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Abstract

I present BUGS code to fit common models from item response theory (IRT), such
as the two parameter logistic model, three parameter logisitic model, graded response
model, generalized partial credit model, testlet model, and generalized testlet models. I
demonstrate how the code in this article can easily be extended to fit more complicated
IRT models, when the data at hand require a more sophisticated approach. Specifically,
I describe modifications to the BUGS code that accommodate longitudinal item response
data.

Keywords: education, psychometrics, latent variable model, measurement model, Bayesian
inference, Markov chain Monte Carlo, longitudinal data.

1. Introduction

In this paper, I present BUGS (Gilks, Thomas, and Spiegelhalter 1994) code to fit several
models from item response theory (IRT). Several different software packages are available for
fitting IRT models. These programs include packages from Scientific Software International
(du Toit 2003), such as PARSCALE (Muraki and Bock 2005), BILOG-MG (Zimowski, Mu-
raki, Mislevy, and Bock 2005), MULTILOG (Thissen, Chen, and Bock 2003), and TESTFACT
(Wood, Wilson, Gibbons, Schilling, Muraki, and Bock 2003). The Comprehensive R Archive
Network (CRAN) task view “Psychometric Models and Methods” (Mair and Hatzinger 2010)
contains a description of many different R packages that can be used to fit IRT models in the
R computing environment (R Development Core Team 2010). Among these R packages are
ltm (Rizopoulos 2006) and gpcm (Johnson 2007), which contain several functions to fit IRT
models using marginal maximum likelihood methods, and eRm (Mair and Hatzinger 2007),
which contains functions to fit several variations of the Rasch model (Fischer and Molenaar
1995). Volume 20 of the Journal of Statistical Software is devoted to “Psychometrics in R”
(de Leeuw and Mair 2007) and contains articles on how to fit a multilevel Rasch model with
the lme4 package (Doran, Bates, Bliese, and Dowling 2007; Bates and Maechler 2010), how
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2 BUGS Code for Item Response Theory

to fit multilevel polytomous item response models using Markov chain Monte Carlo (MCMC)
methods (Fox 2007), and how to fit item response models that account for response times
(Fox, Entink, and van der Linden 2007). The SCORIGHT software (Wang, Bradlow, and
Wainer 2005) uses MCMC methods to estimate parameters in testlet models.

The use of BUGS software to estimate IRT models, however, allows the user to alter existing
code to fit new variations of current models that cannot be fit in existing software packages.
For example, longitudinal or multilevel data can easily be accommodated by small changes
to existing BUGS code. The BUGS software takes care of the “grunt work” involved in esti-
mating model parameters by constructing an MCMC algorithm to sample from the posterior
distribution. As one anonymous reviewer stated it, in BUGS“the user does not have to bother
thinking about how extensions of a model can be estimated”. Thus, using BUGS frees the
user to experiment with different models that may be more appropriate for specialized data
than the models that can currently be fit in other software packages.

Of course, more complicated models involve more parameters than simpler models, and the
analyst must specify prior distributions for these new parameters. This is a small price to
pay, however, for the flexibility that the Bayesian framework and BUGS software provide.

Throughout this article, I assume that the reader has some basic understanding of IRT models
and working knowledge of a software implementation of the BUGS language. However, if this
is not the case, I give some references in Section 2 to sources that discuss IRT models and
references to sources that contain tutorials and descriptions of BUGS.

Sections 3–8 each start with a brief description of one of the following models:

1. Two parameter logistic model (2PLM, Lord and Novick 1968).

2. Three parameter logistic model (3PLM, Birnbaum 1968).

3. Graded response model (GRM, Samejima 1969).

4. Generalized partial credit model (GPCM, Muraki 1992).

5. Testlet model (Bradlow, Wainer, and Wang 1999).

6. Generalized testlet model (Li, Bolt, and Fu 2006).

I follow each model description with BUGS code for fitting each of the models and provide
comments on various aspects of the code which may be nonintuitive. In Section 9, I describe
how to extend the BUGS code of the earlier sections to model item response data in longitu-
dinal studies. I conclude the article with an example of how to use R to call the BUGS code
for one particular IRT model and how to use the output to check the fit of the model.

2. Preliminaries

2.1. The BUGS language and software

The BUGS language is a syntax for defining statistical models. The BUGS language is
implemented in three software packages: WinBUGS (Lunn, Thomas, Best, and Spiegelhalter
2000; Spiegelhalter, Thomas, Best, and Lunn 2003), OpenBUGS (Thomas, O’Hara, Ligges,
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and Sturtz 2006; Spiegelhalter, Thomas, Best, and Lunn 2010), and JAGS (Plummer 2003,
2010a). Each of these software packages can be downloaded for free from their respective
websites.

WinBUGS is the oldest of these software packages and is (more or less) frozen in its develop-
ment. OpenBUGS is the open-source version of WinBUGS and is actively being developed
with new features. Lunn, Spiegelhalter, Thomas, and Best (2009) is a recent article by the cre-
ators of the BUGS language and WinBUGS and OpenBUGS software packages that describes
the history of the language and other issues in the BUGS language. A tutorial on how to use
WinBUGS and OpenBUGS can be obtained in their respective help manuals. These manuals
can be accessed via WinBUGS’s and OpenBUGS’s help menus. A “movie” tutorial for Win-
BUGS and OpenBUGS can be found at http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/

winbugsthemovie.html. WinBUGS and OpenBUGS can be called from within R by using
the R packages R2WinBUGS (Sturtz, Ligges, and Gelman 2005) and BRugs (Thomas et al.
2006).

JAGS is an implementation of BUGS written and maintained by Martyn Plummer in the
C++ programming language. Although very similar to WinBUGS and OpenBUGS, the
JAGS implementation of BUGS has some nontrivial syntax differences that are described in
the JAGS manual (see Plummer 2010a, Chapter 8). When appropriate, I note some of these
differences as they relate to IRT models.

Unlike WinBUGS and OpenBUGS, JAGS is a command line program, which can make it a
little cumbersome to use. However, JAGS can be called from R using the R packages rjags
(Plummer 2010b) and R2jags (Su and Yajima 2010).

2.2. Item response theory

I assume that the reader has working knowledge of basic IRT models; however, to establish
notation, I briefly discuss each IRT model for which I provide code. The reader is encouraged
to consult other sources for more detailed descriptions of the models discussed here. Excellent
sources for learning IRT are Baker and Kim (2004), who provide a mathematically detailed
introduction to IRT; Hambleton, Swaminathan, and Rogers (1991), who give an intuitive in-
troduction to the topic; and Wainer, Bradlow, and Wang (2007), who provide an introduction
to testlet models.

3. Two parameter logistic model

The 2PLM is used for data collected on n individuals who have each given responses on p
different items. The items have binary outcomes, i.e., the items are scored as 1 if correct
and 0 if not. The i-th individual in the sample is assumed to have a latent ability θi, and
the i-th individual’s response on the j − th item is a random variable Yij with a Bernoulli
distribution. The probability that the i− th individual correctly answers the j− th item (i.e.,
the probability that Yij = 1) is assumed to have the following form

pij = P (Yij = 1|θi, αj , δj) =
1

1 + exp{−αj(θi − δj)}
(1)

where αj is called the discrimination parameter and δj is called the difficulty parameter for

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/winbugsthemovie.html
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1 model{

2 for (i in 1:n){

3 for (j in 1:p){

4 Y[i, j] ~ dbern(prob[i, j])

5 logit(prob[i, j]) <- alpha[j] * (theta[i] - delta[j])

6 }

7 theta[i] ~ dnorm (0.0 , 1.0)

8 }

9

10 for (j in 1:p){

11 delta[j] ~ dnorm(m.delta , pr.delta)

12 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

13 }

14 pr.delta <- pow(s.delta , -2)

15 pr.alpha <- pow(s.alpha , -2)

16 }

Table 1: Two parameter logistic IRT model.

item j. Note that (1) may be written equivalently

logit(pij) = αj(θi − δj), (2)

where logit(x) = log
(

x
1−x

)
.

Each latent ability θi is assumed to come from a standard normal distribution. Additionally,
in a Bayesian analysis, item parameters are given prior distributions

αj ∼ N+

(
mα, s

2
α

)
δj ∼ N

(
mδ, s

2
δ

)
where mα, sα, mδ, and sδ are constants specified before the data analysis, N

(
m, s2

)
denotes

a normal distribution with mean m and variance s2, and N+

(
m, s2

)
denotes the normal

distribution truncated to the positive real line.

Table 1 contains BUGS code to fit the 2PLM. In general, the code speaks for itself; however,
I list a few comments below that may clarify some aspects of the code.

� Line 5 uses the logit function to specify the logistic ogive as the link function for the
model. A normal ogive could be used by changing line 5 to

probit(prob[i, j]) <- alpha[j] * (theta[i] - delta[j])

� The BUGS language parametrizes the normal distribution in terms of the precision—the
inverse of the variance. Thus, standard deviations for prior distributions on the item
parameters need to be converted to precisions in lines 14 and 15.

� A truncated normal distribution is specified for the discrimination parameters in line 12
by using the I(0, ) operator. Strictly speaking, in WinBUGS, there are no truncated
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distributions; the I(.,.) operator is used only to denote censored observations (Spiegel-
halter et al. 2003). However, when all parameters in a prior distribution are observed,
the I(.,.) operator will mimic the behavior of a truncated distribution (Lunn et al.
2009, p. 3061).

JAGS and OpenBUGS remove this ambiguity between truncation and censoring by
introducing the truncation operator T(.,.). The truncation operator, however, is not
available for all distributions in OpenBUGS, and it is unclear from the JAGS manual
whether the truncation operator can be used on all distributions implemented in JAGS.

OpenBUGS still accepts the I(.,.) operator, but JAGS does not. Therefore, if the
code in Table 1 is to run in JAGS, line 12 should be changed to

alpha[j] ~ dnorm(m.alpha, pr.alpha) T(0, )

� Some authors have used a log-normal distribution as a prior for the discrimination
parameters αj (e.g., Patz and Junker 1999). The log normal distribution can be specified
for the discrimination parameters in BUGS with the code

alpha[j] ~ dlnorm(m.alpha, pr.alpha)

Be aware, however, that the log-normal distribution has two parameters and that the
mean and variance of the log-normal distribution are functions of both parameters.
Therefore, changing only one parameter (e.g., m.alpha in the previous code) in the
log-normal distribution will change both the mean and the variance of the log-normal
distribution, which makes prior specification tricky.

� The Rasch model is a special case of the 2PLM where each discrimination parameter
alpha[j] is set equal to one (see, for example, Baker and Kim 2004, Chapter 5). The
BUGS code in Table 1 can easily be adapted to fit a Rasch model by changing line 12
to

alpha[j] <- 1.0

or simply deleting all references to alpha[] from the code.

4. Three parameter logistic model

The 3PLM is often used to analyze data from multiple choice tests where subjects try to
choose the correct answer from a list of possible answers and may end up choosing the correct
answer just by chance. The 3PLM is similar to the 2PLM except that the probability that
the i-th individual will respond positively to the j-th item is dependent on a parameter ηj
that is constrained to lie in the unit interval:

pij = P (Yij = 1|θi, αj , δj) = ηj + (1− ηj)
1

1 + exp{−αj(θi − δj)}
. (3)

The parameter ηj is sometimes called a “guessing” parameter because it represents the prob-
ability that an individual of extremely low ability could guess the correct answer on the j-th
item just by chance.
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1 model{

2 for (i in 1:n){

3 for (j in 1:p){

4 Y[i, j] ~ dbern(prob[i, j])

5 logit(prob.star[i, j]) <- alpha[j] * (theta[i] - delta[

j])

6 prob[i, j] <- eta[j] + (1 - eta[j]) * prob.star[i, j]

7 }

8 theta[i] ~ dnorm (0.0 , 1.0)

9 }

10

11 for (j in 1:p){

12 delta[j] ~ dnorm(m.delta , pr.delta)

13 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

14 eta.star[j] ~ dbeta(a.eta , b.eta)

15 eta[j] <- guess.ind[j] * eta.star[j]

16 }

17 pr.delta <- pow(s.delta , -2)

18 pr.alpha <- pow(s.alpha , -2)

19 }

Table 2: Three parameter logistic IRT model.

Equation (3) can also be written as

logit(p∗ij) = αj(θi − δj)
pij = ηj + (1− ηj)p∗ij .

Not all items are required to have a guessing parameter. For items with no guessing parameter,
ηj ≡ 0.0. For items with a guessing parameter, the ηj parameters are assigned beta prior
distributions

ηj ∼ Beta(aη, bη) .

All remaining model parameters are assigned priors as in the 2PLM of Section 3.

Table 2 contains BUGS code for the 3PLM. Below are some comments on this code.

� The code uses a “guess indicator” vector, guess.ind[], to denote which items have a
guessing parameter and which items do not. Element j of guess.ind[] is 1 if item j

has a guessing parameter and 0 otherwise.

� The use of the eta.star[] and the guess.ind[] vectors simplifies the process of spec-
ifying which items have guessing parameters and which do not. For items with guessing
parameters, eta.star[j] is set equal to eta[j] in line 15. For items with no guessing
parameter, guess.ind[j] is equal to zero, which, forces eta[j] to be zero in line 15.

� The“long”way to specify which items have guessing parameters and which do not would
be to specify each probability in line 6 “by hand” rather than in a loop. For example, if
we have a test where items 2 and 4 have a guessing parameter and items 1, 3, and 5 do
not, we could use the following code to implement this model
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for (i in 1:n){

prob[i, 1] <- prob.star[i, 1]

prob[i, 2] <- eta[2] + (1 - eta[2]) * prob.star[i, 2]

prob[i, 3] <- prob.star[i, 3]

prob[i, 4] <- eta[4] + (1 - eta[4]) * prob.star[i, 4]

prob[i, 5] <- prob.star[i, 5]

}

Specifying the model in the above manner may lead to a slightly more efficient MCMC
algorithm, because there is no additional overhead in sampling eta.star[j] values for
items with no guessing parameter and there is no additional overhead in computing
eta[j] in line 15 of Table 2. However, specifying each item probability by hand leaves
the code more cluttered than in Table 2 and does not allow the code to be easily reused
on other data sets.

5. Graded response model

As with the 2PLM and 3PLM, the GRM is used for data collected on n subjects who have
responded to each of p items. However, each item can have more than 2 ordered response
categories. Thus, the response Yij of the i-th individual to the j-th item can take values in the
set {1, . . . ,Kj}, where Kj is the largest category of the j-th item. The probability that the
i-th subject will select the k-th category on the j-th item is constructed by first considering
the cumulative probabilities

Pijk = P (Yij ≤ k|θi) = FL(κjk − αjθi) (4)

where κjk is a threshold, and FL(·) is the CDF of the logistic distribution. Each item has
Kj − 1 thresholds κj1, . . . , κj,Kj−1 that must satisfy the order constraint κj1 < · · · < κj,Kj−1.

The probability pijk that the i-th subject will select the k-th category on item j can now be
written as

pij1 = Pij1

pijk = Pijk − Pi,j,k−1 for k = 2, . . . ,Kj − 1

pijKj = 1− Pi,j,Kj−1.

Priors on item parameters αj and δj are the same as the priors for the 2PLM. The priors for
the threshold parameters must account for the order constraint κj1 < · · · < κj,Kj−1. A prior
on the threshold parameters can be induced by defining unconstrained auxiliary parameters
κ∗j1, . . . , κ∗j,Kj−1 such that

κ∗jk ∼ N
(
mκ, s

2
κ

)
for k = 1, . . . ,Kj − 1. Prior distributions on the thresholds for the j-th item are obtained by
setting κjk equal to the k-th order statistic of the auxiliary variables κ∗j,1, . . . , κ∗j,Kj−1 for the



8 BUGS Code for Item Response Theory

1 model{

2 for (i in 1:n){

3 for (j in 1:p){

4 Y[i, j] ~ dcat(prob[i, j, 1:K[j]])

5 }

6 theta[i] ~ dnorm (0.0 , 1.0)

7

8 for (j in 1:p){

9 for (k in 1:(K[j]-1)){

10 logit(P[i, j, k]) <- kappa[j, k] - alpha[j] *

theta[i]

11 }

12 P[i, j, K[j]] <- 1.0

13 }

14

15 for (j in 1:p){

16 prob[i, j, 1] <- P[i, j, 1]

17 for (k in 2:K[j]){

18 prob[i, j, k] <- P[i, j, k] - P[i, j, k-1]

19 }

20 }

21 }

22

23 for (j in 1:p){

24 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

25 }

26 pr.alpha <- pow(s.alpha , -2)

27

28 for (j in 1:p){

29 for (k in 1:(K[j]-1)){

30 kappa.star[j, k] ~ dnorm(m.kappa , pr.kappa)

31 kappa[j, k] <- ranked(kappa.star[j, 1:(K[j]-1)], k)

32 }

33 }

34 pr.kappa <- pow(s.kappa , -2)

35 }

Table 3: Graded response model.

j-th item, that is

κj1 = κ∗j,[1]

κj2 = κ∗j,[2]
...

κj,Kj−1 = κ∗j,[Kj−1]
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where κj,[k] denotes the k-th order statistic of κ∗j1, . . . , κ∗j,Kj−1. This approach to modeling

thresholds is recommended by Plummer (2010a, p. 36).

Table 3 contains BUGS code to fit the GRM. Below are some comments on the code.

� Because the responses are no longer have binary, the dcat function must be used to
specify the distribution of the data. The dcat function defines a categorical distribution
with more than two categories. The dcat function requires that the data for item j are
coded as 1, 2, ..., K[j], i.e., the data cannot contain any zeros.

� The ranked function on line 31 returns the k-th smallest value in the vector kappa.star[j,
1:(K[j]-1)].

� Some tests may not have the same numbers of categories for all items. Therefore, not
all values in the matrix kappa[,] will be defined. WinBUGS and OpenBUGS run
without any problems with these undefined parameters in the GRM. However, JAGS
crashes when it tries to set monitors for the defined kappa parameters in the presence
of undefined kappa parameters. The GRM can be fit in JAGS by setting the undefined
item-step parameters to some arbitrary fixed value (e.g., zero) by passing those values
to JAGS as data. For example, if the numbers of categories for a 5 item test are 2, 3,
4, 4, and 4, then a 5 × 3 matrix of the following format

NA 0 0

NA NA 0

NA NA NA

NA NA NA

NA NA NA

should be passed to JAGS as data for the matrix kappa.

� The JAGS implementation of BUGS does not have the ranked function used on line 31;
instead, JAGS has a sort function. The sort function in JAGS takes a vector as its
input and returns the vector sorted in ascending order. Thus, lines 28–33 in Table 3
should be replaced with

for (j in 1:p){

for (k in 1:(K[j]-1)){

kappa.star[j, k] ~ dnorm(m.kappa, pr.kappa)

}

kappa[j, 1:(K[j]-1)] <- sort(kappa.star[j, 1:(K[j]-1)])

}

for the code to work in JAGS.
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6. Generalized partial credit model

The GPCM (Muraki 1992) is an alternative to the GRM for ordinal item responses. In the
GPCM, the probability that the i-th individual selects category k on item j is

pijk = P (Yij = k|θi) =
exp

{∑k
`=1 αj(θi − βj`)

}
∑Kj

m=1 exp {
∑m

`=1 αj(θi − βj`)}
,

where βj1 ≡ 0 for all j. The parameters βjk are often called “item-step” parameters. Unlike
the threshold parameters in the GRM, the item-step parameters do not need to satisfy any
order restrictions and can be given normal prior distributions with no additional constraints

βj` ∼ N
(
mβ, s

2
β

)
for j = 1, . . . , p and ` = 2, . . . ,Kj .

Even though, mathematically, the item-step parameters do not need to satisfy order con-
straints, if parameter estimates of item-step parameters for a certain item do not satisfy the
ordering βj1 < · · · < βjKj , then it might be more appropriate to model the offending item
with less categories (see, for example, Reckase 2009, page 34).

The discrimination parameters αj are assigned a truncated normal prior distribution as in
the previous models. As usual, the latent abilities θi are assumed to follow a standard normal
distribution.

Table 4 contains BUGS code for the GPCM. Below are some comments on this code.

� As with the threshold parameters in the GRM, not all of the item-step parameters
are defined when the items have differing numbers of response categories. WinBUGS
and OpenBUGS run without problems in spite of the undefined parameters. JAGS,
however, crashes with an error when running this model. The GPCM can be fit in
JAGS by setting the undefined item-step parameters to some arbitrary fixed value (e.g.,
zero) by passing those values to JAGS as data. For example, if the data contain 5 items
with numbers of categories 2, 2, 3, 3, and 4, then a 5 × 4 matrix with the following
structure

NA NA 0 0

NA NA 0 0

NA NA NA 0

NA NA NA 0

NA NA NA NA

should be passed to JAGS as data for the matrix beta[,].

� The partial credit model (Masters 1982, PCM) is a special case of the GPCM where
each discrimination parameter alpha[j] is set equal to one. The code in Table 4 can
be adapted to fit the PCM by changing line 21 to read

alpha[j] <- 1.0

or by removing all references to alpha[] from the code.



Journal of Statistical Software – Code Snippets 11

1 model{

2 for (i in 1:n){

3 for (j in 1:p){

4 Y[i, j] ~ dcat(prob[i, j, 1:K[j]])

5 }

6 theta[i] ~ dnorm (0.0 , 1.0)

7 }

8

9 for (i in 1:n){

10 for (j in 1:p){

11 for (k in 1:K[j]){

12 eta[i, j, k] <- alpha[j] * (theta[i] - beta[j, k])

13 psum[i, j, k] <- sum(eta[i, j, 1:k])

14 exp.psum[i, j, k] <- exp(psum[i, j, k])

15 prob[i, j, k] <- exp.psum[i, j, k] / sum(exp.psum[i,

j, 1:K[j]])

16 }

17 }

18 }

19

20 for (j in 1:p){

21 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

22 beta[j, 1] <- 0.0

23 for (k in 2:K[j]){

24 beta[j, k] ~ dnorm(m.beta , pr.beta)

25 }

26 }

27 pr.alpha <- pow(s.alpha , -2)

28 pr.beta <- pow(s.beta , -2)

29 }

Table 4: Generalized partial credit model.

7. Testlet model

The testlet model is used for tests that are structured into groups of items that share some
common feature. These groups of items are called “testlets”. For example, many tests require
a subject to read a certain passage and then answer two or more questions about the passage.
Responses to items from the same testlet will tend to be more highly correlated than items
from different testlets after accounting for the latent ability.

In a testlet model for binary responses, the probability that the i-th subject answers the j-th
item correctly is assumed to have the following form

pij = P (Yij = 1|θi) =
1

1 + exp
{
−αj(θi − δj + γid(j))

}
where i = 1, . . . , n and j = 1, . . . , p.



12 BUGS Code for Item Response Theory

Each subject has nT testlet effects γid(j), which can be thought of as testlet-specific abilities.
The testlet effects explicitly model the correlation among items in a testlet after accounting
for the latent ability. The function d(·) maps values in {1, . . . , p} to {0, 1, . . . , nT }. In other
words, the function d(·) denotes which items belong to which testlets, so if d(5) = 3, then
the 5-th item belongs to the 3rd testlet. When d(j) = 0, the j-th item does not belong to
any testlet and, therefore, has a testlet effect equal to zero for all subjects, i.e., γi0 ≡ 0 for
i = 1, . . . , n.

Testlet-effect parameters are assumed to come from normal distributions, and each testlet is
given its own testlet-specific variance σ2d(j)

γid(j) ∼ N
(

0, σ2d(j)

)
The testlet variances are assigned inverse-gamma prior distributions

σ2d(j) ∼ InvGam
(
aσ2

γ
, bσ2

γ

)
.

Priors for all other model parameters are assigned as in the 2PLM.

Table 5 contains BUGS code for the testlet model. Below are some comments on this code.

� As with the BUGS code for other models, the terms n and p denote the number of
subjects and items, respectively, and must be passed to BUGS as data. Additionally,
the user must also specify the number of testlets n.t and the testlet-identifier vector
d[].

� The specification of d[j] in the BUGS code differs somewhat from the mathematical
formulation outlined in the beginning of this section. BUGS does not allow subscripts
equal to 0, thus, we cannot use gamma[i, 0] <- 0.0 to set γi0 ≡ 0. Instead, we let
gamma[i, n.t + 1] <- 0.0. Users must account for this specification in their data by
assigning a value of n.t + 1 to d[j] if the j-th item does not belong to a testlet. For
example, in a ten item test, if items 1–4 are part of the first testlet, item 5 is not a part
of any testlet, items 6–9 are part of the second testlet, and item 10 is not a part of any
testlet, then n.t=2 and the vector d[] should be

d = c(1, 1, 1, 1, 3, 2, 2, 2, 2, 3)

� The BUGS language has no direct method of specifying an inverse-gamma prior distri-
bution. The typical method of specifying an inverse-gamma prior for a parameter is to
specify a gamma prior on the inverse of the parameter. This “trick” is used in lines 24
and 25 to specify an inverse-gamma prior on the sigsq.gamma[k] parameters.

� Inverse-gamma priors have typically been used on variance parameters for reasons of
convenience. The inverse-gamma prior is the conjugate prior for a variance parameter
from a normal likelihood, so the update in an MCMC algorithm is a simple random
draw from an inverse-gamma distribution. However, since BUGS frees the user from
having to directly code the MCMC algorithm, other priors for variance parameters may
be preferable. Gelman and Hill (2007) use diffuse uniform priors on standard deviations
in many of the examples in their text book. To implement this approach in the testlet
model, users may simply replace lines 24 and 25 with
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1 model{

2 for (i in 1:n){

3 for (j in 1:p){

4 Y[i, j] ~ dbern(prob[i, j])

5 logit(prob[i, j]) <- alpha[j] * (theta[i] - delta[j] +

gamma[i,d[j]])

6 }

7

8 theta[i] ~ dnorm (0.0 , 1.0)

9

10 for (k in 1:n.t){

11 gamma[i, k] ~ dnorm (0.0, pr.gamma[k])

12 }

13 gamma[i, n.t + 1] <- 0.0

14 }

15

16 for (j in 1:p){

17 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0.0 , )

18 delta[j] ~ dnorm(m.delta , pr.delta)

19 }

20 pr.alpha <- pow(s.alpha , -2)

21 pr.delta <- pow(s.delta , -2)

22

23 for (k in 1:n.t){

24 pr.gamma[k] ~ dgamma(a.sigsq.gamma , b.sigsq.gamma)

25 sigsq.gamma[k] <- 1.0/pr.gamma[k]

26 }

27 }

Table 5: Testlet model.

sigma.gamma[k] ~ dunif(0, 100)

pr.gamma[k] <- pow(sigma.gamma[k], -2)

See Gelman (2006) for further discussion on priors for variance parameters in hierarchical
models.

� In this section, I have defined the testlet model only for binary responses. However,
the code in Table 5 can be adapted for other models (e.g., the GRM) by combining the
code in Table 5 with code for models in the earlier sections. As mentioned previously,
this ability to quickly adapt BUGS for new models is one of the major advantages to
using BUGS.
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8. Generalized testlet model

In the testlet model, the testlet effects γid(j) are forced to have the same discrimination
parameter αj as the latent ability. The generalized testlet model relaxes this restriction
by introducing p new discrimination parameters α21, . . . , α2p for the testlet effects. In the
generalized testlet model, the probability that the i-th subject correctly answers the j-th item
is modeled as

pij = P (Yij = 1|θi) =
1

1 + exp
{
−(α1jθi − ζj + α2jγid(j))

} .
Both sets of discrimination parameters are given truncated normal prior distributions

α1j ∼ N+

(
mα1 , s

2
α1

)
α2j ∼ N+

(
mα2 , s

2
α2

)
,

and the difficulty parameters ζj are given normal prior distributions

ζj ∼ N
(
mζ , s

2
ζ

)
.

1 model{

2 for (i in 1:n){

3 for (j in 1:p){

4 Y[i, j] ~ dbern(prob[i, j])

5 logit(prob[i, j]) <- alpha1[j] * theta[i] - zeta[j] +

alpha2[j] * gamma[i,d[j]]

6 }

7

8 theta[i] ~ dnorm (0.0 , 1.0)

9

10 for (k in 1:n.t){

11 gamma[i, k] ~ dnorm (0.0 , 1.0)

12 }

13 gamma[i, n.t + 1] <- 0.0

14 }

15

16 for (j in 1:p){

17 alpha1[j] ~ dnorm(m.alpha1 , pr.alpha1) I(0.0 , )

18 alpha2[j] ~ dnorm(m.alpha2 , pr.alpha2) I(0.0 , )

19 zeta[j] ~ dnorm(m.zeta , pr.zeta)

20 }

21 pr.alpha1 <- pow(s.alpha1 , -2)

22 pr.alpha2 <- pow(s.alpha2 , -2)

23 pr.zeta <- pow(s.zeta , -2)

24 }

Table 6: Generalized testlet model.
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The ability parameters are assumed to come from a standard normal distribution. As in
the testlet model, the testlet effects γd(j) are assumed to come from normal distributions.
However, for identifiability, the testlet effects are no longer permitted to have testlet specific
variances. The variances of the testlet effects are restricted to be one

γid(j) ∼ N(0, 1) .

Table 6 contains BUGS code for the generalized testlet model. The code uses the same “trick”
to define a zero testlet effect as in the testlet model, so the comments of Section 7 apply to
the code here as well.

9. Extending the BUGS code

A major advantage of using BUGS is that any basic model can be easily extended by changing
or adding only a few lines of BUGS code in existing model files. The BUGS software then
takes care of the details of the estimation procedure for the parameters of the new model. I
demonstrate this point in this section by extending the 2PLM to the longitudinal setting.

In many studies, subjects are administered the same set of test items on multiple occasions.
Thus, instead of having a single vector of responses, the i-th individual has a matrix of
responses composed of T response vectors

Yi =
(
Yi1 Yi2 · · · YiT

)
=


Yi11 Yi12 · · · Yi1T
Yi21 Yi22 · · · Yi2T

...
...

. . .
...

Yip1 Yip2 · · · YipT


one response vector Yit at each time point t, and an ability vector

θi = (θi1, . . . , θiT )′

where parameter θit is the ability of the i-th subject at time t.

Because the ability parameters θi1, . . . , θiT are measured on the same subject over a period of
time, latent abilities on the same subject will be more correlated than latent abilities among
different subjects. A statistical model for this scenario should account for this correlation
structure.

9.1. Population-averaged covariance models

In longitudinal data analysis, there are two main modeling strategies for modeling the co-
variance of repeated observations (Davidian 2005). The first strategy is called “population
averaged”, which, in the context of item response theory, involves assuming a covariance struc-
ture directly on the population distribution of all ability vectors θi. Ability vectors θi are
assumed to come from a normal distribution

θi ∼ N(µθ,Σθ)
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with some mean structure µθ and covariance Σθ. Popular structures for the covariance are
the “uniform” or “compound symmetric” covariance

Σ = (σ2ρ)

= σ2R

= σ2


1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
...

...
...

. . .
...

ρ ρ ρ · · · 1



the AR(1) structure

Σ = σ2R

= (σ2ρ|i−j|)

= σ2


1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

...
...

...
. . .

...
ρT−1 ρT−2 ρT−3 · · · 1


and the Markov structure for unequally spaced time points

Σ = (σ2ρdij )

= σ2


1 ρd12 ρd13 · · · ρd1T

ρd21 1 ρd23 · · · ρd2T

...
...

...
. . .

...
ρdT1 ρdT2 ρdT3 · · · 1


where σ2 > 0, −1 < ρ < 1, dij = |ti − tj |, and tk is the time at the k-th observation.

Each of the above models implies a constant variance of the latent ability across time. Less
restrictive versions of each of the above covariance models can be obtained by allowing the
variance to be different at each time point. These “heterogeneous” covariance structures can
be modeled by pre and post multiplying the correlation matrices R in the above models by a
diagonal matrix

Dθ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . 0

0 0 · · · σT


with unique standard deviations along the diagonal.

For identifiability, the mean and variance at one time point must be specified to establish the
location and scale of the latent ability distribution (Tavares and Andrade 2006, pp. 105, 106).
Setting the first element of µθ to zero and the first variance σ21 in Σθ to one is one possibility.
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BUGS code for AR(1) models

Table 7 contains BUGS code for the 2PLM, where the code has been extended to account
for longitudinal data with an AR(1) covariance structure with constant variance. Below are
some comments on this code.

� The code for the likelihood portion of the model now has an extra loop indexed by time
t, where the quantities Y[, , ], prob[, , ], and theta[,] are now indexed by this
third subscript.

� Analogous to the univariate normal distribution, the multivariate normal distribution
in BUGS is parametrized in terms of the precision matrix, which is the inverse of the
covariance matrix. Therefore, the covariance matrix Sigma.theta[,] must be inverted
in line 30. The resulting precision matrix Pr.theta[,] is then used in the dmnorm

function.

� The syntax for matrix operations is more flexible in JAGS than in WinBUGS or Open-
BUGS. For example, line 30 in Table 7 can be replaced with the following cleaner code
in JAGS

Pr.theta <- inverse(Sigma.theta)

� Because the variance of the latent ability is restricted to be constant across time and the
variance must be specified exactly for at least one time period to establish identifiability,
sigsq.theta is set equal to 1.0 in line 21.

� WinBUGS and OpenBUGS do not experience problems when fitting the AR(1) model.
However, the default MCMC algorithm constructed by JAGS does not reach conver-
gence.

Table 8 contains BUGS code for the AR(1) covariance structure with heterogeneous variances.
Below are some comments on this code. The only major substantive difference between the
code in Table 7 and in Table 8 is that sigsq.theta[] is now a vector where the first element
of the vector is set to one and the remaining elements are given gamma prior distributions.
There is also a slight difference in how the heterogeneous AR(1) structure is constructed (see
line 27 of Table 8) relative to the AR(1) structure with constant variance (see line 26 in
Table 7). Line 27 of Table 8 implements the pre and post multiplication of the correlation
matrix R by the standard deviation matrix Dθ.

BUGS code for unstructured covariance

Researchers may be reluctant to specify a particular structure for the covariance matrix of
the latent abilities. Wishart distributions are typically used to specify priors for unstructured
covariance matrices. However, a Wishart prior cannot be used for the covariance of latent
abilities, because at least one variance must be set to a constant for identifiability.

One approach to solve this problem is to parametrize the covariance matrix Σθ in terms of
its Cholesky decomposition

Σθ = LθL
′
θ (5)

where Lθ is a lower triangular matrix with positive entries on the diagonal and unrestricted
entries below the diagonal. Setting the first element of Lθ equal to one ensures that the first
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1 model{

2 for (t in 1:T){

3 for (i in 1:n){

4 for (j in 1:p){

5 Y[i, j, t] ~ dbern(prob[i, j, t])

6 logit(prob[i, j, t]) <- alpha[j] * (theta[i, t] -

delta[j])

7 }

8 }

9 }

10

11 for (i in 1:n){

12 theta[i, 1:T] ~ dmnorm(mu.theta[], Pr.theta[,])

13 }

14

15 mu.theta [1] <- 0.0

16 for (t in 2:T){

17 mu.theta[t] ~ dnorm(m.mu.theta , pr.mu.theta)

18 }

19 pr.mu.theta <- pow(s.mu.theta , -2)

20

21 sigsq.theta <- 1.0

22 Sigma.theta [1 , 1] <- sigsq.theta

23 for (i in 2:T){

24 Sigma.theta[i,i] <- sigsq.theta

25 for (j in 1:(i-1)){

26 Sigma.theta[i, j] <- sigsq.theta * pow(rho , i - j)

27 Sigma.theta[j, i] <- Sigma.theta[i, j]

28 }

29 }

30 Pr.theta [1:T, 1:T] <- inverse(Sigma.theta[,])

31 rho ~ dunif ( -1.0 , 1.0)

32

33 for (j in 1:p){

34 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

35 delta[j] ~ dnorm(m.delta , pr.delta)

36 }

37 pr.alpha <- pow(s.alpha , -2)

38 pr.delta <- pow(s.delta , -2)

39 }

Table 7: Longitudinal two parameter logistic model with AR(1) covariance structure.
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1 model{

2 for (t in 1:T){

3 for (i in 1:n){

4 for (j in 1:p){

5 Y[i, j, t] ~ dbern(prob[i, j, t])

6 logit(prob[i, j, t]) <- alpha[j] * (theta[i, t] -

delta[j])

7 }

8 }

9 }

10

11 for (i in 1:n){

12 theta[i, 1:T] ~ dmnorm(mu.theta[], Pr.theta[,])

13 }

14

15 mu.theta [1] <- 0.0

16 for (t in 2:T){

17 mu.theta[t] ~ dnorm(m.mu.theta , pr.mu.theta)

18 }

19 pr.mu.theta <- pow(s.mu.theta , -2)

20

21 sigsq.theta [1] <- 1.0

22 Sigma.theta [1 , 1] <- 1.0

23 for (i in 2:T){

24 sigsq.theta[i] ~ dgamma(a.sigsq.theta , b.sigsq.theta)

25 Sigma.theta[i, i] <- sigsq.theta[i]

26 for (j in 1:(i-1)){

27 Sigma.theta[i, j] <- sqrt(sigsq.theta[i]) * sqrt(sigsq.

theta[j]) * pow(rho , i - j)

28 Sigma.theta[j, i] <- Sigma.theta[i, j]

29 }

30 }

31 Pr.theta [1:T, 1:T] <- inverse(Sigma.theta[,])

32 rho ~ dunif ( -1.0 , 1.0)

33

34 for (j in 1:p){

35 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

36 delta[j] ~ dnorm(m.delta , pr.delta)

37 }

38 pr.alpha <- pow(s.alpha , -2)

39 pr.delta <- pow(s.delta , -2)

40 }

Table 8: Longitudinal two parameter logistic regression model with heterogeneous AR(1)
covariance structure.
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element of Σθ is also equal to one. Putting priors on the elements of Lθ is straightforward,
because the only elements that must satisfy restrictions are the diagonal elements, which need
only be positive.

Table 9 contains BUGS code for fitting a model with an unstructured covariance for the
population distribution of the ability vectors θi. Below are some comments on this code.

� Gamma priors are used to restrict the diagonal elements of L.theta to be positive, but
other similar priors may be used (e.g., dlnorm).

� WinBUGS and OpenBUGS do not have a built-in matrix multiplication function.
Therefore, the matrix multiplication in Equation (5) is performed explicitly using loops
and the inprod function. The inprod function computes the inner product of two
vectors.

� JAGS offers more support for vector and matrix calculations than WinBUGS and Open-
BUGS. In JAGS, lines 29–33 can be replaced by the single line

Sigma.theta <- L.theta %*% t(L.theta)

� In general, the mixing of the Markov chains for this model is poor in all of the BUGS
packages, and the chains must be run for a long time (several hundred thousand itera-
tions) to achieve a good sample from the posterior.

9.2. Subject-specific covariance models

The other modeling strategy for longitudinal data is sometimes called“subject specific”, which,
in the context of item response theory, involves assuming that the ability θit at time t is some
function (usually a linear combination) of random coefficients and time. For example, one
subject-specific model is a linear function over time

θit = γ
(0)
i + γ

(1)
i t

where

γ
(0)
i ∼ N

(
µγ0 , σ

2
γ0

)
γ
(1)
i ∼ N

(
µγ1 , σ

2
γ1

)
.

In this model, each individual in the data is assumed to have two “random coefficients” that
determine the individual’s linear trajectory of ability over time.

Like the population averaged models, the subject-specific models must incorporate restrictions
on the location and scale of the latent abilities to establish identifiability. In population-
averaged models, the mean and variance of the ability population at some time point t can
be set to constants—usually zero and one, respectively. In subject-specific models, the mean
and variance of the population of one of the random coefficients can be set to constants. For
example, in the linear, subject-specific model specified above, setting µγ0 = 0 and σ2γ0 = 1
establishes the location and scale of the latent abilities by setting the distribution of the
abilities at t = 0 to be equal to the standard normal distribution.
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1 model{

2 for (t in 1:T){

3 for (i in 1:n){

4 for (j in 1:p){

5 Y[i, j, t] ~ dbern(prob[i, j, t])

6 logit(prob[i, j, t]) <- alpha[j] * (theta[i, t] -

delta[j])

7 }

8 }

9 }

10

11 for (i in 1:n){

12 theta[i, 1:T] ~ dmnorm(mu.theta[], Pr.theta[,])

13 }

14

15 mu.theta [1] <- 0.0

16 for (t in 2:T){

17 mu.theta[t] ~ dnorm(m.mu.theta , pr.mu.theta)

18 }

19 pr.mu.theta <- pow(s.mu.theta , -2)

20

21 L.theta [1 , 1] <- 1.0

22 for (i in 2:T){

23 L.theta[i, i] ~ dgamma(a.L.theta , b.L.theta)

24 for (j in 1:(i-1)){

25 L.theta[i, j] ~ dnorm(m.L.theta , s.L.theta)

26 L.theta[j, i] <- 0.0

27 }

28 }

29 for (i in 1:T){

30 for (j in 1:T){

31 Sigma.theta[i, j] <- inprod(L.theta[i, 1:T], L.theta[j

, 1:T])

32 }

33 }

34 Pr.theta [1:T, 1:T] <- inverse(Sigma.theta[,])

35

36 for (j in 1:p){

37 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

38 delta[j] ~ dnorm(m.delta , pr.delta)

39 }

40 pr.alpha <- pow(s.alpha , -2)

41 pr.delta <- pow(s.delta , -2)

42 }

Table 9: Longitudinal two parameter logistic model with unstructured covariance.



22 BUGS Code for Item Response Theory

1 model{

2 for (t in 1:T){

3 for (i in 1:n){

4 for (j in 1:p){

5 Y[i, j, t] ~ dbern(prob[i, j, t])

6 logit(prob[i, j, t]) <- alpha[j] * (theta[i, t] -

delta[j])

7 }

8 }

9 }

10

11 for (i in 1:n){

12 for (t in 1:T){

13 theta[i, t] <- gamma0[i] + gamma1[i] * (t-1)

14 }

15 }

16

17 for (i in 1:n){

18 gamma0[i] ~ dnorm (0.0 , 1.0)

19 gamma1[i] ~ dnorm(mu.gamma1 , pr.gamma1)

20 }

21 mu.gamma1 ~ dnorm(m.mu.gamma1 , pr.mu.gamma1)

22 pr.gamma1 ~ dgamma(a.pr.gamma1 , b.pr.gamma1)

23 sigsq.gamma1 <- 1.0/pr.gamma1

24 pr.mu.gamma1 <- pow(s.mu.gamma1 , -2)

25

26 for (j in 1:p){

27 alpha[j] ~ dnorm(m.alpha , pr.alpha) I(0, )

28 delta[j] ~ dnorm(m.delta , pr.delta)

29 }

30 pr.alpha <- pow(s.alpha , -2)

31 pr.delta <- pow(s.delta , -2)

32 }

Table 10: Longitudinal two parameter logistic IRT model with linear random effects.

Table 10 contains BUGS code to fit the subject-specific, longitudinal 2PLM with random
coefficients. In line 13 of the code I have used (t-1) to force the first time point to be zero.
This helps in the interpretation of model parameters because under this parametrization the
intercept random effects gamma0[i] are the abilities at the first time point.

10. Example

In this section I demonstrate how to use the BUGS code in the previous sections to analyze
a real data set. I use the Environment data set from the R package ltm. The data are a
subset of responses from the 1990 British Social Attitudes Survey and contain responses of
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291 individuals to six questions involving environmental issues. The possible answers to each
question are “not very concerned”, “slightly concerned”, and “very concerned”. The ordinal
nature of the responses implies that the GRM or the GPCM should be used to analyze these
data. In what follows, I use the GRM.

It is often convenient to call WinBUGS (or OpenBUGS, or JAGS) from some other data-
processing software as this allows the user to compute posterior summaries and create plots
of posterior draws that are not available directly in BUGS software. For this example, I use
the openbugs function in the R2WinBUGS package to call OpenBUGS from R.

In the data analysis of this section, I follow the approach of Rizopoulos (2006) by fitting two
versions of the GRM—a constrained model, where the discrimination parameters are forced
to be equal (α1 = · · · = α6 = α) for each of the six survey questions, and an unconstrained
model, where all six discrimination parameters are freely estimated. The constrained model
can be fit by removing the subscript [j] from the parameter alpha in line 10 of Table 3 as in

logit(P[i, j, k]) <- kappa[j, k] - alpha * theta[j]

and removing the prior on line 24 of Table 3 from the loop and the subscript [j] from the
parameter alpha as in

alpha ~ dnorm(m.alpha, pr.alpha) I(0, )

The relevant R packages and the data can be loaded in the R session with the following code:

R> library("R2WinBUGS")

R> library("ltm")

R> library("mcmcplots")

R> data("Environment")

The data set Environment is a data.frame with six variables each of class factor. Because
the data are inherently ordinal, the variables in the Environment data set must first be
converted to class ordered by calling the ordered function on each variable and setting the
levels attribute. This can be done by using the lapply function to apply the ordered

function with argument

levels = c("not very concerned", "slightly concerned", "very concerned")

to each of the variables in Environment.

Additionally, in order to be processed by OpenBUGS, the data must be coerced to a matrix

of numeric values that correspond to each level of the ordinal response:

� 1 → “not very concerned”

� 2 → “slightly concerned”

� 3 → “very concerned”

The above operations can be executed in one line of R code:
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R> Y <- data.matrix(data.frame(lapply(Environment, ordered, levels =

+ c("not very concerned", "slightly concerned", "very concerned"))))

Several constants—sample size (n), number of survey questions (p), number of response cate-
gories per question (K), and parameters for prior distributions (m.alpha, s.alpha, m.kappa,
and s.kappa)—need to be passed to OpenBUGS as data. These constants are first stored
as variables in the R session, then the names of these variables and the data matrix (Y) are
stored in the character vector data, which will be passed to the openbugs function.

R> p <- ncol(Y)

R> n <- nrow(Y)

R> m.alpha <- 1.0

R> s.alpha <- 2.5

R> m.kappa <- 0.0

R> s.kappa <- 2.5

R> K <- apply(Y, 2, max)

R> data <- c("Y", "n", "p", "K", "m.alpha", "s.alpha", "m.kappa", "s.kappa")

Finally, OpenBUGS must be told which parameters to “monitor” and MCMC settings such as
the number of iterations to “burn”, the “thinning” interval, and the total number of iterations
to run the Markov chains.

R> monitor <- c("alpha", "theta", "kappa")

R> n.burn <- 4000

R> n.thin <- 10

R> n.sim <- 500 * n.thin + n.burn

I use a burn-in period of 4,000 iterations to ensure that OpenBUGS can complete the adaptive
phase of the MCMC algorithm. The number of parallel chains is kept at the default value
of 3.

The openbugs function can be used to call OpenBUGS and generate draws from the posterior
distribution of the parameters for the constrained model. The BUGS model file is contained
in the grmeq.bug file of the bugs subdirectory of the supplemental material. The model.file
option in the code below will need to be modified if the working directory has not been set
to the base directory of the supplemental material.

R> eq.alpha.out <- openbugs(data = data, inits = NULL,

+ parameters.to.save = monitor,

+ model.file = file.path(getwd(), "bugs/grmeq.bug"),

+ n.iter = n.sim, n.thin = n.thin, n.burnin = n.burn))

The openbugs function returns an object of class bugs. One way to access posterior draws
in a bugs object is via the sims.matrix component of the bugs object. The sims.matrix

component is a matrix object with number of rows equal to the number of saved iterations of
the MCMC simulation and number of columns equal to the number of monitored parameters.
Posterior draws of a single parameter can be accessed by passing the name of the parameter
to the subset function for matrices, as in
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eq.alpha.out$sims.matrix[, "theta[162]"]

or

eq.alpha.out$sims.matrix[, "alpha"]

The grep function provides a convenient way to access groups of parameters. For example,
the code

R> parnames <- colnames(eq.alpha.out$sims.matrix)

R> eq.alpha.out$sims.matrix[, grep("theta", parnames)]

can be used to return a matrix of the posterior draws for all the ability parameters θ1, . . . ,
θ291.

A call to the generic function plot produces some summary plots for the MCMC simulation.

R> plot(eq.alpha.out)

Among the several summary plots is a plot of the Gelman-Rubin (GR) convergence diagnostics
(Gelman and Rubin 1992) for a subset of the parameters. The GR diagnostics are all close
to 1, which gives some assurance that the chains have converged.

Additionally, standard, MCMC diagnostic plots (such as trace and autocorrelation plots) can
be created in an HTML file and viewed in a browser with a call to the mcmcplot function in
the mcmcplots package (Curtis 2010).

R> mcmcplot(eq.alpha.out, random = 20)

The fit of this model can be appraised using posterior predictive model checks (see, for ex-
ample, Gelman, Carlin, Stern, and Rubin 2003, Chapter 6). This method of model checking
involves simulating several new data sets using the posterior distribution of the model param-
eters. Summary statistics from the simulated data sets are compared with the same summary
statistics from the observed data. If major discrepancies exist between the distribution of the
summary statistics from simulated data and the summary statistics from the observed data,
then the model is deemed to have poor fit.

In many latent variable procedures, the goal of model fitting is to find values of model pa-
rameters that give a model implied correlation or covariance matrix that is close to the raw
correlation matrix computed from the sample data (see, for example, Bollen 1989). This idea
can be used in the posterior predictive model checking procedure in the current example by
comparing correlation matrices computed on simulated data sets with the correlation matrix
from the observed data Y. Because the data in this example are ordinal, a nonparametric mea-
sure of correlation (e.g., Kendall’s tau) must be used. (See Sinharay 2005, for more examples
of summary statistics that can be used in the posterior predictive procedure to check the fit
of various aspects of IRT models.) A summary of the procedure is below:

1. For m = 1, . . . ,M , repeat the following

(a) For i = 1, . . . , n generate a new response vector for the i-th subject in the sample

based on the m-th posterior draw of model parameters (θ
(m)
i , α(m), κ

(m)
11 , . . . ,

κ
(m)
p,Kj−1) from the posterior distribution.
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(b) Compute Kendall’s correlation matrix for the new data set generated in the pre-
vious step, and save the values for later analysis.

2. Compute Kendall’s correlation matrix for the raw data.

3. Compare the distribution of simulated values of Kendall’s correlation to the observed
values of Kendall’s correlation.

The details of the procedure are implemented in the function ppktau contained in the
functions.R file of the supplemental material to this article. The function ppktau requires
the plyr package (Wickham 2009). In this example, the ppktau function returns a matrix
with M rows (where M = 1, 500 is the number of posterior simulations—500 iterations from
3 parallel chains) and 15 columns for the p(p− 1)/2 correlations among the 6 variables. Ap-
propriate column names are given to the posterior predictive output via the makeNames utility
function (also included in the functions.R file). Kendall’s tau values for the real data are
computed with the cor function using the method="kendall" option.

R> pp.eq <- ppktau(eq.alpha.out$sims.matrix)

R> colnames(pp.eq) <- makeNames("ktau", 1:p, 1:p,

+ symmetric.matrix = TRUE, diag = FALSE)

R> ktau <- cor(Y, method = "kendall")[lower.tri(diag(p))]

The simulated values of Kendall’s tau can be compared to the observed values of Kendall’s
tau by producing density plots of the simulations and marking on the density plots the cor-
responding value of the observed Kendall’s tau. The function plotpppval (in functions.R)
automates the process of producing density plots for each column of the simulated output.
Additionally, the plotpppval function shades the area under the density from the observed
Kendall’s tau to the nearest tail. This tail area is known as the posterior predictive p value
or Bayesian p value (Rubin 1984; Meng 1994; Gelman, Meng, and Stern 1996). The Bayesian
p values are included on the left-hand side of the density plots produced by plotpppval.

R> plotpppval(pp.eq, ktau)

Figure 1 contains the plot created by the plotpppval function. Several of the posterior
predictive p values are close to zero, which indicates the model does not fit the data.

The caterplot function in the mcmcplots package can be used to create “caterpillar” plots of
95% predictive intervals for the simulated Kendall’s correlations in pp.eq. The caterpoints

function can be used to overlay the observed values of the Kendall’s tau on the same plot.
Observed values of Kendall’s tau that fall outside the prediction intervals indicate lack of fit.

R> caterplot(pp.eq, xlim = c(0.0, 1.0))

R> caterpoints(ktau, pch = "x", col = "red")

Figure 2 contains the plot created with the above code. It’s clear from the plot that the
constrained model does not fit the data well. Several of the observed values of Kendall’s tau
are far outside the 95% intervals.

The unconstrained model where each α1, . . . , α6 is estimated separately can be fit to the
Environment data and posterior predictive plots can be created using code similar to that
above.
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Figure 1: Density plots of simulated Kendall’s tau values for the constrained model with
α1 = · · · = αp = α. Shaded areas on the plot represent the posterior predictive p values. The
numeric values of the posterior predictive p values are placed at the left of each density plot.

R> free.alpha.out <- openbugs(data = data, inits = NULL,

+ parameters.to.save = monitor,

+ model.file = file.path(getwd(), "bugs/grm.bug"),

+ n.iter = n.sim, n.thin = n.thin, n.burnin = n.burn)

R> plot(free.alpha.out)

R> pp.free <- ppktau(free.alpha.out$sims.matrix)

R> colnames(pp.free) <- makeNames("ktau", 1:p, 1:p,

+ symmetric.matrix = TRUE, diag = FALSE)

R> plotpppval(pp.free, ktau)
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Figure 2: Ninety-five percent prediction intervals for simulated Kendall’s tau values from the
model with α1 = · · · = αp = α. Observed values of Kendall’s tau are denoted with an “X” on
the plot.

R> caterplot(pp.free, xlim = c(0.0,1.0))

R> caterpoints(ktau, pch = "x", col = "red")

Once again, the GR diagnostic values are all close to one, which gives some assurance that
the Markov chains reached convergence. The posterior predictive p values in Figures 3 and 4
show that the unconstrained model fits better than the model with constrained discrimination
parameters. None of the p values in Figure 3 is less than 0.03. Also, each the 95% predictive
intervals in Figure 4 captures the corresponding observed value of Kendall’s tau.

The results of the posterior predictive model check provide some assurance that the unre-
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Figure 3: Density plots of simulated Kendall’s tau values for the unconstrained model. Shaded
areas on the plot represent the posterior predictive p values. The numeric values of the
posterior predictive p values are placed at the left of each density plot.

stricted model fits the data. Further analysis of these data can now proceed in much the
same way as in more classical analyses of item response data (see, for example, Rizopoulos
2006; Hambleton et al. 1991) by examining item characteristic and information curves or fac-
tor scores—except posterior means and standard deviations of model parameters should be
used in place of maximum likelihood estimates and standard errors.
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Figure 4: Ninety-five percent prediction intervals for simulated Kendall’s tau values from the
unconstrained model. Observed values of Kendall’s tau are denoted with an “X” on the plot.

11. Summary

In this article, I have presented several snippets of BUGS code to fit many of the common
IRT models found in the literature. I have also shown how to extend these models to other
modeling situations. I hope that researchers who use IRT models will find it useful to have
BUGS code to fit these basic models in one convenient source and will find that the code can
quickly be adapted for use in novel settings.
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