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Abstract

We introduce a pathwise algorithm for the Cox proportional hazards model, regularized
by convex combinations of `1 and `2 penalties (elastic net). Our algorithm fits via cyclical
coordinate descent, and employs warm starts to find a solution along a regularization
path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and
find considerable speedup between our algorithm and competing methods.
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1. Introduction

Consider the usual survival analysis framework. We have data of the form (y1, x1, δ1), . . . ,
(yn, xn, δn) where yi, the observed time, is a time of failure if δi is 1 or right-censoring if δi
is 0. As in regression, xi is a vector of potential predictors (xi,1, xi,2, . . . , xi,p). We further
let t1 < t2 < . . . < tm be the increasing list of unique failure times, and j(i) denote the
index of the observation failing at time ti. One potential problem of interest is to study the
relationship between predictor variables and survival time. Commonly, the Cox proportional
hazards model (Cox 1972) is used to approach this problem. The Cox model assumes a
semi-parametric form for the hazard

hi(t) = h0(t)e
x>i β

where hi(t) is the hazard for patient i at time t, h0(t) is a shared baseline hazard, and β is a
fixed, length p vector. Inference is then made via the partial likelihood

L(β) =

m∏
i=1

e
x>
j(i)

β∑
j∈Ri

ex
>
j β
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2 Fitting the Penalized Cox Model via Coordinate Descent

where Ri is the set of indices, j, with yj ≥ ti (those at risk at time ti). Inference made with the
partial likelihood ignores all information between failure times. For ease of notation the above
formula assumes that the yi are unique, however it can be suitably altered for the case of ties
(see Section 2.5). By maximizing the partial likelihood, one can estimate β. The beauty of
this approach is that it allows estimation of β while ignoring h0. For classical problems, with
many more observations than predictors, the Cox model performs well. However, problems
with p > n, lead to degenerate behavior; to maximize the partial likelihood, all of the βi are
sent to ±∞. To combat this problem, Tibshirani (1997) proposed the use of an L1 (lasso)
penalty in the Cox model. This both provides a well defined solution, and a solution with few
nonzero βi. Even in the n > p case, if p is sufficiently close to n, this may better estimate β
than the unpenalized Cox model. Gui and Li (2005) developed an algorithm to fit this model
using Newton Raphson approximations and the lasso path solution to the penalized least
squares problem provided by the adjusted LARS (least angle regression) solution of Efron
et al. (2004).

More recently Zou and Hastie (2005) proposed the elastic net for linear regression; to maximize
the likelihood subject to the constraint α

∑
|βi| + (1 − α)

∑
β2i ≤ c. α = 1 gives the lasso

penalty. Park and Hastie (2007a) applied this to the Cox model and proposed an efficient
algorithm to solve this problem along a path of c and α values. Their algorithm exploits the
near piecewise linearity of the coefficients to approximate the solution at different constraints,
then numerically maximizes the likelihood for each constraint via a Newton iteration initialized
at the approximation. Goeman (2010a) also attacked this problem. He developed a hybrid
algorithm, combining gradient descent and Newton’s method.

In this paper we instead employ cyclical coordinate descent. This method has been applied to
penalized regression and in particular, elastic net penalties; recently by Friedman et al. (2010),
van der Kooij (2007) and Wu and Lange (2008). Friedman et al. (2010) also recognized the
strength of employing warm starts to solve the problem along a path of constraint values.

We build on the work of Friedman et al. (2010) and develop a fast algorithm to fit the Cox
model with elastic net penalties. The time-ordered structure of the partial likelihood required
the development of special risk set updates for the procedure. In addition, we present a
method for selecting a well behaved path of λ values. We further include a number of checks
on deviance and step size to make efficient use of CPU time. We show via simulation that
our algorithm is both efficient and stable for small and large problems. In time trials we show
that it is significantly faster than the Hastie-Park algorithm and the Goeman algorithm. Our
algorithm scales efficiently allowing us to solve much larger problems than previously possible.
We also provide a publicly available R (R Development Core Team 2010) implementation in
the package glmnet (Friedman et al. 2011), available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=glmnet.

In Section 2 we introduce our algorithm to fit the Cox model with elastic net penalties. In
Section 3 we look at the stability of our algorithm and run time trials on simulated data and
one real microarray example.

2. Algorithm

We again consider the survival framework of Section 1. For the time being we assume no ties

http://CRAN.R-project.org/package=glmnet
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in failure/censoring time. We wish to find β which maximizes

L(β) =
m∏
i=1

e
x>
j(i)

β∑
j∈Ri

ex
>
j β

subject to our constraint: α
∑
|βi| + (1 − α)

∑
β2i ≤ c. Maximizing the partial likelihood is

equivalent to maximizing a scaled log partial likelihood,

2

n
`(β) =

2

n

 m∑
i=1

x>j(i)β − log

∑
j∈Ri

ex
>
j β


We scale by a factor of 2/n for convenience. Hence, if we consider the Lagrangian formulation,
our problem becomes

β̂ = argmaxβ

 2

n

 m∑
i=1

x>j(i)β − log

∑
j∈Ri

ex
>
j β

− λPα(β)

 (1)

where,

λPα(β) = λ

(
α

p∑
i=1

|βi|+
1

2
(1− α)

p∑
i=1

β2i

)
is known as the elastic net penalty. It is a mixture of the `1 (lasso) and `2 (ridge regression)
penalties. The lasso penalty (Tibshirani 1996) tends to choose only a few nonzero coefficients.
While often desirable, this can cause problems. If two predictors are very correlated, the lasso
will pick one and entirely ignore the other.

On the other hand, ridge regression scales all the coefficients towards 0, but sets none to
exactly zero. This helps to regularize in problems with p > n, but does not give a sparse
solution. However, ridge regression better handles correlated predictors. If two predictors are
very correlated, ridge regression will tend to give them equal weight.

The elastic net combines the strengths of the two approaches. For fixed λ, as α changes from
0 to 1 our solutions move from more ridge-like to more lasso-like, increasing sparsity but also
increasing the magnitude of all non-zero coefficients. With α = 0.95 (or even closer to 1),
the elastic net behaves very similarly to the lasso, only removing degenerate behavior due to
extreme correlations.

2.1. Basic algorithm

Our strategy for maximizing Equation 1 is very similar to the standard Newton Raphson
algorithm. However, at each iteration instead of solving a general least squares problem, we
solve a penalized reweighted least squares problem.

Let X denote the design matrix, β the coefficient vector, and η = Xβ. Let ˙̀(β), ῭(β), `
′
(η),

`
′′
(η) denote the gradient and Hessian of the log-partial likelihood with respect to β and η

respectively. A two term Taylor series expansion of the log-partial likelihood centered at β̃
has the form

`(β) ≈ `(β̃) + (β − β̃)> ˙̀(β̃) + (β − β̃)> ῭(β̃)(β − β̃)/2

= `(β̃) + (Xβ − η̃)>`
′
(η̃) + (Xβ − η̃)>`

′′
(η̃)(Xβ − η̃)/2
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where η̃ = Xβ̃. Simple algebra gives us

`(β) ≈ 1

2
(z(η̃)−Xβ)> `

′′
(η̃) (z(η̃)−Xβ) + C(η̃, β̃)

where
z(η̃) = η̃ − `′′(η̃)−1`

′
(η̃)

and C(η̃, β̃) does not depend on β.

One difficulty arises in the computation of `
′′
(η̃). Because this is a full matrix it would require

computation of O(n2) entries. In order to speed up the algorithm, we instead replace `
′′
(η̃)

by a diagonal matrix with the diagonal entries of `
′′
(η̃). We denote the ith diagonal entry

of `
′′
(η̃) by w(η̃)i. We rely on the argument of Hastie and Tibshirani (1990, Chapter 8) that

this substitution works because the optimal β will remain a fixed point of the algorithm, and
the off diagonal entries of `

′′
(η̃) are small in comparison to the diagonal.

Thus, our algorithm is

1. Initialize β̃, and set η̃ = Xβ̃.

2. Compute `
′′
(η̃), and z(η̃).

3. Find β̂ minimizing

1

n

n∑
i=1

w(η̃)i(z(η̃)i − x>i β)2 + λPα(β) (2)

4. Set β̃ = β̂ and, η̃ = Xβ̂.

5. Repeat steps 2− 4 until convergence of β̂.

The minimization in step 3 is done by cyclical coordinate descent, which will be described in
Section 2.2.

2.2. Penalized least squares

We have reduced our problem to repeatedly solving the penalized, weighted least squares
problem (2)

β̂ = argminβ
1

n

n∑
i=1

w(η̃)i(z(η̃)i − x>i β)2 + λPα(β) (3)

Let M(β) denote the objective function in Equation 2. Now consider a coordinate descent
step for minimizing M(β). Suppose we have estimates for βl for all l 6= k and would like to
minimize our objective in βk. We compute the derivative

∂M

∂βk
=

1

n

n∑
i=1

w(η̃)ixik(z(η̃)i − x>i β) + λα · sgn(βk) + λ(1− α)βk

when βk 6= 0, where sgn(βk) is 1 if βk > 0, and −1 if βk < 0 and, for the sake of completeness,
0 if βk = 0. From here, a simple calculation (Friedman et al. 2007) shows that the coordinate
solution is given by

β̂k =
S
(

1
n

∑n
i=1w(η̃)ixi,k

[
z(η̃)i −

∑
j 6=k xijβj

]
, λα

)
1
n

∑p
i=1w(η̃)ix2ik + λ(1− α)

(4)
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with

S(x, λ) = sgn(x)(|x| − λ)+ (5)

w(η̃)k = `
′′
(η̃)k,k =

∑
i∈Ck

eη̃k ∑j∈Ri
eη̃j −

(
eη̃k
)2(∑

j∈Ri
eη̃j
)2

 (6)

z(η̃)k = η̃k −
`
′
(η̃)k

`′′(η̃)k,k
= η̃k +

1

w(η̃)k

δk −∑
i∈Ck

(
eη̃k∑
j∈Ri

eη̃j

) (7)

and Ck is the set of i with ti < yk (the times for which observation k is still at risk).

Thus, we solve for βk, combining our usual least squares coordinate wise solution with propor-
tional shrinkage from the `2 penalty, and soft thresholding from the `1. Applying Equation 4
to the coordinates of β in a cyclic fashion until convergence minimizes Objective (2). This
algorithm was proposed by van der Kooij (2007) for usual linear regression, and applied to
logistic and multinomial generalized linear models by Friedman et al. (2010).

2.3. Pathwise solution

We will usually be interested in models for more than one value of λ. Toward this end, for
fixed α, we compute the solutions for a path of λ values. We begin with λ sufficiently large
to set β = 0, and decrease λ until we arrive near the unregularized solution. By employing
warm starts this procedure is efficient and increases the stability of our algorithm.

In Equation 4 notice that if 1
n

∑n
i=1wi(0)xijz(0)i < αλ for all j, then β = 0 minimizes the

objective M . Thus, we set our first λ to be

λmax = maxj
1

nα

n∑
i=1

wi(0)xijz(0)i.

We do not solve all the way to the unregularized solution. When p > n the unregularized
solution is undefined (β̂ shoots off to ∞). Even near λ = 0 the solution is poorly behaved.
We have examples where the last few λ values account for more than 99% of the algorithm’s
runtime. We argue that it is acceptable to ignore solutions with λ near 0, as any reasonable
model selection criteria (commonly cross-validation) will choose a much more regularized
model. We set λmin = ελmax, and compute solutions over a grid of m values between λmin and
λmax, where λj = λmax(λmin/λmax)j/m for j = 0, . . . ,m. In our implementation, the default
value for m is 100. The default value for ε depends on whether or not n ≥ p; for n < p, we
default to ε = 0.05, for n ≥ p, ε = 0.0001 Newton step algorithms can be unstable and have
no convergence guarantee without step size optimization. This is only a problem if the inital
parameter estimate is far from the optimal value. Because we have an exact starting solution
at the beginning of our path and employ warm starts at each new λ, our initial estimate and
solution at each λ are never far apart. Hence, algorithm is well behaved. For computational
speed, we have opted against employing divergence checks in our implementation. Thus far,
we have not come across any divergence problems.

2.4. Risk set updates

One obvious bottleneck in our algorithm is the computation of wk and zk in Equations 6 and
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(7). For each i in Ck we need to calculate
∑

j∈Ri
eη̃k , the sum of hazards of those still at risk.

Because both Ck and Ri have O(n) elements, this is naively an O(n2) calculation. However,
if we note that ∑

j∈Ri+1

eη̃j =
∑
j∈Ri

eη̃j −
∑

j∈Ri and j /∈Ri+1

eη̃i

then we need only calculate the full sum,
∑

j∈Ri
eη̃k , for the first index, i, in Ck. For each

subsequent i, we subtract off the contribution from observations with failure/censoring times
between time i−1 and time i. Thus, the calculation is reduced toO(n). These updates explain,
in part, the incredible increase in efficiency our algorithm sees over competing algorithms in
section 3 for large n.

2.5. Weights and ties

In the above algorithm, we have assumed that every failure/censoring time was unique and
gave equal weight to each observation in the partial likelihood. It is straightforward to include
ties and assign different weights to observations. We use the Breslow approximation of the
partial likelihood for ties (Breslow 1972) and the corresponding weight extension (integer
weights correspond to repeated measurements). The partial likelihood becomes

L(β) =

m∏
i=1

exp(
∑

j∈Di
ωjηj)(∑

j∈Ri
ωjeηj

)di (8)

where Di is the set of indices of failure at time ti, ωi is the weight associated with observation
i and di =

∑
j∈Di

ωj is the sum of weights at time ti. This changes wk and zk

w(η)k =
∑
i∈Ck

di

ωkeηk ∑j∈Ri
ωje

ηj − (ωke
ηk)2(∑

j∈Ri
ωjeηj

)2


z(η)k = ηk +
1

wk

ωkδk −∑
i∈Ck

(
ωke

ηkdi∑
j∈Ri

ωjeηj

) .
The rest of the algorithm remains the same. The addition of weights and ties does not
seriously affect the computational cost.

Note, scaling the weights similarly scales the log-partial likelihood. In our implementation, to
provide comparability between partial likelihoods with different weight vectors, we standardize
the weights to sum to 1. Note, this is why we scale the log likelihood by 1/n in the“unweighted
problem”.

2.6. Deviance cutoff

In addition to the usual stopping criteria, we would like to terminate the algorithm early if,
at some point, our model explains almost all of the variability in the observations. To this
end, we define the deviance of a model with parameter β to be

D(β) = 2(`saturated − `(β)) (9)
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where `saturated is the maximum log-partial likelihood when the ηi may vary freely (whereas
usually ηi is constrained by ηi = x>i β) and `(β) is the log-partial likelihood under β. We
similarly define the null deviance to be

Dnull = D(0) = 2(`saturated − `null), (10)

where `null = `(0). Note, for all ` in Equations 9 and 10 we use the weighted log-partial
likelihood from Section 2.5 (in the unweighted case we use weights 1/n for each observation).
This definition of deviance parallels deviance defined for likelihood-based models. At a given
step we terminate the algorithm early if more than 99% of the null deviance is explained by
the model. That is, if

D(βcurrent)−Dnull ≥ 0.99Dnull.

A simple calculation shows that

`null = −
m∑
i=1

di log

∑
j∈Ri

wj

 and,

`saturated = −
m∑
i=1

di log(di).

In the “unweighted” case (or actually equally weighted, 1/n case) this reduces to `saturated = 0
and `null = −

∑m
i=1 log |Ri|. This stopping criterion is another safeguard against wasting time

computing solutions for values of λ too small to sufficiently regularize the problem (in the
case of n > p this cutoff will effectively never kick in).

2.7. Comparison

A number of other algorithms have recently been developed for the same problem. Gui
and Li (2005) and Park and Hastie (2007a) both developed LARS-like algorithms, which
combine approximate paths with Newton steps; though they differ in that Gui and Li (2005)
use a LARS path inside each Newton approximation while Park and Hastie (2007a) use an
approximate LARS path to initialize each step, then solve exactly via Newton Raphson.
Goeman (2010a) instead combines gradient descent with Newton’s method – using gradient-
like steps until close to the solution, then quickly converging with Newton steps.

Our algorithm also uses a Newton Raphson-like method; however unlike other methods, by
employing coordinatewise updates we take advantage of the sparsity of each solution. Rather
than solving for all coordinates, we iterate over an active set. Because the number of nonzero
coordinates is never greater than the number of observations, in the n << p situation we gain
significant efficiency within each Newton iteration. Furthermore, efficient computation of risk
sets and updating formulas also gains us efficiency in calculating weights and pseudo-responses
for each Newton step.

3. Timings

In this section we compare the runtime of our algorithm, coxnet, with two competing algo-
rithms, coxpath and penalized. Because coxnet, coxpath and penalized all take different
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elastic net penalty paths (coxpath and penalized fix λ2) all comparisons were run using
only the lasso penalty (α = 1). For our algorithm, we also consider the relationship between
runtime and both number of observations and covariates. All calculations were carried out
on an Intel Xeon 3 GHz processor.

We generated standard Gaussian predictor data, X, n observations on p predictors. We fixed
pairwise correlation between any 2 predictors Xi and Xj at ρ, for several values of ρ. We
then generated “true” survival times according to

Y = exp

 p∑
j=1

Xjβj + k · Z


where βj = (−1)j exp (−2(j − 1)/20), Z ∼ N(0, 1), and k is chosen so that the signal-to-noise
ratio is 3.0. Similarly, we generated censoring times by

C = exp (k · Z) .

The recorded survival time was set to be the minimum of the “true” survival and censoring
times, T = min{Y,C}. The observation was said to be censored if C < Y , the censoring time
preceeded the “true” survival time.

Table 1 shows runtime comparisons between our coordinate descent algorithm, coxnet, the
combination gradient descent-Newton Raphson method, penalized (Goeman 2010a) from
the package penalized (Goeman 2010b), and the LARS-like algorithm, coxpath (Park and
Hastie 2007a) from the package glmpath (Park and Hastie 2007b). All of these algorithms
were implemented in the R language. coxnet does all computation in Fortran, while coxpath

does some computation in R, but frequently calls Fortran routines for numerical optimization.
penalized does all computation in R. To make the algorithms more comparable, we made
coxnet solve for the path of λ chosen by coxpath with λmin = 0.05λmax fixed for both.
Unfortunately penalized does not allow for a user indicated λ path. Instead we used the
same λmin as the other algorithms and let penalized choose a path with number of λ values
equal to that of the coxpath path. In Table 1 we see that coxnet is significantly faster
than coxpath and penalized. In particular, it handles large n more efficiently than both
and large p much more efficiently than penalized (though somewhat more efficiently than
coxpath as well). We also note a slight curiousity: coxnet runs faster for more highly
correlated predictors. This is counter-intuitive and the opposite is seen in Friedman et al.
(2010) for cyclical coordinate descent applied to standard linear and logistic regression.

3.1. Scaling in n and p

In addition to comparing our algorithm to coxpath, we would like to know how it scales in
n and p. We simulated data as before, with ρ = 0.5 fixed, and a variety of n and p. For each
n, p pair we solved for a path of 100 λ values with λmin = 0.05λmax. Figure 1 shows runtimes
for fixed p as n changes, and for fixed n as p changes. From these plots we can see that the
runtime is relatively linear in n and p.

3.2. Cross validation

Once we have calculated a path of solutions it is necessary to select an optimal λ. Model
selection is often done by k-fold cross validation - splitting the data in k pieces, using k − 1
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Correlation
0 0.1 0.2 0.5 0.9 0.95

n = 100, p = 2000

coxnet 3.1 3.7 3.0 2.4 1.1 0.8
coxpath 22.4 27.6 24.8 23.0 13.9 9.9
penalized 104.6 195.2 194.8 171.2 92.6 25.8

n = 100, p = 5000

coxnet 10.8 12.3 10.2 11.0 2.9 1.9
coxpath 39.7 50.5 43.5 46.0 58.5 49.4
penalized 188.2 344.4 446.9 1161.6 228.8 144.8

n = 200, p = 1000

coxnet 4.0 4.0 3.3 3.9 0.9 0.6
coxpath 147.1 129.6 192.2 229.4 67.4 98.2
penalized 61.7 137.0 345.6 415.1 44.0 38.7

n = 500, p = 50

coxnet 0.1 0.1 0.1 0.2 0.4 0.2
coxpath 83.2 87.1 94.7 103.7 93.4 423.0
penalized 6.9 10.8 10.4 11.4 10.6 34.1

n = 100, p = 10, 000

coxnet 30.8 29.6 29.4 21.6 4.8 4.9
coxpath 88.1 84.2 81.1 73.3 150.3 129.8
penalized 394.8 613.7 1512.6 792.1 713.5 968.1

n = 200, p = 40, 000

coxnet 271.3 265.6 252.1 251.8 140.3 101.2

n = 100, 000, p = 500

coxnet 61.9 66.4 66.5 67.5 50.9 49.8

Table 1: Contains timings (secs) for coxnet and coxpath with lasso penalty; total time for λ
path averaged over 3 trials.

of those to build the model and validating on the kth (often via the predictive likelihood);
cycling through this procedure, validating on each of the k pieces in turn, and then averaging
or summing the k different deviances. Cross validation in coxnet works in a similar fashion,
but with a few subtle differences. Consider the extreme case k = n, or leave one out cross
validation. The partial likelihood on the left out sample is either ill-defined (if the left out
sample was right censored) or identically 1 for all β. In this case cross validation tells us
nothing about the optimality (or lack thereof) of our model. Because the partial likelihood
is not as nicely separable as the Gaussian log likelihood (or any exponential family) naively
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Figure 1: Plots of the timings (seconds) with ρ = 0.5 for lasso penalty; total time for 100 λ
values, with λmin = 0.05λmax, averaged over 4 trials.

splitting up the observations and attempting traditional cross validation leads to a loss in
efficiency.

We use a technique proposed in van Houwelingen et al. (2006). We split our data into k parts.
Our goodness of fit estimate for a given part i and λ is

ˆCVi(λ) = `(β−i(λ))− `−i(β−i(λ)) (11)

where `−i is the log-partial likelihood excluding part i of the data, and β−i(λ) is the optimal
β for the non-left out data, found from maximizing `−i + λ||β||1. Our total goodness of fit
estimate, ĈV(λ), is the sum of all ˆCVi(λ). We choose the λ value which maximizes ĈV(λ).
By using (11) – subtracting the log-partial likelihood evaluated on the non-left out data from
that evaluated on the full data – we can make efficient use of the death times of the left out
data in relation to the death times of all the data.

3.3. Real data

We also compare timings on a real data set, Alizadeh et al. (2000): gene-expression data in
lymphoma patients. There were 240 patients with measurements on 7399 genes. We used the
lasso penalty (α = 1), and the path of λ values was chosen as in the simulations. We ran
10-fold cross validation over these paths to find the optimal value of λ. 10-fold cross validation
run times were 574.5 seconds for coxnet, 18998.7 seconds for penalized, and 4796.3 seconds
for coxpath. Without cross validation, times were 54.9 seconds for coxnet, 2524.9 seconds for
penalized and 679.5 seconds for coxpath. As in the simulation results, our method shows a
substantial run time improvement.

3.4. Code example

Our implementation is straightforward to run. We demonstrate coxnet on the data from
Section 3.3. We first load the data and set up the response.
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Figure 2: Plots of the cross-validated error rates. Each dot represents a λ value along our
path, with error bars to give a confidence interval for the cross-validated error rate. The left
vertical bar indicates the minimum error while the right shows the largest value of λ such
that the error is within one standard deviation of the minimum. The top of the plot gives
the size of each model. Left plot is original output, while right plot is zoomed in.

R> attach("LymphomaData.rda")

R> x <- t(patient.data$x)

R> y <- patient.data$time

R> status <- patient.data$status

We then call our functions to fit with the lasso penalty (α = 1), and cross validate.

R> fit <- glmnet(x, Surv(y,status), family = "cox", alpha = 1)

R> cv.fit <- cv.glmnet(x, Surv(y,status), family = "cox", alpha = 1)

The Surv function packages the survival data into the form expected by coxnet. Once fit,
we can view the optimal λ value and a cross-validated error plot (Figure 2) to help evaluate
our model.

R> cv.fit$lambda.min

[1] 0.1109075

R> plot(cv.fit)

The optimal λ value in this case is 0.11. We can zoom in on this value (Figure 2, right plot)
to get a better look at the error curve.

R> plot(cv.fit, xlim = c(log(0.08), log(0.2)), ylim = c(11.3, 12.4))

By default our function uses 10-fold cross validation to estimate prediction error in a nearly
unbiased way.
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4. Discussion

We have shown cyclical coordinate descent to be a very efficient algorithm for maximizing
the partial likelihood with the elastic net penalty. Each coordinate step has a simple, closed
form solution. By employing warm starts we have increased the stability of the algorithm
and found solutions for a path of penalty parameters. In simulations and an actual dataset
we have shown our algorithm to be significantly faster than the competition. A new version
of glmnet (Friedman et al. 2011) incorporating coxnet is available on CRAN.
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