
JSS Journal of Statistical Software
September 2010, Volume 36, Issue 11. http://www.jstatsoft.org/

Feature Selection with the Boruta Package

Miron B. Kursa
University of Warsaw

Witold R. Rudnicki
University of Warsaw

Abstract

This article describes a R package Boruta, implementing a novel feature selection
algorithm for finding all relevant variables. The algorithm is designed as a wrapper around
a Random Forest classification algorithm. It iteratively removes the features which are
proved by a statistical test to be less relevant than random probes. The Boruta package
provides a convenient interface to the algorithm. The short description of the algorithm
and examples of its application are presented.

Keywords: feature selection, feature ranking, random forest.

1. Introduction

Feature selection is often an important step in applications of machine learning methods
and there are good reasons for this. Modern data sets are often described with far too
many variables for practical model building. Usually most of these variables are irrelevant to
the classification, and obviously their relevance is not known in advance. There are several
disadvantages of dealing with overlarge feature sets. One is purely technical — dealing with
large feature sets slows down algorithms, takes too many resources and is simply inconvenient.
Another is even more important — many machine learning algorithms exhibit a decrease of
accuracy when the number of variables is significantly higher than optimal (Kohavi and John
1997). Therefore selection of the small (possibly minimal) feature set giving best possible
classification results is desirable for practical reasons. This problem, known as minimal-
optimal problem (Nilsson, Peña, Björkegren, and Tegnér 2007), has been intensively studied
and there are plenty of algorithms which were developed to reduce feature set to a manageable
size.

Nevertheless, this very practical goal shadows another very interesting problem — the identifi-
cation of all attributes which are in some circumstances relevant for classification, the so-called
all-relevant problem. Finding all relevant attributes, instead of only the non-redundant ones,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Statistical Software

https://core.ac.uk/display/478954933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 Feature Selection with the Boruta Package

may be very useful in itself. In particular, this is necessary when one is interested in under-
standing mechanisms related to the subject of interest, instead of merely building a black box
predictive model. For example, when dealing with results of gene expression measurements
in context of cancer, identification of all genes which are related to cancer is necessary for
complete understanding of the process, whereas a minimal-optimal set of genes might be more
useful as genetic markers. A good discussion outlining why finding all relevant attributes is
important is given by Nilsson et al. (2007).

The all-relevant problem of feature selection is more difficult than usual minimal-optimal one.
One reason is that we cannot rely on the classification accuracy as the criterion for selecting
the feature as important (or rejecting it as unimportant). The degradation of the classification
accuracy, upon removal of the feature from the feature set, is sufficient to declare the feature
important, but lack of this effect is not sufficient to declare it unimportant. One therefore
needs another criterion for declaring variables important or unimportant. Moreover, one
cannot use filtering methods, because the lack of direct correlation between a given feature
and the decision is not a proof that this feature is not important in conjunction with the other
features (Guyon and Elisseeff 2003). One is therefore restricted to wrapper algorithms, which
are computationally more demanding than filters.

In a wrapper method the classifier is used as a black box returning a feature ranking, therefore
one can use any classifier which can provide the ranking of features. For practical reasons, a
classifier used in this problem should be both computationally efficient and simple, possibly
without user defined parameters.

The current paper presents an implementation of the algorithm for finding all relevant features
in the information system in a R (R Development Core Team 2010) package Boruta (avail-
able from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=
Boruta). The algorithm uses a wrapper approach built around a random forest (Breiman
2001) classifier (Boruta is a god of the forest in the Slavic mythology). The algorithm is an
extension of the idea introduced by Stoppiglia, Dreyfus, Dubois, and Oussar (2003) to deter-
mine relevance by comparing the relevance of the real features to that of the random probes.
Originally this idea was proposed in the context of filtering, whereas here it is used in the
wrapper algorithm. In the remaining sections of this article firstly a short description of the
algorithm is given, followed by the examples of its application on a real-world and artificial
data set.

2. Boruta algorithm

Boruta algorithm is a wrapper built around the random forest classification algorithm im-
plemented in the R package randomForest (Liaw and Wiener 2002). The random forest
classification algorithm is relatively quick, can usually be run without tuning of parameters
and it gives a numerical estimate of the feature importance. It is an ensemble method in
which classification is performed by voting of multiple unbiased weak classifiers — decision
trees. These trees are independently developed on different bagging samples of the training
set. The importance measure of an attribute is obtained as the loss of accuracy of classifica-
tion caused by the random permutation of attribute values between objects. It is computed
separately for all trees in the forest which use a given attribute for classification. Then the
average and standard deviation of the accuracy loss are computed. Alternatively, the Z score

http://CRAN.R-project.org/package=Boruta
http://CRAN.R-project.org/package=Boruta

Journal of Statistical Software 3

computed by dividing the average loss by its standard deviation can be used as the impor-
tance measure. Unfortunately the Z score is not directly related to the statistical significance
of the feature importance returned by the random forest algorithm, since its distribution is
not N(0, 1) (Rudnicki, Kierczak, Koronacki, and Komorowski 2006). Nevertheless, in Boruta
we use Z score as the importance measure since it takes into account the fluctuations of the
mean accuracy loss among trees in the forest.

Since we cannot use Z score directly to measure importance, we need some external reference
to decide whether the importance of any given attribute is significant, that is, whether it
is discernible from importance which may arise from random fluctuations. To this end we
have extended the information system with attributes that are random by design. For each
attribute we create a corresponding ‘shadow’ attribute, whose values are obtained by shuffling
values of the original attribute across objects. We then perform a classification using all
attributes of this extended system and compute the importance of all attributes.

The importance of a shadow attribute can be nonzero only due to random fluctuations. Thus
the set of importances of shadow attributes is used as a reference for deciding which attributes
are truly important.

The importance measure itself varies due to stochasticity of the random forest classifier. Ad-
ditionally it is sensitive to the presence of non important attributes in the information system
(also the shadow ones). Moreover it is dependent on the particular realization of shadow
attributes. Therefore we need to repeat the re-shuffling procedure to obtain statistically valid
results.

In short, Boruta is based on the same idea which forms the foundation of the random forest
classifier, namely, that by adding randomness to the system and collecting results from the
ensemble of randomized samples one can reduce the misleading impact of random fluctuations
and correlations. Here, this extra randomness shall provide us with a clearer view of which
attributes are really important.

The Boruta algorithm consists of following steps:

1. Extend the information system by adding copies of all variables (the information system
is always extended by at least 5 shadow attributes, even if the number of attributes in
the original set is lower than 5).

2. Shuffle the added attributes to remove their correlations with the response.

3. Run a random forest classifier on the extended information system and gather the
Z scores computed.

4. Find the maximum Z score among shadow attributes (MZSA), and then assign a hit to
every attribute that scored better than MZSA.

5. For each attribute with undetermined importance perform a two-sided test of equality
with the MZSA.

6. Deem the attributes which have importance significantly lower than MZSA as ‘unim-
portant’ and permanently remove them from the information system.

7. Deem the attributes which have importance significantly higher than MZSA as ‘impor-
tant’.

4 Feature Selection with the Boruta Package

8. Remove all shadow attributes.

9. Repeat the procedure until the importance is assigned for all the attributes, or the
algorithm has reached the previously set limit of the random forest runs.

In practice this algorithm is preceded with three start-up rounds, with less restrictive impor-
tance criteria. The startup rounds are introduced to cope with high fluctuations of Z scores
when the number of attributes is large at the beginning of the procedure. During these ini-
tial rounds, attributes are compared respectively to the fifth, third and second best shadow
attribute; the test for rejection is performed only at the end of each initial round, while the
test for confirmation is not performed at all.

The time complexity of the procedure described above in realistic cases is approximately
O(P ·N), where P and N are respectively the numbers of attributes and objects. That may
be time consuming for large data sets; still, this effort is essential to produce a statistically
significant selection of relevant features.

To illustrate the scaling properties of Boruta algorithm we performed following experiment
using Madalon data set. It is an artificial data set, which was one of the NIPS2003 problems.
(Guyon, Gunn, Ben-Hur, and Dror 2005) The data set contains 2000 objects described with
500 attributes. We generated subsamples of Madelon set containing 250, 500, 750, . . . , 2000
objects. Then for each subsample we created seven extended sets containing respectively 500,
1000, . . . , 3500 superficial attributes obtained as a uniform random noise. Then we performed
standard feature selection with Boruta on each of 64 test sets and measured the execution
time. The results of the experiment are displayed in Figure 1. One may see almost perfect
linear scaling for the increasing number of attributes. On the other hand execution times
grow faster than the number of objects, but the difference is not very big and it seems to
converge to linear scaling for large number of objects.

The timings are reported in CPU hours. Using the values from the largest data set, one can
estimate the time required to complete Boruta run on a single core of modern CPU to be one
hour per one million (attribute × objects).

One should notice that in many cases, in particular for a biomedical problems, the com-
putation time is a small fraction of the time required to collect the data. One should also
note, that the prime reason for running the ’all-relevant’ feature selection algorithm is not
the reduction of computation time (altough it can be achieved if the data set pruned from
non-informative attributes will be subsequently analysed numerous times). The main reason
is to find all attributes for which their correlation with decision is higher than that of the ran-
dom attributes. Moreover, while Boruta is generally a sequential algorithm, the underlying
random forest classifier is a trivially parallel task and thus Boruta can be distributed even
over a hundreds of cores, provided that a parallel version of the random forest algorithm is
used.

3. Using the Boruta package

The Boruta algorithm is implemented in Boruta package.

R> library("Boruta")

Journal of Statistical Software 5

500 1000 1500 2000

0
2

4
6

8

Objects

T
im

e
[h

]

Attributes

500
1000
1500
2000
2500
3000
3500
4000

500 1000 1500 2000 2500 3000 3500 4000

0
2

4
6

8
Attributes

T
im

e
[h

]

Objects

250
500
750
1000
1250
1500
1750
2000

Figure 1: The scaling properties of Boruta with respect to the number of attributes (left) and
number of objects (right). Each line on the left panel corresponds to the set with identical
number of objects and on the right panel it corresponds to the set with identical number of
attributes. One may notice that scaling is linear with respect to number of attributes and
not far from linear with respect to the number of objects.

The ozone data from UCI Machine Learning Repository (Asuncion and Newman 2007) and
available in mlbench package (Leisch and Dimitriadou 2010) is used as the first example:

R> library("mlbench")

R> data("Ozone")

R> Ozone <- na.omit(Ozone)

The algorithm is performed by the Boruta function. For its arguments, one should specify the
model, either using a formula or predictor data frame with a response vector; the confidence
level (which is recommended to be left default) and the maximal number of random forest
runs.

One can also provide values of mtry and ntree parameters, which will be passed to
randomForest function. Normally default randomForest parameters are used, they will be
sufficient in most cases since random forest performance has rather a weak dependence on its
parameters. If it is not the case, one should try to find mtry and ntree for which random
forest classifier achieves convergence at minimal value of the OOB error.

Setting doTrace argument to 1 or 2 makes Boruta report the progress of the process; version
2 is a little more verbose, namely it shows attribute decisions as soon as they are cleared.

R> set.seed(1)

R> Boruta.Ozone <- Boruta(V4 ~ ., data = Ozone, doTrace = 2, ntree = 500)

6 Feature Selection with the Boruta Package

Initial round 1:

1 attributes rejected after this test: V2

Initial round 2:

1 attributes rejected after this test: V3

Initial round 3:

Final round:

8 attributes confirmed after this test: V1 V5 V7 V8 V9 V10 V11 V12

....

1 attributes confirmed after this test: V13

....

1 attributes rejected after this test: V6

R> Boruta.Ozone

Boruta performed 48 randomForest runs in 2.540633 mins.

9 attributes confirmed important: V1 V5 V7 V8 V9 V10 V11 V12 V13

3 attributes confirmed unimportant: V2 V3 V6

The Ozone set consists of 12 attributes; three of them are rejected, two after the initial
round 2, and one during the final round. The remaining attributes are indicated as confirmed.
Figure 2 shows the Z scores variability among attributes during the Boruta run. It can be
easily generated using the plot method of Boruta object:

R> plot(Boruta.Ozone)

One can see that Z score of the most important shadow attribute clearly separates important
and non important attributes.

Moreover, it is clearly evident that attributes which consistently receive high importance
scores in the individual random forest runs are selected as important. On the other hand, one
can observe quite sizeable variability of individual scores. The highest score of a random at-
tribute in a single run is higher than the highest importance score of two important attributes,
and the lowest importance score of five important attributes. It clearly shows that the results
of Boruta are generally more stable than those produced by feature selection methods based
on a single random forest run, and this is why several iterations are required.

Due to the fact that the number of random forest runs during Boruta is limited by the maxRuns
argument, the calculation can be forced to stop prematurely, when there are still attributes
which are judged neither to be confirmed nor rejected — and thus finally marked tentative.
For instance1:

R> set.seed(1)

R> Boruta.Short <- Boruta(V4 ~ ., data = Ozone, maxRuns = 12)

1The number of steps and the seed were intentionally selected to show this effect in the familiar data
set. Due to slight differences between Windows and Linux versions of randomForest package, which probably
arise due to compilation, the actual results of the procedure described above might differ slightly from the
results shown here (these were obtained in R version 2.10.0 and randomForest version 4.5-33 on x86-64 Linux
workstation).

Journal of Statistical Software 7

●

●●
●●

●●
●

●

ra
nd

M
in V
2

V
3

ra
nd

M
ea

n

V
6

ra
nd

M
ax V
5

V
13

V
10 V

7

V
11 V

1

V
12 V

8

V
9

−
5

0
5

10
15

20

Attributes

Z
−

S
co

re
s

Figure 2: Boruta result plot for ozone data. Blue boxplots correspond to minimal, average
and maximum Z score of a shadow attribute. Red and green boxplots represent Z scores of
respectively rejected and confirmed attributes.

R> Boruta.Short

Boruta performed 42 randomForest runs in 2.3612 mins.

8 attributes confirmed important: V1 V5 V7 V8 V9 V10 V11 V12

2 attributes confirmed unimportant: V2 V3

2 tentative attributes left: V6 V13

One should consider increasing the maxRuns parameter if tentative attributes are left. Nev-
ertheless, there may be attributes with importance so close to MZSA that Boruta won’t be
able to make a decision with the desired confidence in realistic number of random forest runs.
Therefore Boruta package contains a TentativeRoughFix function which can be used to fill
missing decisions by simple comparison of the median attribute Z score with the median
Z score of the most important shadow attribute:

R> TentativeRoughFix(Boruta.Short)

Boruta performed 42 randomForest runs in 2.3612 mins.

Tentatives roughfixed over 12 last randomForest runs.

9 attributes confirmed important: V1 V5 V7 V8 V9 V10 V11 V12 V13

3 attributes confirmed unimportant: V2 V3 V6

8 Feature Selection with the Boruta Package

One can obviously treat such attributes manually.

For easy transfer of Boruta results to other classifiers and tools, the Boruta package con-
tains functions that extract the results and convert them into a convenient form. The
getConfirmedFormula and getNonRejectedFormula create a formula object that defines
a model based respectively only on confirmed or on confirmed and tentative attributes:

R> getConfirmedFormula(Boruta.Ozone)

V4 ~ V1 + V5 + V7 + V8 + V9 + V10 + V11 + V12 + V13

The attStats function creates a data frame containing each attribute’s Z score statistics and
the fraction of random forest runs in which this attribute was more important than the most
important shadow one:

R> attStats(Boruta.Ozone)

meanZ medianZ minZ maxZ normHits decision

V1 13.3911279 13.6373356 10.505555 15.1610346 1.0000000 Confirmed

V2 -2.0475252 -1.5112547 -4.741706 -0.6750894 0.0000000 Rejected

V3 -1.2097874 -1.4335204 -2.202290 0.5520193 0.0000000 Rejected

V5 6.9889240 6.8839769 5.552918 8.8074357 0.9166667 Confirmed

V6 0.5866514 0.6179196 -1.491181 2.2507610 0.1250000 Rejected

V7 9.4355872 9.8092537 6.244625 12.0112148 0.9791667 Confirmed

V8 17.3302697 17.1651707 16.186920 18.8550455 1.0000000 Confirmed

V9 20.3332547 20.2826539 18.530345 21.8499295 1.0000000 Confirmed

V10 8.7124127 8.9674981 6.391154 10.7939586 0.9791667 Confirmed

V11 10.0848916 10.4122110 6.179540 12.8348468 0.9583333 Confirmed

V12 13.9761395 14.1462836 11.335510 15.5130497 1.0000000 Confirmed

V13 7.1691008 7.3218887 4.561458 9.0149381 0.9166667 Confirmed

4. Example: Madelon data

Madelon is an artificial data set, which was one of the NIPS2003 problems. (Guyon et al.
2005) The data set contains 2000 objects corresponding to points located in 32 vertices of a
5-dimensional hypercube. Each vertex is randomly assigned one of two classes: −1 or +1,
and the decision of each object is a class of its vertex. 500 attributes are constructed in the
following way: 5 of them are randomly jittered coordinates of points; 15 others are random
linear combinations of the first 5; finally the rest of the system is a uniform random noise.
The task is to extract 20 important attributes from the system.

Madelon data is available from UCI Machine Learning Repository (Asuncion and Newman
2007) (loading of this data set may take several minutes):

R> root <-

+ "http://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/"

R> predictors <- read.table(paste(root, "madelon_train.data", sep = ""))

R> decision <- read.table(paste(root, "madelon_train.labels", sep = ""))

R> Madelon <- data.frame(predictors, decision = factor(decision[, 1]))

Journal of Statistical Software 9

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

Random Forest run

Z
−

S
co

re
s

Figure 3: Z score evolution during Boruta run. Green lines correspond to confirmed at-
tributes, red to rejected ones and blue to respectively minimal, average and maximal shadow
attribute importance. Gray lines separate rounds.

Running Boruta (execution may take a few hours):

R> set.seed(7777)

R> Boruta.Madelon <- Boruta(decision ~ ., data = Madelon)

R> Boruta.Madelon

Boruta performed 51 randomForest runs in 1.861855 hours.

20 attributes confirmed important: V29 V49 V65 V106 V129 V154 V242

V282 V319 V337 V339 V379 V434 V443 V452 V454 V456 V473 V476 V494

480 attributes confirmed unimportant: V1 V2 V3 V4 V5 V6 V7 V8 V9

V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28

(the rest of the output was omitted)

One can see that we have obtained 20 confirmed attributes. The plotZScore function visu-
alizes the evolution of attributes’ Z scores during a Boruta run:

R> plotZHistory(Boruta.Madelon)

10 Feature Selection with the Boruta Package

The result can be seen on Figure 3. One may notice that consecutive removal of random
noise increases the Z score of important attributes and improves their separation from the
unimportant ones; one of them is even ‘pulled’ out of the group of unimportant attributes just
after the first initial round. Also, on certain occasions, unimportant attributes may achieve
a higher Z score than the most important shadow attribute, and this is the reason why we
need multiple random forest runs to arrive at a statistically significant decision.

The reduction of attribute number is considerable (96%). One can expect that the increase
of accuracy of a random forest classifier can be obtained on the reduced data set due to the
elimination of noise.

It is known that feature selection procedure can introduce significant bias in resulting models.
For example Ambroise and McLachlan (2002) have shown that, with the help of feature
selection procedure, one can obtain a classifier, which is using only non-informative attributes
and is 100% accurate on the training set. Obviously such classifier is useless and is returning
random answers on the test set.

Therefore it is necessary to check whether Boruta is resistant to this type of error. It is
achieved with the help of cross-validation procedure. The part of the data is set aside as a
test set. Then the complete feature selection procedure is performed on the remaining data
set – a training set. Finally the classifier obtained on the training set is used to classify objects
from the test set to obtain classification error. The procedure is repeated several times, to
obtain estimate of the variability of results.

Boruta performs several random forest runs to obtain statistically significant division between
important and irrelevant attributes. One should expect that ranking obtained in the single
RF run should be quite similar to that obtained from Boruta. We can check if this is the
case, taking advantage of the cross-validation procedure described above.

Madelon data was split ten times into train and test sets containing respectively 90% and
10% of objects. Than, Boruta was run on each train set. Also, three random forest classifiers
were generated on each train set: first using all attributes, the second one using only these
attributes that were selected by Boruta, and the third one using the same number of attributes
as found by Boruta, but selected as a top important by the first random forest trained on all
attributes. Finally, the OOB error estimate on a train set and the error on a test set for all
classifiers was collected.

The results are shown in the Table 1. One can see that both the OOB error as well as the
error on the test set is consistently smaller for random forest runs performed on the reduced
set of attributes. This observation is verified by a t test:

R> t.test(CV.Boruta$"Test conf.", CV.Boruta$"Test all", paired = TRUE)

Paired t-test

data: CV.Boruta$"Test conf." and CV.Boruta$"Test all"

t = -24.2727, df = 9, p-value = 1.636e-09

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.198962 -0.165038

sample estimates:

Journal of Statistical Software 11

OOB all OOB conf. OOB RF Test all Test conf. Test RF Agreement

1 0.32 0.11 0.11 0.27 0.12 0.11 0.91
2 0.29 0.11 0.11 0.30 0.14 0.13 0.83
3 0.29 0.11 0.11 0.34 0.14 0.14 0.90
4 0.32 0.11 0.12 0.24 0.07 0.07 1.00
5 0.30 0.11 0.11 0.27 0.12 0.12 0.83
6 0.29 0.12 0.11 0.26 0.07 0.07 1.00
7 0.30 0.11 0.11 0.32 0.12 0.12 1.00
8 0.30 0.12 0.11 0.28 0.08 0.08 1.00
9 0.30 0.11 0.11 0.32 0.10 0.12 0.91

10 0.30 0.11 0.11 0.28 0.08 0.10 1.00

Table 1: Cross-validation of the error reduction due to limiting the information system to
attributes claimed confirmed by Boruta.

mean of the differences

-0.182

As one may expect, the feature ranking provided by plain random forest agrees fairly well
with Boruta results. This explains why the simple heuristic feature selection procedure in
random forest, namely selecting a dozen or so top scoring attributes, works well for obtaining
good classification results. Nevertheless, this will not necessarily be a case when dealing with
larger and more complex sets, where stochastic effects increase the variability of the random
forest importance measure and thus destabilize the feature ranking.

One should note that the Boruta is a heuristic procedure designed to find all relevant at-
tributes, including weakly relevant attributes. Following Nilsson et al. (2007), we say that
attribute is weakly important when one can find a subset of attributes among which this
attribute is not redundant. The heuristic used in Boruta implies that the attributes which
are significantly correlated with the decision variables are relevant, and the significance here
means that correlation is higher than that of the randomly generated attributes. Obviously
the set of all relevant attributes may contain highly correlated but still redundant variables.
Also, the correlation of the attribute with the decision does not imply causative relation; it
may arise when both decision attribute and descriptive attribute are independently corre-
lated with some other variable. An illustrative example of such situation was given by Strobl,
Hothorn, and Zeileis (2009). Users interested in finding a set of highly relevant and uncor-
related attributes within the result returned by Boruta may use for example package party
(Strobl et al. 2009), caret (Kuhn 2008; Kuhn, Wing, Weston, Williams, Keefer, and Engel-
hardt 2010), varSelRF (Diaz-Uriarte 2007, 2010) or FSelector (Romanski 2009) for further
refinement.

5. Summary

We have developed Boruta, a novel random forest based feature selection method, which
provides unbiased and stable selection of important and non-important attributes from an
information system. Due to the iterative construction, our method can deal both with the

12 Feature Selection with the Boruta Package

fluctuating nature of a random forest importance measure and the interactions between at-
tributes. We have also demonstrated its usefulness on an artificial data set. The method is
available as an R package.

Acknowledgments

Computations were performed at ICM, grant G34-5. We would like to thank the reviewers
and the technical editor for a helpful discussions which led to improvement of the paper.

References

Ambroise C, McLachlan GJ (2002). “Selection Bias in Gene Extraction on the Basis of
Microarray Gene-Expression Data.” Proceedings of the National Academy of Sciences of
the United States of America, 99(10), 6562–6.

Asuncion A, Newman DJ (2007). “UCI Repository of Machine Learning Databases.” Uni-
versity of California, Irvine, Deptartment of Information and Computer Sciences, URL
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Breiman L (2001). “Random Forests.” Machine Learning, 45, 5–32.

Diaz-Uriarte R (2007). “GeneSrF and varSelRF: A Web-Based Tool and R Package for Gene
Selection and Classification Using Random Forest.” BMC Bioinformatics, 8(328).

Diaz-Uriarte R (2010). varSelRF: Variable Selection Using Random Forests. R package
version 0.7-2, URL http://CRAN.R-project.org/package=varSelRF.

Guyon I, Elisseeff A (2003). “An Introduction to Variable and Feature Selection.” Journal of
Machine Learning Research, 3, 1157–1182.

Guyon I, Gunn S, Ben-Hur A, Dror G (2005). “Result Analysis of the NIPS 2003 Feature
Selection Challenge.” Advances in Neural Information Processing Systems, 17, 545–552.

Kohavi R, John GH (1997). “Wrappers for Feature Subset Selection.” Artificial Intelligence,
97, 273–324.

Kuhn M (2008). “Building Predictive Models in R Using the caret Package.” Journal of
Statistical Software, 28(5), 1–26. URL http://www.jstatsoft.org/v28/i05/.

Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A (2010). caret: Classification
and Regression Training. R package version 4.58, URL http://CRAN.R-project.org/

package=caret.

Leisch F, Dimitriadou E (2010). mlbench: Machine Learning Benchmark Problems. R pack-
age version 2.0-0, URL http://CRAN.R-project.org/package=mlbench.

Liaw A, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22. URL http://CRAN.R-project.org/doc/Rnews/.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://CRAN.R-project.org/package=varSelRF
http://www.jstatsoft.org/v28/i05/
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=mlbench
http://CRAN.R-project.org/doc/Rnews/

Journal of Statistical Software 13

Nilsson R, Peña J, Björkegren J, Tegnér J (2007). “Consistent Feature Selection for Pattern
Recognition in Polynomial Time.” The Journal of Machine Learning Research, 8, 612.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Romanski P (2009). FSelector: Selecting Attributes. R package version 0.18, URL http:

//CRAN.R-project.org/package=FSelector.

Rudnicki WR, Kierczak M, Koronacki J, Komorowski J (2006). “A Statistical Method for
Determining Importance of Variables in an Information System.” In S Greco, H Y, S Hirano,
M Inuiguchi, S Miyamoto, HS Nguyen, R Slowinski (eds.), Rough Sets and Current Trends
in Computing, 5th International Conference, RSCTC 2006, Kobe, Japan, November 6–
8, 2006, Proceedings, volume 4259 of Lecture Notes in Computer Science, pp. 557–566.
Springer-Verlag, New York.

Stoppiglia H, Dreyfus G, Dubois R, Oussar Y (2003). “Ranking a Random Feature for Variable
and Feature Selection.” Journal of Machine Learning Research, 3, 1399–1414.

Strobl C, Hothorn T, Zeileis A (2009). “Party on! – A New, Conditional Variable Im-
portance Measure for Random Forests Available in the party Package.” The R Journal,
1(2), 14–17. URL http://journal.R-project.org/archive/2009-2/RJournal_2009-2_

Strobl~et~al.pdf.

Affiliation:

Miron B. Kursa, Witold R. Rudnicki
Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw
Pawinskiego 5A
02-105 Warsaw, Poland
E-mail: M.Kursa@icm.edu.pl, W.Rudnicki@icm.edu.pl
URL: http://www.icm.edu.pl/~rudnicki/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 36, Issue 11 Submitted: 2009-12-03
September 2010 Accepted: 2010-07-29

http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=FSelector
http://CRAN.R-project.org/package=FSelector
http://journal.R-project.org/archive/2009-2/RJournal_2009-2_Strobl~et~al.pdf
http://journal.R-project.org/archive/2009-2/RJournal_2009-2_Strobl~et~al.pdf
mailto:M.Kursa@icm.edu.pl
mailto:W.Rudnicki@icm.edu.pl
http://www.icm.edu.pl/~rudnicki/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Boruta algorithm
	Using the Boruta package
	Example: Madelon data
	Summary

