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Abstract

In this paper, the R package DTDA for analyzing truncated data is described. This
package contains tools for performing three different but related algorithms to compute
the nonparametric maximum likelihood estimator of the survival function in the presence
of random truncation. More precisely, the package implements the algorithms proposed
by Efron and Petrosian (1999) and Shen (2008), for analyzing randomly one-sided and
two-sided (i.e., doubly) truncated data. These algorithms and some recent extensions
are briefly reviewed. Two real data sets are used to show how DTDA package works in
practice.
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1. Introduction

Randomly truncated data appear in a variety of fields, including Astronomy, Survival Anal-
ysis, Epidemiology, or Economics. Under random truncation, only values falling in a random
set which varies accross individuals are observed. For the recorded values, the truncation set
is also observed. However, when the value of interest falls out of the corresponding random
set, nothing is observed. This issue typically introduces a remarkable observational bias, and
hence proper corrections in statistical data analysis and inference are needed.

Methods for computing the nonparametric maximum likelihood estimator (NPMLE) of a
distribution function (DF) observed under random truncation have been proposed since the
seminal paper by Turnbull (1976). Interestingly, the difficulties in the construction of the
NPMLE heavily depend on the specific truncation pattern, i.e., on the class of allowed trun-
cation sets. Probably, the most investigated pattern of truncation is left-truncation, for which
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the truncation set is an interval unbounded from above. In epidemiological studies and indus-
trial life-testing, left-truncation arises e.g., when performing some cross-sectional sampling,
under which only individuals “in progress” at a given date (also referred as prevalent cases)
are eligible. As a result, large progression times are more probably observed, and this may
dramatically damage the observation of the DF of interest. For left-truncated data, the
NPMLE has an explicit form and it can be computed from a simple algorithm that goes back
to Lynden-Bell (1971). See Woodroofe (1985) and Stute (1993) for the statistical analysis of
this estimator. The right-truncated scenario, under which the truncation sets are intervals
unbounded from below, can be dealt with similarly by means of a sign change. Inference
becomes more complicated, however, when other ways of truncation appear.

In many applications, the truncation sets are bounded intervals, that is, the variable of interest
X∗ is only observed when it falls on a (subject-specific) random interval [U∗, V ∗]. Efron and
Petrosian (1999) motivated this double-truncation issue by means of data on quasars, which
are only detected when their luminosity lies between two observational limits. In epidemiol-
ogy, doubly-truncated data are also encountered. For example, acquired immunodeficiency
syndrome (AIDS) incubation times (from human immunodeficiency virus (HIV) infection)
databases report information restricted to those individuals diagnosed prior to some specific
date. This typically introduces a strong observational bias associated to right-truncation,
i.e., relatively small incubation times are more probably observed. Besides, since HIV was
unknown before 1982, there is some left-truncation effect too. Bilker and Wang (1996) no-
ticed this problem and they discussed the relative impact of each type of truncation in the
final sample. Moreira and de Uña-Álvarez (2010) motivated the random double-truncation
phenomenon by analyzing the age at diagnosis for childhood cancer patients; as for the AIDS
example, in this case the double truncation emerges from the fact that the recruited subjects
are those with terminating event falling on a given observational window. Note that left (or
right) truncation can be obtained from double-truncation by letting V ∗ (respectively U∗) be
degenerated at infinity (respectively minus infinity).

A cumbersome issue with doubly-truncated data is that the NPMLE has no explicit form,
and it must be computed iteratively. This complicates the analysis of its statistical properties,
posing also a challenge in the design of suitable algorithms for its practical computation. See
Efron and Petrosian (1999) and Shen (2008) for technical details. For the best of our knowl-
edge, there is no package oriented to the computation of the NPMLE under double-truncation.
The DTDA package described in this work fills this gap. DTDA has been implemented in R
(R Development Core Team 2010) system for statistical computing. This package also allows
for the analysis of one-sided (left or right) truncated data. The package DTDA contains
three different algorithms for the approximation of the NPMLE under double-truncation (in
its more general version), as well as some recent extensions, e.g., bootstrap confidence bands
(Moreira and de Uña-Álvarez 2010). As it will be described below, it provides useful numerical
outputs and automatic graphical displays too. Results in this document have been obtained
with version 2.1-1, available from http://CRAN.R-project.org/package=DTDA.

The paper is organized as follows. In Section 2, a brief review of the existing algorithms to
compute the NPMLE under double-truncation is given. In Section 3 the DTDA is described
and its usage is illustrated through the analysis of two real data sets. Finally, Section 4 is
devoted to conclusions and future possible extensions of the package.

http://CRAN.R-project.org/package=DTDA
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2. Doubly truncated data algorithms

This section gives an introduction to the NPMLE for doubly truncated data, jointly with a
review on the existing algorithms to approximate this estimator in practice. Let X∗ be the
lifetime of ultimate interest, with DF F , and let (U∗, V ∗) be the pair of truncation times, with
joint DF K. Under double truncation, only those (U∗, X∗, V ∗) with U∗ ≤ X∗ ≤ V ∗ are ob-
served; otherwise, no information is available. For any distribution function W denote the left
and right endpoints of its support by aW = inf {t : W (t) > 0} and bW = inf {t : W (t) = 1},
respectively. Let K1(u) = K(u,∞) and K2(v) = K(−∞, v) be the marginal distribution
function of U∗ and V ∗, respectively. When aK1 ≤ aF ≤ aK2 and bK1 ≤ bF ≤ bK2 , F and K
are both identifiable (see Woodroofe 1985). Let (Ui, Xi, Vi), i = 1, . . . , n, denote the sample,
which we assumed to be ordered with respect to the Xi’s (this is relevant for the algorithm
described in Section 2.2). Under the assumption of independence between X∗ and (U∗, V ∗),
the full likelihood of the sample is given by

L(f, k) =
n∏

j=1

fjkj
n∑

i=1

Fiki

,

where f = (f1, f2, . . . , fn) and k = (k1, k2, . . . , kn) are probability masses assigning probability

fi on Xi and ki on (Ui, Vi) respectively, and Fi is defined through Fi =
n∑

m=1

fmJim, where

Jim = I[Ui≤Xm≤Vi] =

{
1 if Ui ≤ Xm ≤ Vi,
0 otherwise.

(1)

Here, we assume without loss of generality, that the NPMLE is a discrete distribution sup-
ported by the set of observed data (Turnbull 1976). The quantity Fi will represent the amount
of mass contributed by the lifetime DF on the truncation interval [Ui, Vi]. As noted by Shen
(2008), the full likelihood, L(f, k), can be decomposed as a product of the conditional likeli-
hood of the Xi’s given the (Ui, Vi)’s, say L1(f), and the marginal likelihood of the (Ui, Vi)’s,
say L2(f, k):

L(f, k) =
n∏

j=1

fj
Fj
×

n∏
j=1

Fjkj∑n
i=1 Fiki

= L1(f)× L2(f, k). (2)

The first term in the decomposition in equation (2) plays a very important role in the algo-
rithms introduced by Efron and Petrosian (1999).

2.1. First Efron-Petrosian algorithm

The conditional NPMLE of F (Efron and Petrosian 1999) is defined as the maximizer of L1(f)
in equation (2):

f̂ = argmax
f

L1(f). (3)

This criterion leads to an estimator f̂ satisfying, for all j = 1, . . . , n

1

f̂j
=

n∑
i=1

Jij
1

F̂i

, (4)
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where F̂i =

n∑
m=1

f̂mJim. Equation (4) was used by Efron and Petrosian (1999) to introduce

the following iterative algorithm to compute f̂ in (3).

First Efron-Petrosian algorithm

Step EP0 Compute the initial vector of Fi’s, say F̂(0), from the initial probability mass,

f̂(0) = (1/n, . . . , 1/n) which assigns uniform weights, that is, for i = 1, . . . , n:

F̂(0)i =
n∑

m=1

(1/n)Jim.

Step EP1 Apply equation (4) to get an improved estimator f̂(1) and compute the F̂(1) per-

taining to f̂(1).

Step EP2 Repeat Steps EP0 and EP1 until a convergence criterion is reached, remembering
to rescale the density estimator obtained after each application of equation (4) .

As claimed by Efron and Petrosian (1999), this algorithm often converges quite slowly. The
authors suggested a different algorithm based on an adaptation of Lynden-Bell (1971) method
for computing the NPMLE in the case of one-sided truncation. This method is described as
the second Efron-Petrosian algorithm in the next section.

2.2. Second Efron-Petrosian algorithm

The survival curve G = (G1, G2, . . . , Gn) and the hazard function h = (h1, h2, . . . , hn) at-
tached to f = (f1, f2, . . . , fn) are in general defined, for all m = 1, . . . , n as follows:

Gm =
∑
i≥m

fi, and hm = fm/Gm.

As usual, one can always recover the survival function G and the density f from h, for all
m = 1, . . . , n via the relationships:

Gm = exp

{∑
i<m

log(1− hi)

}
and fm = Gm −Gm+1,

with the conventions
Gn+1 = 0 and

∑
i<1

log(1− hi) = 0.

For doubly-truncated data it happens that the NPMLE, namely f̂ , has hazard function ĥ
satisfying

1

ĥm
= Nm +

n∑
i=1

JimQ̂i, (5)

where Nm, m = 1, . . . , n, denotes the size of the risk set at time Xm if only left-truncation is
considered (Woodroofe 1985), i.e.,
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Nm =
n∑

i=1

I[Ui≤Xm≤Xi],

Jim are the inclusion indicators defined in (1), and

Q̂i = ĜVi+/F̂i (6)

(Efron and Petrosian 1999) with ĜVi+ =
∑
k

{
f̂k : Xk > Vi

}
. The numerator of equation (6)

is the MLE probability of exceeding Vi, the upper observational limit for Xi. In the case of
left truncation, Q̂i = 0 since Vi =∞, and (5) takes the form

1

ĥm
= Nm, m = 1, . . . , n (7)

which is just Lynden-Bell (1971) estimate. In this situation, equation (5) gives the NPMLE
directly, without any iteration. When dealing with two-sided truncation, equation (5) was
used by Efron and Petrosian (1999) to introduce the following iterative algorithm to compute
f̂ .

Second Efron-Petrosian algorithm

Step L0 Compute the initial estimate f̂(0) from the initial ĥ(0) defined in equation (7).

Step L1 Apply equation (5) to get an improved estimator ĥ(1) and compute the F̂(1) per-

taining to the corresponding f̂(1).

Step L2 Repeat Steps L0 and L1 until a convergence criterion is reached.

2.3. Shen algorithm

The two different algorithms presented above are suitable if the main aim is to estimate the
lifetime DF. However, in some circumstances it may be interesting to display some estimator
of the truncation times distribution. This will be the case, for example, when analyzing the
truncation pattern, which may be informative about different features of the process under
investigation. The problem of estimating the DF of the truncation times was first discussed
by Shen (2008), who provided an algorithm to jointly compute the DF of both the lifetime
and the truncation random variables.

In order to introduce Shen (2008) algorithm, interchange the roles of the Xi’s and the (Ui, Vi)’s
in the decomposition of equation (2). Hence, the full likelihood can be also written as the
product

L(f, k) =

n∏
j=1

kj
Kj
×

n∏
j=1

Kjfj∑n
i=1Kifi

= L1(k)× L2(k, f)

where Ki =
n∑

m=1

kmI[Um≤Xi≤Vm] =
n∑

m=1

kmJmi, for i = 1 . . . , n. Here, L1(k) denotes the

conditional likelihood of the (Ui, Vi)’s and L2(k, f) refers to the marginal likelihood of the
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Xi’s. Note that Ki stands for the probability of getting a truncation interval around Xi and
hence it provides information about the relative probability of observing each of the recruited
lifetimes.

Maximization of L1(k) leads to a k̂ = argmaxk L1(k) such that:

1

k̂j
=

n∑
i=1

Jji
1

K̂i

, j = 1, . . . , n (8)

where K̂i =

n∑
m=1

k̂mJmi. Shen (2008) proved that the solutions to equations (4) and (8) are

not only the conditional but also the unconditional NPMLE’s of F and K respectively, and
that both estimators can be obtained in a simultaneous way by solving the following two
equations, for j = 1, . . . , n:

f̂j =

[
n∑

i=1

1

K̂i

]−1
1

K̂j

, (9)

k̂j =

[
n∑

i=1

1

F̂i

]−1
1

F̂j

. (10)

The expressions in (9) and (10) were used by Shen (2008) to introduce the following iterative
algorithm to compute f̂ and k̂.

Shen algorithm

Step S0 Compute the initial estimate F̂(0) from f̂(0) = (1/n, . . . , 1/n).

Step S1 Apply the formula in (10) to get the first step estimator of k, namely k̂(1), and

compute the K̂(1) pertaining to k̂(1).

Step S2 Apply the formula in (9) to get the first step estimator of f , f̂(1), and compute its

corresponding F̂(1).

Step S3 Repeat Steps S1 and S2 until a convergence criterion is reached.

This algorithm and the other two discussed by Efron and Petrosian (1999) are implemented
in the package DTDA.

As convergence criterion in all the algorithms above, we have used that the maximum point-
wise error when estimating f in two consecutive steps should be below an error threshold,
namely 1e−06. In addition, this is an usual precision level for several packages in R.

2.4. Bootstrap approximation of the NPMLE

The asymptotic distribution of the NPMLE for doubly truncated data is not easy to deter-
mine. This is mainly because the estimator has a non-explicit form. The available results,
Shen (2008), do no provide answers to important practical issues such as the computation of
standard errors and the construction of confidence limits.
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Moreira and de Uña-Álvarez (2010) proposed the simple bootstrap as a suitable method
to approximate the finite sample distribution of the NPMLE for doubly truncated data,
extending the ideas in Gross and Lai (1996) for the one-sided truncated scenario. Gross and
Lai (1996) and Moreira and de Uña-Álvarez (2010) also presented a critical comparison with
the obvious bootstrap method. Both procedures can be briefly explained as follows.

The simple bootstrap draws (with replacement) independent random vectors (indexed by b)
(Uib, Vib, Xib) , i = 1, ..., n, from the empirical distribution that puts weight 1/n at each of the
observations (Ui, Vi, Xi), i = 1, ..., n. This allows for the construction of every b-th bootstrap
resample, and then the procedure is repeated a large number of times B to approximate the
distribution of a given statistic.

The obvious bootstrap starts by estimating the distributions of X∗ and (U∗, V ∗) on the
basis of the observable data; this can be done by following the algorithm described in Sec-
tion 2.3 and proposed by Shen (2008). Then, the resamples for X∗ and (U∗, V ∗), say Xib

and (Uib, Vib), i = 1, . . . , n, are independently obtained with probability P (Xib = Xj) = f̂j
and P [(Uib, Vib) = (Uj , Vj)] = k̂j , j = 1, . . . , n, to draw the b-th bootstrap resample. Note
that Xib does not need to fall in the interval [Uib, Vib]. These samples are rejected, and hence
the obvious bootstrap requires more computations than the simple bootstrap. Unlike for the
simple bootstrap, the obvious bootstrap may provide new combinations of lifetimes and trun-
cation times in the bootstrap resamples; this explains why both methods are not equivalent
for randomly truncated data (see Gross and Lai 1996 and Moreira and de Uña-Álvarez 2010
for further details).

The simple bootstrap method is usually preferred to the obvious bootstrap method not only
because it is substantially simpler to implement but also because it completely dispenses with
the stringent assumptions (continuity of the underlying distributions, independence between
the truncation times and the lifetimes, see Shen 2008) that are needed for consistent estimation
of F and K in the obvious bootstrap method. The obvious bootstrap may be preferred,
however, if one wants to incorporate the independence assumption in the resamples, so they
can reproduce in a more precise way the sampling nature in the independent case. It should
be also noticed that if the algorithms in Efron and Petrosian (1999) are to be used, then it is
not possible to apply the obvious bootstrap. This is because these algorithms do not provide
an empirical version of the truncation times joint distribution.

After any of simple or obvious bootstrap resampling methods are performed, the 100(1−α)%
confidence limits for a given target can be computed in the usual way. To this end, from
the large number B of values of the estimator, the upper and lower 100(α/2)% of values are
eliminated to compute the limits. This idea is incorporated in the DTDA package, as it is
explained below.

3. Package DTDA in practice

The DTDA package contains different algorithms for analyzing randomly truncated data,
including one-sided and two-sided (i.e., doubly) truncated data. This section shows the usage
of DTDA by analyzing two real data sets. The first one concerns doubly truncated data,
while the second example only includes right truncation.

The new package incorporates the iterative methods introduced by Efron and Petrosian (1999)
and Shen (2008) which have been presented and discussed in the previous sections. Estimation
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of the lifetime DF and of the truncation times joint and marginal DFs is possible, together
with the corresponding pointwise confidence limits based on bootstrap methods. Graphical
displays can be automatically generated.

The DTDA package is composed of three functions (objects) that enable users to fit the
proposed models and methods. In summary the three functions are:

efron.petrosian() computes the NPMLE of a lifetime DF observed under one-sided
(right or left) and two-sided (double) truncation with the first algorithm of Efron and
Petrosian (1999). It also provides simple bootstrap pointwise confidence limits.

lynden() computes the NPMLE of a lifetime DF observed under one-sided (right or
left) and two-sided (double) truncation with the second algorithm of Efron and Petrosian
(1999), based on an extension of Lynden-Bell’s method for one-sided truncation. Simple
bootstrap pointwise confidence limits are obtained.

shen() computes the NPMLE of a lifetime DF observed under one-sided (right or
left) and two-sided (double) truncation with the algorithm proposed by Shen (2008).
The NPMLE of the joint distribution of the truncation times along with its marginal
distributions are also computed. Simple or obvious bootstrap pointwise confidence limits
can be generated.

Table 1 shows a summary of the arguments in the three functions. It should be noted that
only X, U and V are required arguments. The structure of the data input is as follows: each
individual is represented by a single line of data. The variable X represents the lifetime of
ultimate interest and it can not be NA. The variable U represents the left truncation times. If
there is no left truncation, by putting U = NA the program (and the algorithm) are prepared
for dealing with this type of data. The same happens with the variable V, which represents the
right truncation times: if there is no right truncation (i.e., if the data are only left truncated),
just set V = NA. If the values of the variables U and V are such that they do not really provide
truncation from right and from left, the estimators obtained from the package should coincide
with the ordinary empirical estimator which puts mass 1/n at each data point. This will
happen if all the left truncation times are smaller than the minimum of the lifetimes, and all
the right truncation times are greater than the maximum of them.

3.1. An example with doubly truncated data

In Astronomy, one of the main goals of the quasar investigations is to study luminosity
evolution (Efron and Petrosian 1999, Shen 2008). The motivating example presented in the
paper of Efron and Petrosian (1999) concerns a set of measurements on quasars in which there
is double truncation because the quasars are observed only if their luminosity occurs within
a certain finite interval, bounded at both ends, determined by limits of detection.

The original data set studied by Efron and Petrosian (1999), comprised independently col-
lected quadruplets (zi,mi, ai, bi), i = 1, . . . , n, where zi is the redshift of the ith quasar and
mi is the apparent magnitude. Due to experimental constraints, the distribution of each
luminosity in the log-scale (yi = t(zi,mi)) is truncated to a known interval [ai, bi], where t
represents a transformation which depends on the cosmological model assumed (see Efron
and Petrosian (1999) for details). Quasars with apparent magnitude above bi were too dim to
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efron.petrosian(), lynden() and shen() arguments
X Numeric vector with the times of ultimate interest.
U Numeric vector with the left truncation times. If there are no truncation

times from the left, put U = NA.
V Numeric vector with the right truncation times. If there are no truncation

times from the left, put V = NA.
wt Numeric vector of non-negative initial solution, with the same length as X.

Default value is set to 1/n, being n the length of X.
error Numeric value. Maximum pointwise error when estimating the density

associated to X (f) in two consecutive steps. If this is missing, it is 1e-06.
nmaxit Numeric value. Maximum number of iterations. If this is missing, it is set

to nmaxit = 100.
boot Logical. If TRUE (default), the simple bootstrap method is applied to life-

time distribution estimation. Pointwise confidence bands are provided∗.
B Numeric value. Number of bootstrap resamples . The default NA is equiv-

alent to B = 500.
alpha Numeric value. (1− alpha) is the nominal coverage for the pointwise con-

fidence intervals.
display.F Logical. Default is FALSE. If TRUE, the estimated cumulative distribution

function associated to X, (F ) is plotted∗.
display.S Logical. Default is FALSE. If TRUE, the estimated survival function associ-

ated to X, (S) is plotted∗.

shen() arguments
boot.type A character string giving the bootstrap type to be used. This must be one

of "simple" or "obvious", with default "simple".
display.FS Logical. Default is FALSE. If TRUE, the estimated cumulative distribution

function and the estimated survival function associated to X, (F) and (S)
respectively, are plotted.

display.UV Logical. Default is FALSE. If TRUE, the marginal distributions of U (fU) and
V (fV), are plotted.

plot.joint Logical. Default is FALSE. If TRUE, the joint distribution of the truncation
times is plotted.

plot.type A character string giving the plot type to be used to represent the joint dis-
tribution of the truncation times. This must be one of "image" or "persp",
with default NULL.

Table 1: Summary of the arguments of the efron.petrosian(), lynden() and shen()

functions. The arguments marked with ∗ in the first part of the table are included in shen()

with further options.

yield dependent redshifts, and hence they were excluded from the study. The lower limit ai
was used to avoid confusion with non quasar stellar objects. The n = 210 quadruplets inves-
tigated by Efron and Petrosian (1999) were kindly provided by the authors. At the beginning
of Section 2 we referred to some identifiability conditions for the estimation of the population
DFs. For this data set, the extreme ordered statistics of the adjusted log luminosities (−2.34
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and 2.08) are relatively close to the minimum lower bound (−2.40) and the maximum upper
bound (2.58) respectively, suggesting that aK1 ≤ aF or bF ≤ bK2 could be violated. Note
that, in general, the obtained estimator for F can only be regarded as an estimator of F
conditionally on X∗ ∈ [aK1 , bK2 ].

In this section the usage of the three functions efron.petrosian(), lynden() and shen()

is illustrated by analyzing the quasars data set. The practical application is mainly focused
on the function shen() because, unlike the other two functions, it provides not only the
estimators for the ’lifetime’ DF but also the curves corresponding to the truncation times.
Besides, the computation of confidence limits throughout the two bootstrap resampling meth-
ods discussed previously in Section 2.4 is also provided. Numerical outputs for the function
efron.petrosian() will not be given, since they are just a subset of the results displayed
here. However, since the algorithm behind the function lynden() is somehow different, some
of the results obtained with this function are also shown.

The data are incorporated in the matrix object Quasars; the second and the third columns
correspond to the left and right truncation times respectively, while the first column is reserved
for the variable of interest (in this example, log of quasar luminosity). Using shen() the
estimated cumulative distribution can be analyzed, jointly with the estimated survival and
other values of interest provided by the next output (edited to show only the first and last
lines of output):

> fit1 <- shen(Quasars[, 1], Quasars[, 2], Quasars[, 3], display.FS = TRUE,

+ display.UV = TRUE, nmaxit = 10000)

n.iterations 43

S0 9.997212e-07

events 210

B 500

alpha 0.05

Boot simple

time n.event density cumulative.df survival

-2.3449016 1 0.48893 0.48893 1.00000

-2.1438677 1 0.09826 0.58719 0.51107

-1.8699029 1 0.04961 0.63681 0.41281

-1.8583955 1 0.04961 0.68642 0.36319

-1.7929619 1 0.03729 0.72371 0.31358

-1.4058456 1 0.01574 0.73945 0.27629

-1.4052073 1 0.01574 0.75519 0.26055

...

1.3904633 1 0.00014 0.99903 0.00111

1.4346404 1 0.00014 0.99917 0.00097

1.5695026 1 0.00015 0.99931 0.00083

1.5888410 1 0.00015 0.99946 0.00069

1.6662626 1 0.00015 0.99961 0.00054

1.7041021 1 0.00016 0.99977 0.00039

2.0846553 1 0.00023 1.00000 0.00023
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Figure 1: Cumulative DF and Survival function of quasars luminosities (top) and marginal
DF of each of the truncation variables (bottom), applying shen(), with "simple" bootstrap
for 95% pointwise confidence bands.

Note that the output provides information about the observed adjusted log luminosities, the
number of events (which will be 1 in the case of no ties), the estimated density at each point,
and the cumulative curves (cumulative DF and survival function). There is some preliminary
information about the confidence level used for the computation of the bootstrap confidence
limits as well as the number of iterations when computing the NPMLE and the maximum
pointwise error when estimating f in two consecutive steps. The default stop criterion here
is 1e-06.

Automatic graphical displays are obtained when changing the default FALSE to TRUE for the
arguments display.FS (cumulative DF and survival function) and display.UV (marginal
DFs of the truncation variables). These plots are reported in Figure 1, which includes the
95% confidence bands based on the simple bootstrap. These bands can be skipped by set-
ting boot = FALSE; alternative bands based on the obvious bootstrap can be displayed by
setting boot.type = "obvious". Similarly, a graphical plot of the bivariate DF of the trun-
cation variables is obtained by setting display.joint = TRUE. This output is reported in
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Figure 2: Bivariate distribution, in log scale of the truncation variables, for the quasar data,
using option "persp" (left panel) and option option "image" (right panel).

Figure 2 when choosing two different types of plotting: plot.type = "persp" (left panel)
and plot.type = "image" (right panel), considering in both cases the log joint distribution.

As it was already mentioned, adjusted log luminosity databases report information restricted
to those quasars with apparent magnitude within a limit of detection interval. This introduces
a strong observational bias since relatively small and large luminosities are less probably
observed. This feature can be observed in Figure 3 (left panel), which shows that adjusted
log luminosities below zero are observed with a particularly small probability. This display
was constructed from the output biasf of shen() function, which contains the estimated
quantities P (U∗ < x < V ∗) representing the probability that the detection interval contains
a lifetime (i.e., adjusted log-luminosity) of magnitude x. In the untruncated case, the curve
in Figure 3, left, should be flat; under truncation, however, different shapes representing the
observational bias will be obtained.

In order to compare the confidence bands obtained when using the two different bootstrap
methods "simple" and "obvious", Figure 3 (right panel) shows the estimated log survival
function for the quasar data together with the 95% pointwise confidence bands. The pointwise
confidence bands using "simple" bootstrap are shown in green, whereas the confidence bands
with "obvious" bootstrap are plotted in red. It can be seen that these methods produce in
general different results; this is not surprising, since they are not equivalent as discussed in
Section 2.

The second algorithm proposed by Efron and Petrosian (1999), as mentioned at the beginning
of this Section, may report results somehow different to those corresponding to the first
algorithm. Besides, both algorithms, although oriented to maximize the same likelihood,
follow different steps, and hence it is not surprising that the solutions may be slightly different
in particular cases. As it can be observed in the next output, the number of iterations needed



Journal of Statistical Software 13

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

adjusted log luminosity

P
ro

ba
bi

lit
y 

of
 s

am
pl

in
g

−2 −1 0 1 2

−
12

−
10

−
8

−
6

−
4

−
2

0

adjusted log luminosity

lo
g 

S
ur

vi
va

l

Figure 3: Bias function for the quasar data (left panel). Estimated log survival for the quasar
data, using shen() function and 95% pointwise confidence bands for simple (red) and obvious
(green) bootstrap methods (right panel).

to meet the stop criterion is quite smaller here compared with the previous output obtained in
fit1 using shen() function (7 against 43). This feature is in agreement with the discussion in
Efron and Petrosian (1999) (see pp. 828–829). Note that this numerical output coincides with
that of the function shen() (which uses the first algorithm in Efron and Petrosian (1999),
for the computation of the lifetime density and DF). This does not need to be the case in
general (see our second example in Section 3.2), although the differences between the solutions
provided by both functions should not be large. In general, the function lynden() could be
recommended to save computational time.

> fit2 <- lynden(Quasars[, 1], Quasars[, 2], Quasars[, 3], boot = FALSE,

+ display.F = FALSE, display.S = FALSE)

n.iterations 7

S0 4.525812e-07

events 210

time n.event density cumulative.df survival hazard

-2.3449016 1 0.48893 0.48893 1.00000 0.48893

-2.1438677 1 0.09826 0.58720 0.51107 0.19227

-1.8699029 1 0.04961 0.63681 0.41280 0.12018

-1.8583955 1 0.04961 0.68642 0.36319 0.13660

-1.7929619 1 0.03729 0.72372 0.31358 0.11893

-1.4058456 1 0.01574 0.73945 0.27628 0.05697

-1.4052073 1 0.01574 0.75519 0.26055 0.06041

...
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Figure 4: Estimated log survival as a function of the adjusted log luminosity evolution for the
quasar data, using the NPMLE of Efron and Petrosian (black line), the Lynden-Bell estimate
ignoring upper truncation (red curve), and ignoring both left and right truncation (green
curve).

1.3904633 1 0.00014 0.99903 0.00111 0.12527

1.4346404 1 0.00014 0.99917 0.00097 0.14335

1.5695026 1 0.00015 0.99931 0.00083 0.17655

1.5888410 1 0.00015 0.99946 0.00069 0.21441

1.6662626 1 0.00015 0.99961 0.00054 0.27745

1.7041021 1 0.00016 0.99977 0.00039 0.39891

2.0846553 1 0.00023 1.00000 0.00023 1.00000

An issue that has been overseen in many applications is that of the important bias associ-
ated to random truncation. For the quasar data, ignoring the left truncation may be very
important, as suggested by our Figure 3. The plot in Figure 4 was depicted by using the
lynden() function applied to several situations. The first one is that considering the double
truncation, as performed above (in fit2). The second one (saved as fit3 below) ignores right
truncation; this can be easily done by setting V = NA. Finally, fit4 below contains the output
of the function lynden() when removing both (right and left) truncation times. For doing
this, V = NA must be kept and at the same time, ignorable lower truncation bounds must be
introduced (since U = NA does not work in the presence of V = NA). This latter output just
provides the ordinary survival function which attaches mass 1/n to each of the adjusted log
luminosities. Figure 4 reveals the strong impact of left truncation in the estimation of the
DF of the quasar luminosities. This is in agreement with the observational bias depicted in
Figure 3, left.
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> fit3 <- lynden(Quasars[, 1], Quasars[, 2], V = NA, boot = FALSE,

+ display.F = FALSE, display.S = FALSE)

> fit4 <- lynden(Quasars[, 1], U = min(Quasars[, 1]) - 1, V = NA,

+ boot = FALSE, display.F = FALSE, display.S = FALSE)

3.2. An example with right-truncated data

Induction Times for AIDS data from Lagakos, Barraj, and de Gruttola (1988) are used to
illustrate a situation in which one-sided (rather than two-sided) truncation appears. This
data set is available from the book by Klein and Moeshberger (2003, Table 1.10, pp. 20). The
data include information on the infection and induction times for 258 adults and 37 children
who were infected with HIV virus and developed AIDS by 1996-06-30 The data consist on
the time in years, measured from 1978-04-01, when adults were infected by the virus from
a contaminated blood transfusion, and the waiting time to development of AIDS, measured
from the date of infection. In this sampling scheme, only individuals who had developed AIDS
before the end of the study period were included and so the induction times suffer from right
truncation.

LetX be the induction time, that is, the time from HIV infection to the diagnosis of AIDS; and
denote by T the time from HIV infection to the end of the study, which plays the role of right
truncation time. Only those individuals (X,T ) with X ≤ T are observed. In this example the
sole information included is the infection and the induction times for the 258 adults. These
variables X and T are reported in the second and the third column, respectively, of the matrix
AIDSdata called below.

In order to perform the data analysis, the function shen() is used, setting U = NA to inform
about the absence of left-truncation. As it can be seen in the next numerical output, the
algorithm converged after 19 iterations; it can be also noticed that (unlike for the quasar data
example) there is a clear presence of ties in this data set.

> fit5 <- shen(AIDS[, 2], U = NA, AIDS[, 3], boot = TRUE, display.FS = TRUE,

+ display.UV = TRUE, nmaxit = 1e+05)

case U=NA

n.iterations 19

S0 7.677726e-07

events 258

B 500

alpha 0.05

Boot simple

time n.event density cumulative.df survival

0.25 6 0.00341 0.00341 1.00000

0.50 2 0.00114 0.00455 0.99659

0.75 13 0.00739 0.01193 0.99545

1.00 15 0.00895 0.02088 0.98807

1.25 16 0.00983 0.03071 0.97912

1.50 23 0.01643 0.04714 0.96929

1.75 13 0.01021 0.05735 0.95286
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2.00 14 0.01181 0.06916 0.94265

2.25 20 0.02065 0.08981 0.93084

2.50 15 0.01727 0.10708 0.91019

2.75 14 0.01806 0.12514 0.89292

3.00 21 0.03327 0.15841 0.87486

3.25 13 0.02367 0.18208 0.84159

3.50 8 0.01755 0.19963 0.81792

3.75 5 0.01406 0.21369 0.80037

4.00 11 0.03731 0.25099 0.78631

4.25 9 0.03530 0.28629 0.74901

4.50 6 0.02771 0.31400 0.71371

4.75 5 0.02962 0.34362 0.68600

5.00 8 0.05849 0.40211 0.65638

5.25 9 0.08617 0.48827 0.59789

5.50 4 0.05580 0.54407 0.51173

5.75 2 0.04030 0.58438 0.45593

6.00 1 0.02164 0.60602 0.41562

6.25 1 0.03565 0.64167 0.39398

6.50 2 0.09167 0.73333 0.35833

6.75 1 0.06667 0.80000 0.26667

7.25 1 0.20000 1.00000 0.20000

The automatic graphical displays of the command line above is given in Figure 5. The confi-
dence bands (based on the simple bootstrap) are wider for large incubation times, in accor-
dance to the under-information at these points, related to the right-truncation phenomenon.
Since this data set is one-sided truncated, the best algorithm here is the second one proposed
in Efron and Petrosian (1999), which is just Lynden-Bell (1971) method. As discussed in
Section 2, this algorithm converges after one iteration under one-sided truncation (indeed,
the estimator has an explicit form in this case). The following output displays the numerical
results achieved by the function lynden(). Unlike for the quasar data example, notice that
the figures are not exactly the same as those reported by the function shen().

> fit6 <- lynden(AIDS[, 2], U = NA, AIDS[, 3], boot = FALSE)

case U=NA

n.iterations 1

S0 3.079134e-17

events 258

time n.event density cumulative.df survival hazard

0.25 6 0.00761 0.00761 1.00000 0.00761

0.50 2 0.00233 0.00994 0.99239 0.00235

0.75 13 0.00881 0.01875 0.99006 0.00889

1.00 15 0.01021 0.02896 0.98125 0.01041

1.25 16 0.01105 0.04001 0.97104 0.01138

1.50 23 0.01683 0.05685 0.95999 0.01754

1.75 13 0.01116 0.06801 0.94315 0.01184

2.00 14 0.01275 0.08076 0.93199 0.01368
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Figure 5: NPMLE obtained by shen() function for the cumulative DF and survival function
of the AIDS induction times (top) and marginal DF of the right-truncation variable (bottom),
together with the 95% pointwise confidence bands based on simple bootstrap method.

2.25 20 0.02101 0.10176 0.91924 0.02285

2.50 15 0.01792 0.11968 0.89824 0.01995

2.75 14 0.01869 0.13837 0.88032 0.02123

3.00 21 0.03251 0.17088 0.86163 0.03774

3.25 13 0.02385 0.19473 0.82912 0.02877

3.50 8 0.01800 0.21273 0.80527 0.02235

3.75 5 0.01457 0.22729 0.78727 0.01850

4.00 11 0.03669 0.26399 0.77271 0.04749

4.25 9 0.03489 0.29888 0.73601 0.04741

4.50 6 0.02778 0.32667 0.70112 0.03963

4.75 5 0.02968 0.35634 0.67333 0.04408

5.00 8 0.05634 0.41269 0.64366 0.08754

5.25 9 0.08051 0.49320 0.58731 0.13709

5.50 4 0.05400 0.54720 0.50680 0.10655
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5.75 2 0.03978 0.58698 0.45280 0.08786

6.00 1 0.02174 0.60872 0.41302 0.05264

6.25 1 0.03581 0.64453 0.39128 0.09151

6.50 2 0.08880 0.73333 0.35547 0.24982

6.75 1 0.06667 0.80000 0.26667 0.25000

7.25 1 0.20000 1.00000 0.20000 1.00000

4. Conclusions

This paper discusses the implementation in R of several algorithms for computing the NPMLE
of the cumulative DF in the presence of random truncation. The DTDA package implements
in a friendly way the methods proposed by Efron and Petrosian (1999) and Shen (2008). For
the best of our knowledge, this is the first contribution of this type to deal with the non-
standard (and sometimes ignored) issue of random truncation. The package DTDA provides
not only the numerical outputs of main interest but also automatic graphical displays of
several curves, such as the cumulative DF and the survival function of the lifetime as well as
the marginal and joint DFs of the truncation times. Besides, two different bootstrap methods
are implemented for the computation of confidence limits.

The function lynden() may give results somehow different to those provided by the func-
tions efron.petrosian() or shen(). The algorithm behind lynden(), although oriented to
maximize the same likelihood as shen() and efron.petrosian(), follows different steps, and
hence it is not surprising that the solutions may be slightly different in particular cases. We
should also point out the slow speed of convergence of the algorithms EP0–EP2 and S0–S3

when compared to L0–L2 (Efron and Petrosian 1999, p. 828); see also our application to quasar
data above. Although this seems to be typically the case, we have found special situations
in which shen() or efron.petrosian() may converge in fewer steps than lynden(). So a
definite conclusion about this point can not be given.

An interesting extension of the package would be the implementation of smooth estimates for
e.g., density and hazard rate functions. This could be done by computing kernel estimators,
which are obtained from the NPMLE by convolution with a kernel function, providing a
smooth estimator. See for example Wand and Jones (1995) for access to related literature.
Finally, adaptation of the implemented methods to the context of regression with truncated
responses could be provided, by using the empirical estimators computed by DTDA to weight
the residuals, in the spirit of Stute (1993) for the censored case, see also Sánchez-Sellero,
González-Manteiga, and Van Keilegom (2005) for left-truncated, right censored responses.
However, this is a field of research which remains unexplored for doubly truncated data, and
new methods should be carefully worked out before this extension is possible.
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