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Abstract

This paper presents the R package gRapHD for efficient selection of high-dimensional
undirected graphical models. The package provides tools for selecting trees, forests, and
decomposable models minimizing information criteria such as AIC or BIC, and for dis-
playing the independence graphs of the models. It has also some useful tools for analysing
graphical structures. It supports the use of discrete, continuous, or both types of variables.
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1. Introduction

We describe here the R (R Development Core Team 2010) package gRapHD which is designed
to work with graphical models involving a large number of variables. These may be useful
for modelling high dimensional networks in an wide range of biological applications (e.g.,
ecology, Dunne et al. 2002; gene expression, Faith et al. 2007; proteomics Yosef et al.
2009). Other applications are in computer sciences (e.g., internet, Dorogovtsev and Mendes
2003), engineering (e.g., complex electronic circuits), physics (e.g., Dhamodaran et al. 2008),
sociology (e.g., Krause et al. 2007).

The graphical models used here are classes of multivariate distributions whose conditional
independence properties are encoded by a graph in the following way. The random variables
are represented as vertices (nodes), and two vertices are connected by an edge (line) when
the corresponding variables are not conditionally independent given the other variables repre-
sented in the graph. Thus the absence of an edge connecting two vertices indicates conditional
independence of the two corresponding variables given the other variables.

This type of model has been used in high dimensional contingency tables (e.g., log-linear mo-
dels Goodman 1973; Darroch et al. 1980), continuous variables (e.g., the covariance selection
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model described by Dempster 1972), and models containing both continuous and discrete
variables (Lauritzen and Wermuth 1989). Modern accounts of graphical models can be found
in Edwards (2000), Lauritzen (1996), and Whittaker (1990).

The use of graphical models for large numbers of variables can be very challenging, both
because of computational limitations, and because of intrinsic statistical difficulties (partic-
ularly when the sample sizes are small). Consequently the use of such models has often
been restricted to small problems. The package gRapHD presented here is intended for
high-dimensional graphical modelling. The central functions, minForest and stepw, search
respectively for the optimal forest and the optimal decomposable model, where optimality is
typically defined in terms of an information criterion (AIC or BIC).

The gRapHD package is presented using three distinct examples, which are described in
Section 2. The basic definitions and notations used throughout the paper are found in Section
3, and the structure of the gRapHD object class defined by the package is described in Section 4.
Sections 5 to 7 present the functions in the package, using the examples previously introduced.

2. Three examples

The features of the gRapHD package will be presented using three different examples covering
continuous, discrete, or both types of variables (examples 1, 2, and 3, respectively). We here
describe the data and show the graphical model selected.

2.1. Example 1 — continuous: Periodontitis data

The data arise from a functional genomics study in gingival tissue (Demmer et al. 2008).
The study investigates the differences in the gene expression profiles of interproximal papillae
tissues of diseased (periodontitis) and health sites. Ninety healthy non-smoker patients with
moderate to advanced periodontitis were used in this study. Each patient contributed with
at least two diseased samples and a healthy papilla, if available. A total of 247 samples were
collected (64 from healthy sites and 183 from diseased sites). The transcription profiles of the
samples were evaluated using Affymetrix human genome arrays with 54,675 probe sets.

Only 64 arrays from independent diseased sites were considered. The data were pre-processed
using justRMA from the affy package (Gautier et al. 2004). To reduce the amount of data,
probes with variance < 0.62 were omitted from the analysis. Thus our dataset is composed
of 1,545 probes, from 64 different patients. The objective is to characterize the gene co-
expression network in patients with periodontitis. The model selected by the stepw function
can be seen in Figure 1(A).

2.2. Example 2 — discrete: HapMap data

The goal of the International HapMap Project is to characterize human genetic variation (The
International HapMap Consortium 2003). The project recorded differences in the sequence of
bases that composes the DNA, the SNPs (single nucleotide polymorphisms). There are four
different bases (A, T, G, and C) that can occur at each position in the DNA (locus), and if
different individuals have different bases at a locus, the locus can be considered polymorphic
(provided that none of the alleles are too rare). Each different base occurring in one locus is
considered as an allele.
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Figure 1: Three inferred networks: (A) Periodontitis data (example 1); (B) HapMap data
(example 2); (C) Iris data (example 3).

We use here only the polymorphic SNPs from the Yoruba population (Ibadan, Nigeria - West
Africa) with complete data. From this population, we selected the chromosome 17, repre-
senting 606 SNPs in 176 individuals, for synonymous coding SNPs (SNPs which even with
different structure code the same amino acid) with minor allele frequency greater than 0.25
(download on 2009-06-03 from the HapMart website http://www.hapmap.org/). After elim-
inating 9 individuals with very high missing values percentage we obtained 334 loci without
missing values. Using the information of the stated reference allele we codified the genotypes
of the individuals as: “0” for homozygous wild type (individual with the reference allele in
both DNA strands); “1” for heterozygous (individual with only one copy of the reference al-
lele); and “2” for homozygous mutant (individual with no copy of the reference allele). The
objective is to determine the relationship between different loci through the network struc-
ture. The optimal decomposable representation of the network (minimum BIC) is displayed
in Figure 1(B).

2.3. Example 3 — mixed: Iris data

The iris flower data were introduced by Anderson in 1935, but is also known as the Fisher’s iris
data (1936). A sample of 150 plants, 50 from each of three species (Iris setosa, Iris versicolor,
and Iris virginica), had the sepal and petal lengths and widths recorded. The objective is
to describe the structure of correlation between the different measurements considering the
three different species. The final model can be seen in Figure 1(C).

3. Basic definitions and notation

We here give a brief sketch of the theory of graphical models. For a more complete account
see for example Lauritzen (1996). Graphical models combine graph theory and probability
theory. Each vertex represents a random variable, and two vertices are connected when they
are not conditionally independent given the remaining variables. For example, from the graph
presented in Figure 2(A), we see that the variables 1 and 2 are not conditionally independent
given variables 3, 4 and 5, but that variables 1 and 4 are conditionally independent given the
variables 2, 3 and 5.
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Figure 2: Example of triangulation: (A) The structural relationship between the 5 vertices
indicates that vertices 1 and 2 are conditionally independent of vertices 4 and 5, given vertex 3.
(B) Adding the edges (1,4) and (2,5) renders the graph non-triangulated.

Define a graphical model as an undirected graph G=(V,E), where V = {v1,...,v,} is the set
of p vertices (p finite), and E is the set of edges, a subset of V x V (unordered pairs), where
multiple edges and self-loops are not allowed. Furthermore, an edge e = (u,v) € E indicates
that the variables associated to w and v are not conditionally independent given all the other
variables. If we are only interested in a subset of such relations, we can define a subgraph of G
as G4 = (A,E4), where A C 'V and E4 C E (Bollobas 2000). For example, in Figure 2(A),
V ={1,2,3,4,5} and E = {(1,2),(1,3),(2,3),(3,4),(3,5),(4,5)}, and A = {1,2,3} renders
the subgraph to the graph E4 = {(1,2),(1,3),(2,3)}.

A graph is complete if every pair of vertices is connected by an edge. If a subgraph is
maximally complete, it is called a clique: in this case the addition of any other vertex would
renders the subgraph incomplete. In Figure 2(A), {1,2,3} and {3,4,5} are cliques.

In a graph G, two vertices, u and v, are said to be connected if there is a sequence u =
v1,...,vr = v of distinct vertices such that (v;—1,v;) € E, Vi = 2,...,k. The sequence
u = v1,...,v; = v is called path. In the Figure 2(A), the vertices 1 and 5 are connected
since there exists a path between them, for example 1,2,3,5. A cycle is a path which the
end vertices are the same (u = v), as 1,2,3,1 in Figure 2(A). A cycle u = vy, ...,vp = u is
chordless if v; and v; are only connected by an edge when | — j| = 1. A graph is called
triangulated if it has no chordless cycles of length greater than three. For example, the graph
in Figure 2(A) is triangulated, but the graph in Figure 2(B) is not, since the cycle 1,2,5,4,1
of length four is chordless.

A subset C C V separates two disjoint subsets of V, A, and B, if all paths from v € A to
u € B pass through C. In addition, a triple (A, B, C) of disjoint subsets of V decomposes
the graph G=(V,E) if: (1) V=AUBUGC, (2) C separates A from B, and (3) C is complete.
This definition implies that a graph is decomposable if it is complete, or exists a decomposition
(A,B,C), with A # () and B # ), into decomposable subgraphs G a4uc and Gpuc. A graph
G=(V,E) is decomposable if and only if it is triangulated (Lauritzen 1996). The example
shown in Figure 2(A) is decomposable, with A = {1,2}, B = {4,5}, and C = {3}.

The cliques C1,...,C} in a triangulated graph can be numbered in such a way that for all
3 =1,..k, Hj =C;U..U Cj, Rj = Cj\Hj_l, and Sj = Hj1 N Cj gives that (1) for
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Figure 3: Example tree and forest: (A) Graph with four connected components. (B) One
possible spanning forest (each connected component is a tree) for the graph in (A).

all i+ > 1 there is a j < i such that S; C Cj, and (2) the sets S; are complete for all ¢
(Lauritzen 1996). This sequence of cliques is called a perfect sequence. The sets H;, Rj,
and S; are named histories, residuals, and separators, respectively. A perfect sequence of the
graph in Figure 2(A) is {2,3,1,4,5}, with cliques C; = {1,2,3} and Cy = {3,4, 5}, respective
separators S; = () and Sy = {3}, histories H; = {1,2,3} and Hy = {1, 2,3, 4,5}, and residuals
Ry ={1,2,3} and Ry = {4,5}.

A key property of decomposable graphs is that the probability densities of such models can

be factorized as: [eee f(ve)
_ _llcecs Vo
) Mses f(vs) 5’

where C is the class of cliques in a perfect sequence, and v(S) is the number of times that
S occurs as a separator in this perfect sequence, possibly including the empty set, (Lau-
ritzen 1996). Furthermore, these models have an explicit formula for the maximum likelihood
estimators.

A forestis a graph containing no cycles. It may be composed of several connected components
called trees, i.e. a tree is a connected acyclic graph (Bondy and Murty 2008). Given a set of
edge weights, a minimum spanning forest G, = (V, Ep) of a graph G=(V,E) is a forest
with V,;, = V and E,,, C E that has minimum sum of edge weights, among all possible
such forests. Examples of edge weights are the contribution of each edge to the BIC or the
contribution to minus the log-likelihood. Figure 3(A) shows a graph with four connected
components, and Figure 3(B) shows a spanning forest of this graph.

The variables in the model can be discrete, continuous, or both (mixed). In the first case,
in which each variable assumes a value in a set of levels, the models are based on the multi-
nomial distribution. In the second case, the models are based on the multivariate Gaussian
distribution. In the mixed case the CG (conditional Gaussian) distribution is assumed; the
variances can be homogeneous or heterogeneous across different levels of the discrete vari-
ables. Furthermore, a mixed model is strongly decomposable when its graph is triangulated
and no forbidden paths occur. A forbidden path is a path between two non-adjacent discrete
vertices passing through only continuous vertices, as showed in Figure 4. For more details see
Lauritzen (1996, p. 7-12).
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Figure 4: Forbidden path: Continuous variables are represented as circles, and discrete vari-
ables as dots. The edge (5,10) creates a forbidden path in the graph, since a continuous
variable (variable 5) connects non-adjacent discrete variables (variables 3 and 4 to variables
8,9, 10, and 11).

In this paper we describe the main features of the new R package gRapHD, and how it can
be used for graphical model search. Most of the core functions are programmed in ANSI C,
due to its computational efficiency. The package as well as the code are available from
http://CRAN.R-project.org/package=gRapHD.

4. The gRapHD object

The gRapHD package groups a number of functions designed for efficient selection of high-
dimensional undirected graphical models. The set of variables can contain only discrete,
continuous, or both types. All the information about the model is stored in a gRapHD object
which contains the following elements:

e edges: Matrix with 2 columns, each row representing one edge, and each column one
of the vertices in the edge.

e p: Number of variables (vertices) in the model.

e stat.minForest: Measure used (LR, AIC, BIC, or a user defined function) by the
minForest function.

e stat.stepw: Measure used (LR, AIC, BIC, or a user defined function) by the stepw
function.

e statSeq: Numeric vector with the value of the stat.minForest for each edge found by
minForest, or the change in the stat.stepw for each edge found by stepw.

e vertNames: Vector with the original vertices’ names. If no names are attributed, then
the vertices will be named according to their original order in the data.

e numCat: Vector with number of levels for each variable (0 if continuous).
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e homog: TRUE if the covariance is homogeneous (only used in the mixed case).
e numP: Vector with the number of estimated parameters for each edge.

e minForest: Vector of length 2, with the row indexes of the first and last edges found
by the minForest function.

e stepw: Vector of length 2, with the row indexes of the first and last edges found by the
stepw function.

The gRapHD object, besides being the result of a model search, functions as an input parameter
in most other functions in the package. A null model can be created using the function
as.gRapHD, as in

R> m <- as.gRapHD(NULL)

List of 9
$ edges : int[0 , 1:2]
$p : int O
$ stat.user: chr "LR"
$ statSeq : num(0)
$ numCat : int(0)
$ homog : logi TRUE
$ numP : num(0)
$ vertNames: logi NA
$ userDef : num [1:2] 0 O

attr(*, "class")= chr "gRapHD"

5. Search for graphical models

The core functions in the package are minForest and stepw. The minForest function finds
a minimal AIC or BIC forest, or the maximum likelihood tree for the data. The stepw
function performs forward search for the triangulated graph that minimises a given measure.
The minimized measure used can be either -LR (likelihood ratio), BIC (Bayesian Information
Criterion), AIC (Akaike Information Criterion), or a function specified by the user.

All calculations use the data set specified by the dataset parameter, which holds the raw data,
in dataframe format, with the column storage mode defining its type (discrete or continuous).
The discrete variables are defined as factors, and the continuous as numerical. In the first
case, there should be more than one level (otherwise there is no gain in using such variable),
and all levels must be represented in the sample. If all variables are continuous, the dataset
can be given as a numeric matrix. Missing values (NA) are not allowed. The variables are
referred by their indexes in the vertNames attribute. In this way, the edge representation in
the gRapHD object is in the format (vq,v2), where v; and vy are the indexes in vertNames,
and v; < vo. For example, the iris data is presented as

R> str(iris)
'data.frame': 150 obs. of b5 variables:
$ Sepal.lLength: num 5.1 4.9 4.7 4.6 5 5.4 4.6 54.44.9 ...



8 gRapHD: High-Dimensional Graphical Model Search in R

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.561.41.71.41.51.41.5 ...

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 ...

The discrete variable (Species) is identified as a factor with three levels. All other variables
are continuous (as indicated by the numerical type ‘num’). The columns names (Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species) are stored in the vertNames at-
tribute of the gRapHD object. The variables are always referred to as the original column
number in the dataset, e.g., the variable Sepal.Width is variable 2, while Species is vari-
able 5. The edge connecting Sepal.Width and Species is represented by a row in the edges
attribute consisting of the vector c(2, 5).

5.1. Search for minimum spanning forests

The function minForest searches for an optimal tree or forest using the algorithm of Chow
and Liu (1968). If the ML measure is used, the function returns a tree, but if the AIC or
BIC is used, the function may return a forest or a tree. Per default the BIC measure is used.
Starting from an empty edge set, the algorithm repeatedly adds the edge that optimizes the
selected measure. Only edges that preserve the tree/forest structure can be added, i.e., no
cycles can be generated. The procedure continues until no more edges can be added. For
example, if the selected measure is the BIC, at first the pairwise values are computed and in
each step the edge that reduces the most the total BIC is added, if it exists. The algorithm is

Step 1: Calculate the BIC for all possible edges.

Step 2: Select the edge that improves the most the model’s BIC.

Step 3: If there is no such edge, stop.

Step 4: Test if the addition of this edge creates a cycle or a forbidden path.

Step 5: If it does, select the next edge with best improvement and return to Step 3.

Step 6: Add the edge to E, remove it from the list of possible edges, and return to Step 2.

For mixed models, the algorithm finds the strongly decomposable forest that minimizes the
selected measure (Edwards et al. 2010).

For the periodontitis data, the summary of the minimum spanning forest is presented below.

The graph found is actually a tree and not a forest, since all vertices are connected (p — 1
edges). All variables are continuous, and the measure minimised was the BIC (default).

R> library("gRapHD")
R> periodontitisForest <- minForest(periodontitisData)
gRapHD object

Number of edges = 1544
Number of vertices = 1545
Model = continuous
Statistic (minForest) = BIC

Edges from minForest = 1...1544
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5.2. Forward search

The function stepw searches for decomposable models minimising a given measure by adding
edges to a initial model, also decomposable. The algorithm is also iterative, determining at
each step the add-eligible edges, i.e., the edges that if added preserve the triangularity. Among
these edges, the one that reduces the most the selected measure is added to the graph. The
algorithm, showed below, stops when no more add-eligible edges are found. The structure of
components in the starting model is preserved as default, which means that if the function
starts from a forest with k isolated components, the final model will also have k isolated
components. This can be changed setting the option join to TRUE.

Step 1: Calculate the BIC for all add-eligible edges.
Step 2: Select the edge that improves the most the model’s BIC.
Step 3: If there is no such edge, stop.

Step 4: Add the edge to E, and return to Step 1.

For example, if the function is applied on the tree found in the previous section, 999 iterations
are necessary (998 edges are added to the tree).

R> periodontitisForward <- stepw(periodontitisForest, periodontitisData)
gRapHD object

Number of edges = 2542

Number of vertices = 1545

Model = continuous
Statistic (minForest) = BIC
Statistic (stepw) = BIC

Edges from minForest = 1...1544
Edges from stepw = 1545...2542

The default measure is the BIC. We can see that in the final model, the first 1,544 edges were
found by minForest (edges 1 to 1,544), and the last 998 by stepw (edges 1,545 to 2,542).
The final graph can be seem in Figure 1(A).

The algorithm can start from an empty model (which is always decomposable). If we use the
iris data, the final model (Figure 1C) found is the same as if it had started from the forest/tree
graph. The code for it is showed below. Initially a gRapHD object is generated, from an empty
model with 5 variables, being the first 4 continuous and the last discrete with 3 levels. The
model is considered heterogeneous. As we are starting from 5 isolated components, they are
allowed to be joined.

R> irisEmpty <- as.gRapHD(matrix(integer(0), , 2), p = 5,
+ numCat = c(0, 0, 0, 0, 3), homog = FALSE)
R> irisForward <- stepw(irisEmpty, iris, join = TRUE)
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5.3. Computational performance

The performance of gRapHD was evaluated using a Intel(R) Xeon(R) CPU E5450 3.00GHz
with 31Gb of RAM, running Linux 64 bits. The memory use and CPU time of the three
examples are presented in Table 1.

We see that the minForest function is highly efficient in terms of CPU time but may require
substantial memory.

Additionally, we performed a simulation study where the functions minForest and stepw were
evaluated. Data sets from multivariate normal distributions were generated with 10 to 5,000
variables (at intervals of 20). Each of these data sets were used to infer the minimum spanning
forest and a more complex decomposable graph starting from this forest. The computational
performance is showed in Figure 5. As the stepw function depends on the final complexity of
the model (number of edges added to the model), the CPU time shown is for one (average)
iteration only. The memory demand for the minForest function grows quadratically in the
number of vertices, while the memory demand for the stepw function grows linearly in the
number of vertices. The CPU time also grows quadratically in both functions.

In conclusion, the minForest function runs much faster than the stepw, allowing the selection
of a skeleton of the model in a forest-like structure (sparse) in a very short time. We remark

Example Number of | Number of edges added CPU time (sec.) Memory (Mb)
vertices minForest stepw minForest stepw | minForest | stepw
Periodontitis 1,545 1,544 998 9.27 2024.14 36.64 0.0956
HapMap 334 189 5 0.18 2.18 1.66 0.01
Iris 5 4 3 0.001 0.003 0.002 0.0003

Table 1: Computational performance: CPU time (for the whole procedure) and memory use
of the three examples.

Average Memory use Average CPU time

360 —— minForest (Mb) a4 | —— minForest (whole algorithm)
— stepw (Kb) — stepw (one iteration)

320

280 —

240

200 —

Memory
Time (seconds)

160 —

120

80 4

T T T T T T T T T T T T 1 T T T T T T T T T T T T 1
o o o o o o o o o o o o o o o o o o o o o o (=] o o o o Qo
o o o o o o o o o o (=} o o o o o o o o o o o o (=} o o
= @ o © o = =} o © o = @ o = @ o © o = @ o © Q = @ [sY}
- - 8 a4 a4 ® ® I T T b - - & a4 a4 ® ® I T T 0
Number of vertices Number of vertices

Figure 5: Computational performance: Memory use and CPU time. The curve for the CPU
time of the stepw function reflects an average iteration, while for the minForest function it
is for the whole algorithm.
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that it appears to be much more efficient to start the stepw function from the forest found
by minForest, rather than from the null model.

6. Analysis of the graphical structure

When high-dimensional models are studied, plotting the model found is probably not the best
way to visualise the result, as can be seen in Figure 1. The plotting algorithm used here is
time consuming, and may need a large number of iterations to generate a graph with no edges
crossing each other. Therefore different ways to analyse the resulting model have to be used.
The package contains a number of functions which could be useful for this task:

e adjMat: Returns the adjacency matrix based on a list of edges.
e fit: Calculate a model’s -2xlog-likelihood, AIC, and BIC.
e Degree: Returns the degree of a set of vertices.

e DFS: Finds all vertices reachable from one specific vertex (assuming that there are no
cycles).

e findEd: Finds all add-eligible edges to a given triangulated graph, preserving triangu-
larity. In the case of a mixed graph, forbidden edges are not returned.

e neighbours: Returns all vertices with a direct connection with a vertex v.

e MCS: Returns a perfect numbering of the edges.

e modelDim: Calculates the number of free parameters corresponding to each edge.
e modelFormula: Finds the model’s formula (Lauritzen 1996, p. 213-216).

e neighbourhood: Finds the set of vertices with up to a given distance from a given
vertex.

e perfSets: Finds a perfect sequence, returning the cliques, histories, residuals, and
separators of a given triangulated graph.

e shortPath: Calculates the shortest path between a vertex v and all other vertices.
e SubGraph: Based on a list of vertices, generates a subgraph.

e summary: Gives details about the model’s structure.

e jTree: Finds a junction tree of a graph.

e CI.test: Calculates the deviance and adjusted degrees of freedom for the conditional
independence test.

The degree of the periodontitis model shows two vertices with high number of direct neigh-
bours (degree 20). These vertices could be “hubs”, with important action in the network.
We can also see that there is a high number of “leafs” in the graph, as 382 (24.72%) vertices
present only one edge.
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Figure 6: Zooming in specific regions of a large graph: (A) The final graph of the periodontitis
data, highlighting vertices 670 (red) and 1,123 (blue). (B) The neighbourhood of vertex
670, including only vertices within a radius of two. (C) The neighbourhood of vertex 1,123,
including only vertices within a radius of two.

R> table(Degree(periodontitisForward))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20
382 379 249 185 116 83 563 28 18 17 13 6 5 6 1 1 1 2

We can zoom in the neighbourhood (up to the second neighbour, for example) of these two
“hubs”.

R> vertices <- which(Degree(periodontitisForward) == 20)

R> neigh670 <- neighbourhood(periodontitisForward, orig = vertices[1],
+ rad = 2)

R> pos <- plot(periodontitisForward, numIter = 4000, vert.labels = FALSE,
+ vert.radii = 0.006, vert.hl = vertices, col.hl = c("red", "blue"))
R> plot(periodontitisForward, vert = neigh670$v[,1], numIter = 1000,

+ vert.hl = vertices[1], vert.radii = 0.013, col.hl = "red",

+ cex.vert.label = 0.4)

R> plot(periodontitisForward, vert = neigh1123%$v[,1], numIter = 1000,

+ vert.hl = vertices[2], vert.radii = 0.013, col.hl = "blue",

+ cex.vert.label = 0.4)

From Figure 6 we see that restricting the plot to a smaller neighbourhood allows details to
become more visible. The same plot could also be produced using the functions neighbours
and SubGraph.

For the HapMap data, the degree shows that we actually have a high number of isolated
vertices (104, 31.14%). The general structure of the model is very close to a forest, as only 5
edges are added by the stepw function. The vertices with highest degree have 5 edges.

R> table(Degree (HapMapForward) )
0 1 2 3 4 5
104 133 58 22 12 5
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The log-likelihood, BIC, and AIC of a model can be obtained using the function fit. For
example, if we are interested in test in a mixed model if the structure of covariance is homo-
geneous or heterogeneous, we could use the this information.

R> fit(edges = irisForward, dataset = iris, homog = FALSE)

Number of parameters -2xLog-likelihood AIC BIC
39.0000 410.1435 488.1435 605.5582

R> fit(edges = irisForward, dataset = iris, homog = TRUE)

Number of parameters  -2*Log-likelihood AIC BIC
22.0000 551.3188 595.3188 661.5528

The perfSets function finds the cliques structure of the graph, also returning the lists of
separators, histories, and residuals, as described in Lauritzen (1996, p. 14-15). If the graph is
not (strongly) decomposable, the function returns the value zero. For the periodontitis data
we have (with only the first two elements of each shown here)

R> sets <- perfSets(periodontitisForward)
List of 4
$ cliques :List of 1395
..$ : int [1:2] 1 335
..$ : int [1:3] 394 335 474
$ histories :List of 1395
..$ : int [1:2] 1 335
..$ : int [1:4] 1 335 394 474
$ separators :List of 1395
..$ : NULL
..$ : int 335
$ residuals :List of 1395
..$ : int [1:2] 1 335
..$ : int [1:2] 394 474

The shortPath function returns the shortest path length between vertices in the graph (con-
sidering that each edge has length one). If two vertices are not connected, i.e., there is no
path between them, it is returned Inf. In the periodontitis data, the vertex 670 has a direct
connection with 20 other vertices, and the most far vertex has a distance of 26 from it, while
the graph’s diameter (longest shortest path) is 46. Note that vertex 670 has a distance of 0
to itself.

R> table(shortPath(periodontitisForward, v = 670))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 20 50 58 72 78 84 77 80 97 134 130 126 116 98 91 80 70
18 19 20 21 22 23 24 25 26
48 15 4 4 4 3 3 1 1
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7. Plotting a graphical model

Some examples of plots generated by the plot.gRapHD function have been given above. The
function uses S3 method for the class gRapHD, so the regular plot function can be used. As
default, when a gRapHD object is plotted, all discrete variables are pictured as black circles, and
the continuous variables as grey circles. But the function is flexible, and the user can define
different colours, shapes, and sizes for each vertex. The Fruchterman and Reingold (1991)
algorithm is used to place the vertices in the plotting area (Csardi and Nepusz 2006). The
algorithm is iterative and uses attractive and repulsive forces for placing the vertices. This
technique is time consuming and cannot guarantee a clear plot, as the one in Figure 1(A),
which used 4,000 iterations, a number not sufficient to untangle it.

The more complex a graph is, the more difficult is its visualisation. For this reason, the
plot.gRapHD function has a number of optional parameters that allow the user to manipulate
the appearance of the plot. It is possible to plot only the edges, or not to label the vertices; to
highlight some vertices with different colours, shapes, and/or sizes. For example we could show
in the graph where the neighbourhood of the vertices 670 and 1,123 are, for the periodontitis
data, as shown in Figure 7.

R> hlv <- c(670,1123,neigh670$v[-1, 1], neigh1123$v[-1, 1])

R> hlc <- rep(c("black", "red", "blue"), c(2, length(neigh670$v[-1, 11),
+ length(neigh1123$v[-1, 1])))

R> vs <- rep(0.005, periodontitisForward$p)

Figure 7: Highlighting specific regions in a complex graph: The vertices 670 and 1,123 are
pictured in black as triangles, while the respective neighbourhoods are picture in red and
blue.
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Figure 8: Largest components in the HapMap graph: The components with more than 5
vertices are plotted in different colours - red (7 vertices); blue (13 vertices); green (39 vertices);
and yellow (79 vertices).

R> vs[c(neigh670$v[,1], neigh1123%$v[,1]1)] <- 0.008

R> vs[c(670,1123)] <- 0.01

R> sb <- rep(1, periodontitisForward$p)

R> sb[c(670, 1123)] <- 3

R> vs[901] <- 0

R> plot(periodontitisForward, coord = pos, numIter = 0, vert.hl = hlv,

+ col.hl = hlc, vert.labels = FALSE, vert.radii vs, symbol.vert = sb)

The code below can be used to identify isolated components in a graph. The largest compo-
nents in the HapMap data are displayed in Figure 8.

R> sp <- shortPath(HapMapForward)
R> comp <- rep(0, HapMapForward$p)
R> i <-0
R> while(length(which(comp == 0)) > 0) {
i<-1i+1
if (comp[i] == 0) {
ind <- which(sp[i,] < HapMapForward$p)
comp[ind] <- max(comp) + 1
}
}
R> v <~ c(which(comp == 18), which(comp == 21), which(comp == 15),

+ + 4+ + + o+

15
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+ which(comp == 1), which(comp == 9))

R> col <- rep(colours() [c(133, 124, 258, 150)], c(14, 13, 39, 79))

R> plot(HapMapForward, vert = v, lwd.ed = 3, vert.hl = v,

+ symbol.vert = rep(0, length(v)), vert.radii = rep(0.012, length(v)),
+ col.hl = col, numIter = 3000, cex.vert.label = 0.7)

8. Concluding remarks

We have described an R package for efficient selection of high-dimensional undirected graphical
models, with functions not available in other packages. The objective of the package is to
provide an efficient way to search for models in the classes of forests and decomposable graphs
(discrete, continuous, and mixed). The computational performance depends on the model
complexity, where sparse models demand much less resources. It is easy to convert gRapHD
objects into graph or model objects supported by other packages; it is also easy to extract
information directly from them. There is a technical limitation of 65,000 variables, due to
numerical representation.
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