

Note that we have lowered the number of simulations of each job by 10 fold. Now, to make up
for that loss, we run the simulation 10 times with the command line argument MULTIPLIER.
That is:

R --vanilla --args MULTIPLIER 10 < split-sim.R

It is for this reason that the code above stores a new value for seed from the rbatch function.
When the multiplier is set, the rbatch function will automatically increments the seed for
each execution, and then passes the next seed to use back. So when MULTIPLIER is set to 10,
the first simulation is set to seed 1000, the second to 1001, and the value of seed returned
from the execution of rbatch is 1010. The net effect of all of this is the same number of
simulations, split in parallel.

Finally, to paste these results together, one can run from R after loading in batch:

R> mergeCsv(every = 10)

Here the CSV file is averaged for every set of 10 lines (in accordance with the MULTIPLIER

value) to produce a combined output. So long as you follow the convention of having only
one row of output in each output CSV file, this function should work properly. Otherwise
you can still use the function with the default every = 1, but you will have to merge the
resulting CSV file manually.

4. Auxiliary functions

One other function is provided in the R package to help with splitting thing, so they can be
run across a cluster. The function msplit can take a vector and break it up into K pieces of
near equal size. This is returned as a list of vectors. For instance if we wanted to split SNP1,
SNP2, . . . , SNP10 into 3 groups for processing with the rbatch function, we would run the
following

R> msplit(paste("SNP", 1:10, sep = ""), 3)

[[1]]

[1] "SNP1" "SNP2" "SNP3" "SNP4"
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[[2]]

[1] "SNP5" "SNP6" "SNP7"

[[3]]

[1] "SNP8" "SNP9" "SNP10"

5. Discussion

We have presented the R package batch that easily allows a user to specifiy command line
options to R script files. This allows for an easy parallelization of code, with many helper
functions also provided with the code. With no modification to your batch R script, you
can run your code on your local machine, utilizing all the CPUs available, or on a cluster if
available. Future work is to support more default arguments for cluster specifications besides
LSF and MOSIX.

The package allows for easy parallelization on different clusters and your local machine by
altering command line options to the batch submission script file. One suggestion is to create
an alias to the R batch submission for each cluster and a local non-Windows machine, so that
it is the same on every machine you use. For example on a local non-Windows machine, you
might add the following line to the ‘.bashrc’ file in your home directory:

alias rbatch = 'R --vanilla --args'

Then, on your LSF cluster, you could instead add the line

alias rbatch = 'R --vanilla --args RBATCH lsf'

and on your MOSIX cluster,

alias rbatch = 'R --vanilla --args RBATCH mosix'

This would also make it trivial if you had any other cluster implementation; you simply need
to create the proper alias once. Then the above code

R --vanilla --args MULTIPLIER 10 < split-sim.R

would instead be run on any of your machines/clusters with

rbatch MULTIPLIER 10 < split-sim.R

Then there is absolutely no difference in submitting jobs locally as on a cluster. One could
further modify this with the option RBATCH to have different aliases for different queues; for
example, on LSF

alias rbatch-long = 'R --vanilla --args RBATCH lsf BATCH "bsub -q long"'

or in MOSIX with
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alias rbatch-q25 = 'R --vanilla --args RBATCH mosix BATCH

"nohup mosrun -e -b -q25"'
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